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Abstract
Compared to earlier mobile network generations, the 5G

system architecture has been significantly enhanced by the

introduction of network analytics functionalities and ex-

tended capabilities of interacting with third party Appli-

cation Functions (AFs). Combining these capabilities, new

features for Quality of Experience (QoE) estimation can be

designed and introduced in next generation networks. It is,

however, unclear how 5G networks can collect monitoring

data and application metrics, how they correlate to each

other, and which techniques can be used in 5G systems for

QoE estimation. This paper studies the feasibility of Machine

Learning (ML) techniques for QoE estimation and evaluates

their performance for a mobile video streaming use-case. A

simulator has been implemented with OMNeT++ for generat-

ing traces to (i) examine the relevance of features generated

from 5Gmonitoring data and (ii) to study the QoE estimation

accuracy (iii) for a variable number of used features.
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1 Introduction
Online video streaming has become the prevalent way of

video consumption and contributes a large fraction of today’s

global IP traffic. Cisco forecasts that by 2022, mobile video

will make up nearly 80% of the overall mobile data traffic [8].

Driven by business incentives, providing a good Quality of

Experience (QoE) is of up-most importance for Mobile Net-

work Operators (MNOs), Internet Service Providers (ISPs),

and content providers or Virtual Content Providers (VCP).

While the QoE can only be estimated reliably by the content

provider based on application data, it is theMNO/ISP that has

the capability to perform application-aware resource control.

When it comes to mobile networks, the 5G system architec-

ture has been significantly enhanced by the introduction of

network analytics functionalities and extended capabilities

of interacting with third party Application Functions (AFs).

5G Network Functions (NFs) and AFs have standardized in-

terfaces to allow the communication of application-specific

information, such as QoE information sent from VCP to

MNO. It is desirable for the MNO to estimate the QoE in the

system also in the absence of application-specific data or if

such data is aggregated by the AF. To achieve this, MNOs of

5G networks can apply Machine Learning (ML) techniques

to derive the QoE from network-level monitored statistics,

as the newly introduced Network Data Analytics Function

(NWDAF) specifies. The current NWDAF specification in-

cludes the capability of generating analytics information

about service experience based on AF data, i.e., the QoE of

applications. In addition, the monitoring data to be used for

generating such analytics has been fixed.

To the best of our knowledge, this paper is the first attempt

to investigate issues on how NWDAF correlates network sta-

tistics with application metrics and the corresponding QoE

in 5G systems. In our approach, a third party tenant ini-

tially communicates video streaming performance data to

NWDAF via the AF. This information is, from the NWDAF

perspective, the ground truth QoE. Statistical processing of

https://doi.org/10.1145/3349611.3355547
https://doi.org/10.1145/3349611.3355547


network-level monitoring data generates a vast number of

features, whose relation to the ground truth QoE, i.e. rel-

evance, is studied. Then, ML-based models are trained to

estimate the QoE from those network-level features that are

available to the NWDAF. We study the feasibility of such an

approach with traces generated within an OMNeT++ simula-

tion, that allow for correlating network statistics and QoE.

We show that a small set of network-related features and

low-complex regression methods already allow an accurate

video QoE estimation with a mean squared error below 0.1
on Mean Opinion Score (MOS) scale.

The remainder of the work is structured as follows. Re-

lated work is presented in Section 2. Section 3 describes a

possible integration of our solution in the 5G architecture for

a video streaming use-case. The methodology is described in

Section 4, followed by the evaluation in Section 5. Section 6

concludes the paper.

2 Background and Related Work
The fundament for estimating the QoE from network QoS

metrics is to understand how they relate to each other. For

that reason, [10] studies the causal relations between video

QoE and network and application QoS. Making use of those

relations to classify video QoE from encrypted network traf-

fic is recently widely discussed and numerous works have

been published in the past few years addressing this topic.

The works presented in [7, 11, 13, 16, 22] study the capabili-

ties of different ML-based algorithms to classify values for

QoE influence factors (QoE-IFs), such as stallings or video

quality. Compared to previous works, we do not classify ob-

jective QoE-IFs, but estimate actual QoE values. We use the

QoE on MOS scale as computed by the standardized ITU-

T P.1203 model [20], which uses a set of objective quality

assessment modules to measure the subjective application

quality perceived by a user. It is used in the context of classi-

fying QoE from encrypted network traffic in [17] and [11].

QoE estimation with a focus on mobile networks is ad-

dressed in [12], where the performance of different classi-

fiers and the influence of the used network- and application-

specific features is studied. A solution for estimating the

QoE solely based on network-related performance indica-

tors for LTE networks is presented in [6]. The authors of [3]

study different methods for predicting the QoE of FTP file

transfers and propose to apply their methods for detecting

anomalies in self-organized networks. Our proposal differs

from existing solutions as we estimate the QoE solely based

on network-level metrics, including all metrics available to

an MNO that have not been considered so far, e.g. channel

quality indicator (CQI). We furthermore present an embed-

ding of ML-based QoE estimation into the 5G network ar-

chitecture and strengthen the applicability of our approach
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Figure 1: 5G data analytics framework

by taking advantage of 5G-specific NFs, which enable ob-

taining ground truth data from third parties and retrieving

network-level statistics.

Applying machine learning in 5G gains an ever-increasing

interest, e.g. to predict the number of active users [19], for

traffic forecasting [2], or cognitive networking in [5]. A first

QoE-centric approach provides a service quality prediction

model for UHD real time video streaming [15]. A network

resource allocation system for autonomous QoE-aware 5G

network management is discussed in [14].

3 Flexible Approach for Analytics
Generation in 5G Systems

This section introduces the data analytics support in 5G first

in a general manner and afterwards with a focus on QoE.

Then, we describe our approach for integrating ML-based

QoE estimation into 5G systems.

3.1 Current Data Analytics Support for 5G
The latest 3GPP release of the 5G Network Architecture, i.e.,

release 16, includes a new, dedicated specification for net-

work data analytics support in 5G systems.
1
It defines the

framework for integrating analytics functionality in 5G and

the types of analytics that can be generated by the NWDAF.

The 5G analytics framework is based on the following princi-

ples: a) The NWDAF as shown in Figure 1 is connected to the

Service Based Interface (SBI), allowing the NWDAF to collect

data from AFs and from any other 5G control plane NFs, e.g.,

Access and Mobility Management Function (AMF) or Session

Management Function (SMF). The NWDAF is also able to

collect data from the 5G management plane (NMS - Network

Management System), where user plane data sourcing from

Access Node (AN) and User Plane Function (UPF) can be

obtained; b) The NWDAF is capable to generate analytics

based on ML techniques that can be consumed by 5G NFs,

AFs, or 5G management plane entities; c) The internals of

NWDAF are vendor specific. Additionally, a set of analytics

that can be generated by NWDAF have been standardized.

This gives guarantees to MNOs that at least a minimum set

1
3GPP TS 23.288 V16.0.0, Architecture enhancements for 5G System (5GS) to support network

data analytics services, 2019-06
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Figure 2:Workflow of proposedML-based QoE estima-
tion integration into the 5G architecture

of analytics will be offered by any vendor of NWDAF, but

does not restrict NWDAF to generate other types of analytics

information.

3.2 QoE Analytics in 5G Systems
Given the importance of QoE, 3GPP defined the “Service

Experience” analytics information generated by NWDAF
1
.

These analytics indicate how QoS parameters satisfy the

MOS agreed between the mobile operator and an external

party such as an Application Service Provider (ASP) or VCP.

Such external party is associated with the AF from where

the NWDAF can collect data or provide analytics to. In terms

of specific measurements, the set of data to be collected by

NWDAF includes: the MOS from the AF (which is used to

train the QoE model); and network monitoring data related

UL and DL traffic, number of transmitted and retransmitted

packets, all per flow of data in 5G, as well as radio quality

conditions per User Equipment (UE). The input data defined

for generating such analytics information ultimately defines

the set of statistics, i.e. features, that can be offered to an ML

model for estimating the QoE. However, as there is currently

no deployment of 5G networks, there is no evidence of how

the approach followed in the standard of fixing the set of

features actually performs.

3.3 Proposed ML-based QoE Estimation
Integration for Mobile Video Streaming

In this paper, we do not assume an upfront fixed set of pa-

rameters provided by the NWDAF, but propose the approach

illustrated in Figure 2, which reveals necessary parameters

for reliable QoE estimation. Our proposed integration of ML-

based QoE estimation considers three phases. During the

first phase the third party AF communicates application per-

formance data on a per-session basis to the NWDAF. Hence,

the NWDAF’s database is enriched by ground truth applica-

tion QoE 1○. In the second phase, a vast number of network

features is generated by statistical processing of the network

monitoring data. The resulting features are ranked accord-

ing to their significance in terms of influencing the QoE 2○.

Then, a subset of significant features 3○ and the ground truth

QoE values are used to train ML-based models for QoE esti-

mation 4○. In the next step, the estimation performance is

evaluated 5○. This process can be repeated for different fea-

ture sets and ML-based models 6○, until a desired estimation

accuracy is obtained. The identified feature set dictates the

necessary network statistics the NWDAF has to provide 7○ in

order to reliably estimate the QoE during deployment phase

based on the trained model 8○. Although the MNO can now

estimate the QoE without the need of application-metrics

provided by the AF, the VCP can still communicate such

information to facilitate updating, verifying, and improving

the trained model 9○.

4 Methodology
The following section details on the simulation environment

and describes the applied QoE estimation techniques.

4.1 Omnet++ Simulation Environment
For simulating the mobile video streaming clients and the

underlying network, we use OMNeT++ [23] together with the
frameworks INET and SimuLTE.2 Although SimuLTE simu-

lates LTE networks, the same type of monitored information

in 4G entities, such as PGW (PDN, Packet Data Network,

Gateway)
3
and eNB (i.e., access node)

4
, is available to be

collected from, respectively, UPF and gNB (i.e., access node)

in 5G
5,6
. At this stage of our research, the main point of us-

ing SimuLTE is to obtain monitored information from both,

access and core network. We assume the monitoring infor-

mation to be available at NWDAF and we are not considering

any signaling exchange for data collection yet. Therefore,

SimuLTE can be used for generating user plane traffic in a

mobile network. From the perspective of the radio technol-

ogy, 5G has a much higher performance than 4G. Hence,

absolute throughput values in an experiment will be much

higher with a 5G gNB. However, the principles of system

load (number of UEs in a cell) and radio quality will still play

a role in 5G systems.

4.1.1 Network Topology. The network topology used in Si-
muLTE reflects the same user plane entities as illustrated in

Figure 1. It consists of a single access node (AN) connected

to a gateway (i.e., PGW). This maps to the AN entity con-

nected via N3 interface to the UPF in Figure 1. Such gateway

is directly connected to the video server. This is equivalent

to UPF connected via N6 interface to the Application Server

in Figure 1. The UEs are randomly placed within a square of

500x500 meters around the AN. For these experiments, we

consider a single cell without any external interference.

2
We use Omnet++ 5.1, INET 3.5, and SimuLTE 0.9.1. The simulation environment is made

available on Github. https://github.com/fg-inet/vagrant-omnet-simulation

3
3GPP TS 32.426 V15.2.0 (2018-12). Performance measurements EPC network

4
3GPP TS 32.425 V16.3.0 (2019-06), Performance measurements E-UTRAN

5
3GPP TS 28.552 V16.2.0 (2019-06), 5G Performance Measurements

6
3GPP TS 28.554 V16.1.0 (2019-06), 5G end to end Key Performance Indicators



Table 1: Configurations in the OMNeT++ simulator.

C
h
a
n
n
e
l Carrier frequency carrierFrequency 2.1 GHz

Maximum sending power pMax 20 W

Uplink (UL) bandwidth BWU L 20 MHz

Downlink (DL) bandwidth BWDL 20 MHz

R
L
C Size of fragments f raдmentSize 30 B

Timeout for RX buffer timeout 1 s

M
A
C

MAC buffers queue size queueSize 5 MiB

Schedulable Bytes maxBytesPerTti 3 MB

DL scheduling discpline schedulinдDDl MAXCI

UL scheduling discpline schedulinдDUl MAXCI

A
M
C

# resource blocks in DL numRbDl 100

# resource blocks (Rb) in UL numRbUl 100

# subcarriers per Rb in DL rbyDl 12

# resource blocks in DL rbyUl 12

# logical bands numBands 100

Table 2: Monitored network data and applied statisti-
cal metrics for feature generation.

M
o
n
i
t
o
r
e
d
D
a
t
a

Notation Description

AN_Tp_Dl Access Node downlink (Dl) throughput

AN_Tp_Ul Access Node uplink (Ul) throughput

UE_Tp_Dl UE Dl throughput

UE_Tp_Ul UE Ul throughput

CQI_Dl Dl channel quality indicator (CQI)

CQI_Ul Ul CQI measured at UE

M_RTT Measured RTT at the UE

S_RTT Smoothed RTT using a moving average

S
t
a
t
i
s
t
i
c
s

mean, min, max, 25th percentile, 75th percentile, median,

standard deviation (std), variance, coefficient of variation

(cvar), kurtosis, skewness, unbiased standard error of the

mean (sem)

4.1.2 Simulation Parameters. We summarize the most im-

portant OMNeT++ simulation parameters in Table 1. Thereby,

we differentiate channel settings, radio link control (RLC) set-

tings, configurations onMAC layer, and adaptive modulation

and coding (AMC) configurations. All remaining parameters

are kept to the OMNeT++ default setting.
2

4.1.3 Simulation Scenarios. We vary the system load by

considering different numbers of active video clients, i.e., we

vary from 20 to 200 UEs in steps of 20 UEs per configuration

(NU E = 20 : 20 : 200). Each configuration is run using four

different seeds, which determine the UE placement around

the access node and the video clients’ start times.

4.1.4 Client Parameters and Video Properties. The video

server provides a video of 300 seconds length, split into seg-

ments of 5 seconds duration. We consider three different

quality levels having bitrates of 500 kbps , 1500 kbps , and
3000 kbps . The client is equipped with a simple buffer-based

heuristic, has a maximum buffer length of 30 seconds, and

quality switching thresholds of 10 and 20 seconds for switch-

ing to the second and third quality level.

4.2 Estimating QoE from Network QoS
In the following, we first detail on the generated features

and how their relevance can be studied. Afterwards we give

a short summary on the applied ML-techniques.

4.2.1 Feature Generation. During the simulations, we mon-

itor different network metrics, which can be available to

NWDAF in 5G, as previously discussed. In order to train ML

models to estimate the user QoE from the available network

data, we generate numerous features from these data. Table 2

summarizes the monitored network data and lists the applied

statistics for feature generation. In total, we consider 8 net-

work monitoring metrics and 12 statistical sizes, summing

up to 96 features. In the case ofUE_Tp_Dl andUE_Tp_Ul ,
we use a subset of the monitored network traffic. For in-

stance, packet headers and acknowledgments are omitted,

so to obtain the application-layer goodput.

4.2.2 Feature Relevance. In order to study the relevance

of certain features, we apply three different state-of-the-art

methods: Univariate F-test Statistics (F-test), Mutual Informa-
tion Regression (MIR) [18], and Principal Component Analysis
(PCA) [9]. When MNOs apply the F-Test or MIR, the features

are ranked according to their relevance without modifying

them. Therefore, MNOs can explicitly identify the set of mon-

itoring information most relevant. In contrast, PCA applies

an orthogonal transformation on the input features to con-

vert them into a new set of features, referred to as principal
components. Hence, in the case of PCA, revealing the most

relevant monitoring points is more complex.

4.2.3 Applied Regression Techniques. The ultimate goal is

to estimate the QoE solely from data available at NWDAF, i.e.

network statistics only. We study the feasibility of such an

approach for two typical regression methods, Linear Regres-
sion (LR) [21] and Support Vector Regression (SVR) [4]. Both,
LR and SVR, are supervised learning models, i.e., they need

to be trained on a ground truth data set. They furthermore

output actual values, i.e., they estimate a value rather than

their affinity to predefined classes.

We study the estimation accuracy of these models for

an increasing number of used features according to the ob-

tained feature ranking. The training set consists of 70% of

the ground truth data points. The remaining 30% are used for

testing the estimation performance. For quantifying the esti-

mation accuracy, we apply the following typical measures:

Median absolute error (MedAE), mean squared error (MSE),

and the coefficient of determination, referred to as R2
.

5 Evaluation
In order to retrieve the ground truth QoE values for training

and evaluating the ML models, we apply the ITU-T P.1203

model on the relevant video metrics of each session. Figure 3

illustrates the CDF of the obtained QoE values on MOS scale.



Figure 3: True QoE scores
obtained for varying num-
bers of active UEs

Figure 4: Relationship be-
tween filtered UL and DL
throughput and QoE

Table 3: Feature ranking obtained by MIR and F-test
Rank MIR F-test

1 meanUE_Tp_Ul meanUE_Tp_Dl
2 meanUE_Tp_Dl skewnessUE_Tp_Dl
3 cvarUE_Tp_Dl varianceUE_Tp_Ul
4 max CQI_Ul 75th percentile CQI_Ul
5 kurtosisM_RTT std AN_Tp_Dl
6 minM_RTT max AN_Tp_Dl
7 semM_RTT skewnessM_RTT
8 25th percentile S_RTT skewness AN_Tp_Ul
9 kurtosis S_RTT 75th percentile CQI_Dl
10 maxUE_Tp_Ul meanM_RTT

The QoE tends to decrease with an increasing number of

active clients, which is attributed to the fact of increasing

overall system load. The set of ground-truth data is used in

the following to retrieve the feature ranking and to study the

estimation accuracy of the applied regression techniques.

5.1 Feature Ranking
Table 3 shows the 10 most relevant features in descending

order obtained by MIR and F-test. As both methods are very

likely to rank highly correlated features similarly, we exclude

those features that have a correlation of at least 0.7 to another,

higher ranked feature. Please note that PCA modifies the

features in such a way, that they cannot straightforwardly

be interpreted. Hence, they are omitted in the table.

As expected UE_Tp_Dl is identified as an important indi-

cator for the QoE.MIR recognizes themeanUE_Tp_Ul as the
most relevant feature, motivating to take a closer look on the

relationship ofUE_Tp_Dl ,UE_Tp_Ul , and QoE, as depicted
in Figure 4. It shows an exponential relationship between the

average application uplink and downlink throughput, i.e. the

throughput omitting packet headers and acknowledgments.

Besides the filtered UE throughput, features related to

the channel quality, i.e. CQI, obtained high rankings. Both,

MIR and F-Test, rank CQI-related features on position four.

With regard to the applied statistics, we see that skewness

and kurtosis have notable relevance for estimating QoE. To

the best of our knowledge, their relevance has not yet been

examined in detail and only few works [1, 10] consider these

statistics for generating features.

5.2 QoE Estimation Accuracy
Wedetail now on the estimation accuracy that can be achieved

by linear regression and support vector regression with a

varying number of features.

5.2.1 Linear Regression. Figure 5 summarizes the results ob-

tained with linear regression. The number of used features is

increased according to the ranking given in Table 3. If we use

the features as ranked by the F-test, the lowest median abso-

lute error can be achieved by only using the meanUE_Tp_Dl .
Using a larger feature set does not involve a better perfor-

mance in terms of MedAE. Estimating the QoE only with the

highest ranked feature from MIR (meanUE_Tp_Ul ) results
in a MedAE of roughly 0.35. This value can be reduced to

0.1 when additionally considering the meanUE_Tp_Dl . For
PCA, a large feature set is required to obtain comparable

results. Similar conclusions can be drawn when examining

MSE and R2
score. While the first two features retrieved from

F-test and MIR already provide an MSE below 0.15 and an

R2
score above 0.8, a set of 16 features is required in the case

of PCA to obtain a similar performance.

5.2.2 Support Vector Regression. The performance metrics

for the support vector regression are given in Figure 6. When

estimating the QoE only based on a single feature, the lowest

median absolute error can be achieved with the F-test as

feature selection method. Here, the QoE can be estimated

in most cases only differing less than 0.1 from the true QoE

value. To achieve similar accuracy with feature sets revealed

from MIR and PCA, two and four features are needed re-

spectively. A similar behavior can be observed for the mean

squared error, as shown in Figure 6b. In terms of R2
(Fig-

ure 6c), acceptable scores can be achieved using at least two

features obtained from MIR and F-test or at least four PCA

features.

5.3 Discussion
The presented results can provide new insights to MNOs

and act as a first step towards understanding the correlation

of 5G monitoring data to user QoE and towards designing

ML-based QoE estimation approaches for their systems. Low-

complex regression techniques and small feature sets already

suffice for a reliable QoE estimation. Our results show that

MNOs can rely on simple feature selection methods, such

as MIR and F-test, which provide a direct mapping between

high ranked features and data to be monitored.

Finally, the experiments discussed in this paper are a first

step towards understanding the issues of network data cor-

relation with application QoE in 5G systems, specifically on

the monitoring data needed for accurate QoE estimation.

Comparing our first results with the current specification of

service experience analytics, our results confirm some of the

monitoring data listed in the standard as relevant, but also



(a) Median absolute error (b) Mean squared error (c) R2 score
Figure 5: Estimation performance of linear regression depending on the number of applied features

(a) Median absolute error (b) Mean squared error (c) R2 score
Figure 6: Estimation performance of support vector regression depending on the number of applied features

provide initial evidences that not all monitoring data speci-

fied in the standard might be actually beneficial. In addition,

we also show with our work, that the approach of fixing

upfront the set of data to be collected for generating analyt-

ics by NWDAF might not be the best strategy, or should be

carefully considered during standard work process.

6 Conclusion
The upcoming 5G networks will enhance access to network

analytics data and standardized interfaces for information

exchange between MNOs and third party applications. In

this work, we investigated issues on how NWDAF corre-

lates network statistics with application metrics and the

corresponding QoE in 5G systems for an initial scenario. We

showed that the subjective QoE score can reliably be esti-

mated with standard regression approaches, solely based on

network monitoring data, and that a small set of features

allow for obtaining a sensible accuracy. However, given the

simulation-based nature of the evaluation, the findings still

need to be verified within a real 5G deployment.

Our future work will include more diverse and complex

scenarios, i.e., we plan to extend the setup towards a multi-

cell deployment, moving clients, and varying video and client

characteristics. Wewill also enlarge our set of ML techniques,

among others by including classifiers, and we plan to inves-

tigate the requirements for the data provided by NWDAF,

e.g. in terms of granularity.
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