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Identifisering og karakterisering av prognostiske

faktorer i brystkreft ved bruk av MR metabolomics

Brystkreft er den vanligste kreftsykdommen blant kvinner, og omtrent en av 11 kvinner
vil fa diagnosen i lopet av livet. Sykdomsforlepet og prognosen kan variere mye fra
pasient til pasient, og ikke alle vil ha samme nytte av en gitt behandling. Det arbeides
derfor med & kunne tilby hver enkelt pasient den behandling som er optimal for
pasientens brystkreftsykdom. Arbeidet i denne avhandlingen omhandler bruken av
magnetisk resonans (MR) spektroskopi og fagfeltet metabolomics for bedre vurdering
av brystkreftpasienters prognose og okt forstéelse av de biologiske faktorene som ligger
bak. Motivasjonen er 4 finne nye metoder for diagnostisering og vurdering av prognose

som et tilleggsverktoy til dagens kliniske faktorer.

Kreftceller deler seg raskt, og har derfor en metabolisme som er forskjellig fra den av
normale celler. De kjemiske produktene av metabolisme, kalt metabolitter, vil reflektere
de biologiske prosesser som pagar. MR spektroskopi kan gi et bilde av nivaet av de
ulike metabolittene i en vevsprove. 1 dette arbeidet ble kreftbiopsier fra
brystkreftpasienter analysert ved bruk av MR spektroskopi. MR spekterene ble analysert
ved bruk av multivariate statistiske metoder, og arbeidet inkluderte ogsa & optimalisere

bruken av de ulike metodene.

Det ble i dette arbeidet funnet tydelige metabolske forskjeller i tumorer som utrykker
hormonreseptorer og tumorer som har mistet dette utrykket. Hormonreseptorer er
viktige prognostiske faktorer, og kan ogsa forutsi en pasients respons til endokrin
behandling. En trend til forandret metabolisme ble detektert i pasienter med
lymfeknutespredning. Videre kunne utrykket av spesifikke metabolitter knyttes opp mot
S-ars overlevelse. To metabolitter, laktat og glysin, skilte seg ut som potensielle
biomarkerer for prognose. Det samme ble observert i en gruppe pasienter med
lokalavansert brystkreft som ble behandlet med kjemoterapi for operasjon. Her hadde
pasienter som dede innen fem ar okt laktatniva etter behandling, mens pasienter som

overlevde mer enn fem ar hadde en nedgang i glysin.



Forskningsarbeidet som utgjer denne avhandlingen bestar av fire deler. I det forste
arbeidet ble metabolske profiler relatert til kliniske prognostiske faktorer, og i tredje
arbeid ble metabolske forandringer knyttet opp mot overlevelse. Disse arbeidene er
basert pa en regional brystkreftbiobank med prever samlet inn fra pasienter i midt-
Norge. I det andre arbeidet ble optimal preprosessering av MR spekterne for multivariat
analyse undersekt, og resultater fra dette arbeidet ble benyttet til & optimalisere
analysene i det tredje og fjerde arbeidet. Det fjerde arbeidet omhandlet pasienter
diagnostisert med lokalavansert brystkreft. Disse pasientene har sterre tumorer og mer
utbredt lymfeknytespredning enn pasientene 1 de foregdende arbeidene. Tumorens
metabolske respons til kjemoterapi ble relatert til overlevelse. De to forste arbeidene er

publisert i internasjonale tidsskrifter, mens de to siste er innsendt for vurdering.
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Summary

Breast cancer is a heterogeneous disease with a varying prognosis. Today’s clinical and
pathological diagnostic tools are not sufficient for accurately predicting the prognosis of
a breast cancer patient, or for predicting who will benefit from a certain treatment. The
identification of new factors for diagnosis and prognosis evaluation could lead the way

for improved individualized treatment of breast cancer patients.

Cancer cells have changed metabolism compared to normal cells due to high
proliferation rates and malignant transformation. An increased uptake of glucose is
frequently observed in cancer cells, in addition to a high degree of lactate production
from glucose even in the presence of oxygen. In addition, altered phospholipid
metabolism is commonly observed in cancers. The chemical bi- or end-products of
metabolism are referred to as metabolites. The levels of metabolites in biological
materials can be studied using magnetic resonance (MR) spectroscopy, and high
resolution magic angle spinning (HR MAS) MR spectroscopy provides highly resolved
spectra from solid samples. The aim of this work was to examine the metabolite profiles
of tissue from breast cancer tumors, and to relate these profiles to diagnostic and
prognostic factors. A diverse selection of methods for preprocessing and multivariate
modelling of MR spectra was optimized and used for analyzing the data. The patients
included in this work represent a cohort with varying prognosis, from small, localized
tumors to larger tumors with extensive lymph node involvement. Tissue biopsies from
the tumors were excised before or during breast cancer surgery and analyzed by MR

spectroscopy.

A clear connection between metabolite profiles and hormone receptor status was shown,
and a trend of metabolic differences related to lymphatic spread was observed.
Hormone receptors and lymph node status are important prognostic factors, and the
presence of hormone receptors is also predictive of response to endocrine treatment.
Differences in the metabolite profiles of patients surviving more than five years and

deceased patients were found, and increased levels of the metabolites lactate and



glycine were associated with a poor prognosis. Analysis of the metabolite profiles of
tumor biopsies excised before and after pre-surgical chemotherapy showed that the
tumor’s metabolic response to treatment could be indicative of prognosis. Patients that
died within five years after diagnosis experienced increased lactate levels after
chemotherapy, while patients surviving more than five years had stable lactate levels

and decreased levels of glycine.

The importance of proper preprocessing of MR spectra has also been illustrated in this
thesis, and different multivariate analysis methods have been assessed for their
feasibility of analyzing MR spectra. Overall, the work in this thesis has provided an
increased insight into the complex mechanisms of cancer progression. MR spectroscopy

is a promising tool for stratification of patients into clinically useful prognostic groups.
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Introduction

1 Introduction

1.1 Cancer

Cancer is a collection of diseases characterized by uncontrolled proliferation of cells.
While normal cells are strictly controlled by regulatory signals, cancer cells have
become immortal by genetic alterations, or mutations, giving errors in the regulatory
pathways. Additional alterations enable cancer cells to invade surrounding tissue and
metastasize to other locations in the body. As an accumulation of several genetic
alterations are required for cancer to develop, the risk of cancer increases with age.
These genetic alterations may arise spontaneously during cell division, or they are
caused by carcinogens such as chemicals and radiations that damage the DNA of a cell.

In some cases, genetic alterations are inherited, giving a predisposition for cancer.’

The multistep development of cancer was in 2000 summarized by Hanahan et al.
through the six ‘hallmarks of cancer’; cancer cells must evade apoptosis and growth
suppressors, be self-sufficient of growth signals, enable replicative immortality, sustain
angiogenesis and activate invasion and metastasis.” Metastasis to vital organs is the
leading cause of death in cancer patients. In addition to growth invasion of surrounding
tissue, cancer cells can spread via the blood vascular system or via the lymphatic
system.” Based on progression in cancer science the last decades, two additional
hallmarks have recently been proposed; namely reprogramming of energy metabolism
and evading immune destruction.” Tt has been suggested that most if not all cancers
require these functions via distinct mechanisms and at various times during the course

of the multistep tumorigenesis.

Treatment of cancer is based on removal or killing of cancer cells. Treatment can be
local (surgery and radiation therapy) or systemic (chemotherapy and hormone

treatment), and often a combination of treatments is used.
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1.1.1 Breast cancer

Breast cancer is the most common cancer diagnosis among women in Norway, with
more than 2700 new cases every year. In 2009, breast cancer accounted for 22% of all
diagnosed cancers among Norwegian women.” Figure 1.1 shows the anatomy of the
breast. The lobules contain several milk-producing alveoli, and are connected to the
lactiferous ducts which transport milk to the nipple. Invasive ductal carcinoma (IDC) is
the most common type of breast cancer, accounting for 70-80% of all invasive breast
cancers. IDC starts in the milk ducts where it breaks through the duct walls and invades
the surrounding tissue. Another common type of invasive breast cancers is invasive
lobular carcinoma (ILC) originating from the lobules. ILC accounts for approximately
10% of invasive breast cancers, and is biologically distinct from IDC.° Lobular and
ductal carcinoma in situ are non-invasive breast cancers with good prognosis. They may

however become invasive if left untreated.

Breast cancer is a heterogeneous disease with differing progress and prognosis.” 5-year
survival rates of breast cancer patients in Norway are ranging from 19-95% depending
on the stage of the disease, with an overall survival rate of 88%.” The mortality rates
have decreased in industrialized countries during the last decades, probably due to better
treatment and earlier diagnosis by mammographic screening.® In Norway,

mammographic screening is offered to all women between 50 and 69 years of age.

Factors that will influence a patient’s prognosis and treatment regime include tumor
size, lymphatic involvement and metastatic state (summarized as the TNM status),
estrogen receptor (ER) and progesterone receptor (PgR) status, human epidermal
growth factor receptor 2 (HER-2) status, histological grade, and age.”'” Patients with
tumors lacking the expression of ER and/or PgR have a worse prognosis,'’ while an
amplification of HER-2 induces enhanced malignant growth and is associated with
lower survival rates.”” HER-2 and hormone receptor status are also predictive of
treatment response, as patients that are receptor positive or have HER-2 overexpression

will be suitable for endocrine treatment or treatment with Trastuzumab, respectively.
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Chest wall

Pectoralis muscles

Areola

Figure 1.1: Anatomy of the breast. Adapted from Wikimedia Commons, with credits to Patrick
J. Lynch and C. Carl Jaffe, MD.

Locally advanced breast cancer

Approximately 10-20 % of breast cancer patients are diagnosed with locally advanced
breast cancer in industrialized countries, whereas it constitutes as much as 75% of all
diagnosed breast cancers in developing countries.'® This type of breast cancer is
characterized by large tumors (T3-T4: largest dimension > 5 cm, or extensions to the
skin or chest wall) and/or extensive regional lymph node involvement (N2-N3) but
without distant metastases.'* Locally advanced breast cancers are primarily inoperable
cancers with varying prognosis. The patients with this diagnosis are treated with
chemotherapy prior to surgery (neoadjuvant chemotherapy, NAC) in order to decrease
the tumor size and make the tumor operable. No survival advantages have been
demonstrated for NAC treatment,”> however NAC allows more breast-conserving
surgeries without any significant increase in local or distal recurrence.'® Patients with a
pathological complete response to NAC have improved outcome compared to patients
with residual disease, thus treatment response can be useful as a prognostic indicator.'”
'8 In Norway, the treatment regime of patients with locally advanced breast cancer is
recommended by the Norwegian Breast Cancer Group (NBCG'?), and consists of NAC
followed by surgery and radiotherapy. Patients will first receive four cycles of FEC (5-
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fluorouracil, epirubicin, and cyclophosphamide). If the longest diameter of the tumors is
reduced by > 80% after the four cycles, two additional cycles of FEC is provided. If the
reduction in the longest tumor diameter is < 80%, the patient proceeds to 12 weeks of

treatment with either docetaxel or paclitaxel before surgery.

1.1.2 Tumor metabolism

Cells need energy in the form of ATP in order to replicate and proliferate. Conversion
of glucose, a main source of energy, into pyruvate through the glycolysis yields a small
amount of ATP. Under normal aerobic conditions, pyruvate is further oxidized in the
tricarbocylic acid cycle (TCA or Krebs cycle) followed by oxidative phosphorylation in
the mitochondria of the cell. This process provides the vast majority of energy used by
aerobic cells; more than 95 % of all energy in humans. Oxidative phosphorylation is
dependent on oxygen, and under hypoxic conditions pyruvate will be catabolized to
lactate in an anaerobe manner (Figure 1.2). This process will produce far less ATP than

aerobe metabolism of glucose.20

Cancer cells require large amounts of energy due to increased proliferation and survival,
and have developed alternative metabolic strategies in order to achieve this. An
enhanced rate of glucose uptake is observed in a majority of tumors.?' This is achieved
through upregulation of glucose transporters (GLUT), primarily GLUT1, a phenomena
observed in most cancers.”> Hypoxia is a common feature of solid tumors due to poor
blood supply, and as a consequence glucose is catabolized to lactate in the lack of
oxygen. Cancer cells are highly adaptive to hypoxia as hypoxia induces the
transcription factor hypoxia inducible factor (HIF-1) which in turn upregulates multiple
genes involved in glucose metabolism and angiogenesis.”* Also under conditions with
sufficient oxygen levels, cancer cells may convert glucose to lactate instead of oxidative
phosphorylation. This process of aerobic glycolysis, known as the Warburg effect”, is a
relatively inefficient way of producing ATP. One possible explanation of aerobic
glycolysis is that proliferating cells have metabolic requirements that extend beyond
ATP production. Due to increased glycolytic uptake in cancer cells, aerobe glycolysis

may provide sufficient amounts of ATP while also providing essential precursors for
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biosynthesis. The resulting increase in lactate levels may enhance the invasiveness of
tumor cells by disrupting the architecture of surrounding normal tissue, and reduced pH

in the environment may help tumor cells evading the tumor-attacking immune cells.”!

In addition to a switch in the metabolism of glucose, several studies have shown altered

phospholipid metabolism in cancers.”*%*

Phospholipids are major components of the
cell membranes where they form lipid bilayers. Phosphatidylcholine (PtdCho), a
phospholipid with a choline head group, is the most abundant phospholipid in eukaryote
cell membranes.”” Figure 1.3 shows the biosynthesis of PtdCho. Free choline (Cho) is
transported into the cell and converted to phosphocholine (PCho) through the action of
choline kinase. PCho is further converted into cytidine diphosphocholine (CDP-Cho) in
a step that is tightly regulated in normal cells.*® PtdCho is synthesized through the
combination of CDP-Cho and 1,2-diacylglycerol. Glycerophosphocholine (GPC) and 1-
acylglycerophosphocholine are degradation products of PtdCho. Using in vivo MRS,
signals from GPC, PCho and Cho will be detected as one signal termed total choline
(tCho). Increased levels of tCho compared to normal tissue have been detected in breast
cancers.’'* Ex vivo studies have suggested that the increased levels of tCho are mainly
due to increased PCho.”® A reduction in the concentration of tCho has been suggested as

an in vivo marker for response to cancer treatment.*>’

T 1 COMPLETE

0, o | |
_ / 1. €910 | oxiparion

Glucose Pyruvate \
H
CHaOs FERMENTATION

Lactate

Figure 1.2: The different fates of glucose. In the presence of oxygen, pyruvate is completely
oxidized through the TCA cycle and oxidative phosphorylation. In anaerobe conditions,
pyruvate is fermented to lactate. Cancer cells may convert pyruvate to lactate also under aerobe

conditions.
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Figure 1.3: Biosynthesis (solid lines) and catabolism (dotted lines) of phosphatidylcholine.
Altered phospholipid metabolism is frequently observed in cancers. The figure is reprinted from

Ackerstaff et al.”® with permission.

Changed levels of different amino acids have been detected in cancers when comparing
with non-cancerous state, and may be a reflection of the high proliferation rate of
cancers. Increased levels of the amino acid taurine have been found in cancerous
compared to normal tissue in studies of cervix’®, prostate®™ and colon® tissues. For
breast cancer, increased levels of taurine have been detected in cancer tissues*' while
the levels were decreased in serum samples of cancer patients compared to healthy
volunteers.*” Taurine levels have also been studied for further characterization of
cancers, and were found to significantly correlate with apoptotic cell density in
gliomas.*” Taurine is a poly-functional molecule which is involved in a variety of cell
functions  including  osmoregulation,  cardioprotection,  hypertension  and
neurotransmitting.** The exact actions of taurine are however not fully mapped, and the
role of taurine in cancer development is currently unknown. Glycine is another amino
acid proposed to contribute to cancer development and progression. Glycine

concentrations have been shown to positively correlate with tumor aggressiveness in
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brain tumors.*”*® As for taurine, the exact role of glycine in cancer development is
unknown. Glycine is synthesized through several pathways. It is mainly derived from
the glycolysis through the formation of its precursor serine from 3-phosphoglycerate.*
In addition, glycine can be derived from Cho through its precursor sarcosine. Preclinical
studies of the basal-like and luminal-like breast cancer subtypes’ showed an increased
level of glycine in the basal-like model compared to the luminal-like model, with gene
expression data suggesting a metabolic shift from PtdCho synthesis to glycine formation
in the basal-like subtype.*’ Basal-like and luminal-like breast cancers are defined based
on differences in gene expressions, with the basal-like model having a poor prognosis

compared to luminal-like breast cancer.

Mutations in the genes encoding both isoforms of the Krebs cycle enzyme isocitrate
dehydrogenase (IDH1/2) have been found in gliomas and leukemia.*®  More
specifically, mutations have been detected in more than 70% of grade II and III
gliomas.” While wild-type IDH1 catalyse the conversion of isocitrate to o-
ketoglutarate, Dang et al. found that mutations in IDH1 resulted in production of 2-
hydroxyglutarate (2HG).”® These findings indicate that excess 2HG promotes tumor
growth and malignant progression, leading to the proposal of 2HG being an

‘oncometabolite’.

1.2 Metabolomics

Metabolism comprises the integrated network of biochemical reactions that supports life
in a living organism. Chemical compounds that are intermediates or end-products of
metabolism are referred to as metabolites. Unlike the human genome, the human
metabolome is not an easily defined entity. More than 6000 metabolites have been
described in the Human Metabolome Database (HMDB) including lipids, amino acids,
carbohydrates, fatty acids, and vitamins.”' Systematic studies of these small-molecular
compounds of metabolism are being referred to differently among disciplines, with
terms such as metabolic profiling, metabolic fingerprinting, metabolomics, and

metabonomics commonly used.’”* Metabolomics is probably the most widely used
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designation. More precisely, metabolomics can be defined as the ‘“non-biased

identification and quantification of all metabolites in a biological system”.**

Metabolomics is a relatively new field of research compared to the other “omics”
approaches; genomics, transcriptomics and proteomics. The metabolome is the final
downstream product of gene expression, and therefore closest to the phenotype of the
biological system under study. As shown in Figure 1.4, the metabolome shows what is
happening at the exact time of sampling.” Transcriptomics and proteomics, however,
will not directly reflect the biological happenings of the biological system due to post-

modifications and other regulatory mechanisms.

m Genomics

//4‘ — _ Transcriptomics
RNA

Proteomics
Proteins
NH,*
8 S
0 | OH Metabolomics
Metabolites

Figure 1.4: The “omics” cascade. Metabolites are the final downstream product of gene
expression, and provide a picture of the biological happenings of a system at the time of

sampling.



Introduction

Metabolites exist with a variety of chemical and physical properties, and will be present
in a wide range of concentrations. As opposed to for instance transcriptomics, there is
not one single platform that can analyze all metabolites at once. The most commonly
used tools for measuring the metabolic state of a biological system are nuclear magnetic
resonance spectroscopy (MRS) and mass spectrometry (MS). MS is usually performed
in combination with either gas or liquid chromatography for metabolite analyses.>* *®
Both MRS and MS have their pros and cons. MS is a very sensitive technique, and can
detect metabolites present in much lower concentrations than MRS. MRS, however, is
highly quantitative and reproducible, and suitable for samples in a broad range of
conditions independent of hydrophobisity and acidity.”’ In addition, MRS has the

advantage of being a non-destructive technique requiring a minimum of sample

54
preparation.

1.2.1 MR spectroscopy

MRS is a common tool for examining the metabolic state of a biological system. All
nuclei with non-zero spin (I # 0), i.e. nuclei with an uneven number of protons and/or
neutrons, have an intrinsic magnetic moment and can be used in MRS. This includes IH,
Be, N, PN, "F, and *'P, of which 'H has the highest sensitivity and natural abundance
and is most commonly used for MRS in biological systems. When placed in a magnetic
field (By) the nuclei will orient in 2I+1 different energy levels by equilibrium processes,
and they will precess with a frequency dependent on the type of nuclei and the strength
of the magnetic field. 'H has spin I = 1/2, and will thus be present in two energy levels;

oriented either parallel or anti-parallel to B.

A small excess of spins will be oriented parallel to By, and this produces a net
magnetization (My) along By. If a radio frequency (RF) pulse is applied, the nuclei in a
lower energy level will excite to a higher energy level and thereby disrupt the
equilibrium. The result is that My will be tilted away from the direction of By with an
angle called the flip angle of the RF pulse. A 90° pulse will flip My with an angle of 90°,
from the z-direction to the x-y-plane. When the RF pulse is switched off, the excited

nuclei will return to equilibrium via longitudinal (T;) and transversal (T,) relaxation,



Introduction

thus the magnetization vector will return to its equilibrium state M. A signal called the
free induction decay (FID) can be detected. The detected signal will decay faster than
predicted from T,. This is caused by additional dephasing due to inhomogeneities in By,
and the effective T, is called Tz*. The FID can be Fourier transformed into a frequency
dependent spectrum where the frequencies are determined by By and the gyromagnetic

ratio of the nucleus.

Nuclei in different magnetic environments will experience slightly different magnetic
fields due to shielding from surrounding electrons, and will therefore appear as peaks at
different positions, or chemical shifts, of the spectrum. The chemical shifts are
converted into parts per million (ppm) which is independent of the magnetic field
strength. The nuclei of a molecule will also be influenced by the spins of closely located

nuclei, resulting in splitting of peaks into multiplets.™

1.2.2 HR MAS MRS

Biological tissue can be considered a semisolid material, and resonating nuclei in tissues
will be affected by interactions between nuclei due to restricted mobility of the
molecules in the tissue. This gives rise to broader peaks in the MR spectra of tissues
compared to liquid solutions when using conventional MRS. It is however possible to
impose motion on the nuclei by spinning the sample.*’ Rapid spinning (typically 5 kHz)
of the sample about an axis inclined 54.7° (the magic angle) to the direction of the static
magnetic field By will reduce line broadening and thus provide spectra of high
resolution (Figure 1.5). Spinning splits the broad resonance into a narrow line at the
isotropic resonance frequency and spinning sidebands.”** Magic angle spinning of
solids was first described by Andrew et al.*' and Lowe® in 1958, and high resolution

magic angle spinning (HR MAS) MRS was applied to human tissues in 1997.¢*

HR MAS MRS is a non-destructive technique that requires a minimum of sample
preparation. As the samples remain intact after analysis, they may be further analyzed
by for instance histopathological examinations or gene expression profiling after

MRS.® The resolution of the acquired HR MAS MR spectra from tissue samples is
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comparable to that of tissue extracts, and more than 30 metabolites have been identified
from breast cancer tissue using HR MAS MRS.®® This includes lactate, glucose, and the
choline-containing metabolites GPC, PCho and Cho, making HR MAS MRS an
excellent tool for investigating the altered glucose and phospholipid metabolism of
cancers. In addition, several amino acids and other organic acids can be detected (see

annotated spectrum, Figure 1.5).

Bo
A
PCho
GPC
)
Gly cr
Cho
Succinate Ala
Gin Glu
Met
T T T T T T T
45 4,0 35 3,0 25 2,0 1,5

Chemical shift (ppm)
Figure 1.5: A representative HR MAS MR spectrum of breast cancer tissue showing some of
the metabolites that are detectable by MR. In frame: Schematic representation of a sample in a
MAS rotor inclined in the magic angle 6 = 54.7° to the direction of the static magnetic field B,.
Spinning a sample about an axis inclined at the magic angle reduces line broadening. B-Glc, -
glucose; Asc, ascorbate; Lac, lactate; Cr, creatine; m-Ino, myo-Inositole; Gly, glycine; Tau,
taurine; Met, methionine; Gln, glutamine; Glu, glutamate; Ala, alanine. The MAS rotor is

reprinted with permission from Beathe Sitter.

11



Introduction

1.2.3 MRS acquisition

Biological materials consist of large amounts of water, and the water signals in an MR
spectrum will be several orders of magnitude larger than signals from the metabolites.
Sequences that suppress the water signal are therefore commonly used for MRS
acquisition. Water can be suppressed using several types of pulse programs. Commonly
used methods for acquiring MR spectra contain pre-saturation of the water signal by
applying a low power continuous wave irradiation before the signal is acquired (for
instance Noesy with preset as described by Beckonert et al. ©’). The metabolite signals
may also be affected by lipids and large molecules giving broad peaks in the spectrum.
As these large molecules have a short T,-relaxation time, they can be suppressed by
acquiring spectra using a long echo-time (TE) before acquisition. A much used
sequence for water and fat suppression is the spin-echo Carr Purcell Meiboom Gill
sequence (cpmg, Figure 1.6). After presaturation of the water signal, a 90° pulse is
applied followed by several 180° pulses each after a delay t. The 180° pulses will
refocus the spins that are dephased according to T»*, resulting in an echo of the 90°
signal. For molecules with a long T,, the magnetization in the x-y plane will be better

preserved, thereby reducing the signal from molecules with a short T».

I <—‘c—>I<—’E—>

900 I— 1800 J n

Figure 1.6: The spin-echo Carr Purcell Meiboom Gill sequence. After pre-saturation of the
water signal, a 90° pulse is applied. This is followed by several 180° pulses each after a delay .

The 180° pulses will refocus the spins, resulting in an echo of the initial 90° pulse.

12
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1.3 Preprocessing of MR spectra

Preprocessing of MR spectra prior to analysis can correct for variations in the data that
are introduced by technical or environmental effects not related to the property of
interest. Proper preprocessing may in some cases make the difference between a useful
data model and no model at all.®*® Several forms of preprocessing exist; some
performed on each separate sample and others performed on the variables. The different
kinds of preprocessing may be applied individually or in combination with others, and

in different orders.”*”!

1.3.1 Baseline corrections

Baseline corrections can be applied to correct for baseline distortions of the spectra. A
simple way to correct for differences in baseline offset is to set the lowest value of each
spectrum equal to zero by subtracting the minimum point. This is a safe way of baseline
correcting as it does not change the shape of the spectra. It will however give poor
results if the spectrum contains negative peaks, and these artefacts should be dealt with
before correcting the baseline. An example of a baseline correction method that intends
to change the shape of the spectra is asymmetric least-squares baseline estimation,
where a baseline is estimated using asymmetric least squares.72 This estimated baseline

is then subtracted from the spectrum in order to remove baseline noise.

1.3.2 Peak alignment

The peaks of an MR spectrum may be shifted due to differences in pH, temperature,
ion-concentrations and metabolite-protein interactions. Misalignments between
corresponding peaks in a data set may affect multivariate analysis, and should therefore

74
be corrected for.”>”

Misalignments can be dealt with by binning the data, or by
alignment of the spectral peaks. In binning, the spectra are divided into regions and a
sum of spectral intensities is calculated for each region. The size of the regions may

. : 71, 75-76
vary, and each region may be of equal or unequal size. "

The penalty of binning is
however loss of spectral resolution and the resulting loss of interpretability. Peak

alignment, or warping, corrects for misaligned peaks without any loss of variables. A

13
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plethora of different methods are available. Alignment is performed by optimizing the
positions of spectral peaks based on a specific criterion, such as the correlation. Some
algorithms work by dividing the spectra into segments which are aligned, while some
align each spectrum as a whole. Most methods require a reference spectrum to which

the other spectra are aligned.

Icoshift,”” correlation optimized warping (COW’®") and peak alignment by beam
search (fastpa®) are examples of segmented alignment methods. The main difference
between them is the way they perform the alignment. In icoshift, the segments are
shifted sideways to achieve optimal alignment with the reference, while COW stretches
or shrinks the segments. Fastpa however allows both shifting and stretching/shrinking
for alignment of the segments. Rather than dividing the spectra into segments, variable
penalty dynamic time warping (VPdtw®") aligns by shifting individual points of the
spectra. The variable penalty function of the algorithm is based on a running maximum,
and results in a high penalty for shifting variables in peaks, thereby reducing the risk of
introducing artefacts in the spectra. A method that aligns the spectrum as a whole is
parametric time warping (PTW’* *%). PTW models a global polynomial function of the
misalignment. Using a limited number of higher order terms makes the polynomial
modelling of PTW more restricted, but reduces the risk of introducing artefacts or

overfitting the spectra.

The optimization criteria of the abovementioned algorithms differ. In icoshift and
fastpa, the correlation per segment is optimized. Icoshift does this by calculating the
cross-validation using fast Fourier transform (FFT). Fastpa however is based on a
genetic algorithm routine by Forshed et al.**, but with a faster beam search algorithm
implemented instead of the more time-consuming genetic algorithm. Instead of the
correlation per segment, COW optimizes the total correlation for the whole spectra by
dynamic programming, while the optimization criterion for PTW is the weighted cross-
correlation taking into account an area of neighbouring points.** In contrast to the
correlation-based methods, VPdtw optimize the sum of the absolute differences, called
the L1 norm, between the variables of the spectrum and the reference. Figure 1.7 shows

a data set before and after alignment by COW.
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Figure 1.7: HR MAS MR spectra (A) before and (B) after alignment by correlation optimized

warping. The peaks are clearly more overlapping after alignment.

1.3.3 Scaling and normalization

Scaling of spectra can be performed on the samples or on each individual variable of a
data set. Scaling performed sample-wise will normalize the spectra. Normalization of
spectra corrects for differences in dilutions or sample weight in order to make the
spectra comparable. Several normalization algorithms for MR spectra exist. One
frequently used is area normalization, where each spectrum is scaled to the same total
integral.”’ Another commonly used normalization strategy is scaling all samples to a
common range; a method known as range normalization.*” Normalization to a
“housekeeping” metabolite; a metabolite assumed to be stably expressed, have also been
attempted. However, the assumption of stable expression of a metabolite may in many
cases be wrong. This can be corrected for by determining the exact concentration of the

metabolite and using this as a reference value.”

Scaling of the individual variables prior to data analysis can be performed to bring all

variables into the same range, and thereby regulate the relative importance of each
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variable.*® Mean-centering, a method generally used for MR spectra, is done by
subtracting the mean of each variable in a data set to all variables in the spectra. By
mean-centering the variables, only the fluctuating variation will be in focus.”® In
autoscaling, the mean of the variables is subtracted before dividing the variable on its
standard deviation. Although commonly used, autoscaling may not be optimal for MR
spectra as all variables, including noise, is given the same potential to influence the
model.*’” Variable stability (VAST) scaling is a method that gives focus to the stable
variables of the data set by downweighting the least stable variables.*® A coefficient of
variation (CV), i.e. the ratio of the standard deviation and mean of each variable, is
defined as the scaling factor. The CV may be calculated for each group in the data set,
and the mean of the CVs may be used in scaling, thereby performing VAST in a

supervised manner. In this way, prior class information is incorporated into the scaling.

1.3.4 Variable selection

Large regions of an MR spectrum may contain uninformative data, e.g. data
representing technical noise or biological variation not related to the property of
interest. Often only a small subset of the variables is necessary, and including all
variables may add noise to the model.*™® In addition, some analysis methods cannot
handle the full number of variables in a spectrum, and variable reduction is necessary.
The minimum-redundancy-maximum-relevance (mRMR) method for variable selection
was initially developed for microarray data, but is also applicable to spectral data. This
method aims to select the variables that are relevant to the property of interest
(maximum relevance) and at the same time do not contribute with the same information
as other variables selected (minimum redundancy).”'90 This is especially useful for
dimension-reduction of spectral data, where variables in close distance of each other are

highly correlated. The variables with maximum relevance are selected using F-statistics:

max V., V, :éZF(i,h) [1]
ieS
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where S is the variable set, F is the F-test value and h is the class. Correlation, c,

between to variables i and j, may be used to determine the redundancy of the variables:

min W, W, =§Zlc(i,j)| 2]
i,j

Euclidian distance may also be used. Redundancy and relevance using correlation may

be combined by difference (max V- W) or quotient (max V/W).%

1.4 Multivariate analysis

MR spectra contain a vast amount of variables that are highly collinear. This makes MR
spectra unsuited for standard statistical methods. Multivariate analysis methods, or
chemometrics, can handle several variables simultaneously and are commonly used

tools for the analysis of MR data.

1.4.1 Principal component analysis

Principal component analysis (PCA) is concerned with explaining the variance structure
of a data set through linear combinations of the variables. These linear combinations are
called principal components (PCs). By detecting the underlying structures of a data set,
one can reveal relationships previously hidden in the data and thereby ease the

interpretation of the data.®’ *!

PCA is an unsupervised method, and is well suited for
exploration of the data without forcing on a model. The PCs are derived so as to
maximize the span of variation, and the first PC will be the axis that describes most of
the variance of the data (Figure 1.8). Subsequent components are orthogonal and
derived to explain the residual variation. The first few PCs will usually describe the
interesting aspects of the data, and the remaining components can be regarded as noise.

Mathematically, a PCA can be described by:

X=TP" +E [3]

17



Introduction

where X is the original data set, T is the score matrix, P is the loading matrix and E is
the matrix of residuals. Scores represent the coordinates of the samples in the new
coordinate system defined by the PCs, and can be used to detect patterns or groupings
among the samples. Loadings represent the weights needed to define the directions of
the principal components in the original coordinate system, and can be useful for

interpreting the biological meaning of the model.*’

1.4.2 Partial least squares

Partial least squares (PLS) is a supervised method where the relationship between two
matrices X and Y is modelled.”” For MR spectroscopy, the X-matrix will be the spectra
and the Y-matrix will consist of one or several properties related to each spectrum. PLS
aims to find underlying structures, called latent variables (LVs), that maximize the

covariance between X and Y.

X3

Figure 1.8: Principal component analysis of a mean-centered data set with three variables x1-

x3. PC1 and PC2 are orthogonal, and derived to explain maximum variance.
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The PLS model can be written as:

X=TP' +E (4]

Y=UQ" +F
where T and U are the score matrices for X and Y, respectively, P and Q are the loading
matrices and E and F are the residuals. These PLS parameters can be calculated using
different algorithms,” such as the original non-iterative partial least squares (NIPALS)
algorithm or the faster SIMPLS.”* For both algorithms, the scores are defined by
weights that maintain orthogonality, and a vector of regression coefficients is calculated
which relates the X and Y-scores. SIMPLS and NIPALS will give the exact same result
for a univariate Y, while slightly different models are acquired for multivariate Y. The
scores and loading of a PLS model can be interpreted in the same way as scores and

loadings of PCA.

PLS discriminant analysis (PLS-DA) is a special case of PLS that attempts to
discriminate between distinct classes using so-called ‘dummy’ variables representing

each class.

1.4.3 Bayesian belief networks

Bayesian belief networks (BBN) use probability theory in order to classify samples to
different groups. The method aims to find the most likely of the possible classifications.
The graphical structure of a BBN consists of nodes, one for each variable, and directed
edges indicating conditional relations between the nodes (Figure 1.9). The network is
acyclic, i.e. no feedback-loops are allowed. If a directed edge is pointing from node A to
node B, then A is called the parent of B and B is called the child of A.”>*° Each node is
associated with a conditional probability table that specifies the probability that a
variable takes a certain value given the value of its parents. In this way, BBNs can
model complex non-linear relationships.”” Most BBN algorithms can only handle
discrete variables, so for continuous data such as MR spectra the variables must be

discretized before analysis.”
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Naive Bayes models combine the unconditioned probabilities, i.e. the probability that a
variable is in a given state, with the conditional probabilities in a single formula. For
MR spectra, a naive Bayes classifier will have several parent nodes representing the
chemical shifts, and one child node representing the property of interest. There are no
edges between the parent nodes of a naive Bayes classifier, hence the variables are
assumed to be independent of each other. Despite this often incorrect assumption, Naive

. . .99
Bayes classifiers have shown good results in practice.

BBNSs can be built in two ways; by using pre-existing knowledge about the probabilistic
distribution of the variables, or by making the network learn from a data set in a

supervised manner.'® The latter will be most relevant for MR spectra.

P(A=on) _ P(A=off)
0.5 0.5
(A)
i :JJ \\' h
./_, \\
A | P(B=on) P(B=off) | —* . [LA [ P(C-on) P(C-off)
on 0.5 0.5 ( ) ( ) | on 0.8 0.2
off | 0.9 0.1 \B_.f’ 9/ off | 02 0.8
T ?
N
.-'/’- -\\.".
D)
B C | P(D=on) P(D=off)
on on 1.0 0
off on 0.1 0.9
on off 0.1 0.9
off off 0.01 0.99

Figure 1.9: An illustrative example of a Bayesian belief network consisting of four variables,

A, B, C and D, with two different states (on and off).
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1.4.4 Probabilistic neural networks

Neural networks aim to mimic the brain’s processes in solving problems, by applying
knowledge gained from past experience to new problems.'®" Probabilistic neural
networks (PNNs'"?) for classification will define a probability density function (pdf)
for each class based on training data, and assign an unknown sample to the most
probable class. PNNs have four layers: input, pattern, summation and output, and the
neurons of the different layers are connected by weights (Figure 1.10). The pattern layer
consists of one neuron for each sample in the training set. A kernel, typically of
Gaussian shape, is defined for each neuron in the pattern layer. The summation layer of
the network sums up the information from the pattern layer and produces an overall pdf.
The kernels are placed at the location of each pattern in the training set such that the pdf
defines the boundaries for each data class, while the kernel width determines the amount
of interpolation that occurs between adjacent kernels. In this way, all classes are
characterized by a pdf defined by the training data. The probability that a sample will be
classified as a member of a given class increases the closer it is to the centre of the pdf
for that class. The output layer picks the class of maximum probability to which the new

sample is classified.

INPUT LAYER

PATTERN LAYER

SUMMATION LAYER

OUTPUT LAYER

Figure 1.10: Probabilistic neural network for a two-class discrimination problem. The training
data consist of n samples from class A and m samples from class B. The input layer has one
node for each of the i variables. The predicted class C of a new sample is provided by the output

node.
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1.4.5 Multilevel analysis

One of the challenges in metabolomic studies is that the metabolic changes of interest
may be small and subtle compared to the larger variations between subjects, making it
difficult to extract the relevant information from the data. Taking advantage of the
paired structure in a multilevel study, i.e. when interventions are evaluated on the same
subject, can be beneficial.'”'* This is comparable to a paired t-test, which will have
increased statistical power over a regular t-test. In multilevel analysis, the between
subject variation is separated from the within subject variation, and the two sources of
variation can be analyzed separately. The between subject variation is described by the
average of the two observations from one subject, whereas the within subject variation

is described by the net difference between them.

If the observations for each subject at baseline (the control samples) is given by the
matrix A, and the observations after intervention by the matrix B, then the between

subject variation M is defined by
1
M= 5 [A+B] [5]
while the within subject variation W is defined by
-D A-B
W= = [6]
D B-A

The rows of A and B correspond to the same subjects in the study, i.e. row number 3 in
both A and B describes subject number 3. The within and between subject variation can

be analyzed separately using different multivariate methods, e.g. PCA or PLS-DA.
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1.5 Validation of multivariate methods

Modelling of data sets with few samples compared to variables involves a risk of
overfitting. Proper validation of the resulting model is therefore of outmost importance.
In K-fold cross-validation, the samples are divided into K subsets. K-1 subsets are
assigned to training of the model, while the remaining subset is used for testing. This
procedure is repeated K times until all subsets have been used as a test set once.'” The
number of subsets to divide the data into will depend on the total sample size. A larger
K results in a larger training set and thus less biased results, but at the same time the
variance of the estimated error will increase.'”® When K equals the sample size of the
data set, the procedure is called leave-one-out (LOO) cross-validation. LOO cross-
validation may however give over-optimistic results for data sets with a large number of

samples, and should only be used for small sample sets.

When cross-validation is used to optimize model parameters, such as the number of
latent variables to use in a PLS-DA, the final model should be validated using an
independent validation set. Samples to keep out for final validation may be chosen

7 and

randomly, or by using sample selection algorithms such as Kennard-Stone'
SPXY'"® sample selection. These algorithms will make sure that the training data span
the whole dimensional space. The advantage of using random validation sets is that the
whole procedure can be repeated several times, each time keeping a different validation
set out of the optimisation process. This will give less biased validation results. A
dilemma of using several validation sets however is that the result is not one but several
models, and there are no accepted criteria for the way of choosing a final model.*® One
possibility is to build a final model based on the full data set. It is not straightforward
then to choose the number of latent variables to use for this final model if all models
have been optimized for a different number of latent variables. It has also been
suggested to use an average of multiple models for future prediction.'” Validation by
an independent validation set requires enough samples, and may not be feasible for

small sample sets.
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Permutation testing is a method for determining if the results achieved by either cross-
validation or by using an independent validation set, are significantly different than
random. The labels of all samples are permuted, and randomly assigned to the samples
in the data set. The new data set, now with the wrong labels, are modelled in the exact
same way as the original data set. This procedure is repeated several times, and the
distribution of prediction results from the permuted samples is compared to the results

of the original model.'”
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2 Objectives

The main objective of the research presented in this thesis is to evaluate the use of HR
MAS MRS and multivariate analysis for determining the prognosis of breast cancer

patients. More specifically to:

» Optimize preprocessing of MR spectra for multivariate analysis.

» Examine different multivariate methods for their feasibility in analyzing MR
spectra.

» Investigate the relationship between metabolite profiles and clinical
prognostic parameters.

» Examine the metabolic changes caused by neoadjuvant chemotherapy in
breast cancer tumors, and to relate these changes to clinical treatment
response and prognosis.

» Indentify potential biomarkers for breast cancer prognosis.
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3 Materials and methods

3.1 Patients and data sets

The patients of paper I and III were enrolled in a regional collection of breast cancer
biopsies in mid-Norway. The patients had undergone surgery at either St. Olavs
University Hospital, Trondheim, or Molde Hospital, Molde, between 1999 and 2006,
and the biopsies were excised during surgery. All patients were diagnosed with IDC,
and did not receive NAC. After surgery, the patients were given the treatment

considered optimal according to guidelines of the NBCG.

The patients of paper IV were operated at Bergen University Hospital, Bergen, between
1997 and 2003. These patients were diagnosed with locally advanced breast cancer, and
were part of an open-label multicenter study where patients were randomly allocated to
receive NAC with either epirubicin (90 mg/m?) or paclitaxel (200 mg/m?) monotherapy.
Patients showing a non-satisfactory response were assigned to the opposite treatment.
For each patient, an incisional open biopsy was taken before treatment with NAC and a

post-treatment biopsy was excised during surgical removal of the tumor.

Paper II included data sets from patients diagnosed with either breast cancer, cervical
cancer, or colon cancer. The breast cancer data set corresponds to the same data set as in

paper L. The cervical and colon data have been described in previous studies.*® *°

All studies were approved by the Regional Committee for Medical and Health Research

Ethics, and written informed consent was obtained from all included patients.

3.2 Sample handling

Breast cancer tissue samples were frozen in liquid nitrogen immediately after dissection
and stored until HR MAS MRS analyses. Samples from the cervix were obtained as

soon as possible after surgery from the uterus that was kept in saline compresses after
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excision, and further stored in liquid nitrogen. Colon samples were collected
immediately after surgery and stored at -80°C. Sample preparations before HR MAS

MRS were performed on ice in order to prevent tissue degrading (Figure 3.1).

3.3 HR MAS MRS protocol

The tissue samples were analyzed on a Bruker Avance DRX600 (Bruker BioSpin
GmbH, Germany) equipped with a 'H/"*C MAS probe with gradient aligned with the
magic angle axis. The breast cancer samples of the biobank (paper I, II and III) were cut
to fit a 50 pL MAS rotor added phosphate buffered saline (PBS, 40 uL) based on D,O
with trimethylsilyl 3-propionic acid sodium salt (TSP, 1.0 mM) added as a reference for
chemical shift calibration. The cervical samples were analyzed similarly, but without
PBS buffering. The breast cancer samples of paper IV and the colon samples were
analyzed in disposable Kel-F HR MAS inserts added 3 pL PBS based on D,O with TSP
(breast: 98.2 mM, colon: 4.5 mM). 'H spectra were acquired using a water and lipid
suppressing spin-echo cpmg (Bruker) sequence as specified in Table 3.1. An
exponential line broadening (breast and colon: 0.3 Hz, cervix: 0.7 Hz) was applied to

the data prior to Fourier transformation.

Table 3.1: Parameters for acquisition of HR MAS MR spectra

Breast spectra Cervix spectra Colon spectra

Temperature 4°C Room temp. 4°C
Spin rate 5 kHz 6 kHz 5 kHz
Echo time 285 ms 285 ms 272 ms
Number of scans 128 128 128
Collected region 10 kHz 10 kHz 10 kHz
Number of points 32k 32k 64k
Acquisition time 1.64 s 1.64 s 327s
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Figure 3.1: Preparation of a tissue sample for HR MAS MRS. Left: The breast cancer samples
were frozen in liquid nitrogen immediately after dissection and stored until MRS analysis.
Right: The tissue sample is cut to fit a MAS rotor before MRS acquisition. Photo: The medical
faculty, NTNU/Geir Mogen.

3.4 Data analysis

Preprocessing of spectra was performed in XWinNMR, Matlab R2008b (The
Mathworks, Inc., Natick, USA) and R, version 2.9.2. PCA and PLS-DA were performed
in Matlab using PLS toolbox (Eigenvector Research,Wenatchee, USA). PLS-DA was
performed using the SIMPLS algorithm. BBN analyses were performed in Netica
(Norsys Software Corp, Canada). A naive Bayes classifier was built by making the data
learn in a supervised manner. Input for the BBN was spectral variables chosen by
mRMR variable selection. PNN analyses were performed in NeuroShell Classifier
(Ward Systems Group, USA). The Neuroshell Classifier uses a version of PNNs
adapted around a genetic algorithm in order to find the optimal combination of
variables. Genetic algorithms solve optimization problems using the concepts of
evolutionary theory. A population of possible solutions to a problem is created, where
each individual in the population carries chromosomes that are values of variables of the
problem. The genetic algorithm lets the less fit individuals die out, while the fit ones are

selected to ‘mate’ in a process called cross-over. In addition, mutations are allowed by
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random change of variables to avoid getting trapped in local minima. After 100
generations without any improvement, the algorithm was stopped and the most fit
individual was chosen as a solution to the problem. Input for the PNN was spectral
variables chosen by mRMR variable selection. The split-up of variation for multilevel
analyses in paper IV was done using algorithms made available by van Velzen et al.'®
Kaplan Meier analyses and ROC statistics were performed in SPSS 17.0 (SPSS Inc,
Chicago, USA).

3.5 Histopathology and clinical diagnostics

Routine histopathology was performed on tissue samples excised during surgery. For
the breast cancer samples, histological tumor nuclear grade was determined according to
guidelines of the NBCG, which are based on the Bloom and Richardson classification
system.''’ Hormone receptor status was determined by immunohistochemistry, and
samples with >10% staining cancer cells were considered receptor positive. Axillary
lymph nodes were removed during surgery, either by axillary lymph node dissection
(ALND) or by sentinel lymph node biopsy (SLNB), and considered positive if one or
more lymph nodes analyzed by standard histopathology contained cancer cells.
Histopathological examinations of the biobank samples were performed on the tissue
after HR MAS MRS analyses. All tissue samples were fixed in 10 % formalin and
embedded in paraffin after HR MAS MRS. A section of 3-5 um was cut from the
middle of each paraffin block and stained with HES (hematoxylin, erythrosine and
saffron) for pathology reading. The stained sections were examined microscopically by
an experienced pathologist and the relative areas of normal and neoplastic epithelial
elements, necrotic tissue, fat and fibrous connective tissue were scored (Figure 3.2).
Samples containing < 5% tumor cells were not included in further analyses. The breast
cancer samples in paper IV were analyzed by imprint cytology prepared prior to HR
MAS MRS, and stained with May-Griinwald-Giemsa stain to evaluate the tumor cell

content. Samples not containing any tumor cells were removed from further analyses.
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Figure 3.2: Histopathological examinations of tissue samples. Top: A sliced tissue sample has

been stained with hematoxylin, erythrosine and saffron after HR MAS MRS. The sample was
pathologically determined to contain 70 % tumor cells and 30 % connective tissue. Bottom: A
tissue sample analyzed by imprint cytology before HR MAS MRS. The presence of cancer cells

was confirmed by May-Griinwald-Giemsa stain.
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4 Summary of papers

Paper I

Multivariate modeling and prediction of breast cancer prognostic factors using

MR metabolomics

Axillary lymph node status together with estrogen and progesterone receptor status are
important prognostic factors in breast cancer. In this study, the potential of using MR
metabolomics for prediction of these prognostic factors was evaluated. Biopsies from
breast cancer patients (n = 160) were excised during surgery and analyzed by high
resolution magic angle spinning MR spectroscopy (HR MAS MRS). The spectral data
were preprocessed and variable stability (VAST) scaled, and training and test sets were
generated using the Kennard-Stone and SPXY sample selection algorithms. The data
were analyzed by partial least squares discriminant analysis (PLS-DA), probabilistic
neural networks (PNNs) and Bayesian belief networks (BBNs), and blind samples (n =
50) were predicted for verification. Estrogen and progesterone receptor status could be
predicted from the MR spectra, and were best predicted by PLS-DA with a correct
classification of 43 of 50 and 39 of 50 samples, respectively. Lymph node status was
best predicted by BBN with 36 of 50 samples correctly classified, indicating a
relationship between metabolic profile and lymph node status. Thus, MR profiles
contain prognostic information that may be of benefit in treatment planning, and MR

metabolomics may become an important tool for diagnosis of breast cancer patients.

33



Summary of papers

Paper 11

Alignment of high resolution magic angle spinning magnetic resonance spectra

using warping methods

The peaks of magnetic resonance (MR) spectra can be shifted due to variations in
physiological and experimental conditions, and correcting for misaligned peaks is an
important part of data processing prior to multivariate analysis. In this paper, five
warping algorithms (icoshift, COW, fastpa, VPdtw and PTW) are compared for their
feasibility in aligning spectral peaks in three sets of high resolution magic angle
spinning (HR-MAS) MR spectra with different degrees of misalignments, and their
merits are discussed. In addition, extraction of information that might be present in the
shifts is examined, both for simulated data and the real MR spectra. The generic
evaluation methodology employs a number of frequently used quality criteria for
evaluation of the alignments, together with PLS-DA to assess the influence of alignment

on the classification outcome.

Peak alignment greatly improved the internal similarity of the data sets. Especially
icoshift and COW seem suitable for aligning HR-MAS MR spectra, possibly because
they perform alignment segment-wise. The choice of reference spectrum can influence
the alignment result, and it is advisable to test several references. Information from the
peak shifts was extracted, and in one case cancer samples were successfully
discriminated from normal tissue based on shift information only. Based on these
findings, general recommendations for alignment of HR-MAS MRS data are presented.
Where possible, observations are generalized to other data types (e.g. chromatographic

data).
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Paper 111

Glycine and lactate- potential MR biomarkers of breast cancer prognosis

Breast cancer is a heterogeneous disease with a varying prognosis. Today’s clinical
factors provide some information about the prognosis of a breast cancer patient;
however there is a need for additional information to stratify patients for improved and
more individualized treatment. The aim of this study was to examine the relationship
between the metabolic profiles of breast cancer tissue and 5-year survival. Biopsies
from breast cancer patients (n = 98) were excised during surgery and analysed by high
resolution magic angle spinning MR spectroscopy (HR MAS MRS). The data were
analyzed by multivariate principal component analysis (PCA) and partial least squares
discriminant analysis (PLS-DA), and findings of important metabolites were confirmed
by spectral integration of the metabolite peaks. Predictions of 5-year survival using
metabolite profiles were compared to predictions using clinical parameters. Based on
the metabolite profiles, estrogens receptor (ER) positive breast cancer patients (n = 71)
were separated into two groups with significantly different survival rates (p = 0.024).
Higher levels of glycine and lactate were found to be associated with lower survival
rates both by multivariate analyses and spectral integration, and are suggested as
biomarkers for breast cancer prognosis. Similar metabolic differences were not
observed for ER negative patients. Predictions of 5-year survival of ER positive patients
using metabolite profiles gave better and more robust prediction results than using
traditional clinical parameters. This shows that the metabolic state of a tumor may
provide additional information concerning breast cancer prognosis. Metabolomics may
serve as an additional tool for determining the prognosis and treatment strategy of breast

cancer patients.
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Paper IV

Prognostic value of metabolic response in breast cancer patients receiving

neoadjuvant chemotherapy

Today's clinical diagnostic tools are insufficient for giving accurate prognosis to breast
cancer patients. The aim of our study was to examine the tumor metabolic changes in
patients with locally advanced breast cancer caused by neoadjuvant chemotherapy

(NAC), relating these changes to clinical treatment response and long-term survival.

Patients (n=89) participating in a randomized clinical trial were allocated to receive
either NAC as epirubicin or paclitaxel monotherapy. Biopsies were excised pre- and
post-treatment, and analyzed by high resolution magic angle spinning magnetic
resonance spectroscopy (HR MAS MRS). The metabolite profiles were examined by
paired and unpaired multivariate methods and findings of important metabolites were

confirmed by spectral integration of the metabolite peaks.

All patients had a significant metabolic response to NAC, and pre- and post-treatment
spectra could be discriminated with 87.9%/68.9% classification accuracy by
paired/unpaired partial least squares discriminant analysis (PLS-DA) (p<0.001). Similar
metabolic responses were observed for the two chemotherapeutic agents. The metabolic
responses were related to patient outcome. Non-survivors (<5 years) had increased
tumor levels of lactate (p=0.004) after treatment, while survivors (>5 years) experienced
a decrease in the levels of glycine (p=0.047) and choline-containing compounds
(p<0.013) and an increase in glucose (p=0.002) levels. The metabolic responses could

not be related to clinical treatment response.

The differences in tumor metabolic response to NAC were associated with breast cancer
survival, but not to clinical response. Monitoring metabolic responses to NAC by HR
MAS MRS may provide information about tumor biology related to individual

prognosis.
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5 Discussion

In this thesis the use of MR metabolomics as a clinical tool for breast cancer diagnostics
and evaluation of prognosis and treatment response has been evaluated. A diverse
selection of multivariate methods for preprocessing and modelling of MR spectra has

been optimized and used for analyzing the data.

In paper I the relationships between metabolite profiles and the status of the clinical
prognostic factors ER, PgR and lymph node involvement were examined. Hormone
receptor status was successfully predicted from the MR spectra, and a trend of different
metabolite profiles in lymph node positive and negative tumors was detected. To further
explore the prognostic information of the MR spectra, metabolic differences between
breast cancer survivors and non-survivors were examined in paper III. Two patient
groups with significantly different survival rates were defined based on the metabolic
patterns, and glycine and lactate were found to be potential prognostic biomarkers.
Classification of patients as survivors or non-survivors by multivariate methods gave
better and more robust results when using MR spectra as input compared to using
clinical parameters. In paper IV, the tumor metabolic responses to NAC in breast cancer
patients were explored and related to clinical treatment response and breast cancer
survival. In contrast to the lower stage breast cancer patients included in paper I and III,
this patient cohort consisted of locally advanced breast cancer patients with large
tumors. The results showed that all patients had a metabolic response to the treatment.
The metabolic responses could not be related to clinical treatment response. However,
the metabolic changes were different between 5-year survivors and non-survivors, with
non-survivors having an increase in lactate levels and survivors experiencing decreased
levels of glycine and choline-containing metabolites after treatment. The impact of the
chosen methodology for preprosessing of MR spectra was assessed in paper II. Five
peak alignment algorithms were examined for their feasibility of aligning HR MAS MR
spectra. The results from paper II were used to achieve optimal alignment of the data in

paper Il and TV.
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5.1 Metabolite profiles of breast cancer

Identifying the metabolic patterns that are differently expressed in a diseased state can
give insight into the biological mechanisms leading to the development and progression
of the disease. This makes it possible not only to achieve a better understanding of the
tumor biology, but also to target therapies directly towards the disease mechanisms. In
addition, clearly expressed metabolic changes within a diseased state could make MR
metabolomics a feasible clinical tool for diagnostics and for stratifying patients into
subgroups of clinical value. Previous studies have suggested a relationship between the
metabolite profiles and clinical prognostic factors of breast cancer in smaller patient
cohorts."""""'* This was further explored in these studies, where we revealed differences
in the metabolite profiles and metabolic responses to NAC treatment in breast cancer

patients from different prognostic groups.

Glycine and lactate were identified as potential biomarkers for prognosis in paper III,
where the tumors of non-survivors had higher levels of glycine and lactate than tumors
of patients surviving more than five years. The same trend was observed in paper 1V,
where non-survivors experienced increased tumor levels of lactate during NAC whereas
survivors had decreased levels of glycine. These differences in metabolic response
between survivors and non-survivors were reflected in the metabolite profiles of post-
treatment biopsies, where non-survivors had higher levels of both glycine and lactate
compared to survivors. Results from paper I showed that also ER and PgR negative
tumors had higher levels of glycine and lactate than hormone receptor positive tumors.
ER and PgR expressions are predictive markers for response to treatment, as tumors that
are insensitive to hormones will not benefit from endocrine therapy. ER and PgR
positive status has also been associated with a higher rate of overall and disease-free
survival.'*"* This indication of a better prognosis among patients with tumors that are
sensitive to hormones has been observed in both patients receiving and not receiving
adjuvant endocrine treatment, and is therefore not only an effect of the treatment.''>™''®
However, this effect may be limited to the first five years after diagnosis.''® As a lack of
hormone receptor expression is associated with a worse prognosis, the finding of higher

levels of lactate and glycine in receptor negative tumors is in accordance with the
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findings for 5-year survival in paper III and IV. The detection of glycine and lactate as
potential prognostic biomarkers for survival in paper III was based on ER positive
patients only, and is therefore not simply reflecting the difference in hormone receptor

status of the tumors.

As described in section 1.1.2, lactate may be related to cancer progression through both

anaerobe (hypoxia) and aerobe (the Warburg effect) mechanisms. Elevated levels of

7 118-119
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lactate have been observed in several cancers, including breast ' and prostate

cancer, and studies have shown a positive correlation between lactate levels and poor

1 122
and head and neck cancers. *~ Increased levels of

survival rates in cervical,'20 lung,12
lactate may reflect enhancement of acrobe glycolytic activity that confer higher tumor
malignancy and poor prognosis. The relation of the amino acid glycine to cancer
progression is more unclear. Glycine is mainly synthesized from an intermediate in the
glycolysis, and high levels of glycine may also be a reflection of enhanced glycolytic
activity. As glycine can also be synthesized from Cho, the different glycine levels may
additionally reflect the altered phospholipid metabolism of cancers. Elevated levels of
glycine have previously been related to prognosis and tumor aggressiveness in brain*™

12 124 . . L . .
3 and breast'** tumors, and its role in cancer progression is being further investigated.

Results from paper I showed lower levels of PCho and higher levels of Cho and GPC in
ER-negative tumors compared to ER-positives. Similar findings have been detected in
pre-clinical studies, where the ER-negative basal-like model had significantly lower
levels of PCho and higher levels of GPC and glycine than the ER-positive luminal-like
model.”” As basal-like breast cancer has a poor prognosis this may indicate that specific
patterns of choline metabolism reflect more aggressive and highly proliferating tumors.
These finding are not in accordance with in vitro studies on human mammary epithelial
cells indicating that the level of PCho increases with malignancy.”® However, this
discrepancy may be attributed to the more complex microenvironment and interactions
of solid tumors. Conditions such as hypoxia and pH may be different in vivo compared
to in vitro, and this may impact the expression of choline kinase and affect the levels of

. .. . . 125
choline-containing compounds in the tissue.
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None of the choline-containing metabolites were shown to be related to prognosis in the
survival analyses in paper III, but for the locally advanced breast cancer patients in
paper IV non-survivors appeared to have lower levels of GPC and Cho after NAC
compared to survivors. These findings were not significant for the integrated spectral
intensities of the metabolites, but a trend of lower tCho levels in survivors was seen. In
addition, survivors had a significant decrease in all choline-containing metabolites as a
response to NAC treatment, while this increase did not reach statistical significance in
non-survivors. In accordance with our findings in paper IV, a study by Cao et al. of
patients with locally advanced breast cancer treated with doxorubicin showed decreased
levels of GPC after treatment to be associated with long-term survival.'”® Further
clinical studies are required to determine the potential of choline-containing metabolites

as prognostic markers in breast cancer.

The patients included in paper III were all diagnosed with ER-positive invasive ductal
carcinoma, and none of the patients had received neoadjuvant treatment. These
inclusion criteria will exclude the larger and more aggressive tumors, resulting in a
cohort with a good prognosis.'?” This is in contrast to the patients of paper IV who had
larger and more malignant tumors, and a worse overall prognosis. It was not possible to
extract any information from the biopsies excised before treatment for the locally
advanced breast cancer patients, thus all prognostic information could be related to
treatment responses. For the patients in paper III however, the metabolite profiles of
untreated biopsies could be related to outcome. Moreover, the differences in metabolite
profiles between hormone receptor positive and negative tumors that were seen in paper
I were not present in the locally advanced breast cancer group (results not shown).
These results demonstrate the large differences between patients with locally advanced
breast cancer and those diagnosed with a lower stage breast cancer, and indicate that

biopsies acquired at an earlier stage of the disease contain more prognostic information.

Predictions of survival in paper III were performed separately on subgroups of patients
that were either ER negative or ER positive. The subgrouping was based on the results
from paper I showing clear differences in the metabolism of ER positive and negative

tumors. Subgrouping of the patients revealed metabolic differences of prognostic value
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in ER positive patients that could not be seen when examining the whole data set.
Neither could any metabolic differences be identified in the tumors of survivors and
non-survivors lacking the expression of ER receptors. These results demonstrate the
importance of not handling the data from all patients similarly. Especially in a
heterogeneous disease such as breast cancer, there may be large differences among
patients masking the smaller metabolic differences of clinical value. In addition, the
biological mechanisms of the disease states may not be equal. As the ER status itself is
a prognostic factor, the mechanisms for disease progression and aggressiveness in ER
negative patients may be different from those of ER positives. Thus subgrouping of the

data for analytical purposes was highly beneficial.

Metastasis to the lymph nodes via the lymphatic vessels is a common step in the spread
of solid tumors, and lymph node status is acknowledged to be one of the most important
prognostic factors of breast cancer.'” In paper I, we could only see a trend of
differences in the metabolite profiles of patients with and without lymphatic spread, and
no reliable classification of lymph node status was achieved. Prediction of lymph node
status from MR spectra has also been examined by Mountford et al., achieving a

. . 129
classification accuracy of 94%.

However, the authors used the same samples both for
building and testing the classification model, and this may have led to overoptimistic
results. The resulting model should be validated using an independent test set in order to
assess the true predictive value of the model. The mechanisms that underlie the growth
of lymphatic vessels (lymphangiogenesis) and lymphatic spread through new or pre-
existing lymphatic vessels are not fully mapped. The growth factors vascular
endothelial growth factor (VEGF)-C and VEGF-D have been shown to induce
lymphangiogenesis through activation of the growth factor receptor VEGFR-3,"3*-13!
and high expression of these factors has been linked to poor survival rates in
esophageal132 and cervical®® cancer. Thus the metabolic effects of the multistep
mechanisms leading to lymphatic spread may be present before the spread is clinically
detectable, making it difficult to correlate metabolite profiles with histopathological
results. In a study by Cote et al., immunohistochemical examinations showed
micrometastases in the lymph nodes of 20 % of 736 patients classified as lymph node

4

negative by routine histology.””* In a similar study, Kahn et al. detected
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micrometastases in 14 % of 214 lymph node negative patients.135 The prognostic value
of micrometastases in axillary lymph nodes is controversial. Some studies show no

35137 Whereas

prognostic value of detected micrometastases in node negative patients,
others find micrometastases to be associated with a poorer prognosis.”** '** In a meta-
analysis of 58 studies with a total of 297 533 patients, de Boer et al. found the presence
of micrometastases of 2 mm or less in diameter to be associated with a poorer disease-
free and overall survival.'* The mechanisms giving rise to metastases of either micro
or macro size may be similar, making it difficult to distinguish between lymph node
positive patients and patients with clinically undetectable micrometastases classified as
lymph node negative. In addition, the method for determining lymph node status was
changed from ALND to SLNB in Norway in 2000, and our study includes both
methods. In ALND all axillary lymph nodes are removed and one slice per node is
examined for tumor cells, whereas the SLNB method removes only the sentinel node(s)
and examines it by multiple sectional slides. The number of lymph nodes removed has

been shown to affect the false-negative rates,'* and the method used may therefore

have affected the classification.

Predicting who will benefit from a given treatment at an early stage could reduce
overtreatment and shorten the time between diagnosis and surgery. Monitoring a
tumor’s response to NAC treatment is however challenging. The in vivo concentration
of tCho measured by MR imaging has been suggested as a marker for tumor response,
however studies have shown varying results.’” "' In paper IV, we examined the
correlations between tumor metabolite profiles and clinical response to NAC treatment
in patients with locally advanced breast cancer. We found no metabolic differences in
the pre-treatment biopsies of patients with a stable disease (< 50% reduction to < 25%
increase in tumor volume) and partial responders (= 50% but < 100% reduction in
tumor volume). Interestingly, the two response groups had indistinguishable metabolic
responses to the treatment, and the patients had a general decrease in tCho levels. This
could be because also patients with a stable disease can have up to 50% reduction in
tumor volume, and therefore have a biological response to the treatment. Further studies
including also patients with a progressive disease (=25% increase in tumor volume) are

required to investigate the potential of HR MAS MRS in the assessment of clinical
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response. However, we showed that the metabolic responses to NAC were associated
with overall prognosis. This may be useful in a clinical setting as NAC may downstage
the standard prognostic indications such as tumor size and lymphatic spread, making

these factors less applicable for assessment of prognosis after NAC.

The oncometabolite 2HG was first described in glioblastomas in 2008, and has gained
attention as a proposed solid link between mutations in metabolic genes and cancers.'**
Since the first discovery, 2HG and has been detected in both gliomas and leukemia.
Preliminary examinations of spectra from our breast cancer biobank indicate that this
metabolite is not present in breast cancer. However, further studies are necessary to

investigate the potential role of 2HG in breast cancer and other cancers.

5.2 Preprocessing of MR spectra

As a plethora of methods for both preprocessing and modelling of biological data exist,
it is not straightforward to select the methods that are most appropriate for the analysis
of MR spectra. In this thesis, different methods for peak alignment, variable scaling and
data modelling were examined. Of the five alignment algorithms examined in paper II,
icoshift and fastpa are developed specifically for MR spectra, while COW, VPdtw and
PTW were developed for other types of data. DTW was for instance initially developed
for speech recognition, but is now frequently being used to align chromatograms. The
results of paper II showed icoshift and COW to be the most appropriate methods for
alignment of HR MAS MR spectra, demonstrating that the tools developed specifically
for MR data not necessarily are the most optimal ones. Nevertheless, icoshift was
remarkably faster than COW due to the FFT engine, making it more convenient for

testing several parameters and possibly achieving a better alignment.

We used four numerical criteria in addition to visual inspection in order to evaluate the
alignment results in paper II; correlation, simplicity value, peak factor, and
classification results. There is no gold-standard for assessing alignment quality, but the
abovementioned criteria cover the most widely used measures for optimization of

alignment and final evaluations. The root mean square distance (RMS) is also being
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used for optimization’”, and was tested as an additional criterion in paper II. However,
the RMS results were superfluous as no additional information to that of the correlation
was given. As expected, all alignment methods improved the mean correlation of the
data when comparing with the unaligned data. In addition, PCA has been frequently
used to assess alignment quality.”®*'** Aligning the peaks will increase the amount of
variance explained by the PCA model and provide better clustering and less ambiguous
loading profiles. The simplicity value is related to the amount of variation explained by
PCA and will be larger when more variance is explained by the first PCs. As all of the
data sets in our study represented two-class problems, the number of correctly classified
samples by PLS-DA was used in addition as an overall measure of data modelling, since
aligned peaks usually will be more optimal for multivariate analyses. Alignment did
improve the classification results for the breast cancer and cervix cancer data sets.
Although alignment improved both the correlation and the simplicity values for the
colon cancer data, the classification results did not improve compared to the unaligned
data. Nevertheless, the loading profiles were less distorted and the dispersive shape of
the peaks was removed. This effect of peak alignment has also been shown by others,'**
and demonstrates that peak alignment greatly increases the interpretation of the
resulting model. It is therefore reasonable to perform peak alignment prior to modelling

even if it does not improve the classification results.

As not only the intensity but also the shape of the peaks reflects the concentration of a
metabolite in an MR spectrum, it is important to preserve the shape as much as possible.
This is in contrast to chromatographic data where the width of the peaks may be
changed due to experimental settings.”® Stretching and shrinking of the peaks may
therefore be disadvantageous for MR spectra. The implemented peak factor measure in
COW was effective for this purpose, and COW conserved the peak shapes much better
than fastpa and PTW. Overall, the peak factor was a good numerical measure for final
evaluation of the amount of change in peak shapes; however visual inspection of the
final result was still highly necessary to detect potential artefacts in peak shapes.
Icoshift that only shifts the segments without any stretching and shrinking, and VPdtw
with a strict penalty function for shifting in peaks, were the best methods for conserving

peak shapes.
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We showed that the shifts of a spectrum may contain biological information. By using
the warping functions as input for multivariate analysis, cervical cancer samples were
discriminated from normal adjacent tissue with up to 90% correct classification. This
was probably due to pH differences between cancerous and normal tissue reflecting
hypoxic areas with a low pH in the tumor tissue. Although incorporating the warping
functions did not improve the classification compared to using spectra only (possibly
because the spectra already gave close to perfect classification results), the discovery of
biological information in the shifts is an interesting aspect. The shift information may
improve classifications for other biological data sets, and measuring biological samples
without buffering might reveal biologically relevant differences that would be obscured

otherwise.

The five alignment algorithms that were compared in paper II were all warping
methods, and were chosen as they were considered ‘state-of-the-art’ or algorithms
specific for MR data. However, several other alignments algorithms exist which may

145-146) 1y Wong et

also be applicable. Peak alignment by fast Fourier transform (PAFFT
al. is claimed by the authors to perform alignment similarly to fastpa, but with the use of
FFT cross-correlation instead of a beam search. However, PAFFT only aligns by
shifting and does not stretch or shrink the spectra in any way. The FFT has the benefit
of improved speed. In addition, the optimal shift is found by calculating the complete
cross-validation for the whole spectrum instead of the correlation per segment. These
modifications gave slightly better results for PAFFT compared to fastpa for alignment
of the MS data tested in their paper. Additionally the authors describe a related
alignment algorithm, recursive alignment by FFT (RAFFT), developed with the aim of
eliminating the requirement of parameters. The minimal segment size is found
automatically by recursive alignment from the full spectrum into progressively smaller
segments until no further alignment is necessary. Another recursive alignment method
is recursive segment-wise peak alignment (RSPA) by Veselkov et al., developed for the
alignment of MR spectra.'” The spectra are divided into segments consisting of
multiple peaks (such as spin-coupled multiplets) that are aligned to a reference. The
recursion starts by shifting the peaks in a segment as a whole and then progressing to

smaller subsegments until the optimal alignment is achieved as measured by the
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maximum FFT cross-correlation. The subsegments are linearly interpolated at the
boundaries and the aligned segments are joined together. RSPA was shown to

outperform COW and PAFFT for the alignment of urine MR spectra.

A different type of alignment methods are based on detection of peaks in the spectra
prior to alignment. An example is peak alignment using reduced set mapping (PARS'"-
%) The method starts by detecting the peaks in a spectrum using one of several
algorithms, followed by corrections of the baseline in order to conserve the area under
the peaks. Finally, the peaks are sparsely represented as a vector of zeros except for the
position of the peaks, and this reduced peak set is used for alignment. This has the
advantage of greatly reducing the dimensions of the data. The drawback of such
methods is that small or overlapping peaks may be difficult to detect, and the
consequence may be misalignments or loss of information. Self-calibrated warping
(SCW) is a recently proposed method combining peak detection and warping.'**'** The
algorithm consists of three steps; identification of peaks by detecting the sign changes
of the signals derivate in a constrained manner, alignment of the chosen peaks to the
peaks of a reference by maximizing the correlation, and finally defining a warping
function for the whole spectrum by weighted least squares fitting of the warping values
in the first two steps. A threshold for detection of peaks is defined that is based on the
magnitude of the peaks. In that way, only the larger peaks will define the warping
function and the algorithm will be less sensitive to small and dense peaks and noise.
This may reduce possible misalignment in dense spectral areas without risking loss of

information. SCW was compared to COW, PTW and RAFFT for alignment of MS

spectra and found to perform equally or better.

5.3 Multivariate data analysis applied to MR spectra

Multivariate analysis methods are frequently applied when examining disease
characteristics, as one biomarker on its own often is insufficiently specific for a given
condition.””' The advantage of multivariate methods is their ability to identify patterns
of several metabolites simultaneously. In addition, multivariate methods can be applied

to the whole MR spectra, requiring no quantification of the metabolites prior to analysis.
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Linear modelling methods have the advantage that the important metabolites easily can
be defined from the resulting model. For non-linear methods, interpretations may be
challenging as most methods are so-called ‘black box’ methods, revealing no further
insight into the dependence of classification on the variables. While the construction of
such a model may be of interest for pure diagnostic purposes, most metabolomics
studies will also aim for characterization of the disease for improved biological insight
and targeted therapies. Achieving superior results using non-linear compared to linear
methods may therefore be required in order to justify this disadvantage. In paper I, the
classification performance of PLS-DA was compared to the non-linear methods BBN
and PNN. PLS-DA provided better classification results for the prediction of ER and
PgR status. This effect was observed both when using the whole spectra as input and
when using variable reduced input. For lymphatic spread, PLS-DA gave a more
balanced sensitivity and specificity ratio. Achieving an equal rate of sensitivity and
specificity in discriminant analyses may be challenging if one group is much larger than
the other, such as for predictions of ER status in paper I and survival in paper III. As an
extreme, a high number of correctly classified samples may be achieved by simply
classifying all samples to the largest group. This will however be reflected in the
sensitivity/specificity ratio. The optimal classification threshold for PLS-DA was
calculated using a Bayesian method,'”* where a normal distribution is fitted to the
predicted values and the threshold corresponds to the intersection of the distributions. A
new sample will be classified to the class for which the predicted value is greater than
the threshold value. This appears to be a simple but efficient way of choosing a
threshold that minimizes both the number of false positive and false negative samples.
For the PNN analysis in Neuroshell Classifyer it is possible to define a customized
fitness function that adds a penalty to the function whenever a sample from the smallest
group was wrongly classified. Although this improved the results in paper I, the
sensitivity of the smallest group was still much lower than the specificity for the test
data. In general, both PNN and BBN gave almost perfect classification for the training
data but not for the test data, indicating that the algorithms used were prone to
overfitting. The same superior results for PLS-DA compared to PNN and BBN were
observed for classification of survival in paper III, although only the results from PLS-

DA were presented.
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Paper IV explored the use of multivariate paired data analysis, taking advantage of the
multilevel structure of the data. In order to examine the variation resulting from the
given treatment, the multilevel analysis simply uses the net difference before and after
treatment as input for classification. Discrimination of pre and post-treatment spectra by
PLS-DA was performed using both paired spectra and the original data. Taking
advantage of the multilevel structure was clearly beneficial; the average number of
correctly classified samples increased from 69 % to 88 % when using paired analyses
(Figure 5.1). The same beneficial effect was observed by Westerhuis et al. when
comparing multilevel PLS-DA and  orthogonal PLS-DA (OPLS-DA) for the
discrimination of urine samples taken before and after black tea consumption.'® The
metabolic changes resulting from the treatment are probably more subtle than the larger
variations between the patients, and splitting these sources of variation will therefore

enhance the predictive strength of the classifier.
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Figure 5.1: Boxplots showing the distributions of classification errors using unpaired PLS-DA
and paired multilevel PLS-DA. Talking advantage of the multilevel structure of the data is

clearly beneficial, and the error distributions are significantly different (p < 0.001)
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The use of multivariate methods has a great advantage over univariate statistics
requiring quantification of metabolites prior to analysis. The integrals of overlapping
peaks from HR MAS MR spectra of tissue samples are most accurately measured by
peak-fitting, which is a subjective and time-consuming process. Therefore integration of
the metabolites spectral regions is often used, at the expense of less accurate results as
some integrals contain signals from more than one metabolite. Quantification is also
challenging due to the lack of a reliable internal reference. TSP has been used as an
added internal reference in HR MAS MRS."'* '"® The use of TSP is however not
straightforward as it will bind to proteins in the tissue,'® affecting the T2 relaxation
times. Accurate quantification of HR MAS spectra will therefore require an external
standard, such as standard curves or the electronic reference to access in-vivo
concentrations (ERETIC'**) method. Creatine has been used as a reference for relative
quantification using metabolite ratios in brain tumors;'> however the assumption of
constant creatine levels in breast cancer tissue is probably not valid. For instance, the
results from paper I indicated a correlation between the creatine levels of tumors and
hormone receptor status. Thus relative quantification using metabolites ratios has the
drawback that variations may be hidden if the metabolites are positively correlated.
Integration of peak areas of spectra normalized to equal areas has been used as a
measure of metabolite levels.' *">® It is then assumed that the normalization corrects for
differences in sample size. This method was used in paper III and IV for further
validation of important metabolites from the multivariate analyses. To correct for
differences in tumor cell content, the lipid residuals were removed prior to
normalization. Although these integrated values may be inaccurate due to overlapping
peaks and the lack of an internal reference, the combination of multivariate modelling
and univariate testing of integrated intensities may give increased confidence in the

importance of the metabolites.

Table 5.1 summarizes the preprocessing and modelling methods that have been found

suitable for HR MAS MR spectra during the work of this thesis.
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Table 5.1: Data analysis of HR MAS MR spectra.

Purpose

Methods

Baseline correction

Giving the spectra equal minimum points will correct for
baseline offsets. Artefacts such as negative spikes must first
be removed.

Baseline correction by asymmetric least squares removes
baseline trends, but should be used with caution as
overfitting of the estimated baseline will remove spectral

information.

Peak alignment

The spectra should be shift referenced to one peak (for
instance TSP) before applying peak alignment algorithms, as
this will reduce the amount of alignment necessary.

Segmented alignment methods are most appropriate for
aligning MR spectra, but segment boundaries inside peaks
should be avoided. Icoshift is rapid and provides good
alignment results of MR spectra. COW is a good alternative
for crowded data or when the results from icoshift are not
satisfying. Some effort should be put into optimizing the

parameters and finding a good reference spectrum.

Removal of
unimportant signals

and contaminations

Water residuals from incomplete water suppression should
be removed from the spectra

The spectra should also be examined for contaminations,
such as ethanol and acetone contaminations from cleaning of
the lab equipment.

Lipid residuals may contain valuable information, but they
may also disturb the analysis. Consider removing the lipid

residuals prior to multivariate analysis.

Normalization

Normalizing all spectra to equal area corrects for differences
in sample weight. To correct for differences in lipid content
in the samples, lipid residuals should be kept out when

calculating the normalization parameters.
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Scaling

Supervised VAST scaling is suitable for upweighting
possible biomarkers between groups. We used VAST-scaling

without prior autoscaling in order to reduce baseline noise.

Variable selection

Using the whole spectra provides the best interpretability of
the resulting model.
mRMR variable selection is suitable for methods where the

large dimensions of data are problematic.

Multivariate

modeling

PCA is useful for examining the data without forcing it into a
model, and may help detect outlying samples.

PLS-DA is suitable for classification of MR spectra.
Multilevel PLS-DA is a good choice when the data has a

paired structure.
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6 Conclusions and future perspectives

In this thesis, differences in the metabolite profiles of tumors from breast cancer patients
with different prognosis were identified. Hormone receptor positive tumors have
different metabolic patterns than hormone receptor negative tumors, and the patients
could be successfully discriminated according to their hormone receptor status.
Differences in the tumor metabolism of patients with and without spread to axillary
lymph nodes were also detected. These differences were however not prominent enough
to successfully classify the patients according to their lymph node status. Further studies
could possibly explain if the lymph node negative patients misclassified as false
positives had micrometastases to the lymph nodes and thereby a tumor metabolism
similar to that of lymph node positive patients. As an overall measure of prognosis, 5-
year breast cancer survival was examined, and metabolic traits of good and poor
prognosis were detected. Glycine and lactate levels were increased in non-survivors,
and may serve as clinical biomarkers for poor prognosis. Tumor metabolic responses to
NAC were explored, and different metabolic response patterns were related to breast
cancer outcome. High levels of glycine and lactate after treatment were also here
associated with a worse prognosis. These findings should be further validated in a larger

patient cohort, and the clinical value of these potential biomarkers should be assessed.

We used breast cancer biopsies excised either during surgery or by open biopsy. Needle
biopsies excised when the patient is diagnosed would probably provide the same
metabolic information. Using today’s histological methods, hormone receptor status is
determined at the time of diagnosis, while an exact lymph node status can only be
determined pathologically after lymph node removal during surgery. Being able to
stratify the patients according to prognosis at an earlier stage could be beneficial for
improved individualized treatment of breast cancer patients. A combination of
histological examinations and MR metabolomics could provide additional prognostic
information at an early stage. Although MR metabolomics is not yet used in the clinic,
this thesis together with several other papers have shown promising prospects, and

research groups at Imperial College, London, and Hautepierre hospital, Strasbourg,
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have already implemented HR MAS MRS in the surgery theatre as a trial for rapid real-
time analysis of excised tissue."”’ In addition to being cost efficient, this could more

importantly reduce the amount of time that patients spend on the surgery table.

One of the great advantages of MR is the in vivo- ex vivo connection. MRS is being
used together with MR imaging to examine metabolic patterns of tissues in vivo.
Today’s clinical MR scanners are primarily of field strength 1.5 T or 3 T, which is
much lower than the 14.1 T scanner used for MR analyses in this thesis. It is therefore
not possible to separate all the metabolites in vivo, and generally only one peak
representing tCho levels is detected in addition to water and lipid signals in breast
tumors. Nevertheless, future clinical MR scanners of higher field strengths, including
technical improvements in coil design and pulse sequences, can enable the translation of

previous ex vivo findings into in vivo clinical use.

The importance of proper preprocessing of MR spectra has been illustrated in this
thesis, and different multivariate analysis methods have been assessed for their
feasibility of analyzing MR spectra. Overall, the work in this thesis has shown
promising results concerning MR metabolomics as a tool for evaluation of prognosis,
and has provided an increased insight into the metabolic changes of progressing breast
cancer. These findings can hopefully contribute to improved personalized medicine for

breast cancer patients.
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Article history:

The peaks of magnetic resonance (MR) spectra can be shifted due to variations in physiological and
experimental conditions, and correcting for misaligned peaks is an important part of data processing prior
to multivariate analysis. In this paper, five warping algorithms (icoshift, COW, fastpa, VPdtw and PTW)
are compared for their feasibility in aligning spectral peaks in three sets of high resolution magic angle
spinning (HR-MAS) MR spectra with different degrees of misalignments, and their merits are discussed.
In addition, extraction of information that might be present in the shifts is examined, both for simulated
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Il’(:}a}kwglri‘;sr;ment data and the real MR spectra. The generic evaluation methodology employs a number of frequently used
Warping quality criteria for evaluation of the alignments, together with PLS-DA to assess the influence of alignment

NMR on the classification outcome.

Peak alignment greatly improved the internal similarity of the data sets. Especially icoshift and COW
seem suitable for aligning HR-MAS MR spectra, possibly because they perform alignment segment-wise.
The choice of reference spectrum can influence the alignment result, and it is advisable to test several
references. Information from the peak shifts was extracted, and in one case cancer samples were success-
fully discriminated from normal tissue based on shift information only. Based on these findings, general
recommendations for alignment of HR-MAS MRS data are presented. Where possible, observations are
generalized to other data types (e.g. chromatographic data).

Metabolomics
Peak shifts
Multivariate analysis

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Nuclear magnetic resonance spectroscopy, or just magnetic
resonance spectroscopy (MRS) in a medical context, is a highly
reproducible and robust technique for examining the metabolic
profiles of fluids or tissue specimens. By using high resolution
magic angle spinning (HR-MAS) MRS, intact tissue samples can
be analysed while peak broadening caused by anisotropic inter-
actions is reduced [1]. The result is well-resolved spectra in which
the metabolites are represented by sharp peaks. The peak posi-
tions in an MR spectrum may, however, be shifted, or misaligned,
among spectra in a data set. In general, two types of misalignment
are conceivable: non-systematic and systematic misalignments.
Non-systematic misalignments can be caused by differences in
temperature, intermolecular interactions and other variations due
to imperfect control of experimental conditions [2-6], while sys-
tematic misalignments contain information about the biological

* Corresponding author. Tel.: +31 24 3653180; fax: +31 24 3652653.
E-mail address: 1.buydens@science.ru.nl (L.M.C. Buydens).
! These authors contributed equally.

0003-2670/$ - see front matter © 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.aca.2010.09.026

origin of the sample. It has for instance been shown that tumour tis-
sue has a lower pH than normal tissue, possibly due to the Warburg
effect [7]. A different pH or ionic strength of samples influences the
ionization state of basic or acidic groups and thus their associated
chemical shifts [4,8,9]. Metabolite-protein interactions are another
possible source of misalignment [10] which is especially impor-
tant to consider when dealing with HR-MAS data of whole-tissue
samples. In general, chemical interactions between substances and
different background matrices might provide circumstantial evi-
dence for differences between samples by systematic changes in
chemical shifts [4,10,11].

Misalignments between corresponding peaks will affect multi-
variate analysis of the data. Therefore, it is generally recommended
to correct for them [3,5,8,12]. Minor misalignment problems can
be overcome by binning the data (typically using a bin width
of 0.04ppm), or by using more sophisticated peak alignment
algorithms. An important disadvantage of binning is the loss of
resolution and the resulting loss of interpretability [9]. For major
misalignments, binning is not a feasible approach due to the result-
ing loss of resolution, and alignment would be preferable. Several
different alignment methods exist. Amongst these, the so-called
warping methods are most prominent [13-19], but other methods
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Table 1
Characteristics of alignment algorithms.

Alignment method  Optimization criterion Optimization method Alignment unit Aligns by Parameters to optimize
Icoshift Correlation per segment Cross-correlation by FFT Segments Shifting 2
cow Total correlation Dynamic programming Segments Stretching/shrinking 2
Fastpa Correlation per segment Beam search Segments Shifting and stretching/shrinking 3
VPdtw Ly norm Dynamic Programming Points Shifting 2
PTW Weighted cross-correlation ~ Nelder-Mead? simplex [46] ~ Complete spectrum  Polynomial model 2

@ Default, different optimization algorithms are available.

have been described as well [6,20-22]. Most algorithms have their
roots in chromatography, but some were specifically developed for
MRS. It is not clear, however, which algorithm is the best choice
for aligning HR-MAS MRS data and whether the methods origi-
nating in chromatography are indeed less suited for this type of
data.

In this study, we investigated the suitability of five different
warping algorithms—icoshift [13], COW [14,15], fastpa [16], VPdtw
[17], and PTW [18]—for aligning HR-MAS MRS data. Of these,
icoshift and fastpa were developed specifically for MRS data. The
performances of COW and PTW have previously been compared
for chromatographic data [23] and capillary electrophoresis (CE)
data [24]. The performance of VPdtw for chromatographic data was
briefly compared with that of PTW in the original VPdtw paper
[17], and the original icoshift [13] paper discusses comparisons
with COW and a number of fastpa-related methods for MRS data.
We used three different cancer-related HR-MAS MRS data sets for
evaluation, all containing samples from two distinct classes. All
three data sets represent complex biological samples with varying
degrees of misalignments. The various algorithms are compared,
and their pros and cons will be discussed in this paper. Because
there is no gold standard for assessing alignment quality, the align-
ments were evaluated with a number of commonly used criteria
describing the similarity of the spectra and quantifying their change
due to alignment. In addition, the data were classified using partial
least squares discriminant analysis (PLS-DA) [25,26] to investigate
the effect of alignment on the classification outcome. Although
we limited our evaluation to MRS data, the presented evaluation
methodology is generic and equally valid for other types of data.

Apart from the warping algorithm, the spectrum to use as the
reference for aligning might influence the end result. Therefore, in
all evaluations a number of different references were considered
and their influence will be discussed.

A possible drawback of correcting for misalignments is that any
information that might be present as systematic misalignments in
the chemical shifts is lost from the spectra. In that case, correc-
tion via alignment or binning might be counterproductive. At the
same time, it may be possible to align the spectra while extracting
potential shift information from the warping path that describes
the transformation from unaligned into aligned spectra. This pos-
sibility will be discussed in this article.

To evaluate the effect of alignment on data that display system-
atic shifts, a number of simple data sets were simulated in which
class information was added as intensity differences, shift differ-
ences or a combination of the two. These data were aligned, and
classification was performed on both the raw and aligned data,
as well as on the shift information (i.e. the coefficients resulting
from the alignment procedures) and to a combination of these with
the aligned spectra. The insights from this procedure were subse-
quently used in an attempt to enhance the classification results for
the real data.

Based on the results from this study, general recommendations
for choosing an alignment method for HR-MAS MRS data and get-
ting the optimal alignment are described. The validity of these
results and recommendations for other types of data will be dis-
cussed.

2. Experimental
2.1. Description of the alignment algorithms

Five different alignment methods were used in this study, and
will be elaborated here. Characteristics of the different alignment
algorithms are summarized in Table 1. Fig. 1 shows typical warping
paths, or warping functions, (the new x-axes as a function of the old
x-axis) for all five methods. For clarity, the differences between the
new x-axes and the old x-axis are drawn, rather than just the new
X-axes.

2.1.1. Interval correlated shifting (icoshift)

Interval correlated shifting was developed specifically for MRS
data [13]. It divides spectra into segments, and aligns these to the
corresponding segments of a reference spectrum. The alignment is
performed by shifting the segments sideways so as to maximize
their correlation. In practice, this involves calculating the cross-
correlation between the segments by a fast Fourier transform (FFT)
engine that aligns all spectra of a data set simultaneously. The seg-
ments can be user-defined or of constant length. Missing parts on
the segment edges are either filled with ‘missing values’, or by
repeating the value of the boundary point. The maximum shift cor-
rection of the segments can either be equal to a constant defined
by the user, or the algorithm can search for the best value for each
segment [13]. Icoshift is available as a tool for Matlab from Ref. [27].

2.1.2. Correlation optimized warping (COW)

Correlation optimized warping [14,15] is another segmented
warping method. It aims to optimize the overall correlation
between two spectra. The spectra are aligned by shrinking or
stretching the segments, rather than by shifting them as in icoshift.

‘Warping paths
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Fig. 1. A comparison of the warping paths of the different alignment methods.
Warping paths depicting the fine structures of the different alignment methods
are shown. The same query and reference spectra were used for all methods. For
clarity, the y-scale is set to the difference between the warping paths proper and
the original x-axis.
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Another difference with icoshift is that the optimization takes all
segments into account instead of aligning each segment separately,
i.e. stretching a segment causes subsequent segments to shift. The
maximum allowed change in segment length is determined by the
so-called slack parameter defined by the user. In addition, the user
must specify the segment length.

The alignment is performed using a dynamic programming
algorithm [28]. The algorithm uses linear interpolation to create
stretched (or shrunken) versions of the individual segments within
the limits determined by the slack parameter. It calculates the sums
of the individual correlation coefficients for all combinations of the
stretched segments and picks the combination that leads to the
largest sum (and hence the largest overall correlation) to construct
the aligned spectrum. As all possible combinations are considered,
dynamic programming will always yield the global optimum for
the chosen parameters [14,15].

The slack and segment length parameters of COW can be opti-
mized by a discrete simplex-like optimization routine described by
Skov et al. [29]. An optimization space for both parameters must be
specified, and the initial search is defined by a 5 x 5 grid in both
parameter directions. Each of the 25 parameter combinations is
evaluated by calculating the sum of the simplicity value and average
peak factor (see Section 2.5) of the corresponding trial alignment
of the data set. By default, the three best combinations are used as
starting points for further simplex optimization. COW is available
as a tool for Matlab from Ref. [27].

2.1.3. Peak alignment by beam search (fastpa)

Like icoshift, peak alignment by beam search was developed for
MRS data [16]. It also divides the spectra into segments, but aligns
these by both shifting and stretching/shrinking them to maximize
their respective correlations. Fastpa is based on a routine by For-
shed et al. [30] where the segments are chosen automatically to
avoid cutting in a peak. However, instead of Forshed’s genetic algo-
rithm, fastpa uses a faster beam search [31,32] as the optimization
routine for finding the optimal alignment. This change of opti-
mization algorithm is possible because the segments are aligned
independently, as opposed to COW.

Fastparequires three input parameters to be specified: the max-
imum number of segments, the maximum range of shifting, and the
maximum range of stretching or shrinking. In addition, the beam
width k [31,32] has to be specified as either 1 or 2. From the view-
point of optimization, a larger beam width is always preferable [32],
and we considered k to be constant at a value of 2.

After choosing segments [30], the algorithm starts by adapting
an initial trial solution of stretches and shifts for the individual seg-
ments. The 2 best adaptations are used as the next trial solutions
in the algorithm. This is repeated until the optimal solution within
the beam search space is found [16]. Fastpa is available as a Matlab
tool upon request from the authors [16].

2.1.4. Variable penalty dynamic time warping (VPdtw)

Dynamic time warping (DTW) [33] is generally considered to be
the first full-fledged warping method that has been developed. It
works by shifting individual points of the query spectrum, rather
than complete segments, as in icoshift. Many different sets of rules
exist for allowed shifts [33,34]. Variable penalty DTW is a recent
implementation of asymmetric DTW [17]. Instead of optimizing the
correlation between the spectra, VPdtw tries to optimize the L;
norm, i.e. the sum of the absolute differences between the variables
in the spectra.

Regular DTW is notorious for causing artifacts in aligned data,
by allowing too many shifts [17,35]. The variable penalty in VPdtw
aims to prevent these from occurring by adding a penalty to the
Ly norm for each shift. Clifford and Stone [17] propose to use a
morphological dilation (i.e. a running maximum) of the reference

Breast cancer data
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Fig. 2. Breast cancer data. A representative HR-MAS MR spectrum from the breast
cancer data set. The inset shows the misalignment for the peaks between 3.18 and
3.30 ppm. a.u., arbitrary units.

spectrum as a penalty. This results in a high penalty being added
to the L, norm for a shift at or near the position of peaks, whereas
in a baseline region, it would result in almost no extra increase. A
maximum allowed shift and the penalty must be specified by the
user [17]. VPdtw is available as a package in R from Ref. [36].

2.1.5. Parametric time warping (PTW)

Rather than point-wise shifting, or dividing the spectra into seg-
ments that can subsequently be shifted and/or stretched, PTW [18]
explicitly produces a global polynomial model (the warping func-
tion) of the misalignment:

K ]
w(t) = Z;H)akt(

The first two coefficients, ag and aq, in the warping function
can readily be interpreted as an overall shift and stretch/shrinkage,
respectively. Further coefficients correspond to higher order
stretching or shrinking that are useful to model changes in the mis-
alignment along the retention time axis. Bloemberg et al. recently
proposed to use the weighted cross-correlation (WCC) [37] as the
optimization criterion in PTW [19]. In their implementation, the
user has to specify the order of the warping function and the width
of the triangular weighting function for the WCC.

The continuity and smoothness of the PTW warping function
imply that PTW does not lead to artifacts like ‘decapitated’ peaks.
In the absence of many high-order terms, the polynomial model
makes PTW a somewhat restrained method. This means that it may
have difficulties in correcting strongly nonlinear misalignments,
but also that overfitting is very unlikely to occur [18,19]. PTW is
available as a package in R from Ref. [38].

2.2. Data

Three different cancer-related data sets were used in this study:
data from cervix, breast, and colon tissue. All three data sets contain
data from two biologically distinct classes of tissue. The data sets
represent different degrees of misalignment: the cervical cancer
data display minor misalignments, colon cancer has major mis-
alignments and the breast cancer data show something in between.
Fig. 2 shows the MR spectra from the breast cancer set as an exam-
ple. In addition to these HR-MAS MRS data sets, simulated data sets
with varying degrees of misalignment were generated.
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percentage of correctly classified samples.

2.2.1. Simulated data

A large number of simple data sets were simulated. Each set
consists of 100 spectra—50 of class 1 and 50 of class 2—with a
spectral width of 1000 variables and two peaks only of width ~10
points. Bivariate class information was added as intensity differ-
ences (mean differences ranging from 1% to 10% of peak height),
shift differences (means ranging from 1 to 25 points) or a com-
bination of the two. For each set, six copies were produced with
increasing non-systematic shifts (see Fig. 3), but exactly simi-
lar simulation parameters otherwise. Furthermore, all simulations
were performed in triplicate; all reported results are the averages of
the results obtained on three sets with similar settings for the ran-
domly generated normal distributions that were used to generate
realistic intensity and shift distributions.

2.2.2. Cervical cancer data

This data setis fully described in Ref. [39]. In short, cervical tissue
samples (n=16) were collected after hysterectomy of cervical can-
cer patients (n=8) and patients with non-malignant disease (n=8).
The samples were analysed by HR-MAS MRS on a Bruker Avance
DRX600, using a water and lipid suppressing spin-echo sequence
(cpmgpr, Bruker BioSpin GmbH, Germany). All experiments were
performed at room temperature and without buffering. The chem-
ical shifts were referenced to the lactate doublet at 1.32 ppm,
and the spectral region between 4.7 and 0.5 ppm was saved in a
matrix of 16 x 3736 variables. The spectra were baseline corrected
using asymmetric least squares [18] with parameters A =1e5 and
p=0.0001, and the minimum value of each spectrum was set to
zero by subtracting the lowest value. The spectra were normalized
to equal total area.

2.2.3. Breast cancer data

This data set is fully described in Ref. [40]. Breast cancer tissue
samples (n=208) were excised from estrogen receptor (ER) positive
(n=161) and negative (n=47) patients. The samples were analysed
by HR-MAS MRS using a cpmgpr sequence. All experiments were
performed at 4 °C, and the samples were buffered with phosphate-
buffered saline (PBS). Chemical shifts were referenced to the TSP
peak at 0 ppm. The spectral region between 4.8 and 0.6 ppm, rep-
resented by 8251 variables, was extracted for further analyses. The
spectra were baseline corrected by subtracting the lowest value of
each spectrum, and normalized to equal total area.

2.2.4. Colon cancer data

Colon tissue samples (n=32) were excised from the tumour
area (n=17) and normal mucosa (n=15) of colon cancer patients,
and the samples were analysed by HR-MAS MRS using a cpmgpr
sequence. These samples are part of a larger patient cohort
described in Ref. [41]. All experiments were performed at 4°C,

and the samples were buffered with phosphate-buffered saline. In
order to induce random misalignments in the data, this data set
was not chemical shift referenced. The spectral region between 4.8
and 0 ppm, represented by 9661 variables, was extracted for fur-
ther analyses. The spectra were baseline corrected by subtracting
the lowest value of each spectrum, and normalized to equal total
area (excluding polyethylene glycol pollution at 3.71 ppm).

2.3. Alignment of simulated data

All simulated data sets were aligned using the five warping
methods and alignment was performed using the first spectrum
as the reference. Icoshift was set to align the data in two segments,
whereas PTW was set to align using a linear warping function, cor-
responding to an overall shift and stretch. Unexpectedly, COW ran
into memory problems when the segment length was chosen to be
half the spectral width (500 points), and the segment length was set
to one tenth of the spectral width (100 points). VPdtw was unable
to produce well-aligned data consistently and the fastpa algorithm
was too unstable in its current form to allow high-throughput anal-
ysis of a large number of data sets.

The obtained warping coefficients correspond to two (integer)
shifts for icoshift (one shift coefficient per segment), a shift and a
stretch coefficient for PTW and ten segment endpoints for COW.
For classification purposes, the icoshift coefficients were used ‘as
is’, whereas the stretch coefficient for PTW was multiplied by the
number of data points (1000) after subtracting 1 (the default for
‘no alignment’) from it, as described in Ref. [19]. In this way, the
shift and stretch coefficients are on comparable scales. For COW,
the original segment endpoints were subtracted from the new end-
points, so as to provide the differences between them.

2.4. Alignment of real data

The cervix, colon, and breast cancer data sets were aligned using
the five different warping methods, as described below. Ten differ-
ent reference spectra were used subsequently for aligning the data;
this in order to examine the influence of choosing different refer-
ences and also to examine the robustness of the warping methods.
Four spectra were chosen from each of the two classes in a data set:
two randomly chosen ones and the two spectra having the high-
est average correlation with the other spectra in the data set. In
addition, the mean and the median spectra were used as references.

2.4.1. Icoshift

The optimal number of segments for icoshift was determined by
visual inspection of trial alignments and by the average overall cor-
relation, and ranged from 20 to 150 for the different data sets and
references. The maximum allowed shifts were determined by the
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algorithm. For some matrices this led to artifacts, and the maximum
allowed shift was manually determined instead. A full spectrum
correction was performed prior to alignment of the segments. Miss-
ing parts on the segment edges were replaced by repeating the
value of the boundary point. Both user-defined segments and seg-
ments of constant length were tested.

24.2. COW

Parameters for COW were determined using the optimization
routine by Skov et al. [29]. The search interval for segment length
was based on the average peak width, as suggested by the authors,
and the slack size search space ranged from 1 to 15. The search
space was increased if the limit values were chosen as the opti-
mal parameter. Optimal segment length ranged from 30 to 300
variables.

2.4.3. Fastpa

Fastpa parameters were optimized by visual inspection of trial
alignments, and the overall average correlation. The spectra were
zero-padded prior to alignment to avoid cutting off peaks at the
spectrum edges. This was also done because fastpa does not align
the last segment of the spectra. The ranges of segment number,
sideways movement and interpolation were 40-170, 10-150 and
10-100, respectively.

2.4.4. VPdtw

Alignments were performed on the normalized data, after addi-
tional square-root scaling, as this turned out to provide better
alignment results than for unscaled data. The resulting warping
paths were applied to the normalized data. The penalties that were
used for the alignment were morphological dilations of the data, as
described in Ref. [17]. Penalties were determined by trial and error
until satisfactory alignment results were produced. The maximum
allowed shift (the width of the Sakoe-Chiba band [33]) ranged from
100 to 300 variables.

2.4.5. PTW

Prior to alignment, the data were zero-padded, as described
in Ref. [19]. The resulting warping coefficients were transformed
accordingly and applied to the unpadded data. Triangle widths for
the weighted cross-correlation measure were on the order of the
largest misalignment in the data, as determined by visual inspec-
tion and ranged from 2 to 100 variables.

2.5. Evaluation criteria

The alignment results were assessed based on different mea-
sures:

2.5.1. Correlation

The spectra of a data set will be more uniform after successful
alignment, and thereby have a higher correlation. The correlation
between all the spectra of a data set was calculated before and after
alignment.

2.5.2. Simplicity value

The simplicity value is related to principal component analysis
(PCA) by singular value decomposition (SVD) of a matrix, where
the singular values state how much variance is explained by each
component. Aligned spectra will have more variance explained by
the first components. The simplicity value of a matrix is defined as
the sum of all singular values of the matrix—scaled to a total sum of
squares of one—taken to the fourth power, and will be larger when

more variation is explained by the first components [29].

4

X

Simplicity = Z SVD

2.5.3. Peak factor

The peak factor gives an estimate of how much the area and the
shape of the peaks have changed in a spectrum after alignment. It
compares the Euclidian length, or norm, of a spectrum before and
after alignment. If the peak area and shape stay almost the same,
the difference between the norms before and after alignment will
be small [29]. The optimal value for the peak factor is 1, meaning
that there is no change in peak shape.

S (1 —min(e, 1))

Peak factor = i

where

o= NOrm(X; after) — NOIM(X; before )
! norm(x; pefore)

2.5.4. Classification

Correcting for misalignments should improve the classification
results for data sets distorted by random shifts. However, it is
also possible that information arising from biological differences
between different classes may be removed when the spectra are
aligned. In PLS, latent variables (LVs) are derived to maximize the
covariance between the spectra and a quantity to be modelled. PLS-
DA is a special case of PLS that attempts to discriminate between
classes, represented by discrete numbers. Here, PLS-DA was used
to evaluate the classifiability of aligned and unaligned data. In addi-
tion, the warping path or warping parameters were used as input
to investigate possible shift information.

2.5.5. Visual inspection

Quantitative measures are valuable means for comparing spe-
cific characteristics of large sets of data at a glance, but they also
have their limits. The human eye and brain are still unsurpassed as a
pattern recognition tool. In the context of alignment, especially the
assessment of alignment quality and detection of artifacts benefit
from visual inspection.

2.6. Classification of simulated sets

Each data set was classified using PLS-DA. Classification was per-
formed on the unaligned spectra, the aligned spectra, the warping
coefficients and a combination of the aligned spectra and the coeffi-
cients. The latter was achieved by simply concatenating the spectra
with the coefficients and multiplying the latter with a large number
(on the scale of the average-scaled spectra, typically 100 was used)
to make sure they would be contained in the first latent variables
of the PLS model.

PLS-DA, including mean centering, was performed using full
leave-one-out cross-validation (LOO-CV), and the number of LVs
giving the first minimum in prediction error was chosen for the
model. PLS-DA was performed in Matlab 7.7.0.471 (R2008b, The
Mathworks, Inc., Natick, USA) using PLS_toolbox 5.5.1 (Eigenvector
Research, Wenatchee, USA).
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2.7. Classification of real data

The data sets were classified using PLS-DA, as described for
the simulated data. Classification was performed on the unaligned
spectra, the aligned spectra, the warping coefficients, and a
combination of aligned spectra and coefficients (multiplied by
100).

Pollutions from ethanol and fatty residuals, and from polyethy-
lene glycol for the colon cancer data, were removed from the
spectra prior to classification. Single outlying spectra were removed
from the colon cancer and breast cancer data sets. For the breast
cancer data, the spectra were square-root scaled prior to analysis.

3. Results and discussion
3.1. Simulated data

Fig. 3a shows the average classification results for the sets
in which classes are coded as intensity differences. Fastpa and
VPdtw were not capable of correctly aligning the simulated data.
As expected, classification rates for unaligned data decreased as
random misalignment increased. Aligned data, on the other hand,
delivered stable classification results. The warping coefficients did
not contain class information, as expected, since the simulated
shifts were completely random.

The average classification results for three data sets where class
information is purely contained as peak shifts are depicted in
Fig. 3b. As expected, the situation here was completely opposite
to the previous one. The raw data gave better results than the
aligned data; alignment removes the information of interest from
the spectra. Now, the coefficients do contain information and in
this case the coefficients give even better classification results than
the raw data themselves. This is most likely due to less noise being
present in the coefficients than in the data. Because classification is
based on intensities, the intensity noise in the unaligned data will
have a negative influence on the result. By extracting the positional
information of the peaks into the warping coefficients, it effectively
becomes available as information without the intensity noise that
was present in the spectra.

When class information is present in both the shifts and the
intensities, as might be expected with real data, the situation will be
somewhere in between the two extremes discussed above. Where
exactly depends on the data at hand. In that respect, any simulation
is rather arbitrary and we should not over-interpret the results. It
is clear from the example in Fig. 3¢ however, that—if discrimina-
tion is the main interest—there are situations in which aligned data
on their own can be a sub-optimal choice as input for multivariate
analyses when there is information present in the shifts. In these
cases, for icoshift and PTW, the combination of aligned data with
the warping coefficients delivered the best classification results.
The COW results for the combination of data and coefficients were
alotworse than those of the other two methods; this may have to do
with the sub-optimal parameter settings that were used to prevent
the program from running into memory problems. Furthermore, it
is likely that the good results for PTW are due to the simplicity of the
data and the resulting suitability of a warping function of degree 1
for modelling the misalignments. Bearing in mind the conclusions
from Refs. [23,24], it is to be expected that individual shifts in more
complex MR data cannot be modelled very well with the global PTW
model. Icoshift and COW are more likely to extract positional infor-
mation in a way that is suited for multivariate analyses, although
the cumulative character of the COW warping path might ‘smear
out’ misalignment information over several segments, making it
harder to interpret.

3.2. Real data

3.2.1. Correlation and simplicity value

A plethora of similarity and distance measures are used as opti-
mization criteria in different alignment algorithms. Icoshift, COW
and fastpa are all optimized using correlation as a criterion. DTW is
available with various distance measures [34] and VPdtw employs
the Ly norm as a criterion for optimization. PTW optimization was
originally based on the root mean square difference (RMS) between
spectra [18], but the current implementation uses the weighted
cross-correlation as a similarity measure [19]. There is still no gen-
erally accepted gold standard measure for assessing alignment
quality. However, the combination of simplicity value and peak
factor introduced by Skov et al. [29] is an interesting choice. Both
measures, together with the correlation, were used to assess align-
ment quality in this study. In addition, the RMS and WCC criteria
were examined, but these measures did not provide extra infor-
mation. It should be kept in mind that methods optimizing the
correlation will very likely be biased towards that measure and
it is not certain that the results for the simplicity value will be
completely independent.

Fig. 4 shows box plots of the mutual correlations between all
samples in the three HR-MAS data sets, before alignment and after
alignment with each of the five warping methods for ten different
references. It is clear that for all methods, the correlation distri-
butions of the aligned data are better than for the unaligned data.
This is especially pronounced for the colon cancer data set which
has the largest misalignments. Here, all warping methods greatly
improved the correlations, with PTW scoring lower than the other
methods. For the cervical cancer data, where the unaligned data
displayed only minor misalignments, VPdtw resulted in the lowest
correlation values, while the other methods performed compara-
ble.

The simplicity values for the raw and aligned data in Fig. 4 con-
vey the same general picture as the correlations. There are some
differences, however. The most striking ones are the PTW and
VPdtw results for the colon cancer data set. When looking at the
correlations, the PTW correlations are clearly lower than the ones
for icoshift, COW, and fastpa, and comparable to the VPdtw correla-
tions. The PTW simplicity values, however, are comparable to those
of icoshift, COW, and fastpa, whereas the VPdtw simplicity values
are much lower. The simplicity value is influenced by the intensi-
ties of the peaks, and peaks with high intensities influence the value
more than low intensity peaks. The colon cancer data displayed a
high intensity peak at 3.71 ppm, resulting from polyethylene glycol.
When the peak was removed from the data set, the simplicity val-
ues were more in accordance with the correlations. This example
shows a weakness of the simplicity value, and it might be advisable
to scale the data prior to simplicity calculations.

Fig. 4 also shows that the choice of reference can have a large
influence on the alignment result for one-dimensional HR-MAS MR
spectra, contrary to the observation made in Ref. [21] for LC-MS
data. The breast cancer data generally provided stable results, but
demonstrated that a bad choice of reference had a larger influ-
ence on the correlations than the particular warping method that
is used. Icoshift, COW and fastpa, which are all segmented warping
methods, appeared to be less influenced by the choice of reference,
whereas PTW gave worse results than the unaligned data for some
of the randomly chosen reference spectra. It is therefore advisable
to try different references when aligning. Using the spectrum that
has the highest average correlation to the other spectra does not
seem to be a bad choice; however, it does not always give the opti-
mal alignment. For data sets consisting of two or more classes,
it is conceivable that the alignment will be affected by the class
the reference belongs to. Trying references from both classes may
therefore be advisable. Using the mean or median spectrum as a
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Fig. 4. Correlation and simplicity values for different alignment methods. In all plots, for each method, results from 10 different reference spectra are shown. From left to
right: the spectrum having the highest average correlation with all other spectra, the (on average) second most highly correlated spectrum from the same class, and two
random spectra from the same class; the most highly correlated spectrum, the second most highly correlated spectrum, and two random spectra from the other class, and
the overall mean and median spectra. The box plots show the distributions of correlation values for the data sets; the red box stands for the unaligned data. The scatter plots
show the simplicity values of the data sets; the red line depicts the simplicity value of the unaligned data. (a) Correlations of the cervical cancer data; (b) simplicity values
of the cervical cancer data; (c) correlations of the breast cancer data; (d) simplicity values of the breast cancer data; (e) correlations of the colon cancer data; (f) simplicity

values of the colon cancer data.

reference is also an option. This may not be a good choice for data
sets with big misalignments though, as the mean/median spectrum
will have broad peaks and may not resemble a real spectrum. This
can be overcome by using an iterative procedure, i.e. by aligning the
data and then recalculating the reference spectrum. This was tested

for the colon cancer data in this study, and the resulting alignments
then resembled those for the other references (results not shown).

In some cases, similarity measures can give the wrong impres-
sion of the alignment quality. An example of this is when peaks are
badly deformed in order to give a high correlation, as in unpenal-
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Fig. 5. Peak factors for different alignment methods. Results from the same 10 different references as in Fig. 4 are shown (a) peak factors for the cervical cancer data; (b)

peak factors for the breast cancer data; (c) peak factors for the colon cancer data.

ized DTW [17,35]. Other examples were encountered when using
icoshift: when using segments of constant length, the segment
edges would sometimes be located in a peak, leading to major
artifacts in the peak shapes, while the correlation of the spec-
tra remained high. For some parameter choices for icoshift, the
peaks were displaced to the wrong position, but again correlations
remained high. Therefore, visual inspection of the data after align-
ment remains of the utmost importance. This will however put a
limit to the complexity of the data of interest. While HR-MAS spec-
tra of tissues have quite well-defined peaks, MR spectra from fluids
may be more crowded, making visual inspection of the aligned data
challenging. For these data, other methods may be more suitable,
for instance the one described by Alm et al. [6].

3.2.2. Peak factor

Peak factor calculations for the different warping methods are
shown in Fig. 5. The differences between the methods are small, and
overall, all methods performed well. Icoshift and VPdtw gave the
highest peak factors. This result was as expected for icoshift, as it
only shifts segments of the spectra, as opposed to fastpa, COW and
PTW that do shrinking and stretching. For VPdtw, the high peak
factors are noteworthy, given that DTW has a history of strongly
deforming peaks. Clearly, the variable penalty of VPdtw does what
itis intended to do.

COW’s parameters are optimized based on peak factor,and COW
gave the best results of the warping methods that do shrinking and
shifting. On average, fastpa had the lowest peak factor values, and
was thus the method that changed the data most after alignment.
This is also obvious from the warping functions in Fig. 1; fastpa
typically had the most extreme warping path. As for correlation
and simplicity value, icoshift and COW provided stable results for
different reference spectra. The results for fastpa and PTW varied
more, and it appears that the choice of reference is more critical for
these methods.

3.2.3. Classification results

The classification results for unaligned and aligned data are
shown in Fig. 6. For the cervical cancer data, the unaligned data
already gave good results, with only one out of 16 samples mis-
classified. In general, the aligned cervical cancer data gave better
classification results for all methods. For the breast cancer data,
the average classification results, based on the 10 different refer-
ences, improved for all methods except PTW. Here, the use of some
reference spectra improved the classification results while others
gave worse results. Despite the fact that both the correlation and
the simplicity value of the colon cancer data greatly improved by
aligning, the classification results did not improve. After alignment
the average classification results decreased by one or two additional
samples. It is not unlikely that the results for the unaligned data are
better simply by chance. In theory, itis also possible that peaks have
been aligned to the wrong peaks of the reference spectrum. This is

unlikely however, as visual inspection of the alignment results gave
no indication of wrong alignments.

Another possibility is that the shifts of the colon cancer data
contained information, resulting from systematic misalignments
of the spectra. Information present in the shifts would get lost after
alignment. This was investigated for all the data sets by classifi-
cation of the warping parameters and a combination of spectra
and parameters. It should be noted that the prediction error from
cross-validated PLS-DA was based on the same data set as the one
used for choosing the optimal number of LVs. Thus, the prediction
error will be slightly biased towards values lower than 0.5, and only
results that differed strongly from 0.5 were considered important.
Classification of the warping parameters alone did not give reliable
predictions for the breast cancer and the colon cancer data. Further-
more, combining the warping parameters with the spectra did not
improve classification. As previously described, cancer tissue can
have a different pH than normal tissue, and the pH of a sample is an
important source of shift variation. For the breast cancer samples,
there are no established hypotheses for pH differences between ER
positive and negative samples, and the results were as expected.
For colon cancer, the samples in the data set were from either nor-
mal or cancer tissue. Therefore, differences in pH are more likely,
even though the samples were buffered prior to HR-MAS analysis
[42]. However, it is likely that shift information that might have
been present in the data was masked by the major random shifts
of the data set, similar to what is shown in Fig. 3b and c for the
simulated data.

For the cervical cancer data, the results clearly indicate that the
warping parameters of icoshift, COW and fastpa contain class infor-
mation. Classification of the parameters gave an average correct
classification of 87%, 84% and 76% for icoshift, COW and fastpa,
respectively (Fig. 6d). Combining the spectra with the parameters
was not beneficial for the overall classification. Thus, the informa-
tion from the parameters was redundant. Nevertheless, the fact that
shift information alone can discriminate between normal cervical
tissue and cancerous tissue is very interesting. The cervical samples
were analysed by HR-MAS without buffering, and therefore pH dif-
ferences related to cancer-induced changes in tissue may be more
pronounced here than for the colon cancer samples. So despite
the redundancy of the shift information for the cervical data, this
result indicates that measuring biological samples without buffer-
ing might reveal biologically relevant differences that would be
obscured otherwise.

It is not hard to see why icoshift and fastpa provided warping
coefficients that are suitable for subsequent multivariate analysis.
These MRS-oriented methods align their segments independently;
therefore corresponding shifts will always occur at the same posi-
tion in the spectra. Opposed to that, for VPdtw, the effect of warping
is cumulative, and the actual stretching occurs at slightly different
places for different spectra even if they have similar misalignments
(results not shown). The alignment of COW is also cumulative, but



G.F. Giskeadegard et al. / Analytica Chimica Acta 683 (2010) 1-11 9

a Cervical cancer - PLS results b Breast cancer - PLS results
i=] o
= 000000 OOCmmEe BB P=}
n w
A e e V- — = ¥ -TIV 2
o (=3
& >
o
n w0
[S R o
Q G L] a
ES 2 = =" °
o Q oo < A
=) @ L] oo © A
o 00 ° L] ] < Aa A v v
Bl g s W e e A = i e e e ]
[} A,
[ HY o%o < < . A v v v
v v Vv
o o
~ ~
n 0 v
© <
icoshift cow fastpa VPdtw PTW icoshift cow fastpa VPdtw PTW
Cc Colon cancer - PLS results d Cervical cancer warping functions - PLS results
8 8
000 00 ©
o | o o mEE @ 0O
@
% o as a o
-l oom -] ® <
-3 ] ® 0 =
v
) o0 A A A
2 A A ©
(_)m-——o-———o—o————.—. ——————————— e - APy - - [&] A L
Q Q A Ay vv v
2 o ® am .I I. ” < A AA v 2 SR
L o o L] AA L=
00 © e 000 ¢ A - v T LS v
0 o 0o ¢ <o v ¥
v
=
Y
o
~
2 o
icoshift cow fastpa VPdtw PTW icoshift cow fastpa VPdtw PTW

Fig. 6. PLS-DA classification results for different alignment methods. Results from the same 10 different references as in Fig. 4 are shown. The red line denotes classification
results of the unaligned data (a) classification results of the cervical cancer data; (b) classification results of the breast cancer data; (c) classification results of the colon cancer

data; (d) classification results of the cervical cancer warping coefficients.

its segmented nature largely prevents it from showing many local
differences. Thus, it is not surprising that COW’s warping coeffi-
cients for the cervical cancer data also led to good classification
results. Both for VPdtw and COW, classification was also attempted
using the cumulative sums of their warping functions instead, to
(further) alleviate the local differences, but this did not improve the
results. For PTW, alignment was performed using a quadratic func-
tion, and it can be assumed that the relevant shifts in the spectra
were too complex to be modelled well by this function.

To summarize, the results presented here show that alignment
of the data using the warping methods examined in this work not
always improves the classification results compared to unaligned
data. However, alignment improved the interpretability of the

resulting model by providing less ambiguous loading profiles for
PLS-DA, similar to the observations in Refs. [43-45]. This is espe-
cially important in situations where discriminating between two
classes is not the only interest, but where one is also interested in
looking at the differences in metabolic profiles to interpret biologi-
calincidences in the tissue. For that purpose, alignment will always
be preferable.

3.2.4. Algorithms

Table 2 summarizes the evaluations of the different warping
algorithms. Overall, icoshift and COW gave good alignment results
and preserved the peak shapes. For COW, the optimization rou-
tine has a large part in this. Icoshift required quite some manual

Table 2
Evaluation of alignment methods?.
Alignment method Programming Memory Speed Optimization of Peak Artifact- free Alignment
stability efficiency parameters conservation quality©
Icoshift + + ++ 0 ++ - +
cow — - + +b ++ ++
Fastpa - + 0 - 0 0 +
VPdtw + + + 0 + 0 0
PTW + + 0 0 0 ++ 0
2 ++, very good; +, good; 0, moderate; —, improvement advisable; — —, improvement necessary.

b COW parameters were optimized to conserve peak shape prior to alignment.

¢ The alignment quality is assessed based on the end result after optimization of the parameters.
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Table 3
Benchmarks. Time consumptions for alignment of the breast cancer data set using
the same reference spectrum.

Alignment method Time (s)
Icoshift 3.73
cow 292
Fastpa 87.0
VPdtw 42.8
PTW 149

optimization, but this was not considered a problem because of
its speed, and the end results were satisfactory. For the parame-
ter combinations allowed by the algorithm, fastpa also gave good
alignment results, but at the expense of larger peak shape changes.
This is not surprising when looking at Fig. 1: fastpa’s warping paths
were typically more extreme than those of the other algorithms.
The segmentations of the spectra offered by fastpa and its prede-
cessor [30] were typically good, however. Acombination of this part
of the algorithm with the alignment power of COW or icoshift may
be worthwhile. Both VPdtw and PTW delivered variable results.
The variable penalty in VPdtw clearly prevents the algorithm from
deforming the spectra, but optimizing the resulting alignments is
not trivial. The polynomial warping function of PTW is probably not
flexible enough to model the local shifts occurring in NMR spectra
very well.

The time consumption for alignment varies a lot among the
methods. Table 3 shows the benchmarks for alignment of the
breast cancer data set using the same reference spectrum. The
benchmarks were obtained on a Dell Latitude E6400 laptop,
equipped with an Intel Core 2 Duo P9500 processor running at
2.53 GHz and 3.48 GB of RAM. The operating system was Microsoft
Windows XP SP3 (32bit). Alignments with icoshift, COW and
fastpa were performed in Matlab, version 7.7.0.471 (R2008b),
while VPdtw and PTW alignments were performed in R, version
29.2.

Icoshift was the fastest warping method, and alignment of a data
set of 209 spectra was done in a few seconds. COW, on the other
hand, was the most time-consuming of the methods tested here,
and used minutes to perform the same alignment. Also, COW some-
times runs into memory problems for large data sets. This can be
overcome by choosing different parameters, or by dividing the data
setin smaller subsets. Obviously, this may resultin a final alignment
that is not the optimal one for the data set.

The benchmarks shown here do not include optimization of
the parameters, as that largely depends on the effort put into the
procedures by the user. For fastpa, three parameters have to be opti-
mized, as opposed to the other methods with only two parameters.
This made fastpa more time-consuming to optimize. In addition,
some combinations of fastpa parameters will give an error without
any obvious reason. COW has an automatic optimization procedure
that is time-consuming; however, it requires a minimum of effort
from the user.

Although the evaluations in this paper were limited to MRS data,
some of the observations above can safely be generalized to other
types of data. Together with the conclusions in Refs. [23,24] it is
clear that the rigidness of PTW'’s polynomial warping function lim-
its its general applicability compared to COW. (At the same time,
this is not to say that there are no situations in which such arigid but
also relatively simple warping function may be preferable; the data
in the original PTW-paper were aligned in a satisfactory manner,
for instance.) The ‘wild’ behaviour of fastpa is also something that
seems to be inherent to that method and is expected to be indepen-
dent of the exact type of data. Time consumption of alignments will
mostly depend on data size and data complexity; the benchmarks
in Table 3 can thus safely be used as an indication, regardless of the
origins of the data.

3.2.5. General recommendations

Based on the observations in this study, we have the follow-
ing recommendations for the alignment of HR-MAS MRS data from
tissue samples:

e As a default method, icoshift is a good choice. It is fast, stable
and gives good results. Its results should be thoroughly checked
by visual inspection, though, and it may require some trial and
error to prevent peaks from disappearing or artifacts to occur.
However, its speed makes this feasible.

When large local shifts occur in crowded data, or the results do
not get satisfactory, COW is a good alternative. Although it is
rather slow and memory intensive, this problem is alleviated
somewhat by the computational power of current computers.
COW robustly provides good alignment results and because it
uses stretching instead of independent shifting for alignment, it is
well suited to provide alignments exactly when icoshift runs into
trouble. The pre-alignment optimization of the slack and segment
length parameters ensures that peak shapes will be minimally
affected.

It is a good idea to try out a number of references for alignment.
Although choosing the sample with the highest average correla-
tion never seems to give bad results, it does not necessarily lead
to the optimal result. Trying more references is a small effort and
gives an idea of the variability of the results. Moreover, it is likely
to provide a result close to the optimum that can be achieved.
In general, a truly automatic warping procedure does not exist.
The best alignment will not be achieved without putting some
effort into optimizing alignment parameters, scaling, and finding
a good reference.

Visual inspection of the end result is an absolute necessity.
Numerical measures can indicate a good result even if artifacts
are present. At the same time, it should be kept in mind that
visual inspection on its own is not infallible, since it is prone to
subjective judgment.

4. Conclusion

In this paper, we investigated the suitability of five warping algo-
rithms for aligning HR-MAS MR spectra to make them amenable
to further multivariate analysis. Furthermore, we extracted shift
information from the spectra and tested if it can be used in multi-
variate analysis.

Alignment of the data sets greatly improved their internal sim-
ilarity compared to unaligned data. The differences in alignment
quality between the algorithms examined in this study were not
very large in general. Icoshift, COW and fastpa gave a good over-
all alignment result for HR-MAS data, but fastpa currently has too
many drawbacks for general use. Both icoshift and COW also con-
served the peak shapes of the spectra. Whether the algorithms were
designed for chromatographic data or MR spectra did not seem to
have an influence in general on their suitability for aligning MRS
data. Comparison of our results with previous studies on chromato-
graphical and CE data allowed generalization of some observations.

Both the choice of reference and the effort that is put into align-
ing are important factors in reaching the optimal alignment result.
It is therefore advisable to try a number of different spectra as ref-
erences and to optimize the parameter settings of the algorithms.

Based on the previous evaluations, general recommendations
for aligning HR-MAS MRS data were proposed, including a sug-
gestion for the algorithms to choose. The evaluation methodology
discussed in this paper is generic and appropriate for assessing the
suitability of warping methods for other types of data.

Finally, the extraction of shift information from spectra by
means of the five warping algorithms has been demonstrated in
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this paper. Cancer samples and samples from normal tissue in the
cervical cancer data could successfully be discriminated based on
the shift information, but this did not provide extra information
next to the intensities in the aligned spectra.
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Translational relevance:

Patients with locally advanced breast cancer have large tumor burdens and a poor prognosis.
Molecular characterization of tumors may help stratify patients for individualized treatment,
thereby achieving better prognosis. Our project aims to provide novel understanding of breast
cancer biology in response to treatment. We have used high-throughput metabolomic analyses
by high resolution magic angle spinning magnetic resonance spectroscopy (HR MAS MRS)
to investigate the metabolic responses to neoadjuvant chemotherapy associated with patient
outcome and clinical response. Findings from this study show that MR metabolomics can
assist the identification of patients at high risk of breast cancer death, and help identify

pathways for novel targeted treatment.



Abstract:

Purpose: Today's clinical diagnostic tools are insufficient for giving accurate prognosis to
breast cancer patients. The aim of our study was to examine the tumor metabolic changes in
patients with locally advanced breast cancer caused by neoadjuvant chemotherapy (NAC),

relating these changes to clinical treatment response and long-term survival.

Experimental Design: Patients (n=89) participating in a randomized clinical trial were
allocated to receive either NAC as epirubicin or paclitaxel monotherapy. Biopsies were
excised pre- and post-treatment, and analyzed by high resolution magic angle spinning
magnetic resonance spectroscopy (HR MAS MRS). The metabolite profiles were examined
by paired and unpaired multivariate methods and findings of important metabolites were

confirmed by spectral integration of the metabolite peaks.

Results: All patients had a significant metabolic response to NAC, and pre- and post-
treatment spectra could be discriminated with 87.9%/68.9% classification accuracy by
paired/unpaired partial least squares discriminant analysis (PLS-DA) (p<0.001). Similar
metabolic responses were observed for the two chemotherapeutic agents. The metabolic
responses were related to patient outcome. Non-survivors (<5 years) had increased tumor
levels of lactate (p=0.004) after treatment, while survivors (=5 years) experienced a decrease
in the levels of glycine (p=0.047) and choline-containing compounds (p<0.013) and an
increase in glucose (p=0.002) levels. The metabolic responses could not be related to clinical

treatment response.

Conclusions: The differences in tumor metabolic response to NAC were associated with
breast cancer survival, but not to clinical response. Monitoring metabolic responses to NAC
by HR MAS MRS may provide information about tumor biology related to individual

prognosis.



Introduction

The prognosis of patients with locally advanced breast cancer varies largely due to the
heterogeneity of the disease, and 5-year survival rates from 50-80% have been reported (1).
Neoadjuvant chemotherapy (NAC) has been established as a standard treatment for locally
advanced breast cancer, with anthracyclines and taxanes being among the most frequently
used agents. NAC is provided to make primarily inoperable tumors resectable, and will also
increase the rate of breast-conserving surgery without any significant increase in local or
distal recurrence (2, 3). Studies investigating the metabolic responses and chemoresistance to
single or a combination of drugs are important for effective treatment and better patient

outcome.

Patients with a pathological complete response (pCR) after NAC have improved outcome
compared to patients with residual disease, thus treatment response is a prognostic indicator.
However, only ~20% of patients will achieve a pCR to NAC (4). Other prognostic factors of
breast cancer include axillary lymph node status, tumor size, Her-2 overexpression,
histopathological grade, and hormone receptor status. The status of Her-2 and hormone
receptors is also predictive of treatment response. Identification of other markers for
prognosis and treatment response may help stratify patients for better individualized

treatment.

Several studies have shown altered metabolism in cancer compared to normal tissue. Elevated
levels of total choline-containing compounds (tCho) are frequently observed in cancer, and
may serve as magnetic resonance spectroscopy (MRS) markers for malignancy, both in vivo
and ex vivo (5, 6). The tCho signal constitutes signals from glycerophosphocholine (GPC),
phosphocholine (PC) and free choline (Cho) which are involved in phospholipid metabolism
through the Kennedy pathway. A decreased level of tCho detected by in vivo MRS has been
suggested as a possible marker for treatment response (7, 8). Altered concentrations of other
tissue metabolites, such as increased levels of lactate, have also been associated with
malignancy (9, 10). Elevated lactate levels may be related to hypoxia, a common feature of
solid tumors where glucose is catabolised to lactate due to the lack of oxygen. Also under
conditions with sufficient oxygen levels, cancer cells may convert glucose to lactate,

described as the Warburg effect.



High resolution magic angle spinning (HR MAS) MRS is a non-destructive technique
providing highly resolved MR spectra of intact tissues with minimal sample preparation. HR
MAS MR spectra provide an overview of the different metabolites that are present in a tissue
sample, and can give insight into the complex processes leading to cancer and other diseases.
More than 30 metabolites have been identified in breast tissue using HR MAS MRS (11).
Systematic studies of the metabolic state of biological systems using multivariate analysis
methods are referred to as metabolomics. MR metabolomics studies of breast cancer have
revealed correlations between tissue metabolic profiles and clinical prognostic factors such as
hormone receptor status, grade and lymphatic spread (12-14). Long-term survival of breast
cancer patients has been successfully predicted from breast cancer tissue using multivariate
classification models (15, 16). The purpose of this study was to examine the metabolic
changes in breast cancer tissues resulting from treatment with NAC, and to relate these
changes to treatment response and long-term survival. This is the first study to investigate the

metabolic response of NAC in a large breast cancer cohort using ex vivo MRS.



Materials and methods

Patient and tumor characteristics

We examined a subcohort of breast cancer patients (n = 89) from a larger open-label
multicenter study where patients were randomly allocated to receive NAC treatment with
either anthracycline (epirubicin, 90 mg/m?) or taxane (paclitaxel, 200 mg/m?) monotherapy
(17). The patients were given subsequent adjuvant endocrine treatment according to
guidelines from the Norwegian Breast Cancer Group. The inclusion criteria and treatment
protocol are fully described elsewhere (17). Briefly, female breast cancer patients at pre/post
menopausal age (< 70 years) with locally advanced (stage III, Ts4 and/or N;) non-
inflammatory breast cancer with or without limited distant metastasis were recruited in the
period 1997-2003. The patients were treated every third week for four cycles. Patients
showing a non-satisfactory response were assigned to the opposite treatment. From each
patient, an incisional biopsy was taken before treatment with NAC and a post-treatment
biopsy was excised during surgical removal of the tumor. The biopsies were immediately
snap-frozen and stored in liquid nitrogen in a biobank until use. A part of the pre-treatment
tumor biopsy was obtained for routine pathological diagnosis and hormone status assignment.
Estrogen (ER) and progesterone receptor (PgR) status were determined by
immunohistochemical staining (positive > 10% staining cells). The study was approved by
The Regional Committee for Medical and Health Research Ethics (Norwegian Health Region

III) and informed written consent was obtained from all patients

Response and survival evaluation

Response to treatment was evaluated using the WHO criteria by the UICC system (18).
Treatment response was assessed clinically by comparing caliper measurements prior to NAC
treatment and after the last cycle. In the subcohort included in this study, the patients were
classified to have either partial response (= 50 % reduction in tumor size (the product of the
two largest tumor diameters), but not complete response) or stable disease (< 50 % reduction
to < 25 % increase in tumor size). Patients deceased within 5 years after diagnosis were
classified as non-survivors whereas patients surviving 5 years or more were classified as

Survivors.



Histopathological examinations

Prior to HR MAS MRS analysis, imprint cytology smears were prepared from the tissue
samples and stained with the May-Griinwald-Giemsa stain (Color-Rapid, Med-Kjemi,
Norway). Confirmation of tumor cell content was determined microscopically by a

cytopathologist.

HR MAS MRS experiments

HR MAS MRS analyses were performed on a Bruker Avance DRX600 spectrometer (Bruker
Biospin GmbH, Germany) equipped with a 'H/*>*C MAS probe with gradient. The run order of
the samples was randomized (www.random.org) and blindly analyzed during 18 days. Each
sample (15.142.8 mg) was cut to fit a 30 ul leak-proof disposable insert (Bruker Biospin
Corp, USA) and added phosphate buffered saline (PBS, 3 pul) in D,O containing trimethylsilyl
tetradeuteropropionic acid (TSP, 98.2 mM) for chemical shift referencing. Samples were spun
at 5 kHz and spectra were recorded within 31 minutes per sample at 4°C to minimize tissue

degradation. Spin-echo spectra (cpmgpr; Bruker) were recorded as previously described (14).

Data preprocessing

Twenty eight spectra were excluded from further studies due to low tumor cell content. The
resulting data set consisted of 150 spectra from 85 patients (80 pre-treatment and 70 post-
treatment spectra). Characteristics of the included patients and tumors are listed in Table 1.
The MR spectra were Fourier transformed into 128 K after 0.3 Hz exponential line
broadening. Chemical shifts were referenced to the TSP peak at 0 ppm. The spectral region
between 4.69-1.45 ppm, excluding the water peak and large lipid residuals, was chosen for
analysis. Signals from ethanol pollutions between 3.69-3.57 ppm were removed together with
lipid residual signals between 3.01-1.52 ppm. The spectra were baseline corrected using
asymmetric least squares (19) with parameters A = 1e¢7 and p = 0.0001, and the minimum
value of each spectrum was set to zero by subtracting the lowest value. The spectra were

normalized to equal total area, and peak aligned using icoshift (20).

Multivariate data analysis
Partial least squares (PLS) analysis is a regression method for analysis of collinear data with
numerous variables. The method is based on extraction of underlying structures, or latent

variables (LVs), that maximize the covariance between X (the spectra) and a response



variable Y (21). PLS discriminant analysis (PLS-DA) attempts to discriminate between
distinct classes. PLS-DA was performed in Matlab R2009a (The Mathworks, Inc., USA)
using PLS Toolbox 6.2.1 (Eigenvector Research, USA). A PLS-DA model was built on
mean-centred spectra from randomly chosen training samples (90 % of the patients) and used
to predict the status of test samples (the remaining 10 %). This procedure was repeated 20
times and the average classification results were calculated. The number of LVs to use was
chosen by cross-validation of the whole data set and used for all repetitions to avoid biased
results. The importance of each variable in the loadings of the PLS-DA was evaluated by
variable importance in the projection (VIP) scores (22). The VIP score positively reflects the
variable’s influence on the classification, and variables with a score greater than one are
generally considered important (22, 23). To evaluate the statistical significance of the
classification results, permutation testing was performed (24). In permutation testing, the class
labels are permuted to resemble random classification. It is then possible to examine if the
achieved prediction results of the original data set are significantly different than random
predictions. The data set with the permuted class label was divided into training and test sets
repeated 20 times as described for the original data set, and the average results were
calculated. The permutation procedure was repeated 1000 times, and the prediction error of
the original data set was compared to the distribution of prediction errors from the

permutation. P-values < 0.05 were considered significant.

Multilevel PLS-DA (25, 26) is an extension of ordinary PLS-DA which can be used as a
paired analysis for multivariate data. This analysis can only be used when the data has a
multilevel structure, i.e. when interventions are evaluated on the same subject. In multilevel
PLS-DA, the between subject variation is separated from the within subject variation. This is
useful in metabolic profiling as the variation between subjects, resulting from differences in
age, disease state, genetics and other factors, can obscure the metabolic changes caused by the
intervention. The between subject variation is described by the average of the two
observations from one subject, whereas the within subject variation is described by the net
difference between them. Multilevel PLS-DA was used to examine metabolic changes in the
spectra resulting from NAC treatment. The split-up of variation was done using algorithms
made available by van Velzen et al (25). Further PLS-DA classifications of the within subject
variation were performed using PLS Toolbox as described for the unpaired analyses. The net

difference of the spectra pre minus post treatment (positively representing the metabolites



higher expressed before treatment) is annotated as control, while the net difference post minus
pre treatment (positively representing the metabolites higher expressed after treatment) is

annotated as treatment. More specifically,

control=A —-B
treatment =B — A (eq. 1)

where the matrix A represents pre-treatment spectra, and matrix B represents the post-

treatment spectra.

Univariate data analysis

To further validate the important metabolites from the PLS-DA models, relative intensities
were found by integrating the peak areas of spectra normalized to equal total areas after
removal of lipid residuals (Matlab R2009a, The Mathworks, Inc., USA). Normalization of
spectra with the lipid residual signals removed will correct for differences in sample size and
tumor cell content, as it can be assumed that most of the lipid signals from breast samples do
not originate from cancer cells. Group differences were statistically tested by Wilcoxon rank
sum tests or Wilcoxon sign rank for paired analyses, and considered significant if the p-values

were < 0.05.



Results

Metabolic response to neoadjuvant chemotherapy

All classification results are summarized in Table 2. An unpaired PLS-DA of the pre- and
post-treatment spectra of the whole data set showed a significant difference in the metabolite
profiles in response to NAC treatment, indicating a metabolic response to NAC in all patients.
However, the specificity of the classification was low (57.1%). When comparing the
classification errors of PLS-DA and paired multilevel PLS-DA from 20 different test sets, the
multilevel PLS-DA with split-up of the variation decreased the -classification error
significantly (Wilcoxon rank sum test, p < 0.001), showing the beneficial effect of the paired
analysis. Treatment and control spectra could be separated with a sensitivity and specificity of
87.9%. Figure 1A shows the scores and loadings of the multilevel PLS-DA. Lactate and PC
were of high importance for the discrimination according to the VIP scores in the loadings.
The levels of lactate and glycine appear to be increased in response to treatment, while the
levels of PC are markedly decreased for some patients. In addition, GPC levels were
decreased in response to treatment. No clustering according to the given chemotherapeutic
agents could be seen in the multilevel PLS-DA score plot (results not shown), thus the

metabolic treatment effects of epirubicin and paclitaxel appear to be indistinguishable.

No differences in metabolic response between clinical response groups

The patients were divided into two groups according to their clinical response (partial
response or stable disease), and multilevel PLS-DA was performed on each group separately
in order to discover potential differences in metabolic treatment response between the groups.
Both for patients with partial response and stable disease there was a significant change in the
tumor metabolism in response to NAC treatment, and treatment spectra could be
discriminated from controls with high sensitivity and specificity (> 80.0%). The metabolic
response to NAC as observed in the loading plots was similar for both subgroups, resembling
the changes observed for the whole data set (results not shown). Thus, no difference in the
metabolic response could be detected between patients with stable disease and partial

response.
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Different metabolic responses correlate with survival

Accordingly the patients were divided into two groups according to their survival status (5-
year survivors or non-survivors). Both for survivors and non-survivors there was a clear
change in the tumor metabolism in response to NAC treatment (Figure 1B and C), and
treatment spectra could be discriminated from controls with high sensitivity and specificity (>
82.5%). However, the metabolic treatment response appears to differ between survivors and

non-survivors.

The loadings showed unchanged lactate levels in response to treatment in survivors, while
lactate increased in non-survivors with high importance for the discrimination according to
the VIP scores. This was confirmed by comparison of the relative intensities from metabolite
integrals, showing a significant increase in lactate levels in response to treatment in non-

survivors (p = 0.004) but not in survivors (Table 3).

Glycine appears to be decreased in survivors according to the loadings, and the difference in
relative intensities before and after treatment was significant (p = 0.047). For non-survivors,
the glycine level appears to be high in some samples from both the control and the treatment
group; hence the role of glycine in the loading plot is more difficult to interpret. The glycine
change from integrated relative intensities was not significant in non-survivors, with a mean

value close to zero.

GPC levels were decreased in the loading plot of survivors with VIP scores showing high
importance, while changes in GPC levels in non-survivors were less important for the
discrimination. Accordingly, the relative intensities of GPC were significantly lower in

response to treatment in survivors (p < 0.001) but not in non-survivors.
The loadings show decreased levels of PC in response to treatment in both survivors and non-
survivors. However, the change in PC relative intensities was only significant for survivors (p

<0.001), but not for non-survivors, possibly due to a high standard error.

Relative intensities of Cho levels were significantly decreased in survivors (p = 0.013) in

response to treatment, but only a trend of decreased Cho levels was seen in non-survivors (p =

11



0.084). In addition, glucose was significantly increased in survivors (p = 0.002). Cho and

glucose were not protruding in the loadings, possibly due to low intensity values.

As an overall measure of the partly overlapping choline-containing metabolite peaks (GPC,
PC, and Cho), the changes in relative intensities of tCho were calculated. Survivors had a
significant decrease in tCho levels in response to treatment (p < 0.001), while a trend of

decreased tCho levels were detected in non-survivors (p = 0.091).

Metabolic traits at pre- and post-treatment

A PLS-DA of the post-treatment spectra showed a significant difference in the metabolite
profiles of 5-year survivors and non-survivors after treatment with 70.1% correct
classification (Table 2). According to the scores and loadings shown in Figure 2, the tumors
of non-survivors appear to have more of the metabolites lactate and glycine, and less GPC and
taurine than survivors post-treatment. PC appears to be present in high levels in some samples
of both survivors and non-survivors. The glycine level was denoted to be of major importance
according to the VIP scores, and the relative intensities of glycine were significantly higher in
non-survivors compared to survivors post-treatment (p = 0.033, Table 4). Similarly, a trend of
higher relative intensities of lactate was observed in non-survivors (p = 0.089). No significant
differences in the relative intensities of taurine and GPC were observed, however differences
in the levels of tCho approached significance (p = 0.075) with non-survivors having higher

relative intensities than survivors post-treatment.

The metabolic differences between survivor and non-survivors were not seen pre-treatment as
the multivariate model could not discriminate the two outcome groups (model not valid).
None of the metabolites showed significant differences in relative intensities between

survivors and non-survivors pre-treatment (Table 4).

No significant differences in the metabolite profiles at pre- or post-treatment were detected
between patients with partial responders and stable disease by PLS-DA. Post-treatment
spectra from patients treated with Epirubicin and Paclitaxel could not be discriminated by
PLS-DA, further confirming the similarity of the metabolic response of the two

chemotherapeutic agents that were used in this study.
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Discussion

In this study we examined the metabolic effect of NAC treatment in patients with locally
advanced breast cancer. By comparing MR spectra of biopsies taken pre- and post-treatment,
significant metabolic changes in response to treatment were found both by paired and
unpaired multivariate models. The results using paired multilevel PLS-DA were however
superior to those of unpaired PLS-DA, thus taking advantage of the multilevel structure in the

data set was clearly beneficial.

Epirubicin and Paclitaxel appear to affect the metabolism of the tumor cells in the same
manners, as evidenced both by indistinguishable metabolic responses and similar metabolic
traits of the post-treatment spectra. Anthracyclines work by interfering with the synthesis and
function of DNA, while taxanes stabilize the microtubules; thereby inhibiting cell division
(27, 28). However, both treatments will eventually result in cell death. This might explain

why the two agents appear to have similar metabolic responses.

Interestingly all patient in our study cohort showed clear changes in the metabolite profiles in
response to treatment, including also patients categorized to have a clinically stable disease.
No differences in the metabolic responses of the clinical response groups were detected.
However, when examining the metabolic changes in survivors and non-survivors
independently, a difference in the metabolic response to NAC was seen. Non-survivors had a
significant increase in lactate levels in response to treatment, while survivors showed no
change in lactate levels. As a result, a trend of higher levels of lactate was detected in non-
survivors compared to survivors post-treatment. Increased lactate levels may be a marker for
tumor aggressiveness as high levels of lactate have been correlated with low survival rates,
high incident of distant metastasis and recurrence, and increased risk of radiation resistance in
several types of cancer (29-31). Modification of cell energy metabolism is typically observed
in malignant tumors and is suggested as an emerging hallmark of cancer (32). Under
normoxic conditions, cancer cells can reprogram their energy metabolism to largely depend
on aerobe glycolysis as their primary energy pathway resulting in increased lactate
production; the so-called Warburg effect. It is not fully known why cancer cells prefer acrobe

glycolysis over complete oxidation as this would produce far more ATP. It has been
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hypothesized that lactate may enhance the invasiveness of tumor cells and the resulting low

pH may help tumor cells evading tumor-attacking immune cells (33).

In addition to aerobe glycoysis, breast cancer cells are often hypoxic due to poor blood supply
(34). It can be assumed that the large tumors of patients with locally advanced breast cancer
will be affected by hypoxia. Hypoxia can induce the transcription factor hypoxia inducible
factor-lo. (HiF-1a), which in turn upregulates multiple genes involved in the glycolytic
pathway, angiogenesis, cell proliferation, and other mechanisms (34-36). Furthermore HIF-1a
promotes transcription of lactate dehydrogenase (LDH) and lactate monocarboxylate
transporters (MCT), and thus plays an important role in the production and efflux of lactate in
cancer cells (37, 38). Inhibition of LDH by small interfering RNA (siRNA) in mouse breast
tumors has been shown to reduce the glycolytic activity associated with a decrease in tumor
proliferation and tumorigenic potential (39). Thus we can suggest that the increased levels of
lactate after NAC treatment observed in non-survivors may reflect enhancement of aerobe
glycolytic activity and/or hypoxic tumor responses that confer higher tumor malignancy and
poor prognosis. In coherence, the glucose levels were increased in response to treatment in
survivors but not in non-survivors. Increased glucose may be indicative of decreased aerobe

glycolysis and tumor hypoxic response favorable of long term breast cancer survival.

Survivors had a significant decrease in glycine as a response to treatment, while it remained
unchanged in non-survivors. This was reflected in the post-treatment spectra, showing
significantly lower levels of glycine in survivors. In a previous study, we also found
decreased glycine levels after NAC to be associated with long term breast cancer survival
(15). The biological role of glycine in tumor malignancy is still unclear. Several studies have
elucidated the biomarker potential of glycine in human brain tumors, where it was found to
positively correlate with tumor grade (40, 41). Higher levels of glycine have also been
detected in pre-clinical studies of the more aggressive basal-like breast cancer model
compared to the luminal-like model (42). In patients, high glycine levels detected in
malignant breast tumors have been correlated with poor prognosis (43). Glycine is mainly
synthesized from 3-phosphoglycerate, an intermediate of the glycolysis. In addition, glycine
can be synthesized from Cho through the glycine-betaine pathway. We can postulate that the
decreased glycine levels after NAC treatment detected in survivors are caused by altered

glycolysis and/or reduced Cho levels associated with reduced tumor aggressiveness.
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A significant decrease of GPC, PC, Cho levels and the combined tCho level was detected in
survivors in response to treatment, whereas non-survivors experienced only a trend of
decrease in Cho and tCho levels. As a result, lower tCho levels in survivors compared to non-
survivors post-treatment approached significance. In a previous publication, we showed that
GPC and Cho concentrations significantly decreased in patients with long-term survival (> 5
years), while non-survivors (< 5 years) had no significant changes in choline phospholipid
metabolites in response to NAC (15). Choline phospholipid metabolites are important
biological compounds in cell membrane synthesis and turnover. In addition, tCho levels have
been associated with increased malignancy and activation of oncogenic signaling in breast
cancer cells (44, 45). Higher tCho concentrations have been detected in high-grade breast
tumors and tumors with higher pharmacokinetic parameters measured with dynamic contrast
enhanced MR imaging, indicating a correlation between choline phospholipid metabolism and
tumor malignancy and angiogenesis (46, 47). As previously mentioned, cancer cells may
undergo adaptive responses to hypoxia by inducing HiF-1a. Increased tCho levels and choline
kinase alpha (CHKA) expressions has been detected in prostate cancer cells and xenografts
models under hypoxic compared to normoxic conditions (48). In the same study, the authors
found hypoxic tumor regions to be co-localized with regions of high tCho, which possibly
occurred through the up-regulation of CHKA by HiF-la. CHKA is known to play an
important role in malignant transformation in several types of cancer (49). Overexpression of
CHKA and elevated PC and tCho levels of breast cancer cells have been associated with
increases invasiveness and drug resistance (50). Decreased choline phospholipid metabolism
after NAC treatment may be associated with lower malignancy that potentially can be used as

a predictor of breast cancer survival.

The metabolic responses to NAC treatment appear to be similar in patients with partial
response and stable disease. None of the patients in this study had a progressive disease,
whereas patients with a complete response would not have any tumor tissue left for a post-
treatment biopsy. By definition the group with stable disease can have up to 50% reduction in
tumor volume, and indeed only two patients in this study had an equal or increased tumor size
after NAC. In that respect, almost all patients had a biological effect of the treatment although
the tumor reduction was small for patients with a stable disease. It is conceivable that a cohort

including also patients with progressive disease would reveal clearer differences in metabolic
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response between the clinical response groups. It is however noteworthy that all patients in
this study in general had a decrease in tCho after NAC, as tCho is suggested as an in vivo

biomarker for clinical treatment response.

In this patient cohort, the prediction of overall survival was accomplished with 70.1%
classification accuracy using post-treatment spectra, but no prognostic information could be
extracted from the pre-treatment spectra. This shows that the difference between survivors
and non-survivors post-treatment results from a metabolic response to the treatment. The
observed higher levels of lactate and glycine in non-survivors compared to survivors support
our previous studies postulating high lactate and glycine levels to be predictive of low breast

cancer survival rates (< 5 years) (15, 16).

Prediction of survival in patients receiving NAC is challenging. As NAC will downstage and
potentially completely remove the disease, standard prognostic indicators such as tumor size
and lymph node status are no longer fully applicable after NAC. Several studies have shown
that a pathological complete response after NAC is associated with better survival rates (4).
However, approximately 80% of patients will have residual tumor in the breast after treatment
(4). Our study shows that the metabolic response to treatment may be an indicator of patient

prognosis.
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Conclusion

By comparing HR MAS MR spectra from biopsies excised before and after NAC treatment,
we have revealed significant metabolic changes in breast cancer tumors as a response to
treatment. Different metabolic responses could be related to patient outcome, but did not
separate patients with partial response from those with stable disease. Non-survivors had
increased tumor levels of lactate after treatment, while survivors experienced a decrease in the
levels of glycine and choline-containing compounds. These differences in tumor response
may reflect tumor aggressiveness associated with breast cancer survival. Monitoring
metabolic responses to NAC by HR MAS MRS may provide information about tumor
biology related to prognosis, and help identify pathways for targeted therapies.
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Figure 1 Scores and loadings from multilevel PLS-DA of treatment and control spectra from
(A) the whole data set, (B) 5-year survivors, and (C) non-survivors. The variables in the
loadings are colored according to VIP scores, indicating the importance of each variable in the
discrimination. The control spectra equal the difference between pre- and post-treatment
spectra, while the treatment spectra equal the post-pre treatment difference. Lac, lactate; Gly,

glycine; B-Glc, B-glucose.
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Figure 2 PLS-DA of the MR spectra from biopsies excised post-treatment. (A) A score plot
discriminating survivors and non-survivors, (B) Representative spectra showing the metabolic
differences of the tumors of survivors and non-survivors. (C) The loadings of the PLS-DA
model with variables colored according to the VIP scores. B-Gle, B-glucose; Lac, lactate, Gly,

glycine; Cr, creatine; Ala, alanine
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Table 1 Patient and tumor characteristics

Survivors Non-survivors NA*
(n=60) (n=23) (n=2)

Mean age (£SD) years 51.1+10.6 49.3+8.3 46.4+2.6
Mean tumor dimensions mm 67.9x67.9 78.6x77.3 65.0x51.5
(mean +SD) +18.0x19.8 +22.0x24.0 +7.1x26.2
NAC treatment Epirubicin 25 8 -

Paclitaxel 23 5 2

Both' 12 10 -
Treatment Partial response 40 11 1
response Stable disease 20 12 1
AJCC 1B 21 7 1

1IA 25 11 1

1B 12 2

v 2 3 -
ER status + 41 7 2

- 19 15 -

unknown - 1
PgR status + 32 14

- 28 18 -

unknown - 1 -
Nodes + 32 14 1

- 28 9 1
Metastasis + 2 2 0

- 58 21 2

*NA, not applicable - One patient without following up and one patient dead by other causes;
AJCC, American Joint Committee on Cancer; Both', sequential treatment with Epirubicin and

Paclitaxel

Table 2 Classification results from PLS-DA and multilevel PLS-DA

Variance

Sensitivity/

Class.

Class. No. of e o Permutation
model LVs Specificity  accuracy _value
(%) (%) (%) P
Paired Control vs -~ Multilevel
data All samples Treatment (n=65p) PLS-DA 2 58.9/50.9 87.9/87.9 87.9 <0.001
. Control vs - Multilevel
Partial response Treatment (n=37p) PLS-DA 2 55.7/61.7 80.0/80.0 80.0 <0.001
. Control vs _ Multilevel
Stable disease Treatment (n=28p) PLS-DA 2 63.2/61.3 88.7/88.7 88.7 <0.001
. Control vs - Multilevel
Survivors Treatment (n=44p) PLS-DA 2 60.0/50.5 83.0/83.0 83.0 <0.001
. Control vs _ Multilevel
Non-survivors Treatment (n=19p) PLS-DA 2 70.6/63.9 82.5/82.5 82.5 0.006
Unpaired Pre- vs _
data All samples Post-treatment (n=65p) PLD-DA 2 50.3/29.2 80.7/57.1 68.9 <0.001
Pre-treatment  Lorual responsevs - (n=48) by gy 2 51.5/193  56.7/60.2 58.4 0.231
Stable disease (n=32)
Partial response vs ~ (n=41)
Post-treatment Stable discase (n=29) PLS-DA NaN - - - -
Pre-treatment Surv1v0rs‘ Vs (ni57) PLS-DA NaN - - - -
Non-survivors (n=20)
Post-treatment  SUTVivOrs v (0=47) " prspA 3 62.8/32.1 58.4/75.3 70.1 0.009
Non-survivors (n=21)
Post-treatment  LPirubicin vs (=29 prs.pA 2 4577268 4500483 46.5 0.245
Paclitaxel (n=23)

The sensitivity is for detecting a treatment/stable disease/non-survivor/Paclitaxel spectrum; Variance X/Y, amount of variance from X/Y explained
by the model; NaN, no valid model; p, pairs.

23



Table 3 Changes in relative intensities of metabolites in response to NAC

Survivors Non-survivors
Metabolite ppm Mean = SE p-value Mean = SE p-value
Lactate 4.08-4.13 28+153 0.815 97.1 +26.4 0.004™
Glycine 3.54-3.56 -19.6+8.0 0.047" 0.8+143 0.601
GPC 3.22-3.24 -59.6 + 14.6 <0.001" -11.8+157 0.469
PC 3.21-3.22 954 +243 <0.001" 674 +£442 0.227
Cho 3.20-3.21 -16.6+6.3 0.013" 178463 0.084
tCho 3.20-3.24 -167.2+36.7 <0.001" 953 +57.5 0.091
Taurine 3.40-3.43 -0.8+13.2 0.861 69+125 0.398
B-Glucose 4.61-4.64 178 +5.1 0.002"" -0.2+8.8 0.841

The values (post- minus pre-treatment) of relative intensities are integrated peak areas from spectra normalized to equal total
areas. Wilcoxon sign rank tests were used for paired statistical analyses. p <0.05,  p <0.01.

Table 4 Relative intensities of metabolites at pre- and post-treatment

Pre-treatment (mean + SE) Post-treatment (mean + SE)
Metabolites ppm Survivors Non- p-value Survivors Non- p-value
survivors survivors
Lactate 4.08-4.13 185.8+11.4 164.6 +13.8 0.534 196.2 +12.7 250.6 £26.0 0.089
Glycine 3.54-3.56 1150+64 120.8 £11.0 0.542 91.2+4.1 111.4+84 0.033"
GPC 3.22-3.24 167.3 +12.4 170.1 £23.9 0.949 1156 +6.7 153.9£24.1 0.144
PC 3.21-3.22 2479 +17.0 285.4+34.9 0.338 158.0 +16.1 205.5 +28.1 0.105
Cho 3.20-3.21 95.4+39 108.7 +8.3 0.225 79.5+3.7 85.9+6.2 0.276
tCho 3.20-3.24 4983 +£26.4 551.3+46.8 0.253 3449+223 434.6 £44.6 0.075
Taurine 3.40-3.43 242.6 £9.6 2228 +12.4 0.393 248.0 £ 8.1 2223+93 0.144
B-Glucose 4.61-4.64 484+33 49.3+6.0 1.000 63.6+43 53.5+6.6 0.172

The values of relative intensities are integrated peak areas from spectra normalized to equal total areas. Wilcoxon rank sum
tests were used for statistical analyses. p <0.05,  p <0.01.
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CRUCIATE LIGAMENT INJURIES — A CLINICAL STUDY
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EXPERIMENTAL IN VITRO STUDY
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BULLIED IN CHILDHOOD

296.Paul Jarle Mork: MUSCLE ACTIVITY IN WORK AND LEISURE AND ITS ASSOCIATION
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AND SNUS IN THE STOMACH

2007

298.Haakon R. Skogseth: INVASIVE PROPERTIES OF CANCER — A TREATMENT TARGET ?
IN VITRO STUDIES IN HUMAN PROSTATE CANCER CELL LINES

299.Janniche Hammer: GLUTAMATE METABOLISM AND CYCLING IN MESIAL
TEMPORAL LOBE EPILEPSY

300.May Britt Drugli: YOUNG CHILDREN TREATED BECAUSE OF ODD/CD: CONDUCT
PROBLEMS AND SOCIAL COMPETENCIES IN DAY-CARE AND SCHOOL SETTINGS

301.Arne Skjold: MAGNETIC RESONANCE KINETICS OF MANGANESE DIPYRIDOXYL
DIPHOSPHATE (MnDPDP) IN HUMAN MYOCARDIUM. STUDIES IN HEALTHY
VOLUNTEERS AND IN PATIENTS WITH RECENT MYOCARDIAL INFARCTION
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METABOLISM
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310.Torill Eidhammer Sjebakk: MR DETERMINED BRAIN METABOLIC PATTERN IN
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311.Vidar Beisvag: PHYSIOLOGICAL GENOMICS OF HEART FAILURE: FROM
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316.Anne-Tove Brenne: GROWTH REGULATION OF MYELOMA CELLS
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ETIOLOGY
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ASPECTS
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RESONANCE IMAGING IN NEUROSURGICAL PATIENTS
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EPIDEMIOLOGICAL STUDIES ON GROWTH, MATURATION AND HEALTH RISK
BEHAVIOURS; THE YOUNG HUNT STUDY, NORD-TRONDELAG, NORWAY
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EXPERIMENTAL STUDY ON RESTITUTION OF THE SURFACE EPITHELIUM,
INTESTINAL PERMEABILITY, AND RELEASE OF BIOMARKERS FROM THE MUCOSA

328.Runa Heimstad: POST-TERM PREGNANCY
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IMAGING
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NORWAY
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365.Cathrine Broberg Vagbe: DIRECT REPAIR OF ALKYLATION DAMAGE IN DNA AND
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366.Arnt Erik Tjenna: AEROBIC EXERCISE AND CARDIOVASCULAR RISK FACTORS IN
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LESSONS FROM RATS
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BEAMFORMING

382.Erik Sendenaa: INTELLECTUAL DISABILITIES IN THE CRIMINAL JUSTICE SYSTEM
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384.Jonas Crosby: ULTRASOUND-BASED QUANTIFICATION OF MYOCARDIAL
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SYSTEM
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NEWBORN. EPIDEMIOLOGY, CHARACTERISATION OF INVASIVE STRAINS AND
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395.Franco M. Impellizzeri: HIGH-INTENSITY TRAINING IN FOOTBALL PLAYERS.
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404.Unn-Merete Fagerli: MULTIPLE MYELOMA CELLS AND CYTOKINES FROM THE
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410.Jorgen Urnes: PATIENT EDUCATION IN GASTRO-OESOPHAGEAL REFLUX DISEASE.
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AUTOCRINE GROWTH AND SIGNALING IN MULTIPLE MYELOMA CELLS
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REPRODUCTIVE TECHNOLOGY
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421.John Munkhaugen: BLOOD PRESSURE, BODY WEIGHT, AND KIDNEY FUNCTION IN
THE NEAR-NORMAL RANGE: NORMALITY, RISK FACTOR OR MORBIDITY ?

422.Ingrid Castberg: PHARMACOKINETICS, DRUG INTERACTIONS AND ADHERENCE TO
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425. Astrid Woodhouse: MOTOR CONTROL IN WHIPLASH AND CHRONIC NON-
TRAUMATIC NECK PAIN

426.Line Rorstad Jensen: EVALUATION OF TREATMENT EFFECTS IN CANCER BY MR
IMAGING AND SPECTROSCOPY

427.Trine Moholdt: AEROBIC EXERCISE IN CORONARY HEART DISEASE
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429.Bjorn H. Grenberg: PEMETREXED IN THE TREATMENT OF ADVANCED LUNG
CANCER
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431.Torbjorn @ien: CHALLENGES IN PRIMARY PREVENTION OF ALLERGY. THE
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432.Kari Anne Indredavik Evensen: BORN TOO SOON OR TOO SMALL: MOTOR PROBLEMS
IN ADOLESCENCE

433.Lars Adde: PREDICTION OF CEREBRAL PALSY IN YOUNG INFANTS. COMPUTER
BASED ASSESSMENT OF GENERAL MOVEMENTS

434 Magnus Fasting: PRE- AND POSTNATAL RISK FACTORS FOR CHILDHOOD
ADIPOSITY

435.Vivi Talstad Monsen: MECHANISMS OF ALKYLATION DAMAGE REPAIR BY HUMAN
AlkB HOMOLOGUES

436.Toril Skandsen: MODERATE AND SEVERE TRAUMATIC BRAIN INJURY. MAGNETIC
RESONANCE IMAGING FINDINGS, COGNITION AND RISK FACTORS FOR
DISABILITY



437.Ingeborg Smidesang: ALLERGY RELATED DISORDERS AMONG 2-YEAR OLDS AND
ADOLESCENTS IN MID-NORWAY — PREVALENCE, SEVERITY AND IMPACT. THE
PACT STUDY 2005, THE YOUNG HUNT STUDY 1995-97

438.Vidar Halsteinli: MEASURING EFFICIENCY IN MENTAL HEALTH SERVICE
DELIVERY: A STUDY OF OUTPATIENT UNITS IN NORWAY

439.Karen Lehrmann Zgidius: THE PREVALENCE OF HEADACHE AND MIGRAINE IN
RELATION TO SEX HORMONE STATUS IN WOMEN. THE HUNT 2 STUDY

440.Madelene Ericsson: EXERCISE TRAINING IN GENETIC MODELS OF HEART FAILURE

441.Marianne Klokk: THE ASSOCIATION BETWEEN SELF-REPORTED ECZEMA AND
COMMON MENTAL DISORDERS IN THE GENERAL POPULATION. THE
HORDALAND HEALTH STUDY (HUSK)

442.Tomas Ottemo Stelen: IMPAIRED CALCIUM HANDLING IN ANIMAL AND HUMAN
CARDIOMYOCYTES REDUCE CONTRACTILITY AND INCREASE ARRHYTHMIA
POTENTIAL - EFFECTS OF AEROBIC EXERCISE TRAINING

443 .Bjarne Hansen: ENHANCING TREATMENT OUTCOME IN COGNITIVE BEHAVIOURAL
THERAPY FOR OBSESSIVE COMPULSIVE DISORDER: THE IMPORTANCE OF
COGNITIVE FACTORS

444 Mona Levlien: WHEN EVERY MINUTE COUNTS. FROM SYMPTOMS TO ADMISSION
FOR ACUTE MYOCARDIAL INFARCTION WITH SPECIAL EMPHASIS ON GENDER
DIFFERECES

445 Karin Margaretha Gilljam: DNA REPAIR PROTEIN COMPLEXES, FUNCTIONALITY AND
SIGNIFICANCE FOR REPAIR EFFICIENCY AND CELL SURVIVAL

446.Anne Byriel Walls: NEURONAL GLIAL INTERACTIONS IN CEREBRAL ENERGY — AND
AMINO ACID HOMEOSTASIS — IMPLICATIONS OF GLUTAMATE AND GABA

447.Cathrine Fallang Knetter: MECHANISMS OF TOLL-LIKE RECEPTOR 9 ACTIVATION

448.Marit Folsvik Svindseth: A STUDY OF HUMILIATION, NARCISSISM AND TREATMENT
OUTCOME IN PATIENTS ADMITTED TO PSYCHIATRIC EMERGENCY UNITS

449 Karin Elvenes Bakkelund: GASTRIC NEUROENDOCRINE CELLS — ROLE IN GASTRIC
NEOPLASIA IN MAN AND RODENTS

450.Kirsten Brun Kjelstrup: DORSOVENTRAL DIFFERENCES IN THE SPATIAL
REPRESENTATION AREAS OF THE RAT BRAIN

451.Roar Johansen: MR EVALUATION OF BREAST CANCER PATIENTS WITH POOR
PROGNOSIS

452.Rigmor Myran: POST TRAUMATIC NECK PAIN. EPIDEMIOLOGICAL,
NEURORADIOLOGICAL AND CLINICAL ASPECTS

453 Krisztina Kunszt Johansen: GENEALOGICAL, CLINICAL AND BIOCHEMICAL STUDIES
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454.Pal Gjerden: THE USE OF ANTICHOLINERGIC ANTIPARKINSON AGENTS IN
NORWAY. EPIDEMIOLOGY, TOXICOLOGY AND CLINICAL IMPLICATIONS

455.Else Marie Huuse: ASSESSMENT OF TUMOR MICROENVIRONMENT AND
TREATMENT EFFECTS IN HUMAN BREAST CANCER XENOGRAFTS USING MR
IMAGING AND SPECTROSCOPY

456.Khalid S. Ibrahim: INTRAOPERATIVE ULTRASOUND ASSESSMENT IN CORONARY
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ANASTOMOSES AND THE ASCENDING AORTA

457.Bjorn Oglend: ANTHROPOMETRY, BLOOD PRESSURE AND REPRODUCTIVE
DEVELOPMENT IN ADOLESCENCE OF OFFSPRING OF MOTHERS WHO HAD
PREECLAMPSIA IN PREGNANCY

458.John Olav Roaldset: RISK ASSESSMENT OF VIOLENT, SUICIDAL AND SELF-
INJURIOUS BEHAVIOUR IN ACUTE PSYCHIATRY — A BIO-PSYCHO-SOCIAL
APPROACH

459.Havard Dalen: ECHOCARDIOGRAPHIC INDICES OF CARDIAC FUNCTION — NORMAL
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