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Abstract

In the physical world, the system components or the system states are

probabilistically related to each other spatially and temporally. This kind

of relation is termed stochastic dependence or dependence, which is de-

scribed in mathematics by the probability measures of the dependent ele-

ments. We regard the dependence as a physical reality as well as a math-

ematical property and propose to control the dependence for the system

performance improvement. We build a theory of dependence control and

apply the theory to the wireless communication system. Specifically, we

prove that the wireless channel capacity is intrinsically light-tailed due

to the passive nature of the wireless channel and the power limitation,

the dependence of the stochastic process is transformable due to the ex-

istence of both uncontrollable and controllable random parameters, and

dependence in the arrival process and service process of a queueing system

are measurable and have a dual potency to influence the queueing system

performance. Particularly, we summarize the dependence measures of the

queueing system, the dual potency of the arrival and service processes,

and the dependence transformability of the stochastic process as the three

principles of the dependence control theory, i.e., the measurability, duality,

and transformability.
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Preface

This thesis is submitted in partial fulfillment of the requirement for the

degree of Doctor of Philosophy at Norwegian University of Science and

Technology. This thesis is my original work. The main contribution of

this thesis lies in building a theory of dependence control.

The stochastic dependence or dependence for short describes the prob-

abilistic interrelationships between the system states in physical systems.

The dependence is an inherent property of the physical systems and stochas-

tic processes, particularly, the dependence has a significant impact on the

system performance. For example, the dependence in the arrival pro-

cess and the service process, even with light-tailed marginal distributions,

can induce a heavy-tailed distribution of the performance measures of the

queueing system. In parallel with modeling the stochastic dependence in

the physical system, this thesis proposes to control the dependence through

the dependence manipulation techniques in order to obtain a better system

performance. In principle, the control of dependence is feasible due to the

fact that the system performance measures are usually determined by not

only the uncontrollable random parameters but also the controllable ran-

dom parameters, and a manipulation of the dependence in the stochastic

processes of the controllable random parameters has a consequent influence

on the system performance. The dependence control theory applies to the

general stochastic systems, e.g., the queueing systems, specifically, we con-

sider the case of wireless communication systems, of which the stochastic

iii
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properties are studied in particular. The contents of this thesis are expli-

cated as follows.

In Chapter 1, we provide an overview of this work. Specifically, we

introduce the thoughts of dependence control, outline the structure of the

dependence control theory, and provide the reason for choosing the mathe-

matical techniques for proving the results in the dependence control theory.

In addition, the related methodologies, like dependence modeling and de-

pendence coupling, and the related application areas, like simulation and

finance, are reviewed.

In Chapter 2, we provide a tail perspective on the wireless channel gain

and the wireless channel capacity. We show that the wireless channel gain

has finite moments in the stochastic channel models due to the passive

nature of the wireless propagation environment. Furthermore, we show

that the light-tail behavior is an intrinsic property of the wireless channel

capacity considering the power constraints in the wireless communication

system. The results provide a foundation for the mathematical analysis

with respect to the moments of the wireless channel capacity, i.e., the

moments of all orders exist.

In Chapter 3, we investigate how to control the dependence in a queue-

ing system. We consider three fundamental questions raised by dependence

control: what to measure the dependence; where to seek the dependence;

and how to transform the dependence. By answering these questions, we

formulate the underlying rules of dependence influence on the system per-

formance as the three principles of dependence control, i.e., measurability,

duality, and transformability, which verify the feasibility of dependence

control and make up the building blocks of the dependence control theory.

As a demonstration, we provide simulation and numerical results of the ap-

plication of the dependence control theory to the wireless communication

system.

In Chapter 4, we conclude this thesis and discuss the future research
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topics. Particularly, it is interesting to extend the dependence control

concept to different application scenarios, different operational systems,

and different probability structures.
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Notation

R the real number

Rą0 the positive real number

Rě0 the non-negative real number

N the natural number

C the complex number

H˚ the conjugate transpose of matrix H

I the identity matrix

P the probability measure

E the mean
rP the new probability measure after change of measure
rE the mean for the new probability measure

ErX;As ErX;As “ ErX1As, where 1A is the indicator of A

pF moment generating function

N
`

µ, σ2
˘

Gaussian random variable

CN
`

0, σ2
˘

circularly symmetric complex Gaussian random variable,

with independent real and imaginary parts N
`

0, σ2{2
˘

d
“ equal in distribution

ďF the integral stochastic order with generator F
ùñ A ùñ B means A implies B

ðù A ðù B means A is implied by B

ðñ A ðñ B means A is equivalent to B

ix



x NOTATION



Chapter 1

Introduction

In real world, the stochastic dependence corresponds to the probabilistic

interrelationship of the system states through time and space, and different

forms of dependence result in different system performances. In mathe-

matics, the stochastic dependence is a property of the dependent elements,

specified by the probability measure, and independence is a special case

with a product measure of probability. The dependence scenario, which is

probably uncertain or is intractable to get an explicit mathematical expres-

sion, raises additional analytical issues that differ from the independence

scenario. Considering the diverse characteristics and distinguishing effects

of the stochastic dependence, it is intriguing to study how to control the

dependence in a system in order to obtain an improved performance.

In this chapter, we introduce the stochastic dependence concept and

sketch the dependence control theory. Specifically, we treat the depen-

dence as a physical reality, we show how the idea of dependence control

arises from the mathematical description of the dependence phenomena,

we explain why the dependence is a tradable resource, and we elaborate on

the three principles of dependence control. In addition, the mathematical

methods to build the dependence control theory are discussed.

1



2 CHAPTER 1. INTRODUCTION

1.1 Dependence in Perspective

The dependence exists universally in physics, finance, and engineering. For

example, the particles moving in a fluid is described by the Brownian mo-

tion [74][126], the stock and bond are correlated in finance [13][113], and

the Ethernet traffic is self-similar exhibiting long-range dependence [84].

Particularly, we elaborate on the dependence in the wireless communica-

tion system.

Wireless communication has been around for over a hundred years,

starting with Marconi’s successful demonstration of wireless telegraphy in

1896 and transmission of the first wireless signals across the Atlantic in

1901 [101]. Since 1G in around 1980s [101], the cellular system carries

on upgrading every decade, and the 5G in 2020s is supposed to advance

mobile from largely a set of technologies connecting people-to-people and

people-to-information to a unified connectivity fabric connecting people

to everything, which endows 5G with the potential for thrusting mobile

technology into the exclusive realm of general purpose technology [19], like

electricity and automobile.

It has become a trend that a new generation of wireless systems is de-

ployed every new decade and the theme of each generation is to increase

the capacity and spectral efficiency of wireless channels. The trend is

driven by the explosion of wireless traffic that is a rough reflection of peo-

ple’s demand on wireless communication, and the paradox of supply and

demand [59] is kept relieving generation by generation through exploiting

the physical resources, i.e., power, diversity, and degree of freedom [138].

Considering the trillions of devices to be connected to the wireless network,

the high capacity demand, and the stringent latency requirement in the

coming 5G and beyond [4], it is imperative to rethink the wireless channel

resources. In the affirmative, we propose that the stochastic dependence

is a new resource to exploit.
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1.1.1 Dependence Here and There

We remark that the wireless communication system encompasses a series of

physical parameters, deterministic or random, and the dependence in the

wireless system is rooted in the dependence of these random parameters,

both the spatial dependence and the temporal dependence. We show the

dependence phenomena in the wireless channel fading and channel coding.

The wireless signals are electromagnetic radiations and the signal prop-

agation environment is a passive medium with dissipation that is the loss

of field energy due to absorption, and dispersion that is the variation of

the refractive index in the medium [76][108][67]. The dissipation causes the

energy loss of the signals on the path from the transmitter to the receiver

[108]. This effect is termed the large-scale fading [118]. The dispersion

causes the reflection, diffraction, and scattering of the transmitted signals

[108], which result in the multipath interference and the Doppler shift,

due to the mobility of the scatters or terminals, of the received signals.

This effect is termed the small-scale fading [118]. As a characterization

of the propagation channel, the channel gain is defined by the ratio of of

the receiver-to-transmitter power, of which the reciprocal is defined as the

channel loss. As a result of the energy conservation law, the channel gain

is less than one or the channel loss is greater than one.

In a wireless propagation channel, the gain of received signal is corre-

lated with the angle of arrival of the signal, because of the interference of

the multiple signals that are dispersed through the air from the transmit-

ter to the receiver. This effect is termed the spatial correlation, which is

characterized by the channel gain matrix with dependent elements. The

spatial correlation depends on both the scatter characteristics and the an-

tenna parameters [128], particularly, the spatial correlation increases as

the antenna distance decreases. The influences of the spatial dependence

at the transmitter side are connected with the channel knowledge [72],

i.e., the ergodic capacity decreases with the correlation between the trans-
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mitter antennas in the case of full or no channel side information, which

also holds for the antenna correlation at the receiver side [27], and the

ergodic capacity increase with the transmitter antenna correlation in case

the covariance matrix is known. In addition, the similar impact of channel

knowledge and spatial correlation on the symbol error rate is shown in [16].

On the other hand, the fading elements also bears temporal depen-

dence, due to the temporal correlation of the signal strength or the prop-

agation environment. The temporal dependence influences the variance of

the partial sum of wireless channel capacity through time, i.e., a stronger

dependence implies a greater variance, which further influences the channel

performance, e.g., the latency and buffer size. In the wireless literature,

the typical characterization of the temporal dependence is the autocorre-

lation function [109][95]. However, the autocorrelation concerns just the

first-order and second order moments of the stochastic process [93], and the

uncorrelation can not imply the stochastic independence. The temporal

dependence is further studied in this work.

In addition, the multipath effect causes the intersymbol interference

[103], due to the nonlinear frequency response of the wireless channel,

e.g., the time delay spread or the limited bandwidth. The intersymbol

interference further causes memory in the channel, i.e., an output symbol

depends on multiple input symbols. In information theory, the coding

techniques introduces the stochastic dependence between the input letters

and the dependence is generally necessary to achieve reliable transmission

[50].

1.1.2 Dependence in Mathematics

We focus on the measure theoretic probability theory [78] and we model

the events and random variables through the probability space pΩ,F ,Pq.
We classify the stochastic dependence into three types, i.e., independence,

positive dependence, and negative dependence. Other types of classifica-
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tion are shown in [71], e.g., weak dependence and strong dependence.

The random vector X “ pX1, . . . , XN q has an independence structure,

if the probability measure satisfies

PpX ď xq “
N
ź

i“1

P pXi ď xiq . (1.1)

A proper way to define the positive dependence and negative dependence

is to compare the probability measures through stochastic orders [122].

Specifically, for random vectors with the same marginals, XK, X`, and

X´, with the random vector XK has an independence structure, if

PXK ďF PX` , (1.2)

we sayX` has a positive dependence structure with respect to the stochas-

tic order ďF , while if

PX´ ďF PXK , (1.3)

we sayX´ has a negative dependence structure with respect to the stochas-

tic order ďF . In view of the strength of dependence [36], we have the weak

(or strong) positive (or negative) dependence. Explicit definitions of posi-

tive or negative dependence concepts are elaborated in [98][26][63][81][123].

Intuitively, the independence implies that the occurrence of one random

variable doe not influence the occurrences of other random variables, the

positive dependence implies that large or small values of random variables

tend to occur together, and the negative dependence implies that large

values of one variable tend to occur together with small values of others

[36].

The negative dependence and the positive dependence are reversely

symmetric for the two dimension random vector, but in general, the nega-

tive dependence is not a mirror reflection of the positive dependence [14].

Particularly, while the comonotonicity is agreed upon as the extreme pos-
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itive dependence for random vectors of arbitrary dimensions, there are di-

verse notions of extreme negative dependence for random vectors of more

than two dimensions [114].

On the other hand, the independence is of significant importance to

the probability theory, e.g., the focus of the probabilists of the first half

of the twentieth century was mostly on the study of the sums of indepen-

dent random variables, the corresponding limit distributions, aside from

the foundations of probability [92]. In classical (commutative) probability,

there is only one definition of independence, in non-commutative probabil-

ity, there are many concepts of independence and there can be more with a

relaxed regulation on the axioms for being independence [99][49]. A unifi-

cation of the different independence is proposed in the filtered probability

[85].

1.1.3 Dependence as Physical Resource

We consider the physical world as the physical realm, e.g., the wireless

communication channel, and the mathematical model as the mathemati-

cal realm, e.g., the probabilistic definition of dependence. We regard the

stochastic dependence as a physical reality as well as a mathematical reg-

ulation. In parallel with taking advantage of the dependence information

in the mathematical analysis, we propose to control the dependence in the

physical system to improve the system performance. The dependence con-

trol in the physical realm is based on the corresponding analytical results in

the mathematical realm. The correspondences between the mathematical

realm and the physical realm are elaborated as follows.

• The differentiation of the physical and mathematical realms indicates

that we can utilize the dependence as a physical resource as well as a mathe-

matical property. The existence of both the uncontrollable and controllable

random parameters in a physical system indicates that it is feasible to con-
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trol the dependence in the system by manipulating the dependence in the

controllable random parameters, because the system dependence is influ-

enced by both the uncontrollable and controllable random parameters and

is transformable from one form to another by inducing a different form

of dependence through the controllable random parameters, e.g., trans-

forming from positive dependence to negative dependence by inducing the

negative dependence.

• The mathematics provides a way to describe the dependence phenomena

and suggests approaches to utilize the dependence resource. Specifically,

the stochastic order provides an approach to compare the dependence in-

fluences, on the other hand, the mathematical property of the stochastic

orders with respect to different dependence forms explains the advantage

of one form of dependence over another for system performance improve-

ment in practice. For example, the mathematical property of the increasing

convex order of the partial sum of negatively dependent random variables

indicates that taking the advantage of negative dependence attains a bet-

ter performance and preserves other resources in the physical world. In

addition, the strength of dependence manipulation in the physical sys-

tem corresponds to the reflexivity, transitivity, and antisymmetry of the

stochastic orders in mathematics.

• The mathematics is a description of the physical world in a sense to

show that the physical world behaves like the mathematical description,

on the other hand, it is interesting to treat the mathematical description

as a reality as well and engineer the physical world to behave in the way of

the mathematical description. For example, the topology is a mathemati-

cal theory about space, while it is becoming exciting to build the physical

systems that possess the topological properties, like using the quasiparti-

cles in the topological materials to encode the quantum bits [20]. Thus,

there are two types of reality, the natural reality and the artificial reality
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(or the fundamental reality and the emergent reality), which coexist on

earth, like the lake and dam, and in return bolster the degree of freedom

of engineering.

1.2 Essence of Dependence Control

We briefly introduce the theory of dependence control that is concerned

with transforming the dependence structures of the stochastic processes

in the system through dependence manipulation in order to improve the

system performance, e.g., the backlog and delay of a queueing system. We

provide a set of results with respect to the theory and application of de-

pendence control. These are the light-tail behavior of the wireless channel

capacity, which provides the basis for applying dependence control to the

wireless communication system, the tradability of dependence, which is

about the utility of dependence resource in the stochastic process, and the

three principles of dependence control, which are about the dependence

mechanics and dependence manipulation in the queueing system.

1.2.1 The Light-Tail Property

Consider the multiple-input-multiple-output channel model that is ex-

pressed as [138]

yptq “Hptqxptq `wptq, t P N, (1.4)

where xptq P CNT , yptq P CNR , NT P N, NR P N, wptq „ CN p0, N0INRq,

and Hptq P CNRˆNT is the channel gain matrix. For simplification, we

omit the time index. The instantaneous channel capacity c P R is defined

by the mutual information, which is a function f : R ˆ CNRˆNR Ñ R of

the product of the transmission power p and the channel matrix HH˚,

i.e.,

f : pHH˚ ÞÑ c, (1.5)
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where we treat the instantaneous power as a random variable. Specifically,

if the tail distribution function satisfies [7] FXpxq “ O
`

e´θx
˘

, Dθ ą 0,

where fpxq “ Opgpxqq ðñ lim sup
xÑ8

fpxq
gpxq ă 8, equivalently, E

“

eθX
‰

ă

8, Dθ ą 0, then the distribution is light-tailed; otherwise, it is heavy-

tailed. The heavy-tailed distribution indicates that extreme values occur

with a relatively high probability [45]. Particularly, if the tail is super-

heavy, it has no finite moments [57], e.g., the distributions with slowly

varying tails. The class of slowly varying functions includes constants,

logarithms, iterated logarithms, powers of logarithms [33].

We obtain that the sufficient condition for the light-tail wireless channel

capacity is the existence of the mean value of the power law of the product

of the random power and the maximum eigenvalue of the channel matrix,

i.e.,

F cpxq “ O
´

e´θx
¯

, Dθ ą 0 ðù E
”

ppλmaxq
θ
ı

ă 8, Dθ ą 0, (1.6)

where λmax is the maximum eigenvalue of HH˚ and the right hand side

is equivalent to E
”

ppTr rHH˚sq
θ
ı

ă 8, Dθ ą 0, where Tr denotes the

trace of a square matrix, in terms of the tail behavior, they are equiva-

lently expressed as F pλmaxpxq “ O
`

x´θ
˘

, Dθ ą 0, and F pTr rHH˚spxq “

O
`

x´θ
˘

, Dθ ą 0. Specifically, p “ 1 corresponds to the deterministic

power scenario. In addition, for the broadband channel scenario, the

channel matrix is the diagonal matrix of each sub-channel matrices, i.e.,

H “ diagtH1, . . . ,HNu.

We observe that, for the typical stochastic channel models and the

power supply systems in practice, the distribution of the capacity, which

is a logarithm function of the product of the fading effects and random

power, is light-tailed, because the logarithm function transforms a less

than super-heavy-tailed distribution to a light-tailed distribution. The

detailed explanations are as follows.
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• The restriction that the passive channel gain is less than one excludes

the existence of fading models with super-heavy tails. It is interesting to

note that the typical large-scale fading distribution is heavy-tailed, e.g.,

the Lognormal distribution, while the typical small-scale fading distribu-

tion is light-tailed, e.g., the Rayleigh, Rice, and Nakagami distributions.

Specifically, if a random variable is lognormal, then its reciprocal is also

lognormal. The tail property indicates that the large-scale fading effects,

like path loss and shadowing, are more likely to cause large values of both

channel loss and gain, which may be due to the large shadow dynam-

ics in the propagation environment; while the small-scale fading effects,

like the multipath interference and Doopler shift, are less likely to cause

large values of channel gain or the random values are more likely to be

concentrated around the mean. Since both light-tailed and heavy-tailed

distributions with finite mean are used to model the channel gain, the

parametric distributions that can model both heavy-tailed and light-tailed

distributions are of interest, e.g., the Weibull distribution [124][111]. These

theoretical insights on the stochastic models match the empirical results

[67]. In addition, since the random variables in the stochastic models,

whether the light-tailed distribution or the heavy-tailed distribution, are

unbounded, the stochastic models of the wireless channels are strictly not

passive systems [76][89], because of the violation of the energy conservation

law.

• Though the wireless system can be energy unlimited [90], the transmis-

sion power is unlikely to have an infinite mean, thus, the tail of the power

distribution is lighter than the super-heavy distribution. When there are

active relays in the wireless channels, the whole channel gain is the product

of each individual channel gain. However, the tail of the product distri-

bution can be asymptotically bounded above and below by the tail of a

dominating random variable of the product for both independence and de-

pendence scenarios [145][22][69][144]. In addition, the gain saturation also
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exclude the possibility of unlimited gain in active medium [102]. Thus, the

whole channel gain is more likely to have a tail behavior lighter than the

super-heavy tail. On the other hand, when the power in the capacity for-

mula is set to be deterministic, e.g., the mean value of power, normalization

is usually considered for the channel matrix. Specifically, if the channel

description is based on the average transmitter power PT [110], then, the

channel matrix H is non-normalized; and if the description uses the aver-

age receiver power PR, then the channel matrix H is normalized [47][135].

Mathematically, the relationship is expressed as [47] P
1{2
T ¨H “ P

1{2
R ¨H.

For example, the normalized channel gain of the Rayleigh fading channel

is [47][138] H ij „ CN p0, 1q and E
”

H ijH
˚

ij

ı

“ 1. The normalization indi-

cates that the mean values of the matrix identities exist, which excludes

the existence of the fading models with super-heavy tails.

1.2.2 The Dependence Market

We regard the stochastic process as a functional of random parameter pro-

cesses, which are either uncontrollable or controllable, i.e., the stochastic

process as a function of a set of random parameters, each of which is it-

self a stochastic process. We specify that the cardinality of the parameter

set
`

X1
t , X

2
t , . . . , X

n
t

˘

is time-invariant and the function ft : Rn Ñ R is

time-variant, i.e.,

Xt “ ft
`

X1
t , X

2
t , . . . , X

n
t

˘

. (1.7)

In other words, we treat the stochastic process as a functional of a multi-

variate stochastic process and the functional maps the multivariate stochas-

tic process to a univariate stochastic process. This functional specification

is extensible to the general stochastic process on the Polish space. For

example, in the wireless channel capacity, the uncontrollable parameters

represent the property of the environment that can not be interfered, e.g.,

fading, and the controllable parameters represent the configurable property
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of the wireless system, e.g., power. In addition, this functional perspec-

tive is useful for studying the dependence impact of an individual arrival

process on the aggregation of a set of multiplexed arrival processes.

We study how to transform the dependence in the functional pro-

cess tXtu, by manipulating the dependence in parameter processes
 

Xi
t

(

,

1 ď i ď n. There are two ways to implement this dependence transform,

i.e., one by transforming the dependence structure from the positive de-

pendence to the negative dependence, and the other by transforming the

marginal distributions. We highlight the following results, which provide

insights for manipulating the dependence.

• The dependence is a resource that can be traded off, i.e., when the de-

pendence is utilized, another form of resource can be saved, e.g., more

amounts of negative dependence can exchange for less amounts of mean

values. The chain relation, X ďsm ĂX ùñ
řt
j“1Xj ďcx

řt
j“1

rXj ùñ

E
řt
j“1Xj “ E

řt
j“1

rXj , means the supermodular order of the dependence

structures implies the convex order of the variability of the partial sum with

equal mean. To take into account both the mean and the variability, we

use the increasing convex order for further elaboration. Specifically, the

mean and the variability are exchangeable for each other, i.e., if the vari-

ability is relatively small, then a relatively greater mean can be tolerated

while satisfying the increasing convex order, vice versa. The mathematical

expressions are as follows, if X ďicx Y and EX ď EZ 1 ď EY , then it is

possible that Z 1 ďicx Y , because we have X ďicx Y ðñ X ďst Z ďcx Y

[127]; and if X ďicx Y , then X ďcx Z
1 ďst Y such that Z 1 ďicx Y , because

we have X ďicx Y ðñ X ďcx Z ďst Y [127]. Complementary results

hold in the sense of the increasing concave order [127].

• The manipulation of the marginal distributions has a dependence bias,

while the manipulation of the dependence structure fixing the marginals

has no such dependence bias. Specifically, the dependence bias means that,

if a parameter process bears negative dependence, then the manipulation
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of each individual marginals with respect to the (increasing) convex order

can not lead effectively to the (increasing) convex order of the partial sums,

i.e., the (increasing) convex order of the marginals implies the (increasing)

convex order of the partial sum holds for positive dependence and not for

negative dependence [98]. The dependence bias of the marginals provides

an opportunity for dependence control. Specifically, the dependence bias

means that the increasing convex order of the partial sum is insensitive to

the marginal manipulation of the parameter process with negative depen-

dence, i.e., the increasing convex order still holds for a partial sum with

smaller mean values of the marginals. For example, a better queueing sys-

tem performance, in terms of backlog and delay, can be achieved in the

scenario of negative dependence in the processes, even with a smaller mean

value of the service process or a greater mean value of the arrival process.

1.2.3 The Three Principles

We consider a queueing system in the discrete-time setting, with the arrival

process aptq and the service process cptq, the instantaneous backlog in the

system Bptq is expressed as [21]

Bpt` 1q “ rBptq `Xptqs` , (1.8)

where r¨s` “ maxp¨, 0q and Xptq “ aptq´ cptq denotes the difference of the

instantaneous arrival amount and the service amount. For a lossless sys-

tem, the cumulative output A˚ptq “ Aptq ´Bptq is the difference between

the cumulative input Aptq “
řt
s“0 apsq and backlog Bptq, and the delay is

defined via the input-output relationship [29],

Dptq “ inf td ě 0 : Apt´ dq ď A˚ptqu , (1.9)

which is the virtual delay that a hypothetical arrival has experienced on

departure.



14 CHAPTER 1. INTRODUCTION

We formulate three principles of dependence control, namely measura-

bility, duality, and transformability. Synthetically, the measurability talks

about the performance measures for a queueing system, the duality talks

about the impact consistency of the dependence of the arrival and service

processes on the system performance, and the transformability talks about

the dependence property of a stochastic process, e.g., the arrival process

or the service process. The three principles are expounded as follows.

1. Measurability. The asymptotic decay rate of the tail of delay or

backlog is able to identify and quantify the dependence influence in the

stochastic processes of the queueing system.

Letting Z denote the backlog or delay, we prove that the decay rates of

their tail distributions converge exactly to two respective constant values,

i.e.,

lim
zÑ8

1

z
logPpZ ą zq “ ´γ˚, (1.10)

where γ˚ ą 0, for light-tailed arrival and service processes with weak forms

of dependence. We define the logarithmic asymptotic decay rates of the

tails of backlog and delay as the measure identities and show that the

measure identities, conditional on their existence, have a monotonic rela-

tionship with the dependence of the stochastic processes in the queueing

system. With a manipulation, the asymptotic expression is equivalently

written as lim
zÑ8

log PpZązq
log e´zγ˚

“ 1, which shows that the measure identities are

the logarithmic asymptotics and capture only the dominant term in an

asymptotic expression [7].

2. Duality. The arrival process and the service process have a dual po-

tency of transforming the dependence in the queue increment process, which

further influences the system performance.

Letting X “ pXt : t P Nq (also ĂX “ p rXt : t P N)) be the arrival process

or the service process, and fixing one of the two processes and changing
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the other, the duality result is expressed as

X ďsm ĂX ùñ Sptq ďcx rSptq
@t
ùñ γ˚ ě rγ˚, (1.11)

where ďsm and ďcx denote respectively the multivariate supermodular

order and univariate convex order [127], A
C
ùñ B denotes A implies

B conditional on C, and Sptq “ Aptq ´ Sptq, rSptq “ Aptq ´ rSptq or
rSptq “ rAptq ´ Sptq. The dual potency of arrival and service dependence

indicates that if the dependence manipulation in the arrival process is not

available, we can transfer to the dependence manipulation in the service

process, vice versa. The supermodular order entails that the marginals

on both sides of the inequality are identical, thus the influences are solely

due to the dependence structure. Considering the influences of both de-

pendence structure and marginals, a sufficient condition for the ordering

of the measure identities for the arrival process is the increasing convex

ordering
řt
j“1Xj ďicx

řt
j“1

rXj and a sufficient condition for the service

process is the increasing concave ordering
řt
j“1Xj ěicv

řt
j“1

rXj . This

is coherent with the intuition that a smaller and less variable arrival pro-

cess or a greater and less variable service process leads to a better system

performance in terms of the backlog and delay.

3. Transformability. The manipulation of the free dimensions of a

stochastic process is able to transform the dependence of the process.

For a stochastic process as a functional of uncontrollable or controllable

random parameters, i.e., Xt “ ft
`

X1
t , X

2
t , . . . , X

n
t

˘

, we specify that the

dimension of the parameter set
`

X1
t , X

2
t , . . . , X

n
t

˘

is time-invariant and the

function ft : Rn Ñ R is time-variant and is increasing or decreasing at Xi
t

for all the time. We prove that the dependence in such a stochastic process

is transformable from strong dependence to weak dependence in the sense

of supermodular order, e.g., from positive dependence to independence or

negative dependence, by manipulating the dependence in the controllable
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parameters, i.e.,

pXi
1, X

i
2, . . . , X

i
tq ďsm p

rXi
1,

rXi
2, . . . ,

rXi
tq, D1 ď i ď n

ùñ pX1, X2, . . . , Xtq ďsm p rX1, rX2, . . . , rXtq, (1.12)

where rXj “ fjpX
1
j , . . . , X

i´1
j , rXi

j , X
i`1
j , . . . , Xn

j q, @1 ď j ď t. Considering

the influences of both dependence structure and marginals, we prove the

transformability with respect to the (increasing) directional convex order.

Specifically, we show that the random parameters in the wireless channel

capacity, the sub-channels of a compound wireless channel, and the random

multiplexing mechanism of an aggregated arrival process, provide a chance

to perform dependence manipulation in practice.

1.3 A Note on Methodologies

The construction of the dependence control theory is based on a series of

mathematical techniques. We discuss the choice of the techniques and the

related work of similar ideas.

1.3.1 The Methodology

Analytically, to build the dependence control theory, we adopt a few math-

ematical tools, which are necessary to describe different aspects of the de-

pendence mechanics and dependence manipulation. Specifically, large de-

viation is used to find the measure identities, change of measure is used to

explain the dual potency of arrival and service dependence, and stochas-

tic order is used to prove the dependence transformability. In addition,

the random matrix theory is used to study the tail property of the wire-

less channel capacity. The structure of the mathematical analysis and the

reason for choosing the mathematical techniques are explicated as follows.

• We prove the measurability and duality principles integratively, due to
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the close relationship between the performance measures and the order-

ing of the measure identities. The measure identities are the logarithmic

asymptotic decay rates of the performance measure distributions and are

supposed to give an exact reflection of the strength of the stochastic de-

pendence in the arrival process and the service process. Specifically, the

change of measure is used to derive an upper bound and a lower bound

of the identities through calculating the probability in a new probability

space. The bounds are then proved to be asymptotically equal. The ap-

proach to derive the upper and lower bounds eases the difficulty of finding

the exact value directly.

• We prove the dependence transformability by using the stochastic or-

ders to compare the dependence between the original stochastic process

and the stochastic process after dependence manipulation, instead of di-

rectly studying the impact of dependence manipulation on the measure

identities. This approach allows to separate the transformability principle

from the other two principles, with analytical flexibility and independent

significance. For instance, it indicates that the transformability applies to

the general stochastic processes beyond the arrival and service processes,

and different stochastic orders indicate different dependence manipulation

techniques.

• We build the connections between the tail of wireless channel capacity

and the fading and power distributions, by utilizing the tail distributions to

characterize the wireless channel property. Specifically, the random matrix

is used to represent the multiple-input-multiple-output channel, of which

the random scalar is a special case to represent the single-input-single-out

channel, and the light-tail property of wireless channel capacity is shown

to be determined by the maximum eigenvalue and the trace of the random

matrix. This reaffirms the universality of the eigenvalue of the random

matrix in the case of wireless channels. To further support the results, the
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asymptotic tail behaviors of the sum and product of the random variables

are investigated, particularly, the regular variation, slow variation, and

exponential variation of the tail distributions are studied.

As an application of the dependence control theory and as a justifi-

cation to the assumptions in this work, we apply the theory to Markov

additive process, which is capable of characterizing a large class of arrival

processes, is versatile in capturing the dependence in the service processes,

and is able to reflect the non-stationarity in the mobile wireless channels,

and focus on the dependence manipulation of the wireless channel capacity.

Particularly, martingale is used to derive the non-asymptotic tail bounds

of the performance measures, and copula is used to represent the Markov

property and the no-Granger causality, and is revived as a dependence

manipulation technique. The application results are described as follows.

• For the performance measures of the queueing system, we derive the non-

asymptotic and time-dependent tail probabilities of delay and backlog for

Markov additive arrival process and Markov additive service process. The

decay rates of the non-asymptotic results sufficiently imply the logarithmic

asymptotic decay rates, on the other hand, the non-asymptotic results

provide an overview of the tail behavior of performance measures in both

the finite time regime and the infinite time regime. The analysis extends

the single Markov additive process model in [7] to the double Markov

additive process model.

• For the random parameters in the wireless channel, we treat the wire-

less fading as the uncontrollable random parameter, which is the inherent

property of environment that can not be interfered, and we treat the power

as the controllable random parameter, which remains constant during a

coherence period and randomly fluctuates through different coherence pe-

riods. Specifically, the purpose of the random power is to induce negative

dependence to the corresponding wireless channel capacity, and the new
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power allocation scheme based on the dependence control principle avoids

the requirement of the channel side information, which is necessary in the

traditional power allocation scheme [138].

• For the dependence manipulation of the stochastic process, we develop

a copula manipulation technique for Markov process and use simulation

to validate this technique. We model the random parameters as a mul-

tivariate Markov process. We use no-Granger causality [25] to model the

relationship between the uncontrollable and controllable parameters, and

provide sufficient and necessary condition of the no-Granger causality for

Markov process. The no-Granger causality guarantees that if the random

parameters form a Markov process then the uncontrollable parameters

and controllable parameters each form a Markov process. This addresses

the challenge in dependence control that the specific characteristics of the

stochastic process under control must be known.

1.3.2 Related Methodologies

The research works on dependence have been focusing on the idea of depen-

dence modeling [36], based on which the dependence influences are mea-

sured and compared [98][36][123]. For example, copula is used to model

the dependence among multiple risks in actuarial theory [36] and the de-

pendence among multiple arrival processes in stochastic network calculus

[38]. The system model provides a domain of the problem and the depen-

dence model provides a way to characterize the form of dependence. The

dependence control advocates that the dependence in a certain system can

not only be taken advantage of in a passive way due to the uncontrollable

parameters but also be manipulated in an active way based on the con-

trollable parameters and transformed from one form to another in order

to improve the system performance.

A related concept is the dependence decoupling [34]. The decoupling



20 CHAPTER 1. INTRODUCTION

reduces the mathematical problems on dependent variables to the prob-

lems on independent variables [34], e.g., through inequalities, thus the

mathematical techniques for the independent random variable can be used

for further analysis. The decoupling focuses on reducing the dependence

situation to the independence situation in the mathematical realm, while

the dependence control focuses on transforming the dependence structure

of the stochastic processes in the physical realm. The dependence con-

trol treats the dependence as a physical resource that can be exploited for

better performance, the dependence forms are classified beyond the inde-

pendence, and the utility of different dependence forms are discussed. On

the other hand, there are some overlapping between these two methodolo-

gies, especially in the sense of mathematical techniques that are used in

the mathematical analysis, e.g., the inequalities. Thus, it is reciprocal to

take advantage of the mathematical techniques in each methodology.

The dependence is taken advantage of in stochastic simulation [8]. For

example, the antithetic variates, control variates, and common random

numbers are used for variance reduction. Specifically, the antithetic vari-

ates, which are negatively dependent, are used to drive different runs of

a simulation experiment [82]; the common random numbers, of which the

functions are positively dependent [37], are used to drive the simulation

in order to guarantee the similar experimental conditions when comparing

different experiment configurations [82]; and both negative and positive

dependence are used in the control variates [8]. It is worth noting that

the simulation environment is completely controllable, hence the random

processes in the simulation can be arbitrarily specified and interfered. On

the other hand, the real system is more complex with both controllable

and uncontrollable random parameters, and the dependence control in the

real system manipulates the dependence structure of the controllable ran-

dom parameter process in order to control the system performance that is

a function of both the controllable and uncontrollable random parameters.
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In finance and economics, the stock and bond have been either posi-

tively or negatively correlated, e.g., the correlation has turned from positive

in the 1970s-1990s to negative in the 2000s-2010s [13][113]. In risk man-

agement [91], the correlation is useful for portfolio construction by creating

diversified portfolios that can withstand market volatility and smooth out

portfolio returns, e.g., the bond can be used to diversify against the stock.

Specifically, the portfolio manager can use the negatively correlated assets

to diversify the risk of a portfolio or hedge the portfolio to reduce the

risk. Technically, the hedging requires a highly negative correlation and

the diversification requires a correlation that is not highly positive.
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Chapter 2

A Tale of Tails

An information theoretic measure of the wireless channel is the channel

capacity, which defines the maximum transmission rate with arbitrarily

small error probability. Since the wireless channel is time variant, the in-

stantaneous capacity randomly fluctuates through time, in other words, the

wireless channel capacity is a stochastic process, which brings about diverse

features to the wireless channel and entails more measures to characterize

the fundamental property of this stochastic process, e.g., the distributions.

In this chapter, we show that the tail distribution of wireless channel

capacity is light-tailed. A simple explanation is that the capacity is a loga-

rithm function of some random variables, so long as these random variables

are not heavier than fat tails, the capacity is light-tailed. This property

is fundamental as it holds for all typical wireless channel models, e.g.,

the Rayleigh, Rice, Nakagami, and Lognormal fading channels. Moreover,

this property is extended from frequency-flat to frequency-selective fading

channels, from instantaneous to cumulative time regimes, from single-hop

to multiple-hop scenarios, and from single-input-single-output to multiple-

input-multiple-output channels.

23
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2.1 Single-Input-Single-Output Channel

2.1.1 Channel Capacity

We introduce the basic concepts of wireless channel capacity, including the

ergodic capacity, instantaneous capacity, cumulative capacity, and tran-

sient capacity.

We consider the single-input-single-output channel with additive white

Gaussian noise (AWGN). The complex baseband representation for a flat

fading channel is [138]

yptq “ hptqxptq ` nptq, t P N, (2.1)

where xptq is the input, yptq is the output, hptq is the fading process, and

nptq „ CN p0, N0q is the noise process. Conditional on a realization of the

fading process hptq, the mutual information is expressed as [135]

IpX;Y |hptqq “
ÿ

xPX ,yPY
Ppx, y|hptqq log2

Ppx, y|hptqq
Ppx|hptqqPpy|hptqq

, (2.2)

where X and Y are input and output random variables with alphabets X
and Y. The maximum mutual information over input distribution at t,

denoted as cptq, is defined as instantaneous capacity [30]:

cptq “ max
ppxq

IpX;Y |hptqq, (2.3)

where the maximum is taken over all possible input distributions ppxq “

PtX “ xu, x P X . Specifically, if the channel side information is only

known at the receiver, the instantaneous capacity is expressed as [138]

cptq “W log2

`

1` γ|hptq|2
˘

, (2.4)
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where |hptq| denotes the envelope of hptq, γ “ P
N0W

denotes the average

received SNR per complex degree of freedom, P denotes the average trans-

mission power per complex symbol, N0
2 denotes the power spectral density

of AWGN, and W denotes the channel bandwidth.

For a stationary process of instantaneous capacity, the average over the

probability space is defined as ergodic capacity [135]:

c “ Ercptqs. (2.5)

The definition implies that the ergodic capacity is a constant and is a

concept for infinite code length in infinite time regime, i.e., it defines the

maximum transmission rate of the channel with asymptotically small error

probability for the code with sufficiently long length such that the received

codewords is affected by all fading states [55].

To account for finite time regimes, the sum of instantaneous capac-

ity over a time period ps, ts, denoted as Sps, tq, is defined as cumulative

capacity:

Sps, tq “
t
ÿ

i“s`1

cpiq. (2.6)

For Sp0, tq, we use Sptq as simplification. The time average of the cumu-

lative capacity through p0, ts is defined as transient capacity:

cptq “
Sptq

t
. (2.7)

The transient capacity is random, which essentially defines the achievable

capacity for a code with finite length such that the received codewords

only experience partial fading states [138].

The probabilistic average of the transient capacity in a stationary pro-

cess is expressed as

E rcptqs “ c, (2.8)
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where c is the ergodic capacity of the channel. According to the law of

large numbers, the transient capacity converges to the ergodic capacity

when time goes to infinity, i.e.,

P
!

lim
tÑ8

cptq “ c
)

“ 1, (2.9)

for independent and identically distributed instantaneous capacity. How-

ever, the dependence in capacity may be unknown, and a more general

result for the transient capacity on finite time horizon is expressed by the

Chebyshev inequality [106],

Pt|cptq ´ c| ě xu ď
Varrcptqs

x2
, (2.10)

which is a basic result of concentration [17]. It indicates that, in view of

temporal behavior, statistical properties of the cumulative process should

be taken into account besides the instantaneous capacity.

2.1.2 Light-Tail Behavior

A distribution is said to be light-tailed, if the tail F pxq “ 1 ´ F pxq is

exponentially bounded, i.e.,

F pxq “ Ope´θxq, Dθ ą 0, (2.11)

where fpxq “ Opgpxqq ðñ lim sup
xÑ8

fpxq
gpxq ă 8; equivalently, it means the

moment generating function pF rθs “
ş

eθxF pdxq is finite for some θ ą 0.

Otherwise, the distribution is said to be heavy-tailed [7, 119]. Specifically,

if F pxq „ x´θ, θ ą 0, fpxq „ gpxq ðñ lim
xÑ8

fpxq
gpxq “ 1, it is defined to be

fat-tailed; if F pxq “ O
`

x´θ
˘

, Dθ ą 0, it is defined to be fat-tail bounded.

The following theorem gives the condition for the wireless channel ca-

pacity distribution to be light-tailed.



2.1. SINGLE-INPUT-SINGLE-OUTPUT CHANNEL 27

Theorem 1. For flat fading, the instantaneous capacity is expressed as

the logarithm transform of the instantaneous channel gain, i.e., cptq “

W log2p1 ` γhptq2q, @t. If the distribution of the fading process is fat-tail

bounded, the distribution of the instantaneous capacity is light-tailed.

Proof. For convenience, we omit the time index t and write c “W log2p1`

γh2q. Correspondingly, the tail of the instantaneous capacity is a function

of the tail of the channel gain, i.e.,

F cpxq “ F h

¨

˝

d

2
x
W ´ 1

γ

˛

‚. (2.12)

Let r “

b

2
x
W ´1
γ , for some θ ą 0, F cpxq “ Ope´θxq entails

F hprq “ O
´

r´θ
¯

, (2.13)

which completes the proof.

The following corollary shows that the capacity distributions of the

typical wireless fading channels are light-tailed.

Corollary 1. If a wireless channel is Rayleigh, Rice, Nakagami-m, Weibull,

or lognormal fading channel, its instantaneous capacity distribution is light-

tailed.

Proof. For Weibull fading channel, the tail of fading is expressed as

F hprq “ e´br
k
, (2.14)

where b ą 0 and k ą 0 are constants. Applying Taylor’s theorem to expend

ebr
k
, it is easily shown that, for some θ satisfying k ą θ ą 0

lim
rÑ8

e´br
k

r´θ
“ lim

rÑ8

rθ

1` brk ` . . .
“ 0. (2.15)
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This limit shows that though the Weibull distribution is heavy-tailed for

0 ă k ă 1, it is lighter than the fat tail. Hence from Theorem 1, the

instantaneous capacity under Weibull fading is light-tailed.

Rayleigh fading is a special case of Weibull fading with k “ 2. The

distribution of its instantaneous capacity is expressed as [62]

F pxq “ 1´ e
1´2

x
W
γ . (2.16)

It is trivial to show that the tail is exponentially bounded

F pxq ď e
1
γ e´θx, (2.17)

for 0 ă θ ď 1
Wγ 2

1
log 2 log 2. Hence, the instantaneous capacity under

Rayleigh fading is light-tailed.

For Rice fading channel, the tail of the instantaneous capacity is ex-

pressed as [117]

F pxq “ Q1

˜

s

σ0
,

a

2x{W ´ 1{γss

σ0
2

¸

, (2.18)

where W is the bandwidth, s the amplitude of the LOS (light of sight)

component, σ0
2 the variance of the underlying Gaussian process, and γs

the average SNR. According to the exponential bound of the Marcum Q-

function [129],

αF “ lim sup
xÑ8

´ logF pxq

x
ě lim sup

xÑ8

1

2x

˜

a

2x{W ´ 1{γss

σ0
2

´
s

σ0

¸2

“ 8,

(2.19)

which means that the instantaneous capacity of a Rice fading channel is

light-tailed [119][48].

For Nakagami-m fading channel [115], since the square of the Nakagami-

m random variable follows a gamma distribution, which is light-tailed [7],
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the distribution of its instantaneous capacity is thus light-tailed.

For lognormal fading channel [116], since the lognormal distribution

has all the moments, which means that it has a lighter tail than the fat-

tailed distribution [57], the distribution of its instantaneous capacity is

light-tailed.

The rest of this subsection shows that the light-tailed property is ex-

tended from flat-fading to frequency-selective fading, from instantaneous

to cumulative time regime, and from single-hop to multiple-hop scenarios.

Corollary 2. For frequency-selective fading modeled by L parallel indepen-

dent channels with the instantaneous capacity c “
řL
`“1W` log2p1` γh2

` q,

if the distribution of the instantaneous capacity of each sub-channel c` “

W` log2p1`γh
2
` q is light-tailed, so is the instantaneous capacity distribution

of the frequency-selective fading channel.

Proof. For this frequency-selective fading channel, its instantaneous capac-

ity is by definition related to the instantaneous capacity of each sub-channel

as

c “
L
ÿ

`“1

c`. (2.20)

The tail of the distribution of the instantaneous capacity can then be

expressed by [70]

F cpxq “ 1´ Fc1 f . . .f FcLpxq (2.21)

ď F c1 ‘ . . .‘ F cLpxq, (2.22)

where f f gpxq “
ş8

´8
fpx ´ yqdgpyq is the Stieltjes convolution and f ‘

gptq “ inf0ďsďttfpsq` gpt´ squ is the univariate min-plus convolution [12]

or infimal convolution [123]. The first step results from sum of independent

random variables, and the second step results from that the distribution of

sum of independent random variables is upper bounded by the distribution
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of such a sum without dependence consideration [70]. As is illustrated in

the proof of the next theorem, the latter is light-tailed.

Corollary 3. Consider a wireless channel, if the distribution of its instan-

taneous capacity at any time is light-tailed, the distribution of the cumula-

tive capacity is light-tailed, and the distribution of the cumulative capacity

of a concatenation of such wireless channels is light-tailed.

Proof. Without considering any dependence constraint, the tail of the cu-

mulative capacity, Sptq “ cp1q ` ¨ ¨ ¨ ` cptq, is bounded by [70]

FSptqpxq ď F cp1q ‘ . . .‘ F cptqpxq, (2.23)

which is exactly the infimal convolution of the Fréchet upper bound [123].

If the instantaneous capacity is light tailed, i.e.,

F cpxq ď ae´bx, (2.24)

applying a distribution bound for the sum of exponentially bounded ran-

dom variables [70], the tail of the cumulative capacity is exponentially

bounded, i.e.,

FSptqpxq ď
t
ź

k“1

pakbkwq
1
bkw ¨ e

´x
w , (2.25)

where w “
řt
k“1

1
bk

.

For a concatenation of wireless channels, each with a cumulative ca-

pacity Sips, tq, the cumulative capacity process is essentially the service

process of the channel, and the cumulative capacity of the concatenation

channel is expressed as [70, 46]

Sps, tq “ S1 b . . .b SN ps, tq, (2.26)

where f b gpxq “ inf0ďyďxtfpyq` gpy, xqu is the bivariate min-plus convo-
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lution [21]. Then, the tail is expressed as

FSptqpxq “ P tS1 b . . .b SN ptq ě xu (2.27)

“ P

#

inf
uPUpxq

N
ÿ

i“1

Sipui´1, uiq ě x

+

(2.28)

ď inf
uPUpxq

P

#

N
ÿ

i“1

Sipui´1, uiq ě x

+

(2.29)

ď inf
uPUpxq

E
”

eθ
řN
i“1 Sipui´1,uiq

ı

¨ e´θx, (2.30)

where Upxq “ tu “ pu0, u1, . . . , uN q : u0 “ 0, uN “ t, 0 ď u1 ď . . . ď

uN´1 ď tu, for some θ ą 0.

2.1.3 Dependence Refinement

In general, the capacity is dependent over time, which results from the

temporal dependence in the environment or in the controllable parameters

of the system. Specifically for the cumulative capacity, the influence of

stochastic dependence is characterized by the Fréchet bounds [123]

qFSptqpxq ď FSptqpxq ď pFSptqpxq, (2.31)

where

qFSptqpxq “

«

sup
uPUpxq

t
ÿ

i“1

Fcpiqpuiq ´ pt´ 1q

ff`

, (2.32)

pFSptqpxq “

«

inf
uPUpxq

t
ÿ

i“1

Fcpiqpuiq

ff

1

, (2.33)

with Upxq “
 

u “ pu1, . . . , utq :
řt
i“1 ui “ x

(

, r¨s1 “ minp¨, 1q, and r¨s` “

maxp¨, 0q.

The Fréchet bounds hold generally, making use of specific dependence
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information among cp1q, cp2q, . . . , the bounds can be improved. To this

end, three representative capacity processes are investigated in this sub-

section, which are comonotonic process, additive process, and Markov ad-

ditive process.

2.1.3.1 Comonotonic Process

The upper Fréchet bound expresses the extremal positive dependence in-

dicating the largest sum with respect to convex order, and the dependence

structure is represented by the comonotonic copula [37, 41, 44], i.e.,

F px1, . . . , xtq “ min
1ďiďt

Fcpiqpxiq; (2.34)

equivalently [37], for a uniform random variable U „ Up0, 1q,

pcp1q, . . . , cptqq
d
“

´

F´1
cp1qpUq, . . . , F

´1
cptqpUq

¯

, (2.35)

which implicates that comonotonic random variables are increasing func-

tions of a common random variable [41].

If the increment of the cumulative capacity has comonotonicity, the

cumulative capacity is defined as a comonotonic process in this work (which

is different from a similar concept regarding the comonotonicity between

different processes [73]). The distribution results of cumulative capacity

and transient capacity are as follows.

Theorem 2. For a strictly stationary capacity process, the distributions

of the cumulative capacity and transient capacity with comonotonicity are

expressed as

FSptqpxq “ Fc

´x

t

¯

, (2.36)

Fcptqpxq “ Fcpxq. (2.37)
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Proof. Since all the marginal distribution functions are identical Fcpiq „ Fc,

comonotonicity of cpiq is equivalent to saying that cp1q “ cp2q “ . . . “

cptq holds almost surely [37]. In other words, the sample function of the

capacity process is stationary and depends only on the initial value of the

capacity in each realization.

2.1.3.2 Additive Process

The independence structure of an additive process is expressed by a prod-

uct copula [43][44]

F px1, . . . , xtq “
t
ź

i“1

Fcpiqpxiq, (2.38)

and the distribution of the cumulative capacity is expressed via Stieltjes

convolution as

FSptqpxq “ Fcp1q f . . .f Fcptqpxq. (2.39)

The cumulative capacity with independent increment is modeled as an

additive process [65]. The distribution bounds of cumulative capacity and

transient capacity are as follows.

Theorem 3. For an independent and identically distributed capacity pro-

cess, the distribution of the cumulative capacity with independence is ex-

pressed as, for some θ ą 0,

1´ etκpθq´θx ď FSptqpxq ď etκp´θq`θx, (2.40)

where κpθq “ logE
“

eθcpiq
‰

is the cumulant generating function of the in-

stantaneous capacity, and the distribution of the transient capacity is ex-

pressed as

1´ e´yl ď P tcptq ď c˚u ď e´yu , (2.41)

where c˚ “ tκpθ˚q`y˚

θ˚t , with y˚ “ yu and θ˚ ă 0 for the upper bound, and
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y˚ “ yl and θ˚ ą 0 for the lower bound.

Proof. Since all the marginal distribution functions are identical Fcpiq „ Fc,

a likelihood ratio process of the cumulative capacity is formulated and

expressed as [6]

Lptq “ eθSptq´tκpθq, (2.42)

where Lptq is a mean-one martingale and κpθq is the cumulant generating

function, i.e.,

κpθq “ logE
”

eθcpiq
ı

“ log

ż

eθxF pdxq, (2.43)

where θ P Θ “ tθ P R : κpθq ă 8u.

According to Markov inequality, for any µ ą 0,

PtLptq ě µu ď
1

µ
ErLptqs “

1

µ
. (2.44)

Letting µ “ e´tκpθq`θx, with a manipulation of PtLptq ě µu, for θ ď 0, the

distribution function of Sptq is bounded by

PtSptq ď xu ď etκpθq´θx, (2.45)

while for θ ą 0, the tail distribution function of Sptq is bounded by

PtSptq ě xu ď etκpθq´θx, (2.46)

which shows that the distribution has a light tail. Letting ´y˚ “ tκpθq ´

θx ď 0, the distribution of the transient capacity cptq “ Sptq
t is bounded

by

1´ e´yl ď P tcptq ď c˚u ď e´yu , (2.47)

where c˚ “ tκpθq`y˚

θt , y˚ “ yu for the upper bound with θ ă 0, and y˚ “ yl

for the lower bound with θ ą 0.

Remark 1. The upper and lower bound of FSptqpxq do not hold simulta-
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neously, the upper bound is useful for x ă Sptq, the lower bound is useful

for x ą Sptq, and both bounds are worthless for x “ Sptq [51]. Consider-

ing FSptqpxq “ 1 ´ FSptqptq, which means that the upper and lower bound

can not decrease or increase simultaneously, this property holds in general.

An indication of this property is that, for a fixed violation probability, the

obtained bounds on Sptq or cptq based on the upper and lower distribution

bounds are lower and upper bounds of Sptq or cptq with respect to their

mean. It is illustrated in Fig. 2.1.

2.1.3.3 Markov Additive Process

The Markov property is solely a dependence property that can be mod-

eled exclusively in terms of copulas [32, 104]. As a consequence, starting

with a Markov process, a multitude of other Markov processes can be con-

structed by just modifying the marginal distributions [32, 80, 104]. It is

worth noting that the Markov property indicates both positive and neg-

ative dependence, which is determined by the underlying copula. For a

Markov chain, the selection of the copula and the marginal distribution

is coupled [32], the transition matrix can be expressed in terms of the

copula and marginal distribution and vice versa. Particularly for an idem-

potent copula, the process is conditionally independently and identically

distributed given the initial state [80].

Specifically, if the dependence in capacity follows a Markov process and

the instantaneous capacity has a corresponding distribution with respect

to a state transition, then the cumulative capacity is a Markov additive

process, which is a bivariate process with strong Markov property and the

increment process is conditionally independent given a realization of the

underlying Markov process. A formal definition of Markov additive process

is in Appendix B.2.

Theorem 4. For a Markov additive process pSptq, Jtq with state space E,
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(a) Additive process.

(b) Markov additive process.

Figure 2.1: Transient capacity of additive and Markov additive Rayleigh
channel. According to the strong law of large numbers for the additive
process and extended to the Markov additive process, the transient capac-
ity converges to the mean as time goes to infinity, i.e., the convergence
of sample paths. The large deviation results are upper bound and lower
bound with respect to the mean. Results are normalized, with violation
probability ε “ 10´3, W “ 20kHz, SNR “ e0.5 for the additive process,
SNR “ re0.5 0.9e0.5; 0.8e0.5 0.7e0.5s and P “ r0.3 0.7; 0.1 0.9s for the
Markov additive process with initial distribution π “ r0.5 0.5s, and 1000
sample paths.
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conditional on initial state J0, the distribution of the cumulative capacity

is expressed as, for some θ ą 0,

1´
hpθqpJ0qe

tκpθq´θx

min
jPE
phpθqpJjqq

ď FSptqpxq ď
hp´θqpJ0qe

tκp´θq`θx

min
jPE
php´θqpJjqq

, (2.48)

where κpθq and hpθq are respectively the logarithm of the Perron-Frobenius

eigenvalue and the corresponding right eigenvector of the kernel for the

Markov additive process pSptq, Jtq, i.e., pFrθs, and the distribution of the

transient capacity is expressed as

1´
hpθqpJ0qe

´yl

min
jPE
phpθqpJjqq

ď P tcptq ď c˚u ď
hp´θqpJ0qe

´yu

min
jPE
php´θqpJjqq

, (2.49)

where c˚ “ tκpθ˚q`y˚

θ˚t , with y˚ “ yu and θ˚ ă 0 for the upper bound, and

y˚ “ yl and θ˚ ą 0 for the lower bound.

Proof. Like the independent case, a likelihood ratio process is formulated

with an exponential change of measure [6],

Lptq “
hpθqpJtq

hpθqpJ0q
eθSptq´tκpθq, (2.50)

which is a mean-one martingale. κpθq and hpθq are respectively the log-

arithm of the Perron-Frobenius eigenvalue and the corresponding right

eigenvector of the kernel for the Markov additive process pSptq, Jtq, i.e.,

pFrθs. In order to provide exponential upper bound for the distribution of

the cumulative capacity, define [51]

Lptq “
minjPEph

pθqpJjqq

hpθqpJ0q
eθSptq´tκpθq, (2.51)

where Lptq ď Lptq, i.e., ErLptqs ď 1. Apply Markov inequality to Lptq and
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get, for any µ ą 0,

PtLptq ě µu ď
1

µ
ErLptqs ď

1

µ
. (2.52)

Choosing µ “ e´tκpθq`θx ¨
minjPEph

pθqpJjqq

hpθqpJ0q
, based on the tail distribution

function PtLptq ě µu, we get the distribution function of PtSptq ď xu, for

θ ď 0,

PtSptq ď xu ď
hpθqpJ0q

minjPEphpθqpJjqq
etκpθq´θx, (2.53)

while for θ ą 0,

PtSptq ě xu ď
hpθqpJ0q

minjPEphpθqpJjqq
etκpθq´θx, (2.54)

which indicates that the distribution has a light tail. Letting ´y˚ “ tκpθq´

θx ď 0, the distribution of the transient capacity cptq “ Sptq
t is bounded

by

1´
hpθqpJ0qe

´yl

min
jPE
phpθqpJjqq

ď P tcptq ď c˚u ď
hpθqpJ0qe

´yu

min
jPE
phpθqpJjqq

, (2.55)

where c˚ “ tκpθq`y˚

θt , y˚ “ yu for the upper bound with θ ă 0 , and y˚ “ yl

for the lower bound with θ ą 0.

Remark 2. The Markov additive process can be seen as a non-stationary

additive process defined on a Markov process. If the Markov process has

only one state, then it reduces to a stationary additive process [28]. In

addition, the strong law of large numbers applies to the Markov additive

process [100], and the mean of transient capacity exists [7], i.e.,

lim
tÑ8

EJ0PErSptqs
t

“ κ1p0q. (2.56)

It is demonstrated in Fig. 2.1.



2.2. MULTIPLE-INPUT-MULTIPLE-OUTPUT CHANNEL 39

2.2 Multiple-Input-Multiple-Output Channel

Let pΩ,F ,Pq be a probability space, m P N, n P N, and X : Ω Ñ Cmˆn be

measurable with respect to F and the Borel σ-algebra on Cmˆn. Denote

X “ tX P Cnˆn : X “X˚u, where ˚ represents the conjugate transpose.

Denote the cone [1] Xě0 “ tX P X : X ě 0u, which introduces a partial

order in X, i.e., X ě 0 is equivalent to that all the eigenvalues of X are

nonnegative [1]. Similarly, Xą0 “ tX P X : X ą 0u.

2.2.1 Deterministic Power Fluctuation

Consider the flat fading MIMO channel H P CNRˆNT , NT P N, NR P

N, HH˚ P Xě0. The capacity, in bits per second, under total average

transmit power constraint, is expressed as [110]

c “W max
TrrRsss“NT

log2 det

ˆ

INR `
ρ

NT
HRssH

˚

˙

, (2.57)

where W is the bandwidth, ρ “ P
N0W

, P is the total average transmit

power, N0 is the noise power spectral density, Rss “ Erss˚s is the covari-

ance matrix for the transmitted signal s P CNTˆ1.

The frequency-selective fading channel formulation requires a block

diagonal extension of the flat fading channel model. The capacity, in bits

per second, under total average transmit power constraint, is expressed as

[110]

c “
W

N
max

TrrRSS s“NTN
log2 det

ˆ

INRN `
ρ

NT
HRSSH˚

˙

, (2.58)

where W is the bandwidth, ρ “ P
N0W

, P is the total average transmit

power, N0 is the noise power spectral density, N is the number of sub-

channels, H P CNTNˆNRN is the block diagonal matrix with Hi as the

block diagonal elements, and RSS “ ErSS˚s is the covariance matrix for
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the transmitted signal S “ rsT1 , . . . , s
T
N s

T P CNTNˆ1, where r¨sT denotes

the transpose of a matrix.

Remark 3. The identity matrix I in the capacity formula implies that the

capacity is non-negative, i.e., c : Ω Ñ Rě0.

Remark 4. The typical stochastic models of the channel gain are the

Rayleigh, Rice, and Nakagami distributions [55]. The shadowing model

is the Lognormal distribution [118][55], which is able to superimpose the

path loss.

Remark 5. If log Y „ N
`

µ, σ2
˘

, then a ` b log Y „ N
`

a` bµ, b2σ2
˘

,

where a, b P R, thus, if Y is lognormal, then aY b is also lognormal in

general. This result explains the product form of the combined effect of the

multiple path interference, shadowing, and path loss [109].

Remark 6. Since the normal distribution with zero mean is symmetric,

we have the equal lognormal distributions Y ´1 d
“ Y , because of ´ log Y

d
“

log Y „ N
`

0, σ2
˘

. This result implies that the quotient X{Y of an arbitrary

random variable X with a lognormal random variable log Y „ N
`

0, σ2
˘

,

where X and Y are independent, equals in distribution the product XY of

the two random variable, i.e., X{Y
d
“ XY . This relation does not hold for

the general normal distribution.

Remark 7. For a almost surely positive random variable, X, the right

tail behavior of 1{X, Pp1{X ą xq “ O
`

e´θx
˘

, Dθ ą 0, and Pp1{X ą

xq “ O
`

x´θ
˘

, Dθ ą 0, corresponds to left tail behavior of X [56][9],

PpX ă 1{xq “ O
`

e´θx
˘

, Dθ ą 0, and PpX ă 1{xq “ O
`

x´θ
˘

, Dθ ą 0,

i.e., lim sup
yÑ0

PpXăyq
e´θ{y

ă 8, Dθ ą 0, and lim sup
yÑ0

PpXăyq
yθ

ă 8, Dθ ą 0. Letting

Y “ 1{X, we obtain the complementary results. Considering the reciprocal

relation between the channel loss φ “ PT {PR and channel gain ψ “ PR{PT ,

both the right tail and the left tail matter for the stochastic channel models.
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Remark 8. The difference between the two dimensional and the three di-

mensional channel models lies in that there are different autocorrelation

functions of the fading process and the same marginals of the fading en-

velopes [11][107]. In addition, it is shown that a horizontal separation of

antennas has a superiority over the vertical separation, though the latter

is able to increase the diversity gain [107][139]. The capacity of multi-user

MIMO is more complex, i.e., the channel involves both multiple access

channel and broadcasting channel, thus, the capacity expression has a di-

verse formulation [110].

We present some equivalence results of the function of random vari-

ables.

Lemma 1. Consider a flat MIMO channel H P CNRˆNT . The capacity is

upper bounded by c1 “ a log2p1` bλmaxq, where a, b P Rą0 and λmax is the

maximum eigenvalue of HH˚.

1. For the tail property, we have the equivalent results

F c1pxq “ Ope´θxq, Dθ ą 0

ðñ F λmaxpxq “ Opx´θq, Dθ ą 0

ðñ FTr rHH˚spxq “ Opx´θq, Dθ ą 0. (2.59)

2. For the power law function of the maximum eigenvalue, we have the

equivalent expressions

E
”

p1`∆λmaxq
θ
ı

ă 8, 0 ă ∆ ă 8, Dθ ą 0

ðñ E
”

p1` λmaxq
θ
ı

ă 8, Dθ ą 0

ðñ E
”

pλmaxq
θ
ı

ă 8, Dθ ą 0. (2.60)

Specifically, θ “ 1 corresponds to Erλmaxs ă 8. In addition, we have
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E
”

pλmaxq
θ1
ı

“ 8 ùñ E
”

pλmaxq
θ2
ı

“ 8, @0 ă θ1 ă θ2.

3. In addition, we have another pair of equivalent expressions for the ex-

ponential function of the eigenvalue, i.e.,

E
”

eθTr rHH˚s
ı

ă 8, Dθ ą 0 ðñ E
”

eθλmax

ı

ă 8, Dθ ą 0. (2.61)

Proof. 1. Considering the eigendecomposition of the channel matrix in the

capacity formula [110], the capacity is upper bounded by c1 “ a log2p1 `

bλmaxq, we have F c1pxq “ O
`

e´θx
˘

ðñ F λmaxpxq “ O
`

x´θ
˘

ðñ

FTr rHH˚spxq “ O
`

x´θ
˘

. The first relationship follows the transform of

random variables, i.e., F c1pxq “ O
`

e´θc
˘

ðñ F λmaxpxq “ O
`

p1` bxq´θ
˘

,

and p1 ` bxq´θ „ pbxq´θ and F λmaxpxq “ O
`

x´θ
˘

ðñ F λmaxpxq “

O
`

pbxq´θ
˘

. The second relationship follows that λmax ď Tr rHH˚s ùñ

F λmaxpxq ď FTr rHH˚spxq, thus, FTr rHH˚spxq “ O
`

x´θ
˘

ùñ F λmaxpxq “

O
`

x´θ
˘

; and rpHqλmax ě Tr rHH˚s ùñ F rpHqλmax
pxq ě FTr rHH˚spxq,

thus, F λmaxpxq “ O
`

x´θ
˘

ùñ FTr rHH˚spxq “ O
`

x´θ
˘

.

2. First, we have the inequality, E
”

p1`∆λmaxq
θ
ı

ď p1`∆qθE
”

p1` λmaxq
θ
ı

,

which implies that E
”

p1` λmaxq
θ
ı

ă 8, Dθ ą 0 ùñ E
”

p1`∆λmaxq
θ
ı

ă

8, Dθ ą 0, because p1`∆qθ ă 8. Second, for 0 ă ∆ ă 1, letting ∆ ě 1
m ,

m P N, we have mθE
”

p1`∆λmaxq
θ
ı

ě E
”

p1` λmaxq
θ
ı

, which implies that

E
”

p1`∆λmaxq
θ
ı

ă 8, Dθ ą 0 ùñ E
”

p1` λmaxq
θ
ı

ă 8, Dθ ą 0, because

mθ ă 8; for ∆ ě 1, it is trivial.

Since pλmaxq
θ
ď p1` λmaxq

θ, we have E
”

p1` λmaxq
θ
ı

ă 8, Dθ ą

0 ùñ E
”

pλmaxq
θ
ı

ă 8, Dθ ą 0. According to Hölder’s inequal-

ity, ErXrs ď pErXssq
r{s, 0 ă r ă s, X P Rě0, which implies that

ErXss ă 8 ùñ ErXrs ă 8. Specifically, we have E
”

pλmaxq
θ
ı

ă 8, Dθ ą

1 ùñ E
”

pλmaxq
θ
ı

ă 8, @0 ă θ ď 1. Suppose E
”

pλmaxq
θ
ı

ă 8, D0 ă

θ ď 1, we have F λmaxpxq “ o
`

x´θ
˘

and
ş8

0 F λmaxpxqx
θ´1dx ă 8, since



2.2. MULTIPLE-INPUT-MULTIPLE-OUTPUT CHANNEL 43

x´θ „ p1 ` xq´θ and xθ´1 ě p1 ` xqθ´1, we further have F λmaxpxq “

o
`

p1` xq´θ
˘

and
ş8

0 F λmaxpxqp1 ` xqθ´1dx ă 8, which corresponds to

E
”

p1` λmaxq
θ
ı

ă 8. Thus, E
”

p1` λmaxq
θ
ı

ă 8, D0 ă θ ď 1 ðù

E
”

pλmaxq
θ
ı

ă 8, D0 ă θ ď 1. In all, we obtain E
”

p1` λmaxq
θ
ı

ă 8, Dθ ą

0 ðñ E
”

pλmaxq
θ
ı

ă 8, Dθ ą 0.

If Erλmaxs “ 8, by Jensen’s inequality, E
”

pλmaxq
θ
ı

ě pErλmaxsq
θ
“

8, @θ ě 1, which implies that E
”

p1` λmaxq
θ
ı

“ 8, @θ ě 1, because

E
”

pλmaxq
θ
ı

ď E
”

p1` λmaxq
θ
ı

.

3. Considering that the matrix HH˚ P Xě0, we have λmax ď Tr rHH˚s

and Tr rHH˚s ď rpHqλmax. Then, the proof follows.

Remark 9. The parameters θ in the two equations, F cpxq “ Ope´θxq and

F λmaxpxq “ Opx´θq, are not necessarily equal.

Remark 10. The above equivalent results indicate that, for X P Rě0,

E
“

Xθ
‰

ă 8, Dθ ą 0 ðñ FXpxq “ O
`

x´θ
˘

, Dθ ą 0. However, it is

interesting to notice that, for a common θ ą 0 and X P Rě0, we only have

E
“

Xθ
‰

ă 8 ùñ FXpxq “ O
`

x´θ
˘

, and the reverse does not hold in

general. Because it is shown in [125] that E
“

Xθ
‰

ă 8, where θ ą 0 and

X is a nonnegative random variable, if and only if FXpxq “ o
`

x´θ
˘

and
ş8

0 FXpxqx
θ´1dx ă 8.

Remark 11. The mean identity ErXθs, for X : Ω Ñ Rě0 and θ ą 0, is a

special case of Mellin-Stieltjes transform [146] of the distribution function

FXpxq.

Remark 12. Suppose X is a regularly varying non-negative random vari-

able with index α ą 0. Then [42], E
“

Xβ
‰

ă 8, for β ă α; and E
“

Xβ
‰

“ 8,

for β ą α.
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2.2.1.1 Arbitrary Channel Side Information

We present the sufficient condition for the light-tailed capacity of the flat

channel.

Theorem 5. Consider a flat MIMO channel H P CNRˆNT . If the mean

identity exists, i.e.,

E
”

pλmaxq
θ
ı

ă 8, Dθ ą 0, (2.62)

where λmax is the maximum eigenvalue of HH˚, the distribution of the

capacity of the MIMO channel (with or without full channel side informa-

tion) is light-tailed.

Proof. First, consider the scenario with channel side information only at

the receiver. We denote ρ :“ P
N0W

. On the one hand, we have an upper

bound of the capacity

c “W
ÿrpHq

i“1
log2

ˆ

1`
ρ

NT
λi

˙

(2.63)

ďWrpHq log2

ˆ

1`
ρ

NT
λmax

˙

, (2.64)

where rpHq is the rank of matrix H, λi is the eigenvalue of the matrix

HH˚, and the equality follows the eigenvalue expression of the capacity.

Second, consider the scenario with full channel side information. The

capacity is upper bounded by

c “W max
řrpHq
i“1 γi“NT

ÿrpHq

i“1
log2

ˆ

1`
ργi
NT

λi

˙

(2.65)

ďWrpHq log2

ˆ

1`
ρ

NT
γmaxλi

˙

(2.66)

ďWrpHq log2 p1` ρλmaxq. (2.67)

It is easy to show that E
“

eθc
‰

ă 8, Dθ ą 0, entails E
”

p1` ρλmaxq
θ
ı

ă

8, Dθ ą 0. The rest of the proof follows Lemma 1.2.
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We present the sufficient condition for the light-tailed capacity of the

frequency-selective channel.

Theorem 6. Consider a frequency-selective MIMO channel with the sub-

channels Hi P CNRˆNT , i P t1, . . . , Nu, and block diagonal matrix H “

diagpH1, . . . ,HN q. For the scenarios where the channel side information

is known or unknown at the transmitter, if the mean identity exists for

each sub-channel, i.e.,

E
”

`

λimax

˘θ
ı

ă 8, Dθ ą 0, @i P t1, . . . , Nu, (2.68)

where λimax is the maximum eigenvalue of HiH
˚
i , or the equivalent condi-

tion is satisfied, i.e.,

E
”

pλmaxq
θ
ı

ă 8, Dθ ą 0, (2.69)

where λmax is the maximum eigenvalue of HH˚, the distribution of the

capacity is light-tailed.

Proof. If the channel side information is unknown to the transmitter, then

[110]

c “
W

N

N
ÿ

i“1

log2 det

ˆ

INR `
ρ

NT
H iH

˚
i

˙

. (2.70)

Since the light-tailed property is preserved under the sum operation, if

the capacity distribution of each sub-channel is light-tailed, so is the total

capacity distribution.
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If the channel side information is known to the transmitter, then [110]

c “
W

N
max

řrpHq
i“1 γi“NTN

rpHq
ÿ

i“1

log2

ˆ

1`
ργi
NT

λipHH˚q

˙

(2.71)

ď
W

N

rpHq
ÿ

i“1

log2

ˆ

1`
ργmax

NT
λipHH˚q

˙

(2.72)

ď
W

N
rpHq log2 p1` ρNλmaxpHH˚qq. (2.73)

Particularly, we have λmax “ max
`

λ1
max, . . . , λ

N
max

˘

, which implies the

equivalent expression of the condition.

Remark 13. The equivalent expression of the sufficient condition means

that it is equivalent to consider the block diagonal matrix of the frequency-

selective channel as a whole or to consider the matrix of each sub-channel

individually.

Remark 14. If the trace identity exists, i.e., E
”

Tr
”

eθHH˚
ıı

ă 8, Dθ ą 0,

then the maximum eigenvalue distribution and the capacity distribution are

light-tailed. Because the maximum eigenvalue distribution is exponentially

bounded [137]

PpλmaxpXq ě xq ď e´θx ¨ E
”

Tr
”

eθX
ıı

, @θ ą 0, (2.74)

where X “ HH˚ P X. Since the matrix HH˚ is block diagonal [61],

eθHH˚

“ diag
´

eθH1H
˚
1 , . . . , eθHNH

˚
N

¯

, and

E
”

Tr
”

eθHH˚
ıı

“

N
ÿ

i“1

E
”

Tr
”

eθHiH
˚
i

ıı

. (2.75)

Thus, E
”

Tr
”

eθHH˚
ıı

ă 8, Dθ ą 0 entails E
”

Tr
”

eθHiH
˚
i

ıı

ă 8, Dθ ą 0,

@i P t1, . . . , Nu, which is non-negative.
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2.2.1.2 Without Channel Side Information at Transmitter

We present the sufficient and necessary condition for the flat channel ca-

pacity distribution to be light-tailed, when the channel side information is

not known at the transmitter.

Theorem 7. Consider that the channel side information is only known

at the receiver. The capacity distribution of the flat channel is light tailed,

if and only if the distribution of the determinant term is fat-tail bounded,

i.e.,

E
”

pdet pINR `Λqqθ
ı

ă 8, Dθ ą 0, (2.76)

where HH˚ “ QΛQ˚, QQ˚ “ Q˚Q “ INR , and Λ “ diagtλ1, . . . , λNRu,

λi ě 0. Equivalently, the condition is expressed as

E
”

pλmaxq
θ
ı

ă 8, Dθ ą 0, (2.77)

where λmax “ max
1ďiďrpHq

λi, 0 ă λi P Λ and rpHq is the rank of H.

Proof. For the flat channel without channel side information at the trans-

mitter, the capacity is expressed as [110]

c “W log2 det

ˆ

INR `
ρ

NT
HH˚

˙

(2.78)

“W log2 det

ˆ

INR `
ρ

NT
Λ

˙

(2.79)

“W
ÿrpHq

i“1
log2

ˆ

1`
ρ

NT
λi

˙

, (2.80)

where HH˚ “ QΛQ˚ and QQ˚ “ I, the second equality follows that

detpIm `ABq “ detpIn `BAq for A P Cmˆn and B P Cnˆm, and the

third equality is an equivalent expression.
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The proof follows the light-tailed distribution definition, i.e.,

E
„

e
θW log2 det

´

INR`
ρ
NT

Λ
¯

ă 8, Dθ ą 0.

Specifically, considering finite rank matrix, we have that, for ∆ ě 1,

∆rpHqθE
”

śrpHq
i“1 p1` λiq

θ
ı

ě E
”

śrpHq
i“1 p1`∆λiq

θ
ı

ě E
”

śrpHq
i“1 p1` λiq

θ
ı

;

and for 0 ă ∆ ď 1, ∆rpHqθE
”

śrpHq
i“1 p1` λiq

θ
ı

ď E
”

śrpHq
i“1 p1`∆λiq

θ
ı

ď

E
”

śrpHq
i“1 p1` λiq

θ
ı

. Thus, we have the following equivalent expressions

E

»

–

rpHq
ź

i“1

p1`∆λiq
θ

fi

fl ă 8, 0 ă ∆ ă 8, Dθ ą 0

ðñ E

»

–

rpHq
ź

i“1

p1` λiq
θ

fi

fl ă 8, Dθ ą 0. (2.81)

Considering the two inequalities,
śrpHq
i“1 p1` λiq

θ
ď p1` λmaxq

θrpHq and
śrpHq
i“1 p1` λiq

θ
ě p1` λmaxq

θ, where λmax “ max
1ďiďrpHq

λi, the sufficient

and necessary condition is equivalently written as E
”

śrpHq
i“1 p1` λiq

θ
ı

ă

8, Dθ ą 0 ðñ E
”

p1` λmaxq
θ
ı

ă 8, Dθ ą 0 ðñ E
”

pλmaxq
θ
ı

ă

8, Dθ ą 0. This completes the proof.

Remark 15. Considering the Fredholm determinant [54], for |z| small

enough, log det pI ` zΛq “ Tr log pI ` zΛq “
ř8
k“1

p´1qk`1

k zk Tr
“

Λk
‰

, the

condition is alternatively expressed as

E
„

e
θ
ř8
k“1

p´1qk`1

k

´

ρ
NT

¯k
Tr rΛks



ă 8, Dθ ą 0, (2.82)

where Λ “ HH˚ or HH˚ “ QΛQ˚. Specifically, for HH˚ “ QΛQ˚,

we have Tr
“

Λk
‰

“
řrpΛq
i“1 pλipΛqq

k.
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For arbitrary z, according to the Plemelj-Smithies formulas [54], we

have detpI ` zΛq “ 1`
řrpΛq
k“1

dkpΛq
k! zk, thus the condition is expressed as

E

»

—

–

¨

˝1`

rpΛq
ÿ

k“1

dkpΛq

k!

ˆ

ρ

NT

˙k
˛

‚

θ
fi

ffi

fl

ă 8, θ ą 0, (2.83)

where

dkpΛq “

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Tr Λ k ´ 1 0 0 . . . 0 0

Tr Λ2 Tr Λ k ´ 2 0 . . . 0 0
...

...
...

...
. . .

...
...

Tr Λk´1 Tr Λk´2 Tr Λk´3
... . . . Tr Λ 1

Tr Λk Tr Λk´1 Tr Λk´2
... . . . Tr Λ2 Tr Λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

We present a sufficient condition for the light-tailed property of the

frequency-selective channel capacity.

Theorem 8. Consider that the channel side information is only known at

the receiver. The capacity distribution of the frequency-selective channel is

light tailed, if

E
”

pλmaxq
θ
ı

ă 8, Dθ ą 0 (2.84)

where λmax “ max
1ďjďN

λjmax, λjmax “ max
1ďiďrpHjq

λji , Hj is the channel model

of each sub-channel and λji is the corresponding eigenvalue of HjH
˚
j .

Proof. The proof of the frequency-selective channel scenario follows that

the light-tailed distribution of the capacity of each sub-channel implies the

light-tailed distribution of the overall channel capacity.
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2.2.2 Random Power Fluctuation

We consider the channel scenario, where the channel side information is

known at the receiver and is unknown at the transmitter, and the trans-

mission power randomly fluctuates over the coherence periods and remains

constant in each coherence period. Considering the analog to the deter-

ministic power fluctuation, the obtained results are correspondingly the

sufficient conditions for the channel scenario with arbitrary channel side

information.

For the flat fading MIMO channel H P CNRˆNT , NT P N, NR P N,

when the transmit power is allocated evenly across the transmit antennas

during each coherence period, the capacity, in bits per second, is expressed

as [110]

cp,H “W log2 det

ˆ

INR `
1

NTN0W
pHH˚

˙

, (2.85)

where W is the bandwidth, N0 is the noise power spectral density, and p

is the transmit power that is constant during each coherence period and

randomly fluctuates over periods. Equivalently, the capacity is expressed

as

cp,H “W
ÿrpHq

i“1
log2

ˆ

1`
1

NTN0W
pλi

˙

(2.86)

ďWrpHq log2

ˆ

1`
1

NTN0W
pλmax

˙

, (2.87)

where λi is the eigenvalue of the matrix HH˚ and rpHq is the rank of H.

We present some preliminary results considering the random power.

Lemma 2. Consider a flat MIMO channel H P CNRˆNT . The capacity is

upper bounded by c1 “ a log2p1 ` bpλmaxq, where a, b P Rą0, p : Ω Ñ R is

the random power, and λmax is the maximum eigenvalue of HH˚.
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1. For the tail property, we have the equivalent results

F c1pxq “ Ope´θxq, Dθ ą 0

ðñ F pλmaxpxq “ Opx´θq, Dθ ą 0

ðñ F pTr rHH˚spxq “ Opx´θq, Dθ ą 0. (2.88)

2. Alternatively, the tail property is expressed as E
”

eθc
1
ı

ă 8, Dθ ą 0, and

we have the equivalent expressions

E
”

p1` bpλmaxq
θ
ı

ă 8, Dθ ą 0

ðñ E
”

p1` pλmaxq
θ
ı

ă 8, Dθ ą 0

ðñ E
”

ppλmaxq
θ
ı

ă 8, Dθ ą 0. (2.89)

If p and λmax are independent, then E
“

ppλmaxq
θ
‰

“ E
“

pθ
‰

E
“

pλmaxq
θ
‰

, and

the condition relaxes to Erps ă 8 and Erλmaxs ă 8.

Proof. The proof is analog to the proof of the deterministic power scenario.

We present the sufficient and necessary condition for the light-tailed

property of the capacity.

Theorem 9. The capacity distribution of the flat channel is light tailed,

if and only if the distribution of the determinant term is fat-tail bounded,

i.e.,

E
”

pdet pINR ` pΛqq
θ
ı

ă 8, Dθ ą 0, (2.90)

where HH˚ “ QΛQ˚, QQ˚ “ Q˚Q “ INR , and Λ “ diagtλ1, . . . , λNRu,

λi ě 0. Equivalently, the condition is expressed as

E
”

ppλmaxq
θ
ı

ă 8, Dθ ą 0, (2.91)
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where λmax “ max
1ďiďrpHq

λi, 0 ă λi P Λ and rpHq is the rank of H.

Proof. The proof is analog to the proof of the deterministic power scenario.

We present a set of sufficient conditions for the light-tailed capacity

and their relationships.

Theorem 10. Consider a flat MIMO channel H : Ω Ñ CNRˆNT with

random power fluctuation p : Ω Ñ R. We have the sufficient condition

chain for the light-tailed property of the capacity.

0

1

4 2

5 3

0 :“ E
”

p1` pλmaxq
θ
ı

ă 8, Dθ ą 0 (2.92)

1 :“ E
”

p1` pTr rHH˚sq
θ
ı

ă 8, Dθ ą 0 (2.93)

2 :“ E
”

pTr rI ` pHH˚sq
θ
ı

ă 8, Dθ ą 0 (2.94)

3 :“ E
„

´

Tr
”

epHH
˚
ı¯θ



ă 8, Dθ ą 0 (2.95)

4 :“ E
”

eθpλmax

ı

ă 8, Dθ ą 0 (2.96)

5 :“ E
”

Tr
”

eθpHH
˚
ıı

ă 8, Dθ ą 0 (2.97)

6 :“ E
”

ppλmaxq
θ
ı

ă 8, Dθ ą 0 (2.98)

7 :“ E
”

eθpTr rHH˚s
ı

ă 8, Dθ ą 0 (2.99)
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Note we have the equivalent conditions 0 ðñ 6 and 4 ðñ 7 .

Particularly, letting p “ 1, we obtain the corresponding sufficient condi-

tions for the deterministic power fluctuation scenario of arbitrary channel

side information.

Proof. We present the proof of the deterministic power scenario, and the

extension to the random power scenario is to replace the matrix HH˚

with the scalar multiplication pHH˚ of the random variable p and the

random matrix HH˚.

We have a sufficient condition, i.e., E
”

p1` λmaxq
θ
ı

ă 8, Dθ ą 0, which

is equivalent to E
”

p1` Tr rHH˚sq
θ
ı

ă 8, Dθ ą 0, which is further equiv-

alent to E
„

´

1`
řrpHq
i“1 λi

¯θ


ă 8, Dθ ą 0. Furthermore, the condition

relaxes to be E
”

pTr rI `HH˚sq
θ
ı

ă 8, Dθ ą 0.

Considering the transfer rule [137], the function inequality p1` xqϑ ď

eϑx, ϑ ą 0, implies the partial order eϑHH
˚

´ pI `HH˚q
ϑ
ě 0, thus

Tr
”

eϑHH
˚

´ pI `HH˚q
ϑ
ı

ě 0, i.e., Tr
”

pI `HH˚q
ϑ
ı

ď Tr
”

eϑHH
˚
ı

,

which implies a further relaxed condition E
„

´

Tr
”

eHH
˚
ı¯θ



ă 8, Dθ ą 0.

In addition, according to the inequality, p1` ρλmaxq
ϑ
ď eϑρλmax ď

Tr
”

eϑρHH
˚
ı

, where ϑ ą 0 and the last inequality follows that the spectral

mapping theorem [137], thus we have the relaxed condition E
”

Tr
”

eθHH
˚
ıı

ă

8, Dθ ą 0. Similarly, p1` Tr rHH˚sq
ϑ
ď eϑTr rHH˚s, ϑ ą 0, thus we have

the relaxed condition E
”

eθTr rHH˚s
ı

ă 8, Dθ ą 0, which is equivalent to

E
“

eθλmax
‰

ă 8, Dθ ą 0.

Remark 16. Particularly, we have
`

Tr
“

eX
‰˘ϑ

ę Tr
“

eϑX
‰

, Dϑ ą 0,

pTr rXsqϑ ę Tr
“

Xϑ
‰

, Dϑ ą 0, eϑTrrXs ę Tr
“

eϑX
‰

, Dϑ ą 0, where X P

Xě0. For example, X “

«

1 0

0 1

ff

and ϑ “ 2.
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Remark 17. The channel model HH˚ is the product formulation of the

large-scale fading and small-scale fading effects.

Theorem 11. Consider the frequency-selective MIMO channel with ran-

dom power fluctuation. If each sub-channel satisfies any one of the suffi-

cient conditions in Theorem 10, then the distribution of the overall channel

capacity is light-tailed.

Proof. The proof follows that the light-tail property is preserved for the

sum of random variables.

Remark 18. The frequency-selective channel provides an additional degree

of freedom or a diversity for dependence control, i.e., the power can be

randomly allocated to each parallel channel with a total power constraint

[138, p. 182], which also provides the flexibility for each parallel channel

to possess temporal dependence in power.

Remark 19. The signal frequency randomly varies with time, due to the

fading of the in-phase and quadrature components of the signals [67]. On

the other hand, the carrier frequency is free to configure such that it varies

randomly through different periods, i.e., the random carrier frequency con-

figuration provides an additional degree of freedom for dependence control.

Remark 20. The tail property of the capacity is determined by the product

of the random power and the random eigenvalues of the channel matrix.

Thus, it is necessary to investigate the tail property of the product of two

random variables. It is reasonable to assume independence between these

two random variables, because the channel side information is not neces-

sarily known at the transmitter. On the other hand, it is interesting to

take into account the dependence for refinement.
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2.3 Random Variable Arithmetic

For a simple wireless channel, the tail property of capacity is determined by

the product of the random parameters of fading and the random power, for

a compound wireless channel, the tail property of capacity is determined

by the sum of the capacities of each sub-channel. Thus, it is interesting to

study the tail property of the product and sum of random variables.

We study the impact of the tail property of one random variable on

the overall product or sum distribution. We consider the nonnegative

functions, fpxq and gpxq, and define the asymptotic notations, fpxq “

Opgpxqq ðñ lim sup
xÑ8

fpxq
gpxq ă 8, fpxq “ Ωpgpxqq ðñ lim inf

xÑ8

fpxq
gpxq ą

0, fpxq “ Θpgpxqq ðñ fpxq “ Opgpxqq
Ş

fpxq “ Ωpgpxqq, fpxq “

opgpxqq ðñ lim
xÑ8

fpxq
gpxq “ 0, fpxq “ ωpgpxqq ðñ lim

xÑ8

fpxq
gpxq “ 8, and

fpxq „ gpxq ðñ lim
xÑ8

fpxq
gpxq “ 1.

We define a class of functions F, @ϕ P F, ϕ : Rě0 Ñ Rě0, such that

lim
xÑ8

ϕpxq “ 8 and lim
xÑ8

ϕpxq
x “ 0, i.e.,

F “

"

ϕ : Rě0 Ñ Rě0; lim
xÑ8

ϕpxq “ 8, lim
xÑ8

ϕpxq

x
“ 0

*

. (2.100)

For example, ϕpxq “ xα, 0 ă α ă 1, or ϕpxq “ logpxq. This class of func-

tions are useful in decomposing the distribution function of the product or

sum of random variables.

We study the asymptotic behavior of the composition of the function

F and some classes of tail distributions, e.g., the light-tail distribution,

the regularly varying distribution F P Rě0, and the long-tail distribution

F P L (containing the subexponential distribution as a subset).

Lemma 3. Consider the independent random variables Xi : Ω Ñ Rě0,

i P t1, 2u.

1. If F1 P L, i.e., lim
xÑ8

FX1
px´yq

FX1
pxq

“ 1, @y ą 0, then, FX1px´ ϕpxqq „
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FX1pxq and FX1

´

log x
ϕpxq

¯

„ FX1plog xq, @ϕ P F. We specify ϕpxq “ xα,

0 ă α ă 1.

(a) If FX1pxq “ Ω
`

x´θ1
˘

, θ1 ą 0, and FX2pxq “ O
`

e´θ2x
˘

, θ2 ą 0, then,

FX2pϕpxqq “ O
`

FX1pxq
˘

.

(b) If FX1pxq “ Ω
`

x´θ1
˘

, θ1 ą 0, and FX2pxq “ O
`

x´θ2
˘

, θ2 ą 0, and

αθ2 ą θ1, then, FX2pϕpxqq “ O
`

FX1pxq
˘

.

2. If F1 P R, i.e., FX1pxq “ L1pxqx
´θ1, where θ1 ě 0, and lim

xÑ8

L1ptxq
L1pxq

“ 1,

@t ą 0, then, FX1px´ ϕpxqq „ FX1pxq, @θ1 ě 0, and FX1

´

x
ϕpxq

¯

“

ω
`

FX1pxq
˘

, @θ1 ą 0 and FX1

´

x
ϕpxq

¯

„ FX1pxq for θ1 “ 0, @ϕ P F. We

specify ϕpxq “ xα, 0 ă α ă 1.

(a) If FX2pxq “ O
`

e´θ2x
˘

, θ2 ą 0, then, FX2pϕpxqq “ O
`

FX1pxq
˘

. If

FX2pxq “ Θ
`

e´θ2x
˘

, θ2 ą 0, then, FX2pϕpxqq “ o
`

FX1pxq
˘

.

(b) If FX2pxq “ O
`

x´θ2
˘

, θ2 ą 0, and αθ2 ą θ1, then, FX2pϕpxqq “

O
`

FX1pxq
˘

. If FX2pxq “ Θ
`

x´θ2
˘

, θ2 ą 0, and αθ2 ą θ1, then,

FX2pϕpxqq “ o
`

FX1pxq
˘

.

3. If FX1pxq “ Θ
`

x´θ1
˘

, θ1 ą 0, then, FX1px´ ϕpxqq “ Θ
`

FX1pxq
˘

and

FX1

´

x
ϕpxq

¯

“ ω
`

FX1pxq
˘

, @ϕ P F. We specify ϕpxq “ xα, 0 ă α ă 1.

(a) If FX2pxq “ O
`

e´θ2x
˘

, θ2 ą 0, then, FX2pϕpxqq “ O
`

FX1pxq
˘

. If

FX2pxq “ Θ
`

e´θ2x
˘

, θ2 ą 0, then, FX2pϕpxqq “ o
`

FX1pxq
˘

.

(b) If FX2pxq “ O
`

x´θ2
˘

, θ2 ą 0, and αθ2 ě θ1, then, FX2pϕpxqq “

O
`

FX1pxq
˘

. If FX2pxq “ Θ
`

x´θ2
˘

, θ2 ą 0, and αθ2 ą θ1, then,

FX2pϕpxqq “ o
`

FX1pxq
˘

.

4. If FX1pxq “ Θ
`

e´θ1x
˘

, θ1 ą 0, then, FX1

´

x
ϕpxq

¯

“ ω
`

FX1pxq
˘

and

FX1px´ ϕpxqq “ ω
`

FX1pxq
˘

, @ϕ P F.

(a) If FX2pxq “ Θ
`

e´θ2x
˘

, θ2 ą 0, then, FX2pϕpxqq “ ω
`

FX1pxq
˘

, @ϕ P

F.
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(b) If FX2pxq “ Θ
`

x´θ2
˘

, θ2 ą 0, then, FX2pϕpxqq “ ω
`

FX1pxq
˘

, @ϕ P F.

Proof. The proofs follow the given conditions and the definition of the

asymptotic symbols.

1. By the given condition, we have lim
xÑ8

FX1
px´ϕpxqq

FX1
pxq

“ 1, @ϕ P F. Thus,

FX1px´ ϕpxqq „ FX1pxq. Considering F ˝ log P R0, @F P L, we have

lim
xÑ8

FX1

´

log x
ϕpxq

¯

FX1
plog xq

“ lim
xÑ8

ˆ

log x
ϕpxq

log x

˙´θ1

“ lim
xÑ8

´

1´ logϕpxq
log x

¯´θ1
“ 1, Dθ1 ą

0, @ϕ P F. Thus, FX1

´

log x
ϕpxq

¯

„ FX1plog xq.

Since FX1pxq “ Ω
`

x´θ1
˘

, θ1 ą 0 ðñ Dx1 ą 0, @x ą x1, DC1 ą 0,

FX1pxq ě C1x
´θ1 ; FX2pxq “ O

`

e´θ2x
˘

, θ2 ą 0 ðñ Dx2 ą 0, @x ą x2,

DC2 ą 0, FX2pxq ď C2e
´θ2x. Letting x0 “ maxpx1, x2q and lim

xÑ8
:“

inf
x˚ąx0

sup
xěx˚

, we obtain

lim sup
xÑ8

FX2pϕpxqq

FX1pxq
ď lim

xÑ8

C2e
´θ2ϕpxq

C1x´θ1
“ lim

xÑ8

C2
C1
xθ1

ř8
n“0

pθ2xαq
n

n!

“ 0.

Thus, we obtain FX2pϕpxqq “ O
`

FX1pxq
˘

.

Similarly, if FX1pxq “ Ω
`

x´θ1
˘

, Dθ1 ą 0, and FX2pxq “ O
`

x´θ2
˘

,

Dθ2 ą 0, ϕpxq “ xα, 0 ă α ă 1, and αθ2 ą θ1, then

lim sup
xÑ8

FX2pϕpxqq

FX1pxq
ď inf

x˚ąx0
sup
xěx˚

C2pϕpxqq
´θ2

C1x´θ1
“ inf

x˚ąx0
sup
xěx˚

C2

C1

xθ1

xαθ2
“ 0.

When αθ2 “ θ1, the limit is also finite. Thus, we obtain FX2pϕpxqq “

O
`

FX1pxq
˘

.

2. By the given condition, we have

lim
xÑ8

FX1px´ ϕpxqq

FX1pxq
“ lim

xÑ8

L1px´ ϕpxqq

L1pxq

ˆ

1´
ϕpxq

x

˙θ1

“ 1,
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@ϕ P F, because we obtain t “ 1 for x ´ ϕpxq “ tx as x Ñ 8. Thus,

we obtain FX1px´ ϕpxqq „ FX1pxq. Similarly, we have lim
xÑ8

FX1

´

x
ϕpxq

¯

FX1
pxq

“

lim
xÑ8

L1

´

x
ϕpxq

¯

L1pxq
pϕpxqqθ1 , @ϕ P F. Thus, FX1

´

x
ϕpxq

¯

“ ω
`

FX1pxq
˘

, @θ1 ą 0

and FX1

´

x
ϕpxq

¯

„ FX1pxq for θ1 “ 0.

Since FX2pxq “ O
`

e´θ2x
˘

, θ2 ą 0 ðñ Dx0 ą 0, @x ą x0, DC2 ą 0,

FX2pxq ď C2e
´θ2x. Then, letting lim

xÑ8
:“ inf

x˚ąx0
sup
xěx˚

,

lim sup
xÑ8

FX2pϕpxqq

FX1pxq
ď lim

xÑ8

C2e
´θ2ϕpxq

L1pxqx´θ1
“ lim

xÑ8

C2

L1pxq

xθ1
ř8
n“0

pθ2xαq
n

n!

“ 0,

where limxÑ8 x
εL1pxq “ 8, @ε ą 0, follows the representation theorem of

the slowly varying function. Thus, we obtain FX2pϕpxqq “ O
`

FX1pxq
˘

.

Similarly, for FX2pxq “ O
`

x´θ2
˘

, αθ2 ą θ1, we have

lim sup
xÑ8

FX2pϕpxqq

FX1pxq
ď inf

x˚ąx0
sup
xěx˚

C2x
´θ2α

L1pxqx´θ1
“ 0.

The proof of the rest results follows the previous proofs, by considering

the complementary lim inf
xÑ8

p¨q and by noticing the fact that, the limit lim
xÑ8

p¨q

exists if and only if lim inf
xÑ8

p¨q “ lim sup
xÑ8

p¨q.

3. Since FX1pxq “ Θ
`

x´θ1
˘

, θ1 ą 0, we have, DCu1 ą 0, DC l1 ą 0, Dx0 ą 0,

@x ą x0, C l1x
´θ1 ď FX1pxq ď Cu1 x

´θ1 , and DCu
1

1 ą 0, DC l
1

1 ą 0, Dx10 ą 0,

@x ą x10, C l
1

1 x
´θ1 ď FX1pxq ď Cu

1

1 x
´θ1 . Let x˚0 “ max px0, x

1
0q. Then,

we obtain lim sup
xÑ8

FX1
px´ϕpxqq

FX1
pxq

ď inf
x˚ąx˚0

sup
xěx˚

Cu
1

1

Cl1

´

1´ ϕpxq
x

¯θ1
“

Cu
1

1

Cl1
, and

lim inf
xÑ8

FX1
px´ϕpxqq

FX1
pxq

ě
Cl
1

1
Cu1
, where

Cl
1

1
Cu1

ď
Cu
1

1

Cl1
, because C l1 ď Cu1 and C l

1

1 ď

Cu
1

1 . Thus, we obtain FX1px´ ϕpxqq “ Θ
`

FX1pxq
˘

.

Since FX1pxq “ Θ
`

x´θ1
˘

, θ1 ą 0, we have that lim sup
xÑ8

FX1

´

x
ϕpxq

¯

FX1
pxq

ď
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inf
x˚ąx0

sup
xěx˚

C˚pϕpxqqθ1 “ 8, @C˚ ą 0, @ϕ P F. Similarly, lim inf
xÑ8

FX1

´

x
ϕpxq

¯

FX1
pxq

ě

8. Thus, we obtain FX1

´

x
ϕpxq

¯

“ ω
`

FX1pxq
˘

.

The proofs of the rest results are analogical to the previous proofs, by

considering lim
xÑ8

p¨q, lim inf
xÑ8

p¨q, and lim sup
xÑ8

p¨q.

4. Since FX1pxq “ Θ
`

e´θ1x
˘

, θ1 ą 0, we have

lim sup
xÑ8

FX1px{ϕpxqq

FX1pxq
ď inf

x˚ąx0
sup
xěx˚

C˚e´θ1px{ϕpxq´xq “ 8,

@0 ă C˚ ă 8, @ϕ P F; and lim inf
xÑ8

FX1

´

x
ϕpxq

¯

FX1
pxq

ě sup
x˚ąx0

inf
xěx˚

C‹e
´θ1

´

x
ϕpxq

´x
¯

“

8, @0 ă C‹ ă 8 and @ϕ P F. Thus, FX1

´

x
ϕpxq

¯

“ ω
`

FX1pxq
˘

. The proof

of the other result follows analogically.

Since FXipxq “ Θ
`

e´θix
˘

, θi ą 0, i P t1, 2u, we have

lim sup
xÑ8

FX2pϕpxqq

FX1pxq
ď inf

x˚ąx0
sup
xěx˚

C˚
e´θ2ϕpxq

e´θ1x
“ 8,

where the last step follows lim
xÑ8

x
ϕpxq “ 8. Similarly, lim inf

xÑ8

FX2
pϕpxqq

FX1
pxq

ě 8.

Thus, FX2pϕpxqq “ ω
`

FX1pxq
˘

.

Since FX2pxq “ Θ
`

x´θ2
˘

, θ2 ą 0, we have FX2pxq “ ω
`

FX1pxq
˘

, @θ2 ą

0. Letting x “ ϕpyq, then FX2pϕpyqq “ ω
`

FX1pϕpyqq
˘

, @ϕ P F. Since

FX1pϕpyqq “ FX1pyq, thus, FX2pϕpyqq “ ω
`

FX1pyq
˘

, @θ2 ą 0, @ϕ P F.

Remark 21. It is interesting to notice that, from the light-tail to the heavy-

tail distributions, the tail behaviors go from FX1

´

x
ϕpxq

¯

“ ω
`

FX1pxq
˘

and

FX1px´ ϕpxqq “ ω
`

FX1pxq
˘

to FX1

´

x
ϕpxq

¯

„ FX1pxq and FX1px´ ϕpxqq „
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FX1pxq, @ϕ P F. It is impossible to have FX1

´

x
ϕpxq

¯

“ o
`

FX1pxq
˘

or

FX1px´ ϕpxqq “ o
`

FX1pxq
˘

, because the complementary cumulative dis-

tribution function is non-increasing.

Remark 22. It is known that [42] the distribution function F P L if and

only if F ˝ log P R0, where pf ˝ gqpxq “ fpgpxqq. The distribution function

F is regularly varying, i.e., F P Rą0, if and only if, there exists a positive

function, aptq, such that [45]

lim
tÑ8

F ptxq ´ F ptq

aptq
“

1´ xα

α
, x ą 0. (2.101)

These distribution functions have polynomially decaying tail. Letting αÑ

0, we obtain [45]

lim
tÑ8

F ptxq ´ F ptq

aptq
“ logpxq, x ą 0, (2.102)

which characterizes a class of super-heavy distribution functions with slowly

varying tails R0.

Remark 23. It is interesting to define and study a new tail behavior,

lim sup
xÑ8

eεϕpxqF pxq “ 8, @ε ą 0, Dϕ P F. Note the function F pxq is heavy-

tailed [48], if and only if lim sup
xÑ8

eεxF pxq “ 8, @ε ą 0.

We present a necessary condition for the product of random variables

to be light-tailed.

Theorem 12. Consider the independent random variables Xi : Ω Ñ R,

i P t1, . . . , Nu. The necessary condition for the existence of the moment

generating function of the product of the random variables, X “
śN
i“1Xi,

is the existence of the means of all the random variables, i.e.,

E
”

eθX
ı

ă 8, Dθ ą 0 ùñ ErXis ă 8, @i P t1, . . . , Nu. (2.103)
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Proof. It is easy to show that EX
“

eθX
‰

“ EX1

“

EX2

“

. . .EXN
“

eθX
‰‰‰

ě

eθ
śN
i“1 ErXis, where the equality follows the independence assumption and

the inequality follows the Jensen’s inequality.

Remark 24. The existence of the mean of each random variables is not

a sufficient condition for the existence of the moment generating function

of the product. For example, there can be no moment generating function

for the product of N ě 3 independent standard normal random variables

[131], except the product of N “ 2 normal random variables [31].

We present a sufficient condition on a random variable, whose prod-

uct with a fat-tail type random variable remains a fat-tail type random

variable.

Theorem 13. Consider the independent random variables Xi : Ω Ñ Rě0,

i P t1, . . . , Nu. Suppose FX1pxq “ Θ
`

x´θ
˘

, and E
”

Xθ
j

ı

ă 8, @2 ď j ď N ,

Dθ ą 0. Then, we have

FśN
i“1Xi

pxq “ Θ
´

x´θ
¯

. (2.104)

Proof. We prove the case of N “ 2 and the proof of the case N ą 2 follows

by the iteration of the same procedure.

Considering the independence between X1 and X2, for x ą 0, we have

FX1X2pxq “ E
”

FX1

´

x
X2

¯ı

, which is reformulated as

E
„

FX1

ˆ

x

X2

˙

“ E
„

FX1

ˆ

x

X2

˙

10ăX2ďϕ2pxq



` E
„

FX1

ˆ

x

X2

˙

1X2ąϕ2pxq



.

Since FX1pxq “ Θ
`

x´θ
˘

, we have, Dx0 ą 0, DC1, C
1
1 ą 0, @x ą x0

and @x{x1 ą x0, FX1pxq ě C1x
´θ and FX1px{x

1q ď C 11px{x
1q´θ, and
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lim sup
xÑ8

FX1
px{x1q

FX1
pxq

ď
C11
C1
px1qθ. Then,

lim sup
xÑ8

lim
ϕ2pxqÑ8

ż

pϕ2pxq,8q

PpX1 ą x{x1q

PpX1 ą xq
PX2pdx

1q

“ lim
ϕ2pxqÑ8

ż

pϕ2pxq,8q
lim sup
xÑ8

PpX1 ą x{x1q

PpX1 ą xq
PX2pdx

1q ď 0.

Similarly, lim inf
xÑ8

lim
ϕ2pxqÑ8

ş

pϕ2pxq,8q
PpX1ąx{x1q
PpX1ąxq

PX2pdx
1q ě 0. Thus, we obtain

E
”

FX1

´

x
X2

¯

1X2ąϕ2pxq

ı

“ o
`

x´θ
˘

.

Similarly, we have

lim sup
xÑ8

lim
ϕ2pxqÑ8

ż

p0,ϕ2pxqs

PpX1 ą x{x1q

PpX1 ą xq
PX2pdx

1q

“ lim
ϕ2pxqÑ8

ż

p0,ϕ2pxqs
lim sup
xÑ8

PpX1 ą x{x1q

PpX1 ą xq
PX2pdx

1q ď C˚E
”

pX2q
θ
ı

,

DC˚ ą 0. On the other hand, lim inf
xÑ8

lim
ϕ2pxqÑ8

ş

p0,ϕ2pxqs
PpX1ąx{x1q
PpX1ąxq

PX2pdx
1q ě

C‹E
”

pX2q
θ
ı

, DC‹ ą 0. Thus, E
”

FX1

´

x
X2

¯

10ăX2ďϕ2pxq

ı

“ Θ
`

x´θ
˘

.

The proof completes by the fact that, if fpxq “ ophpxqq and gpxq “

Θphpxqq then fpxq ` gpxq “ Θphpxqq.

Remark 25. If there exists one and only one random variable, E
”

Xθ
j

ı

“ 0,

j P t2, 3, . . . , Nu, @θ ą 0, then FśN
i“1Xi

pxq “ o
`

x´θ
˘

. Letting this random

variable be the last one for multiplication yields the proof.

Remark 26. Since fpxq „ gpxq ùñ fpxq “ Θpgpxqq, if FX1pxq „

C1x
´θ, DC1 ą 0, and E

”

Xθ
j

ı

ă 8, @2 ď j ď N , Dθ ą 0, then, FśN
i“1Xi

pxq “

Θ
`

x´θ
˘

.

Remark 27. If FX1pxq „ C1x
´θ, DC1 ą 0, and E

”

Xθ
j

ı

ă 8, @2 ď j ď N ,
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Dθ ą 0, then,

FśN
i“1Xi

pxq „
N
ź

j“2

E
”

Xθ
j

ı

¨ C1x
´θ. (2.105)

The proof of the case N “ 2 is available in [18] and the proof of the general

case follows by iteration.

We present a sufficient condition on a random variable, whose product

with a fat-tail upper bounded random variable remains a fat-tail upper

bounded random variable.

Theorem 14. Consider the independent random variables Xi : Ω Ñ Rě0,

i P t1, . . . , Nu. Suppose FX1pxq “ O
`

x´θ
˘

, Dϕj P F, FXj pϕjpxqq “

O
`

x´θ
˘

, and E
”

Xθ
j

ı

ă 8, @2 ď j ď N , Dθ ą 0. Then, we have

FśN
i“1Xi

pxq “ O
´

x´θ
¯

. (2.106)

Proof. We prove the case of N “ 2 and the proof of the case N ą 2 follows

by the iteration of the same procedure.

Considering the independence between X1 and X2, for x ą 0, we have

FX1X2pxq “ E
”

FX1

´

x
X2

¯ı

, which is reformulated as

E
„

FX1

ˆ

x

X2

˙

“ E
„

FX1

ˆ

x

X2

˙

10ăX2ďϕ2pxq



` E
„

FX1

ˆ

x

X2

˙

1X2ąϕ2pxq



.

Since 0 ď FX1pxq ď 1, we have that 0 ď E
”

FX1

´

x
X2

¯

1X2ąϕ2pxq

ı

ď

PpX2 ą ϕ2pxqq “ FX2pϕ2pxqq. Thus, E
”

FX1

´

x
X2

¯

1X2ąϕ2pxq

ı

“ O
`

x´θ
˘

.

Since FX1pxq “ O
`

x´θ
˘

and limxÑ8
x
X2

ě limxÑ8
x

ϕ2pxq
“ 8, we

have, Dx0 ą 0, @x ą x0, DC1 ą 0, Dθ ą 0, E
”

FX1

´

x
X2

¯

10ăX2ďϕ2pxq

ı

ď

E
„

C1

´

x
X2

¯´θ


“ C1E
“

Xθ
2

‰

x´θ. Thus, E
”

FX1

´

x
X2

¯

10ăX2ďϕ2pxq

ı

“ O
`

x´θ
˘

.

Considering the Op¨q polynomial [60], i.e., if f1pxq “ Opgpxqq and

f2pxq “ Opgpxqq then f1pxq ` f2pxq “ Opgpxqq, we have FX1X2pxq “
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E
”

FX1

´

x
X2

¯ı

“ O
`

x´θ
˘

.

Remark 28. Since limxÑ8
ϕ2pxq
x “ 0, we have, Dx0 ą 0, @x ą x0, x ě

ϕ2pxq and FX2pxq ď FX2pϕ2pxqq. Thus, if FX2pϕ2pxqq “ O
`

x´θ
˘

, where

limxÑ8 ϕ2pxq “ 8, then FX2pxq “ O
`

x´θ
˘

.

Remark 29. A related result concerning the sharp approximation, F pxq „

Cx´θ, where θ ą 0 and C ą 0 is a constant, is available in [125]. Another

reference is [68].

Remark 30. For the tail behavior of the capacity, it is sufficient to study

the fpxq “ Opgpxqq approximation rather than the sharper fpxq „ gpxq

approximation, because a light-tailed distribution of capacity can bear as

heavy as fat-tailed distributions of the random power and the random fade

in the logarithm function of the capacity.

We present the results of the tail upper bounds of the product and sum

of random variables.

Theorem 15. Consider the independent random variables Xi : Ω Ñ Rě0,

i P t1, . . . , Nu.

1. Suppose, Dϕj P F, FXj pϕjpxqq “ O
`

FX1pxq
˘

, and FX1px{ϕjpxqq “

O
`

FX1pxq
˘

, @2 ď j ď N . Then, we have

FśN
i“1Xi

pxq “ O
`

FX1pxq
˘

. (2.107)

2. Suppose, Dϕj P F, FXj pϕjpxqq “ O
`

FX1pxq
˘

, and FX1px´ ϕjpxqq “

O
`

FX1pxq
˘

, @2 ď j ď N . Then, we have

FřN
i“1Xi

pxq “ O
`

FX1pxq
˘

. (2.108)

Proof. We prove the case of N “ 2 and the proof of the case N ą 2

follows by the iteration of the same procedure and by the fact that [60], if

fpxq “ Opgpxqq and gpxq “ Ophpxqq then fpxq “ Ophpxqq.
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Considering the independence between X1 and X2, for x ą 0, we have

FX1X2pxq “ E
”

FX1

´

x
X2

¯ı

, which is reformulated as

E
„

FX1

ˆ

x

X2

˙

“ E
„

FX1

ˆ

x

X2

˙

10ăX2ďϕ2pxq



` E
„

FX1

ˆ

x

X2

˙

1X2ąϕ2pxq



.

Since 0 ď FX1pxq ď 1, we have that 0 ď E
”

FX1

´

x
X2

¯

1X2ąϕ2pxq

ı

ď

PpX2 ą ϕ2pxqq “ FX2pϕ2pxqq. Thus, E
”

FX1

´

x
X2

¯

1X2ąϕ2pxq

ı

“ O
`

FX1pxq
˘

.

Since FX1pxq is nonincreasing, we have E
”

FX1

´

x
X2

¯

10ăX2ďϕ2pxq

ı

ď

FX1

´

x
ϕ2pxq

¯

. Thus, E
”

FX1

´

x
X2

¯

10ăX2ďϕ2pxq

ı

“ O
`

FX1pxq
˘

.

Considering the Op¨q polynomial [60], i.e., if f1pxq “ Opgpxqq and

f2pxq “ Opgpxqq then f1pxq ` f2pxq “ Opgpxqq, we have FX1X2pxq “

E
”

FX1

´

x
X2

¯ı

“ O
`

x´θ
˘

.

The proof of the result for the sum of random variables follows analog-

ically.

Remark 31. Since limxÑ8
ϕ2pxq
x “ 0, we have, Dx0 ą 0, @x ą x0, x ě

ϕ2pxq and FX2pxq ď FX2pϕ2pxqq. Thus, if FX2pϕ2pxqq “ O
`

FX1pxq
˘

,

where limxÑ8 ϕ2pxq “ 8, then FX2pxq “ O
`

FX1pxq
˘

.

We present a further result, which indicates that the tail behavior of the

random variables product can not be effectively transformed from heavy

to light, by the product or sum with other random variables, when there is

a slowly varying distribution F P R0 in the product or a regularly varying

distribution F P R in the sum.

Theorem 16. Consider the independent random variables Xi : Ω Ñ Rě0,

i P t1, . . . , Nu.

1. Suppose, Dϕj P F, FXj pϕjpxqq “ o
`

FX1pxq
˘

, F1 P R0, i.e., FX1ptxq „

FX1pxq, @t ą 0, @2 ď j ď N . Then, we have

FśN
i“1Xi

pxq „ FX1pxq. (2.109)
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2. Suppose, Dϕj P F, FXj pϕjpxqq “ o
`

FX1pxq
˘

, FX1 P L, i.e., FX1px´ tq „

FX1pxq, @t ą 0, @2 ď j ď N . Then, we have

FřN
i“1Xi

pxq „ FX1pxq. (2.110)

Proof. We prove the case of N “ 2 and the proof of the case N ą 2 follows

by the iteration of the same procedure.

Considering the independence between X1 and X2, for x ą 0, we have

FX1X2pxq “ E
”

FX1

´

x
X2

¯ı

, which is reformulated as

E
„

FX1

ˆ

x

X2

˙

“ E
„

FX1

ˆ

x

X2

˙

10ăX2ďϕ2pxq



` E
„

FX1

ˆ

x

X2

˙

1X2ąϕ2pxq



.

Since 0 ď FX1pxq ď 1, we have that 0 ď E
”

FX1

´

x
X2

¯

1X2ąϕ2pxq

ı

ď

PpX2 ą ϕ2pxqq “ FX2pϕ2pxqq. Thus, E
”

FX1

´

x
X2

¯

1X2ąϕ2pxq

ı

“ o
`

FX1pxq
˘

.

In addition, we have E
”

FX1

´

x
X2

¯

10ăX2ďϕ2pxq

ı

„ E
”

FX1

´

x
X2

¯ı

, which

follows the Lebesgue dominated convergence theorem. Since E
”

FX1

´

x
X2

¯ı

“

ş

FX1

´

x
x2

¯

dFX2px2q „
ş

FX1pxqdFX2px2q “ FX1pxq, which follows that

FX1 is slowly varying, i.e., FX1ptxq „ FX1pxq, @t ą 0, thus, we obtain

E
”

FX1

´

x
X2

¯

10ăX2ďϕ2pxq

ı

„ FX1pxq.

Considering the asymptotics polynomial [60], i.e., if f1pxq “ opgpxqq

and f2pxq „ gpxq then f1pxq ` f2pxq „ gpxq, we obtain that FX1X2pxq “

E
”

FX1

´

x
X2

¯ı

„ FX1pxq.

The proof of the result for the sum of random variables follows analog-

ically.

Remark 32. According to Lemma 3, the situation for the product of

random variables appears for slowly varying distributions F1 P R0, and

Fjpxq “ Θ
`

x´θj
˘

or Fjpxq “ Θ
`

e´θjx
˘

, θj ą 0, j P t2, . . . , Nu; and the

situation for the sum of random variables appears for regularly varying dis-
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tributions F1 P Rě0, and Fjpxq “ Θ
`

x´θj
˘

or Fjpxq “ Θ
`

e´θjx
˘

, θj ą 0,

j P t2, . . . , Nu.

Remark 33. It is interesting to study the possibility of transforming the

tail heaviness of a random variable from heavy to light through some func-

tions with other random variables, e.g., for some special cases.

Remark 34. The asymptotic behavior of the right tail of the sum of the

random variables can be insensible to both positive and negative dependence

[2][133][77][10][52], while the asymptotic behavior of the left tail can be

connected with the dependence structures [56][134]. In addition, there are

scenarios, where the right tail of the sum distribution is sensitive to the

dependence structures [2].

Remark 35. The tail behavior of the product distribution is more com-

plicated. For example, it is shown that the product distribution of two in-

dependent random variables with exponential distributions is subexponen-

tial [132][88]. Particularly, the dependence among the random variables

are crucial for the tail behavior of the product distribution [69][58][22],

e.g., the dependence can either decrease or increase the product distribution

tail heaviness compared to the independence scenario [69][144]. In addi-

tion, the tail of the product distribution with dependence can be asymptoti-

cally bounded above and below by the tail of a dominating random variable

[145][22] or can be asymptotically bounded above and below by the tail with

assumption of independence [69][144].

Remark 36. It is interesting to investigate the extreme influence of the de-

pendence among the random parameters in the wireless channel capacity on

the tail behavior of the marginal distribution of the capacity, e.g., whether

or not the dependence between two light-tailed or heavy-tailed random vari-

ables can cause a super-heavy tail of the product or sum distribution. For

example, considering the comonotonic random variables with identical dis-

tributions [37], Xi „ X, 1 ď i ď N , we have F ř

1ďiďN
Xipxq “ FXpx{Nq
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and F ś

1ďiďN
Xipxq “ FX

`

x1{N
˘

, compared to the distribution FXpxq, the

sum distribution FXpx{Nq is scale invariant for Pareto Type I distribu-

tion and asymptotically scale invariant for regular varying distributions,

and the product distribution FX
`

x1{N
˘

has a smaller tail index for Pareto

Type I distribution.

Remark 37. The tail asymptotic is investigated in [125] for the product

and sum of random variables in terms of the asymptotic equality fpxq „

gpxq. In this work, we extend the analysis to specific heavy-tailed and

light-tailed distribution classes, e.g., the long-tail distribution, the regular

varying distribution, and the light-tailed distribution. Specifically, we find

that the slowly varying distribution can dominate the tail behavior for the

sum and product distribution. Moreover, we extend the analysis beyond the

asymptotic equality to more asymptotic notations, e.g., fpxq “ Opgpxqq,

fpxq “ Θpgpxqq, fpxq “ ωpgpxqq, and fpxq “ opgpxqq. Since the capac-

ity is a logarithm transform of the product of the power and the fading

random variable, the less strict asymptotic bound provides more flexibility

than the asymptotic equality, i.e., it has less restriction and can capture

more distribution scenarios, most importantly, it is sufficiently enough to

investigate the light-tail behavior that is defined by the asymptotic bound

fpxq “ Opgpxqq. Another related work is [132], which provides conditions

for the product of a light-tailed random variable and a heavy-tailed random

variable to be heavy-tailed. In contrast to the result with asymptotic preci-

sion up to some distribution classes in [132], we show results of the exact

tail domination with respect to a certain distribution function in this work.



Chapter 3

The Facts of Dependence

There are two kinds of stochastic processes in the stochastic systems, the

uncontrollable parameter processes and controllable parameter processes,

which correspond to two kinds of dependence, the uncontrollable depen-

dence and controllable dependence, which provide a degree of freedom to

trade off for the system performance benefits. For example, the dependence

that exists in the fading process of the wireless channels is uncontrollable,

and the dependence that appears in the power process is controllable.

In this chapter, we consider the performance analysis of the queueing

system, e.g., the wireless channel, we study the influence of dependence

in the arrival process and service process on the performance measures,

i.e., the backlog and delay, and we develop the dependence manipula-

tion techniques to transform the dependence structure of the stochastic

processes. The measurability of the dependence with respect to the per-

formance measures, the duality of the dependence in the arrival process

and service process, and the transformability of the dependence structure

constitute the theory of dependence control.

69
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3.1 Foundation

3.1.1 Queueing Behavior

We consider a queueing system with arrival process aptq, service process

cptq, and the temporal increment in the system

Xptq “ aptq ´ cptq. (3.1)

The queueing behavior is expressed through the backlogBptq in the system,

which is a reflected process of the temporal increment Xptq [6], i.e.,

Bpt` 1q “ rBptq `Xptqs` . (3.2)

Assuming Bp0q “ 0, the backlog function is then expressed as

Bptq “ sup
0ďsďt

pAps, tq ´ Sps, tqq, (3.3)

where Aps, tq “
řt
i“s`1 apiq and Sps, tq “

řt
i“s`1 cpiq are respectively the

cumulative arrival process and the cumulative service process. Specifically,

we denote Ap0, tq ” Aptq and Sp0, tq ” Sptq. For a lossless system, the

output A˚ptq is the difference between the arrival input and backlog, i.e.,

A˚ptq “ Aptq ´Bptq, (3.4)

and the delay is defined via the input-output relationship, i.e.,

Dptq “ inf td ě 0 : Apt´ dq ď A˚ptqu , (3.5)

which is the virtual delay that a hypothetical arrival has experienced on

departure.

Consider the infinite time horizon and the time reversal assumption
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that is introduced in Appendix A.3. The delay tail probability is expressed

as

PpD ą dq “ P
"

sup
těd

tApd, tq ´ Sp0, tqu ą 0

*

, (3.6)

which follows that PpDptq ą dq “ P tApt´ dq ą A˚ptqu “ PtApt ´ dq ą

inf0ďsďttAp0, sq`Sps, tquu and the last step follows the time reversal with

respect to time τ “ 8. The backlog tail probability is expressed as

PpB ą bq “ P
"

sup
tě0
pAp0, tq ´ Sp0, tqq ą b

*

, (3.7)

which follows that PpBptq ą bq “ Ptsup0ďsďtpAps, tq ´ Sps, tqq ą bu and

the last step follows the time reversal with respect to time τ “ 8.

3.1.2 More Assumptions

In addition to the time reversal assumption in the tail probability expres-

sions of delay and backlog, we specify the cumulant generating functions

of the cumulative arrival process Aptq, the cumulative service process Sptq,

and the increment process of the queue Aptq ´ Sptq.

The assumption for the queue increment process is as follows [53], with-

out assumption on the dependence between the arrival process and service

process.

Assumption 1. Denote Sptq “ Aptq ´ Sptq and Xptq “ aptq ´ cptq. As-

sume that there exist γ, ε ą 0 such that

1. κtpθq “ logEeθSptq is well-defined and finite for γ ´ ε ă θ ă γ ` ε;

2. lim sup
tÑ8

EeθXptq ă 8 for ´ε ă θ ă ε;

3. κpθq “ lim
tÑ8

1
tκtpθq exists and is finite for γ ´ ε ă θ ă γ ` ε;

4. κpγq “ 0 and κ is differentiable at γ with 0 ă 9κpγq ă 8.
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Assuming independence between the arrival and service process, we get

an alternative expression [53].

Assumption 2. Assume independence between the sequences of aptq and

cptq, t ě 0. Let γ, ε ą 0 be as in Assumption 1 such that

1. κAt pθq “ logEeθAptq is well-defined and finite for γ ´ ε ă θ ă γ ` ε;

2. lim sup
tÑ8

Eeθaptq ă 8 for ´ε ă θ ă ε;

3. κApθq “ lim
tÑ8

1
tκ

A
t pθq exists, is differentiable at γ, and is finite for

γ ´ ε ă θ ă γ ` ε;

4. κ´St pθq “ logEe´θSptq is well-defined and finite for γ´ ε ă θ ă γ` ε;

5. lim sup
tÑ8

Ee´θcptq ă 8 for ´ε ă θ ă ε;

6. κ´Spθq “ lim
tÑ8

1
tκ
´S
t pθq exists, is differentiable at γ, and is finite for

γ ´ ε ă θ ă γ ` ε;

7. κpθq “ κApθq ` κ´Spθq.

The Assumption 1 and Assumption 2 apply to the scenarios [7], where

there are weak forms of dependence, e.g., Markov dependence, and the

average of the cumulant generating function exists and converges, e.g.,

light-tailed process.

Remark 38. The asymptotic independence [52] is a weak form depen-

dence, which is neither too positively nor too negatively dependent, and

the strong forms of dependence are association and regression [83][39].

Another weak form of dependence is shown in [77]. It is interesting to

provide a review of the dependence concepts in the literature.
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3.1.3 Change of Measure

We introduce a change of measure for a1, . . . , an, c1, . . . , cn,

rFn pda1, . . . , dan, dc1, . . . , dcnq

“ eγsn´κnpγqFn pda1, . . . , dan, dc1, . . . , dcnq , (3.8)

where Fn is the distribution of a1, . . . , an, c1, . . . , cn and sn “ a1 ´ c1 `

. . . ` an ´ cn. Assuming independence between a1, . . . , an and c1, . . . , cn,

the distributions of a1, . . . , an and c1, . . . , cn in the new probability measure

are given by

rFAn pda1, . . . , danq “ eγs
A
n´κ

A
n pγqFn pda1, . . . , dan,1q , (3.9)

rFSn pdc1, . . . , dcnq “ eγs
´S
n ´κ´Sn pγqFn p1, dc1, . . . , dcnq , (3.10)

where sAn “ a1 ` . . .` an, s´Sn “ ´pc1 ` . . .` cnq, and

κnpγq “ κAn pγq ` κ
´S
n pγq. (3.11)

In the new probability measure rPn, we show that, for fixed d, k P N,
Spd,n´kq

n “
Apd,n´kq´Spd,n´kq

n converges in probability to 9κpγq ” B
Bγκpγq.

Theorem 17. Let n, d, k P N and d, k ă 8, and rµ ” 9κpγq. Then,

lim
nÑ8

rPn
ˆˇ

ˇ

ˇ

ˇ

Spd, n´ kq

n
´ rµ

ˇ

ˇ

ˇ

ˇ

ą η

˙

“ 0, @η ą 0. (3.12)

An equivalent expression of the above theorem is the following theorem.

Particularly, the probability zn is set to facilitate the proof of Theorem 19.

Theorem 18. Let n, d, k P N and d, k ă 8, and rµ ” 9κpγq. For each

η ą 0, there exist z ” zpηq P p0, 1q and n0 such that

rPn
ˆˇ

ˇ

ˇ

ˇ

Spd, n´ kq

n
´ rµ

ˇ

ˇ

ˇ

ˇ

ą η

˙

ď zn, for n ě n0. (3.13)
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Proof. Let 0 ă θ ă ε, where ε is as in Assumption 1. Note E
“

eθpSpnq´Spn´kqq
‰

ă 8 for all |θ| ă δ for some δ ą 0 by Assumption 1 (2).

According to Chernoff bound,

rPn
ˆ

Spn´ kq ´Spdq

n
´ rµ ą η

˙

(3.14)

ď e´θnprµ`ηqrEn
”

eθpSpn´kq´Spdqq
ı

(3.15)

“ e´θnprµ`ηqEn
”

eθpSpn´kq´Spdqq ¨ eγSpnq´κnpγq
ı

(3.16)

“ e´θnprµ`ηq´κnpγqEn
”

epθ`γqSpnq´θSpdq´θSpn´k,nq
ı

(3.17)

ď e´θnprµ`ηq´κnpγq
„

”

Enep̂ppθ`γqSpnq
ı1{p̂ ”

Ene´q̂pθSpdq
ı1{q̂

1{p

¨

”

Ene´qθSpn´k,nq
ı1{q

(3.18)

“ e´θnprµ`ηq´κnpγq`κnpp̂ppθ`γqq{pp̂pq
”

Ene´q̂pθSpdq
ı1{pq̂pq

¨

”

Ene´qθSpn´k,nq
ı1{q

, (3.19)

where we used Hölder’s inequality twice, for positive p and q with p´1 `

q´1 “ 1, and p̂ and q̂ with p̂´1 ` q̂´1 “ 1, and we choose p and p̂ close

enough to 1 and θ close enough to 0 that |p̂ppθ`γq´γ| ă ε and |´q̂pθ´γ| ă

ε. Particularly, for k “ 0 or d “ 0, the proof needs to use Hölder’s

inequality only once; for k “ 0 and d “ 0, the proof needs no Hölder’s

inequality.

By Assumption 1 (1), Enre´q̂pθSpdqs ă 8, and by Assumption 1 (2),

En
“

e´qθpSpnq´Spn´kqq
‰1{q

ă 8 for large n, we get

lim sup
nÑ8

1

n
log rPn

ˆ

Spn´ kq ´Spdq

n
´ rµ ą η

˙

ď κpp̂ppθ ` γqq{pp̂pq ´ κpγq ´ θ prµ` ηq , (3.20)

by Taylor expansion, it is easy to see that the right hand side can be chosen
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strictly negative by setting p and p̂ close enough to 1 and θ close enough

to 0. This establishes rPnpSpd, n ´ kq{n ´ rµ ą ηq ď zn, correspondingly,
rPnpSpd, n´ kq{n´ rµ ă ´ηq ď zn follows by symmetry.

To facilitate the proof of Theorem 19, we have the following Corollary.

Corollary 4. Let n, d, k P N and d, k ă 8, and rµ ” 9κpγq. Let x P R and

x ă 8. For each η ą 0, there exist z ” zpηq P p0, 1q and n0 such that

rPn
ˆˇ

ˇ

ˇ

ˇ

Spn´ kq ´Apdq ` x

n
´ rµ

ˇ

ˇ

ˇ

ˇ

ą η

˙

ď zn, for n ě n0. (3.21)

Proof. Theorem 18 shows that the convergence is insensible to the head

and tail of the sequence. Replacing Spdq with Apdq and a finite constant

x completes the proof.

3.2 Dependence Mechanics

3.2.1 The General Rules

As a measure to identify and quantify the dependence influence, we are

interested in the asymptotic tail behavior of the delay and backlog in the

queue and we show that this measure has a monotonic relationship with the

dependence in the arrival process and the service process. Particularly, this

monotonic property is useful for understanding the trend of the dependence

influence, when the explicit results are not tractable in complex dependence

scenarios.

We derive the exact results of the asymptotic decay rate of delay and

backlog, and the logarithmic approximation implies that the asymptotic

behavior of the delay and backlog tail probability is exponential for weak

forms of dependence and light-tailed processes, which is characterized by

Assumption 1 and Assumption 2.



76 CHAPTER 3. THE FACTS OF DEPENDENCE

Theorem 19. Under the conditions in Assumption 2, the asymptotic de-

cay rates of delay and backlog are respectively

lim
dÑ8

1

d
logPpD ą dq “ ´κApγq, (3.22)

lim
bÑ8

1

b
logPpB ą bq “ ´γ, (3.23)

where γ “ θ ą 0 is the root to the stability equation κApθq ` κ´Spθq “ 0.

Proof. We only provide proof for the delay result, since the backlog result

is a trivial reduction of the delay proof. The proof is inspired by [53, 7],

by defining a new change of measure, and by noting the following result,

for large enough n,

rPn
ˆˇ

ˇ

ˇ

ˇ

Spn´ kq ´Apdq ` d

n
´ rµ

ˇ

ˇ

ˇ

ˇ

ą η

˙

ď zn. (3.24)

We first show that lim inf
dÑ8

1
d logPpD ą dq ě ´κApγq. Given η ą 0 and

let m ” mpηq “ tdp1` ηq{rµu` 1. Then

PpD ą dq ě PpSpmq ą Apdqq (3.25)

“ rEm
”

e´γSpmq`κmpγq;Spmq ´Apdq ` d ą d
ı

(3.26)

ě rEm
„

e´γSpmq`κmpγq;
Spmq ´Apdq ` d

m
´ rµ ą ´

rµη

1` η



(3.27)

ě rEm
„

e´γSpmq`κmpγq;

ˇ

ˇ

ˇ

ˇ

Spmq ´Apdq ` d

m
´ rµ

ˇ

ˇ

ˇ

ˇ

ă
rµη

1` η



(3.28)

ě rEm
„

e
´γ

´

rµ 1`2η
1`η

m`Apdq´d
¯

`κmpγq


¨rPm
ˆˇ

ˇ

ˇ

ˇ

Spmq ´Apdq ` d

m
´ rµ

ˇ

ˇ

ˇ

ˇ

ă
rµη

1` η

˙

(3.29)

“ e
´κAd γ´γrµ

1`2η
1`η

m`γd`κmpγq

¨rPm
ˆˇ

ˇ

ˇ

ˇ

Spmq ´Apdq ` d

m
´ rµ

ˇ

ˇ

ˇ

ˇ

ă
rµη

1` η

˙

, (3.30)
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where rPmp¨q goes to 1 according to Corollary 4. Since κmpγq{d

Ñ 0 and m{dÑ p1` ηq{rµ, we get

lim inf
dÑ8

1

d
logPpD ą dq ě ´κApγq ´ 2η. (3.31)

Letting η Ó 0 yields lim inf
dÑ8

1
d logPpD ą dq ě ´κApγq.

We then show that lim sup
dÑ8

1
d logPpD ą dq ď ´κApγq. Let τpdq “

inftn : Spnq ą Apdqu, then τpdq ą d and PpD ą dq “ Ppτpdq ă 8q, i.e.,

PpD ą dq “
8
ÿ

n“d`1

Ppτpdq “ nq “ I1 ` I2 ` I3 ` I4, (3.32)

where I1 “
řnpδq
n“d`1 Ppτpdq “ nq, I2 “

řtdp1´δq{rµu

n“npδq`1 Ppτpdq “ nq,

I3 “
řtdp1`δq{rµu

n“tdp1´δq{rµu`1 Ppτpdq “ nq, I4 “
ř8
n“tdp1`δq{rµu`1 Ppτpdq “ nq, npδq

is chosen such that κnpγq{n ă mintδ, p´ log zq{2u and

rPn
ˆˇ

ˇ

ˇ

ˇ

Spn´ kq ´Apdq ` d

n
´ rµ

ˇ

ˇ

ˇ

ˇ

ą
δrµ

1` δ

˙

ď zn, for k ď 1, (3.33)

for some z ă 1 and all n ą npδq. This is possible by Assumption 1 (3) and

Assumption 1 (4) and Corollary 4.

Note

Ppτpdq “ nq ď PpSpnq ą Apdqq (3.34)

“ rEn
”

e´γSpnq`κnpγq;Spnq ą Apdq
ı

(3.35)

ď e´κ
A
d pγq ¨ eκnpγq ¨ rPnpSpnq ą Apdqq, (3.36)

so that

I1 ď e´κ
A
d pγq

npδq
ÿ

n“d`1

eκnpγq, (3.37)



78 CHAPTER 3. THE FACTS OF DEPENDENCE

I2 ď e´κ
A
d pγq

tdp1´δq{rµu
ÿ

n“npδq`1

eκnpγqrPnpSpnq ą Apdqq (3.38)

ď e´κ
A
d pγq

tdp1´δq{rµu
ÿ

n“npδq`1

e´n log z{2 ¨ rPn
ˆˇ

ˇ

ˇ

ˇ

Spnq ´Apdq ` d

n
´ rµ

ˇ

ˇ

ˇ

ˇ

ą
δrµ

1` δ

˙

ď e´κ
A
d pγq

tdp1´δq{rµu
ÿ

n“npδq`1

1

zn{2
zn (3.39)

ď e´κ
A
d pγq

8
ÿ

n“0

zn{2 (3.40)

“ e´κ
A
d pγq

1

1´ z1{2
, (3.41)

I3 ď e´κ
A
d pγq

tdp1`δq{rµu
ÿ

n“tdp1´δq{rµu`1

eκnpγq (3.42)

ď e´κ
A
d pγq

tdp1`δq{rµu
ÿ

n“tdp1´δq{rµu`1

enδ (3.43)

ď e´κ
A
d pγq

ˆ

2δd

rµ
` 1

˙

eδdp1`δq{rµ. (3.44)

Finally, let Sn
n´1pdq ” tSpn´ 1q ď Apdq,Spnq ą Apdqu,

I4 ď

8
ÿ

n“tdp1`δq{rµu`1

P
`

Sn
n´1pdq

˘

(3.45)

“

8
ÿ

n“tdp1`δq{rµu`1

rEn
”

e´γSpnq`κnpγq;Sn
n´1pdq

ı

(3.46)

ď e´κ
A
d pγq

8
ÿ

n“tdp1`δq{rµu`1

eκnpγq ¨ rPn
ˆˇ

ˇ

ˇ

ˇ

Spn´ 1q ´Apdq ` d

n
´ rµ

ˇ

ˇ

ˇ

ˇ

ą
δrµ

1` δ

˙

ď e´κ
A
d pγq

8
ÿ

n“tdp1`δq{rµu`1

1

zn{2
zn (3.47)

ď e´κ
A
d pγq

1

1´ z1{2
. (3.48)



3.2. DEPENDENCE MECHANICS 79

By Assumption 1 (1) and Assumption 2 (1), we get

lim sup
dÑ8

1

d
logPpD ą dq ď ´κApγq `

δp1` δq

rµ
. (3.49)

Letting δ Ó 0 yields lim sup
dÑ8

1
d logPpD ą dq ď ´κApγq.

Remark 39. It is interesting to notice that the event Sptq ą Apdq has zero

probability for t ď d, i.e., Ppτpdq ď dq “ 0, where τpdq “ inftt : Sptq ą

Apdqu. It is interesting to notice that the probability PpD ą dq “ Ppd ă
τpdq ă 8q “ Ppτpdq ă 8q, where the last equality follows that Ppτpdq ă
8q “ Pp0 ď τpdq ď dq ` Ppd ă τpdq ă 8q and Pp0 ď τpdq ď dq “ 0.

Remark 40. The change of measure implies that the original probability

measure and the new probability measure are equivalent, i.e., sharing the

same set of null events. Specifically, the event Sptq ą Apdq on timeline

0 ď t ď d is a null event, which holds in both the original probability

measure and the new probability measure.

Remark 41. In addition to the asymptotic tail behavior of the right tail

PpX ą xq, which is about the large value violations, it is interesting to

investigate the asymptotic tail behavior of the left tail PpX ď xq [56][9],

which is important to understand the phenomena of small values.

We consider two queue increment processes with respective arrival pro-

cess and service process, Sptq “ Aptq ´ Sptq and rSptq “ rAptq ´ rSptq.

Let γ, κ´Apγq, and κ´Spγq be the asymptotic decay rates with respect

to Sptq, and let rγ, rκ´Aprγq, and rκ´Sprγq be the asymptotic decay rates

with respect to rSptq. The “positive” queue increment process Sptq “

Aptq´Sptq indicates the change of measure on the positive parameter axis,

rFnpda1, . . . , dan, dc1, . . . , dcnq “ eγSn´κ
S
n pγqFnpda1, . . . , dan, dc1, . . . , dcnq,

γ ą 0, with the stability equation κApγq ` κ´Spγq “ 0, γ ą 0. The “nega-

tive” queue increment process ´Sptq “ Sptq´Aptq indicates the change of
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measure on the negative parameter axis, rFn pda1, . . . , dan, dc1, . . . , dcnq “

e´γSn´κ
´S
n pγqFnpda1, . . . , dan, dc1, . . . , dcnq, γ ă 0, with the stability equa-

tion κSpγq ` κ´Apγq “ 0, γ ă 0. We use change of measure to explain the

duality principle.

First, we show that the ordering of the “positive” queue increment pro-

cess or “negative” queue increment process implies the ordering of the ab-

solute decay rate of the dependence measure identities. This result means

that when considering the absolute value of the measure identities, the two

ordering rules of the measure identities on the positive and negative axes

are exactly the same, because of the change of measure respectively on the

positive and negative parameter axes.

Theorem 20. Let Sptq “ Aptq ´ Sptq and rSptq “ rAptq ´ rSptq.

• If Sptq ďcx rSptq, @t P N, then 0 ă rγ ď γ; furthermore, if Sptq and rSptq

have identical service process Sptq “ rSptq, then κ´Spγq ď rκ´Sprγq ă 0.

• If ´Sptq ďcx ´rSptq, @t P N, then 0 ą rγ ě γ; furthermore, if Sptq

and rSptq have identical arrival process Aptq “ rAptq, then κ´Apγq ě

rκ´Aprγq ą 0.

Proof. We follow and extend the approach in [96]. Since the exponential

function is convex, Sptq ďcx rSptq implies EeθSptq ď EeθrSptq, thus κtpθq ď

rκtpθq and subsequently κpθq ď rκpθq, @θ P R. Since κ is convex with κp0q “

κpγq “ 0, which implies 0 ă κpθq ď rκpθq, @θ ą γ, therefore, we must have

0 ă rγ ď γ. Since κ´S is decreasing, we get κ´Spγq ď rκ´Sprγq ă 0. The

other results follow analogically.

Remark 42. The change of measure on the positive parameter axis θ ą 0

with respect to Sptq and rSptq, and the change of measure on the neg-

ative parameter axis θ ă 0 with respect to ´Sptq and ´rSptq, aims to

preserve the absolute invariance, tθSptq, θ ą 0u ” t´θSptq, θ ă 0u and
!

θrSptq, θ ą 0
)

”

!

´θrSptq, θ ă 0
)

.
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Remark 43. The closure property of convex order implies that ´Sptq ďcx

´rSptq ðñ Sptq ďcx rSptq. This is an alternative perspective on the

dependence duality to the change of measure perspective. In addition, it

indicates that the change of measure on the positive parameter axis and on

the negative parameter axis are equivalent.

Remark 44. The requirement of EeθSptq ď EeθrSptq, θ ą 0, considering

the change of measure on the positive parameter axis in the proof, implies

that the sufficient condition of convex order Sptq ďcx rSptq can be replaced

by the increasing convex order Sptq ďicx rSptq.

Remark 45. For the change of measure on the negative parameter axis,

the requirement of Ee´θSptq ď Ee´θrSptq, θ ă 0 implies that the sufficient

condition of convex order ´Sptq ďcx ´rSptq can be replaced by the increas-

ing concave order ´Sptq ěicv ´rSptq.

Remark 46. The equivalence ´Sptq ěicv ´rSptq ðñ Sptq ďicx rSptq

implies the equivalence of the change of measure on the positive parameter

axis and on the negative parameter axis.

Second, we show that the ordering of the arrival process and the service

process implies respectively the ordering of the “positive” queue increment

process and “negative” queue increment process.

Theorem 21. Let Sptq “ Aptq ´ Sptq and rSptq “ rAptq ´ rSptq.

• If Aptq ďcx rAptq, and Sptq and rSptq have identical service process Sptq “

rSptq, then Sptq ďcx rSptq.

• If Sptq ďcx rSptq, and Sptq and rSptq have identical arrival process Aptq “

rAptq, then ´Sptq ďcx ´rSptq.

Proof. Consider a convex function f . Let X “ Sptq, Y “ rSptq, and Z “

Aptq, @t. Let gpzq “ ErfpX´ zqs and hpzq “ ErfpY ´ zqs. As the function
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x ÞÑ fpx ´ zq is convex for all z P R, X ďcx Y implies gpzq ď hpzq for

all z P R. Thus, ErfpX ´ Zqs “ ErgpZqs ď ErhpZqs “ ErfpY ´ Zqs, i.e.,

Sptq ´Aptq ďcx rSptq ´Aptq. The other result follows analogically.

Remark 47. Considering Sptq “ Aptq ´ Sptq and rSptq “ rAptq ´ rSptq. If

Aptq ďicx rAptq, and Sptq and rSptq have identical service process Sptq “

rSptq, then Sptq ďicx rSptq. If Sptq ěicv rSptq, and Sptq and rSptq have

identical arrival process Aptq “ rAptq, then ´Sptq ěicv ´rSptq.

Remark 48. The increasing convex order X ďicx Y means X is smaller

and less variable than Y in some stochastic sense, and X ďicx Y ðñ

E
“

rX ´ as`
‰

ď E
“

rY ´ as`
‰

, @a P R indicates that EX ď EY is a neces-

sary and not a sufficient condition for X ďicx Y .

Remark 49. If X ďicx Y and EX ď EZ 1 ď EY , then, it is possible that

Z 1 ďicx Y , because we have X ďicx Y ðñ X ďst Z ďcx Y [127]. If

X ďicx Y , then, X ďcx Z
1 ďst Y such that Z 1 ďicx Y , because we have

X ďicx Y ðñ X ďcx Z ďst Y [127]. Complementary results hold in the

sense of the increasing concave order [127]. The mathematical relations

indicate that the mean and the variability can trade off each other, i.e.,

if the variability is relatively small, then a relatively greater mean can be

tolerated while satisfying the increasing convex order, and if the mean is

relatively small, then a relatively greater variability can be tolerated while

satisfying the increasing convex order.

Remark 50. The mean and variability trade-off with respect to the in-

creasing convex or concave order tallies with the intuition, i.e., a smaller

and less variable arrival process or a greater and less variable service pro-

cess leads to a better performance. In addition, the consistency of the

less variability of the arrival process and the service process tallies the de-

pendence duality of the arrival process and service process. On the other

hand, it indicates that the convex order describes the dependence duality

more precisely than the increasing convex or concave order.
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Remark 51. The increasing convex (concave) order is a sufficient but

not necessary condition, in other words, the order of the mean values is

not a necessary condition. A stricter sufficient condition is the moment

generating function order ďmgf (for the arrival process) and the Laplace

transform order ďLt (for the service process) [35][36][127]. In addition,

the moments order implies the moment generating function order while

the reverse is not true, i.e., X ďmom Y ùñ X ďmgf Y .

Remark 52. Since the (increasing) convex order of a partial sum of a ran-

dom vector is respectively insensitive and sensitive to the marginal vari-

ations in negative dependence scenarios and in the positive dependence

scenarios [98], the negative dependence can be utilized to maintain a stable

system that is robust to the bad marginal conditions, e.g., with small mean

value, and the positive dependence can be utilized in case of good marginal

conditions, e.g., with big mean value. Specifically, conditional on the iden-

tical marginals, the negative dependence has an advantage strictly over the

positive dependence.

Last, we show that the ordering of the arrival process and the service

process consistently implies the ordering of the absolute decay rate. This

result means that the dependence impact of the arrival process and service

process on the measure identities are dual to each other, i.e., the same type

of dependence therein influence the system performance in the same way.

Corollary 5. Let Sptq “ Aptq ´ Sptq and rSptq “ rAptq ´ rSptq.

• If Aptq ďcx rAptq, @t P N, and Sptq and rSptq have identical service

process Sptq “ rSptq, then 0 ă rγ ď γ and κ´Spγq ď rκ´Sprγq ă 0.

• If Sptq ďcx rSptq, @t P N, and Sptq and rSptq have identical arrival process

Aptq “ rAptq, then 0 ą rγ ě γ and κ´Apγq ě rκ´Aprγq ą 0.

Proof. The proof follows Theorem 20 and Theorem 21.
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In the extreme case, when both arrival process and service process are

deterministic, the asymptotic decay rate is infinity. Generally, for any

convex function φ, Jensen’s inequality is expressed as φpEr
řn
i“1Xisq ď

Erφp
řn
i“1Xiqs, by noting φpEr

řn
i“1Xisq “ ErφpEr

řn
i“1Xisqs, we obtain

that the mean of random variables has the minimum sum in convex order,

i.e.,
řn
i“1 ErXis ďcx

řn
i“1Xi, which indicates that deterministic arrival

process or service process can cause the maximum asymptotic decay rate.

Corollary 6. Under the conditions in Assumption 2. For (stationary

or non-stationary) arrival and service processes, if the mean of the time

average exists, i.e., ErXs “ lim
nÑ8

1
n

n
ř

i“1
ErXis, then the situation with the

constant arrival process with the same mean or the constant service process

with the same mean has the largest asymptotic decay rate of delay and of

backlog.

Proof. According to Jensen’s inequality, φpEr
řn
i“1Xisq ď Erφp

řn
i“1Xiqs,

@φ, where φ is a convex function. For an arbitrary sequence of random

variables, X1, X2, . . . , Xn, we have
řn
i“1 E rXis ďcx

řn
i“1Xi, i.e., the mean

of these random variables has the minimum sum in convex order. Specif-

ically, limnÑ8
1
n logEeθ

řn
i“1Xi ě θ ¨ limnÑ8

1
nEr

řn
i“1Xis, where the right

hand side is equivalent to a constant process if the limit exists. This com-

pletes the proof.

3.2.2 Markov Specialization

We adopt the definition of Markov additive process that is introduced in

Appendix B.2. We derive the non-asymptotic tail probabilities of delay and

backlog on infinite time horizon and on finite time horizon, for Markov ad-

ditive arrival process and Markov additive service process. The decay rate

in the non-asymptotic probability results from sharp approximation and

sufficiently implies the asymptotic decay rate resulting from logarithmic

approximation. For both infinite time and finite time results, we only give
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results of the conditional tail probability, which is sufficient to calculate

the tail probability by averaging over the initial state space.

We consider the time reversed arrival and service processes in the fol-

lowing results. Specifically, for the Markov additive process, the relations

between the Perron-Frobenius eigenvalues and eigenvectors of the original

process and the time reversed process are elaborated in Appendix B.2.

The following theorem presents the delay and backlog tail probabili-

ties on infinite time horizon. The results have time-invariant decay rates,

because they use a stability condition in the asymptotic time regime.

Theorem 22. Consider a Markov additive arrival process
`

JAt , Aptq
˘

with

state space E and initial state distribution $A
0 , and a Markov additive

service process
`

JSt , Sptq
˘

with state space E1 and initial distribution $S
0 .

Specifically, given the initial state distribution, the state distribution at

time t is $t “ $0P
t, where P is the transition matrix. Denote κp¨q as

the logarithmic eigenvalue and hp¨q as the right eigenvector of the kernel

matrix. Assume independence between the arrival process and the service

process.

The delay tail probability, conditional on the initial state Jd,0 “ i, i.e.,
!

JAd , J
´S
0

)

“
 

iA, i´S
(

, is expressed as

HD
´ ¨ h

´S
J0
pθq ¨ e´dκpθq ď PipD ą dq ď HD

` ¨ h
´S
J0
pθq ¨ e´dκpθq, (3.50)

where HD
´ “ e´κ

Apθq¨

ˆ

minjPE h
A
j pθq

maxjPE h
A
j pθq

˙2

¨ 1
maxjPE1 h

´S
j pθq

and HD
` “

maxjPE h
A
j pθq

minjPE h
A
j pθq

¨

1
minjPE1 h

´S
j pθq

.

The backlog tail probability, conditional on the initial state J0,0 “ i,

i.e.,
!

JA0 , J
´S
0

)

“
 

iA, i´S
(

, is expressed as

HB
´ ¨ h

A
J0pθqh

´S
J0
pθq ¨ e´θb ď PipB ą bq ď HB

` ¨ h
A
J0pθqh

´S
J0
pθq ¨ e´θb, (3.51)
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where HB
´ “ e´κ

Apθq ¨
min
jPE

hAj pθq

pmaxjPE h
A
j pθqq

2 ¨
1

max
jPE1

h´Sj pθq
and HB

` “ 1
minjPE h

A
j pθq

¨

1
minjPE1 h

´S
j pθq

.

For delay and backlog, θ “
 

θ ą 0 : κApθq ` κ´Spθq “ 0
(

and κpθq :“

κApθq “ ´κ´Spθq.

Proof. The idea of the proof is to find a likelihood ratio martingale of

the process Apd, tq ´ Sp0, tq for delay and Aptq ´ Sptq for backlog, change

the measure, by the likelihood ratio identity, we obtain a likelihood ratio

representation of the probability in the new measure. We only present the

proof of delay. The proof of backlog follows analogically.

Recall the definition of the Markov additive process ErfpSpt ` sq ´

SptqqgpJt`sq|Fts “ EJt,0rfpSpsqqgpJsqs, which indicates that the time shift

of the process is only dependent on the state at the shift epoch, specifically,

for θ ą 0, the likelihood ratio martingale [7] of the arrival process Apd, tq

is expressed as LAt´d ˝ θd “
hAJt
pθq

hAJd
pθq
eθApd,tq´pt´dqκ

Apθq, where θd is the shift

operator; and the likelihood ratio martingale [7] of the service process

´Sptq is L´St “
h´SJt

pθq

h´SJ0
pθq
e´θSp0,tq´tκ

´Spθq. Assume the arrival process and the

service process are independent, then the product of the martingales

LA´Sd,t “
`

LAt´d ˝ θd
˘

¨ L´St (3.52)

is also a martingale [23], and E
”

LA´Sd,t

ı

“ E
“

LAt´d ˝ θd
‰

¨ E
”

L´St

ı

“ 1.

Define the stopping time τpdq “ inftt ě d : Apd, tq ´ Sp0, tq ą 0u. Let

Hpθq “
hAJd

pθq

hAJτpdq
pθq

h´SJ0
pθq

h´SJτpdq
pθq

. The delay tail probability, conditional on the

initial state Jd,0 “ i, i.e.,
!

JAd , J
´S
0

)

“
 

iA, i´S
(

, is expressed as

PipD ą dq “ Pipτpdq ă 8q (3.53)

“ rEi
”

Hpθqe´θξτpdq`pτpdq´dqκ
Apθq`τpdqκ´Spθq; τpdq ă 8

ı

, (3.54)
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where θ is the root to the stability equation κApθq ` κ´Spθq “ 0, and

ξτpdq ą 0 is the overshoot at the hitting time, which is bounded by

0 ă ξτpdq ă Apτpdq ´ 1, τpdqq. (3.55)

The delay upper bound is expressed as

PipD ą dq “ Pipτpdq ă 8q (3.56)

ď rEi
”

Hpθqepτpdq´dqκ
Apθq`τpdqκ´Spθq; τpdq ă 8

ı

(3.57)

ď H` ¨ h
´S
J0
pθqrEi

”

epτpdq´dqκ
Apθq`τpdqκ´Spθq; τpdq ă 8

ı

(3.58)

“ H` ¨ h
´S
J0
pθq ¨ e´dκ

Apθq, (3.59)

where H` “
maxjPE h

A
j pθq

minjPE h
A
j pθq

¨ 1
minjPE1 h

´S
j pθq

.

The delay lower bound is expressed as

PipD ą dq “ Pipτpdq ă 8q (3.60)

ě rEi
”

Hpθqe´θApτpdq´1,τpdqq´dκApθq; τpdq ă 8
ı

(3.61)

ě rEi
”

e´θApτpdq´1,τpdqq; τpdq ă 8
ı

¨ Ĥ´ ¨ h
´S
J0
pθq ¨ e´dκ

Apθq, (3.62)

where Ĥ´ “
minjPE h

A
j pθq

maxjPE h
A
j pθq

¨ 1
maxjPE1 h

´S
j pθq

and

rEi
”

e´θApτpdq´1,τpdqq; τpdq ă 8
ı

(3.63)

“ EiA
”

e´θApτpdq´1,τpdqq ¨

´

LAτpdq´d ˝ θd

¯

; τpdq ă 8
ı

(3.64)

“ EiA

«

hAJτpdq

hAJτpdq´1

¨

´

LApτpdq´1q´d ˝ θd

¯

¨ e´κ
Apθq; τpdq ă 8

ff

(3.65)

ě
minjPE h

A
j pθq

maxjPE hAj pθq
¨ e´κ

Apθq, (3.66)

where the first equality is due to the assumption of independence between
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the arrival process and service process, and the last inequality follows that
´

LA
pτpdq´1q´d ˝ θd

¯

is a mean-one martingale.

Remark 53. It is interesting to find tighter double-sided bounds with the

Wiener-Hopf factorization [5]. However, this pair of bounds are sufficient

for comparing the asymptotic decay rates of the distributions.

The following theorem presents the time-dependent delay and backlog

tail probability, the probability is a function of the violated delay and

backlog, and the decay rates are time-variant, which results from the time-

dependent optimization condition. If the asymptotic stability condition is

used, the tail distribution bounds have an identical decay rate in finite

time regime and infinite time regime.

Theorem 23. Consider the same specification as in Theorem 22. Denote

9κpxq ” Bκpxq{Bx.

For delay, let γ be the root to κApθq ` κ´Spθq “ 0, yγ “
9κApγq

9κApγq` 9κ´Spγq
;

given any fixed y ą 1, θ is the root to y 9κ´Spθq “ ´py ´ 1q 9κApθq, and

θy “ ´yκ
´Spθq ´ py ´ 1qκApθq, then

PipDptq ą d; t ď ydq ď HDpθqe´dθy , y ă yγ , (3.67)

PipD ą dq ´ PipDptq ą d; t ď ydq ď HDpθqe´dθy , y ą yγ , (3.68)

where HDpθq “ HD
` h

´S
J0
pθq and HD

` “
maxjPE h

A
j pθq

minjPE h
A
j pθq

¨ 1
minjPE1 h

´S
j pθq

.

For backlog, let γ be the root to κApθq`κ´Spθq “ 0, yγ “
1

9κApγq` 9κ´Spγq
;

given any fixed y ą 0, θ is the root to yp 9κApθq ` 9κ´Spθqq “ 1, and θy “

θ ´ y
`

κApθq ` κ´Spθq
˘

, then

PipBptq ą b; t ď ybq ď HBpθqe´bθy , y ă yγ , (3.69)

PipB ą bq ´ PipBptq ą b; t ď ybq ď HBpθqe´bθy , y ą yγ , (3.70)

where HBpθq “ HB
`h

A
J0
pθqh´SJ0 pθq and HB

` “
1

minjPE h
A
j pθq

¨ 1
minjPE1 h

´S
j pθq

.
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Proof. The proof follows two phases. In the first phase, we provide the

condition that the inequalities hold. In the second phase, we provide the

setting of y that satisfies the condition. We only present the proof of delay.

The proof of backlog follows analogically.

First, we prove that the inequalities hold under a condition on κApθq`

κ´Spθq. Let Hpθq “
hAJd

pθq

hAJτpdq
pθq

h´SJ0
pθq

h´SJτpdq
pθq

. For any θ ą 0, κApθq ` κ´Spθq ą 0.

PipDptq ą d; t ď ydq (3.71)

“ rEi
”

Hpθqe´θξτpdq`pτpdq´dqκ
Apθq`τpdqκ´Spθq; τpdq ď yd

ı

(3.72)

ď rEi
”

Hpθqepτpdq´dqκ
Apθq`τpdqκ´Spθq; τpdq ď yd

ı

(3.73)

ď H`h
´S
J0
pθqrEi

”

epτpdq´dqκ
Apθq`τpdqκ´Spθq; τpdq ď yd

ı

(3.74)

ď H`h
´S
J0
pθqe´dp´yκ

´Spθq´py´1qκApθqq. (3.75)

For any θ ą 0, κApθq ` κ´Spθq ă 0.

PipD ą dq ´ PipDptq ą d; t ď ydq (3.76)

“ rEi
”

Hpθqe´θξτpdq`pτpdq´dqκ
Apθq`τpdqκ´Spθq; yd ă τpdq ă 8

ı

(3.77)

ď H`h
´S
J0
pθqrEi

”

epτpdq´dqκ
Apθq`τpdqκ´Spθq; yd ă τpdq ă 8

ı

(3.78)

ď H`h
´S
J0
pθqe´dp´yκ

´Spθq´py´1qκApθqq. (3.79)

Second, we link y to the κApθq ` κ´Spθq condition. Denote θy “

´yκ´Spθq ´ py ´ 1qκApθq, which is a concave function of θ for any fixed

y ą 1. Thus, the optimal θ˚ to maximize θy is the root to the derivative

equation 9θy “ 0, i.e., θ˚ “
 

θ : y 9κ´Spθq “ ´py ´ 1q 9κApθq
(

. Consider the

equation 1
y “ 1` 9κ´Spθq

9κApθq
, since B

Bθ

´

9κ´Spθq
9κApθq

¯

“
:κ´Spθq¨ 9κApθq´:κApθq¨ 9κ´Spθq

r 9κApθqs2
ě 0,

which indicates that the decrease of y maps to the increase of θ, it follows,

if y ă 9κApγq
9κApγq` 9κ´Spγq

, then θ ą γ and κApθq ` κ´Spθq ą 0, vice versa.
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3.3 Dependence Manipulation

3.3.1 The Theoretical Reality

We treat a stochastic process as a function of a set of random parame-

ters, each of which is itself a stochastic process. In other words, we treat

the stochastic process as a functional of a multivariate stochastic process

and the functional maps the multivariate stochastic process to a univariate

stochastic process. For wireless channel capacity, the random parameters

are either uncontrollable or controllable, the uncontrollable parameters

represent the property of the environment that can not be interfered, e.g.,

fading, and the controllable parameters represent the configurable prop-

erty of the wireless system, e.g., power. For the arrival, this functional

perspective is useful for studying the dependence impact of an individual

arrival process on the aggregation of a set of multiplexed arrival processes.

We specify that the dimension of the parameter set
`

X1
t , X

2
t , . . . , X

n
t

˘

is

time-invariant, the function ft : Rn Ñ R is time-variant, and the function

ft is increasing or decreasing at Xi
t for all the time, i.e.,

Xt “ ft
`

X1
t , X

2
t , . . . , X

n
t

˘

. (3.80)

Leveraging this functional perspective, on the one hand, we prove the

dependence transformability, on the other hand, we provide additional

results of supermodular order to the literature [98][127].

The following theorem shows that the manipulation of the dependence

in the controllable parameter processes transforms the dependence struc-

ture of the stochastic process.

Theorem 24. Assume the random parameters are spatially independent

and temporally dependent. The supermodular ordering of a parameter se-

ries implies the ordering of the stochastic process, i.e., for any 1 ď i ď n,
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if
`

Xi
1, X

i
2, . . . , X

i
t

˘

ďsm

´

rXi
1,

rXi
2, . . . ,

rXi
t

¯

, (3.81)

then

pX1, X2, . . . , Xtq ďsm

´

rX1, rX2, . . . , rXt

¯

, (3.82)

where rXj “ fjpX
1
j , . . . , X

i´1
j , rXi

j , X
i`1
j , . . . , Xn

j q, @1 ď j ď t.

Proof. Without loss of generalization, we consider the supermodular order

of the random parameters with index 1 in the proof.

For all increasing or all decreasing functions gi : RÑ R, i “ 1, . . . , t, we

have pX1
1 , X

1
2 , . . . , X

1
t q ďsm p

rX1
1 ,

rX1
2 , . . . ,

rX1
t q ùñ

`

g1

`

X1
1

˘

, . . . , gt
`

X1
t

˘˘

ďsm

´

g1

´

rX1
1

¯

, . . . , gt

´

rX1
t

¯¯

, because a composition of a supermodular

function with coordinatewise functions, that are all increasing or are all

decreasing, is a supermodular function [127].

Let Zt “
`

X2
t , X

3
t , . . . , X

n
t

˘

and assume Zt is independent of X1
t , @t.

Then,
`

g1

`

X1
1

˘

, . . . , gt
`

X1
t

˘˘

ďsm

´

g1

´

rX1
1

¯

, . . . , gt

´

rX1
t

¯¯

implies

´

f1

`

X1
1 ,Z1

˘

, . . . , ft
`

X1
t ,Zt

˘

ˇ

ˇ

ˇ
pZ1, . . . ,Ztq “ z

¯

ďsm

´

f1

´

rX1
1 ,Z1

¯

, . . . , ft

´

rX1
t ,Zt

¯ ˇ

ˇ

ˇ
pZ1, . . . ,Ztq “ z

¯

,@z,

when fipx
1
i , ziq, @i, are all increasing or are all decreasing in x1

i for every

zi. Finally, pf1pX
1
1 ,Z1q, . . . , ftpX

1
t ,Ztqq ďsm pf1p rX

1
1 ,Z1q, . . . , ftp rX

1
t ,Ztqq,

because the sumermodular order is closed under mixtures [127].

Remark 54. If the dimension of the parameter set is time-variant, the

function must take into account the dimension being manipulated, while it

is not necessary to take into account other dimensions. Specifically, for the

dependence in the manipulated dimension to take effect, at least two time

epochs should be taken into account by the functions and it is not necessary

for the functions to take into account every time epoch, because the compo-

sition of a supermodular function with coordinatewise functions, which are
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all increasing or are all decreasing, is a supermodular function, and strict

monotonnity is not necessary. An example is random multiplexing, where

the number of integrated arrivals is random at each time epoch.

Remark 55. Since the supermodular order is closed with respect to the

permutation of the time index [98], the dependence transformability result

is robust to the time reversibility assumption.

The following theorem shows that a greater number of controllable

random parameter processes brings a stronger transform to the dependence

structure of the stochastic process.

Theorem 25. Assume the random parameters are spatially independent

and temporally dependent. Consider there are i, 1 ď i ď n, controllable

random parameters. If

´

Xj
1 , X

j
2 , . . . , X

j
t

¯

ďsm

´

rXj
1 ,

rXj
2 , . . . ,

rXj
t

¯

, @1 ď j ď i, (3.83)

then

ĂXk
t ďsm

ĂXj
t , @0 ď k ď j ď i, (3.84)

with rX l
tm “ fmp rX

1
m, . . . ,

rX l
m, X

l`1
m , . . . , Xn

mq, 1 ď m ď t, and ĂX l
t “

p rX l
t1 , . . . ,

rX l
ttq, l P tk, ju.

Proof. According to Theorem 24,

`

f1

`

X1
1 , X

2
1 , . . . , X

n
1

˘

, . . . , ft
`

X1
t , X

2
t , . . . , X

n
t

˘˘

ďsm

´

f1

´

rX1
1 , X

2
1 , . . . , X

n
1

¯

, . . . , ft

´

rX1
t , X

2
t , . . . , X

n
t

¯¯

ďsm

´

f1

´

rX1
1 ,

rX2
1 , X

3
1 , . . . , X

n
1

¯

, . . . , ft

´

rX1
t ,

rX2
t , X

3
t , . . . , X

n
t

¯¯

,

and the result follows iteratively because of the transitivity property of

supermodular order [98].
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In practice, a wireless channel can be a composition of sub-channels and

the wireless channel capacity is a function of each sub-channel’s capacity,

e.g., multiple-input-multiple-output channel and frequency-selective chan-

nel. The following theorem shows that the manipulation of dependence in

a sub-channel capacity transforms the dependence structure of the over-

all channel capacity, the more number of manipulated sub-channels the

stronger dependence transform strength on the overall capacity.

Theorem 26. Consider a wireless channel composing of M independent

sub-channels, the instantaneous capacity of the overall channel, denoted by

Ct ” Cptq, is a function of the instantaneous capacity of each sub-channels,

denoted by cit ” ciptq, 1 ď i ď M , i.e., Ct “ ft
`

c1
t , . . . , c

M
t

˘

. For example,

the overall capacity is the sum of the capacity of each sub-channel, i.e.,
`

c1
t , . . . , c

M
t

˘

ÞÑ ft
`

c1
t , . . . , c

M
t

˘

“
řM
m“1 c

m
t . Assume the function is always

increasing or decreasing at the instantaneous capacity of each sub-channels.

If
`

ci1, . . . , c
i
t

˘

ďsm
`

rci1, . . . ,rc
i
t

˘

, @1 ď i ďM, then

pC1, . . . ,Ctq ďsm prC1, . . . , rCtq, (3.85)

where rCj “ fj

´

c1
j , . . . ,rc

i
j , c

i`1
j , . . . , cMj

¯

, 1 ď j ď t.

If
`

ci1, . . . , c
i
t

˘

ďsm
`

rci1, . . . ,rc
i
t

˘

, @1 ď i ďM, then

rC
k

t ďsm
rC
j

t , @0 ď k ď j ďM, (3.86)

with rCltm “ fm
`

rc1
m, . . . ,rc

l
m, c

l`1
m , . . . , cMm

˘

and rC
l

t “

´

rClt1 , . . . ,
rCltt

¯

, where

1 ď m ď t and l P tk, ju.

Proof. The proof follows Theorem 24 and Theorem 25.

Multiplexing of arrival processes involves deterministic multiplexing

and random multiplexing. Specifically, the aggregated arrival process is

expressed as Aptq “
řNptq
i“1 aiptq, where aiptq is the individual arrival pro-

cess, and Nptq is a deterministic process for the deterministic multiplexing
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and a stochastic process for the random multiplexing. Theorem 26 has a

direct application to the deterministic multiplexing, i.e., the dependence

manipulation in an individual arrival process transforms the dependence

structure of the aggregate process, the more number of manipulated pro-

cesses the stronger strength of dependence transform.

For random multiplexing, in addition to that the dependence manip-

ulation in an individual process transforms the dependence structure of

the randomly multiplexed process, the following theorem shows that the

dependence in the random multiplexing mechanism also has an impact on

the dependence structure of the aggregated process.

Theorem 27. Let Xj “ pXj,1, . . . , Xj,mq and Yj “ pYj,1, . . . , Yj,mq, j “

1, 2, . . ., be two independent sequences of non-negative random vectors, and

let M “ pM1,M2, . . . ,Mmq and N “ pN1, N2, . . . , Nmq be two vectors of

non-negative integer-valued random variables. Assume that both M and

N are independent of the Xj’s and Yj’s.

If M ďsm N , then

˜

M1
ÿ

j“1

Xj,1, . . . ,
Mm
ÿ

j“1

Xj,m

¸

ďsm

˜

N1
ÿ

j“1

Xj,1, . . . ,
Nm
ÿ

j“1

Xj,m

¸

. (3.87)

If Xj ďsm Yj, @j, then

˜

N1
ÿ

j“1

Xj,1, . . . ,
Nm
ÿ

j“1

Xj,m

¸

ďsm

˜

N1
ÿ

j“1

Yj,1, . . . ,
Nm
ÿ

j“1

Yj,m

¸

. (3.88)

If M ďsm N and Xj ďsm Yj, @j, then

˜

M1
ÿ

j“1

Xj,1, . . . ,
Mm
ÿ

j“1

Xj,m

¸

ďsm

˜

N1
ÿ

j“1

Yj,1, . . . ,
Nm
ÿ

j“1

Yj,m

¸

. (3.89)

Proof. The first result is proved in [127]. The second result follows Theo-
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rem 24 and Theorem 25, by conditioning on pN1, . . . , Nmq “ pn1, . . . , nmq

and integrating for the expectation. Specifically, since

E

«

φ

˜

N1
ÿ

j“1

Xj,1, . . . ,
Nm
ÿ

j“1

Xj,m

¸

ˇ

ˇ

ˇ
pN1, . . . , Nmq “ pn1, . . . , nmq

ff

ď E

«

φ

˜

N1
ÿ

j“1

Yj,1, . . . ,
Nm
ÿ

j“1

Yj,m

¸

ˇ

ˇ

ˇ
pN1, . . . , Nmq “ pn1, . . . , nmq

ff

,

for any supermodular function φ, thus

E

«

φ

˜

N1
ÿ

j“1

Xj,1, . . . ,
Nm
ÿ

j“1

Xj,m

¸ff

ď E

«

φ

˜

N1
ÿ

j“1

Yj,1, . . . ,
Nm
ÿ

j“1

Yj,m

¸ff

.

By considering the transitivity property of supermodular order, the third

result follows the first and second results.

Remark 56. The arrival process under manipulation must be multiplexed

at least twice at different time epochs, in order to take into account the

dependence effect of this arrival process.

Remark 57. It is interesting to extend the results to the increasing super-

modular order ďism and the symmetric supermodular order ďsymsm.

3.3.2 A Copula Approach

We develop a dependence manipulation technique based on copula, which

is introduced in Appendix B.3. We consider the stochastic process that

is modeled by a multivariate Markov process of uncontrollable parameters

and controllable parameters. The challenge with dependence control lies

in that, if we model the whole system of the uncontrollable and control-

lable parameters as a Markov process, we need to know respectively the

exact characterizations of the uncontrollable and controllable parameters
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processes, because we need an exact process for dependence manipulation.

To address this challenge, we postulate no-Granger causality among the

random parameter processes.

No-Granger causality refers to a multivariate dynamic system in which

each variable is determined by its own lagged values and no further infor-

mation is provided by the lagged values of other variables [25]. On the one

hand, no-Granger causality and Markov property of each process with re-

spect to its natural filtration together imply the whole system as a Markov

process, on the other hand, a multidimensional Markov process together

with no-Granger causality implies that each of its components is a Markov

process with respect to its own natural filtration [24, 25].

Mathematically, for a n-dimensional process X, we say X1, . . . ,Xi´1,

Xi`1, . . . ,Xn do not Granger cause Xi, if, for any tk and x,

P
´

Xi
tk`1

ď x|FX1,...,Xn

tk

¯

“ P
´

Xi
tk`1

ď x|FXi

tk

¯

, (3.90)

where FX1,...,Xn

tk
is the natural filtration of process X and FXi

tk
is the

natural filtration of process Xi [24, 25]. In addition, we introduce a

copula operator. Denote Apx, dyq “ A,Cpx,yqCpdyq and Bpdx,yq “

BC,px,yqCpdxq. The operator
Cp¨q
‹ is defined as [104]

pA
Cpzq
‹ Bqpx,yq “

ż z

0
A,Cpx, rq ¨BC,pr,yqCpdrq, (3.91)

where A is a pk`nq-dimensional copula, B is a pn` lq-dimensional copula,

C is a n-dimensional copula. Specifically, A ‹ B is written as [32] A ‹

B px, z,yq “
şz
0 A,rpx, rqBr,pr,yqdr, for 1-dimensional copula C. We refer

to Appendix B.3 and [32, 104] for elaboration on the copula representation

of Markov process.

The copula for Markov process with no-Granger causality is expressed

as follows, which is extension of the 2-dimensional result in [25].
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Theorem 28. For a n-dimensional Markov process X consisting of two

sets X and X, X “ X
Ť

X, mapping respectively to the uncontrollable

and controllable parameters, X does not Granger cause X, if and only if

Cj,j`1

´

uXj
,uXj

,uXj`1
,1uXj`1

¯

“ CXjXj

CXj

´

uXj

¯

‹ CXjXj`1

´

uXj
,uXj`1

¯

, (3.92)

X does not Granger cause X, if and only if

Cj,j`1

´

uXj
,uXj

,1uXj`1
,uXj`1

¯

“ CXjXj

CXj

´

uXj

¯

‹ CXjXj`1

´

uXj
,uXj`1

¯

. (3.93)

Proof. Since

P
`

Xj`1 ď x|Xj

˘

“ Cj,j`1CXjXj
,

´

FXj
pXjq, FXj

pXjq, FXj`1
pxq,1FXj`1

¯

,

P
`

Xj`1 ď x|Xj

˘

“ Cj,j`1CXj
,

´

FXj
pXjq,1FXj

, FXj`1
pxq,1FXj`1

¯

,

the no-Granger causality holds, if and only if

Cj,j`1CXjXj
,

´

uXj
,uXj

,uXj`1
,1uXj`1

¯

“ Cj,j`1CXj
,

´

uXj
,1uXj

,uXj`1
,1uXj`1

¯

.

By integrating, we obtain

Cj,j`1

´

uXj
,uXj

,uXj`1
,1uXj`1

¯

“

ż uXj

0
CXjXj ,CXj

´

uXj
,uX

¯

¨ CXjXj`1CXj
,

´

uX ,uXj`1

¯

CXj

`

duX
˘

“ CXjXj

CXj
puXj

q

‹ CXjXj`1

´

uXj
,uXj`1

¯

.
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The other result follows analogically.

Remark 58. The result is extensible to high order Markov process [104][64].

For a Markov process of order k ě 1, letting jpkq ” tj ´ k ` 1, . . . , ju, X

does not Granger cause X, if and only if

Cjpkq,j`1

´

uXjpkq
,uXjpkq

,uXj`1
,1uXj`1

¯

“ CXjpkqXjpkq

CXjpkq

´

uXjpkq

¯

‹ CXjpkqXj`1

´

uXjpkq
,uXj`1

¯

, (3.94)

and X does not Granger cause X, if and only if

Cjpkq,j`1

´

uXjpkq
,uXjpkq

,1uXj`1
,uXj`1

¯

“ CXjpkqXjpkq

CXjpkq

ˆ

uXjpkq

˙

‹ CXjpkqXj`1

´

uXjpkq
,uXj`1

¯

. (3.95)

A stronger restriction is that all the 1-dimensional Markov processes

do not Granger cause each other, and the results are as follows.

Theorem 29. For a n-dimensional Markov process X with temporal cop-

ula Cj,j`1 and spatial copula Cj,

P
´

Xi
tk`1

ď x|X1
tk
, . . . ,Xn

tk

¯

“ P
´

Xi
tk`1

ď x|Xi
tk

¯

, (3.96)

if and only if

Cj,j`1

`

x1
j , . . . , x

n
j , 1, . . . , x

i
j`1, . . . , 1

˘

“ C ,ij ‹ C
i
j,j`1

´

x1
j , . . . , x

i´1
j , xi`1

j , . . . , xnj , x
i
j , x

i
j`1

¯

, (3.97)

where C ,ij is the reordered spatial copula, and Cij,j`1 is the temporal copula

of the 1-dimensional Markov process Xi.

Proof. The proof analogically follows Theorem 28’s.
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Example 1. For a 2-dimensional Markov process X, X2 does not Granger

cause X1, if and only if [25]

Cj,j`1pu1, v1, u2, 1q “ CX2
j ,X

1
j
‹ CX1

j ,X
1
j`1
pv1, u1, u2q, (3.98)

and X1 does not Granger cause X2, if and only if [25]

Cj,j`1pu1, v1, 1, v2q “ CX1
j ,X

2
j
‹ CX2

j ,X
2
j`1
pu1, v1, u2q. (3.99)

In the special case, if the spatial dependence is expressed by the product

copula, then

Cj,j`1pu1, v1, u2, 1q “ v1CX1
jX

1
j`1
pu1, u2q , (3.100)

Cj,j`1pu1, v1, 1, v2q “ u1CX2
jX

2
j`1
pv1, v2q . (3.101)

To perform dependence manipulation, we calculate the transition ma-

trix of the controllable parameter Markov process based on its copula,

which is an inverse procedure of constructing a copula from the transition

matrix of a Markov process [32]. Since the Markov property is a pure prop-

erty of copula, it is flexible to use different copula functions to character

and configure the negative or positive dependence in the uncontrollable

and controllable parameters. The calculation approach is summarized in

the following theorem.

Theorem 30. For a 1-dimensional Markov process with finite state space

E and initial distribution $, given the copula between successive levels

Cj,j`1,

ÿ

sjďx

$jpsjqPjpsj , sj`1 ď yq “ Cj,j`1 pFjpxq, Fj`1pyqq , @x, y P E, (3.102)

the state distribution at j is $j “$
ś

0ďkďj Pk, and Fjpsjq “
ř

skďsj

$jpskq
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and Fj`1 “ $jPj. Together with the unity property of transition matrix
ř

jPE pij “ 1, @i P E, the transition probabilities Pj are obtained.

Proof. For random variablesX and Y with the copula C, E pIYăy|Xq pωq “
C1, pFXpXpωqq, FY pyqq, a.s. [32], by integrating,

ř

ξďx

P pXt ď y|Xs “ ξq “

C pFspxq, Ftpyqq , where x P E and y P E. The result directly follows.

Example 2. For a 2-state homogeneous Markov process, the equations are

expressed as

π0p00 “ C pF p0q, F p0qq , (3.103a)

π0p00 ` π1p10 “ C pF p1q, F p0qq , (3.103b)

$

’

’

’

’

’

&

’

’

’

’

’

%

π0 pp00 ` p01q ` π1 pp10 ` p11q “ C pF p1q, F p1qq , (3.103c)

π0 pp00 ` p01q “ C pF p0q, F p1qq . (3.103d)

Given a stationary distribution rπ0 π1s, F p0q “ π0 and F p1q “ π0`π1, we

obtain the values of p00 and p10 from the equations, and we further obtain

p01 “ 1´ p00 and p11 “ 1´ p10 from the unity property.

Remark 59. Regarding the computation of transition matrix from copula

functions, as an alternative to the parametric copula function, where the

negative and positive dependence is indicated by the parameters, the smaller

or greater copula, with respect to independence, based on the supermodular

order is an additional approach. Specifically, the supermodular ordering of

copulas is elaborated in [141].

3.3.2.1 Applying to Wireless Channel

We apply the dependence control theory to the wireless channel, where

the fading represents the inherent characteristic of the propagation envi-

ronment and is an uncontrollable parameter, and the power represents the

free dimension of the wireless system and is a controllable parameter for
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dependence manipulation. Particularly, we model the fading hptq as an

independent process, the power P ptq as a Markov process, and the accu-

mulation of the wireless channel capacity as a Markov additive process

pSptq, P ptqq, where Sptq “
řt
i“0 cptq and cptq “ W log2

´

1` P ptq
N0W

|hptq|2
¯

,

i.e., the evolution of the capacity is modulated by the random power. As

regards the dependence manipulation, we calculate the transition matrix

of the Markov process using the Fréchet copula and Gaussian copula, of

which the dependence parameter is an indicator of the dependence strength

ranging from negative to positive.

We provide a simulation example of the dependence manipulation in

wireless channel. We specify the fading as the uncontrollable parameter,

which is an independent process, and the power as the controllable param-

eter, which is a Markov process. We manipulate the power into bearing

respectively negative dependence and positive dependence for two experi-

ments. We study the time series and the lag-1 series of an arbitrary sample

path of the functional processes, i.e., the instantaneous capacity cptq, the

cumulative capacity Sptq, and the transient capacity cptq. We calculate

the correlation coefficient and the probability value [140]. It is reasonable

to consider the correlation coefficient, which requires the existence of the

variance, because the capacity is light-tailed. The correlation coefficient of

the series X and Y is defined as

corr “

ř

ipXi ´XqpYi ´ Y q
b

ř

ipXi ´Xq2
b

ř

ipYi ´ Y q
2
, (3.104)

where X and Y are respectively the sample means of X and Y . The

probability value is a measure of the evidence against the null hypothesis

that the time series is uncorrelated. The null hypothesis test uses the

Student’s t-distribution. If the probability value pval ă 0.05, it rejects the

null hypothesis, otherwise, it shows the evidence against the alternative

hypothesis that the time series is correlated.
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Figure 3.1: Wireless channel capacity of Rayleigh channel. The uncontrol-
lable parameter is the fading process with one state and the controllable
parameter is the power that is a Markov process with two states. The
Markov process is time homogeneous without Granger causality. The de-
pendence structure is given by Gaussian copula with correlation matrix
Σ “ r1 0 ´ 0.5 0; 0 1 0 0;´0.5 0 1 0; 0 0 0 1s as negative dependence (left
column), Σ “ r1 0 0.5 0; 0 1 0 0; 0.5 0 1 0; 0 0 0 1s as positive dependence
(right column), initial distribution $ “ r0.3 0.7s, stationary distribution
π “ r0.3 0.7s. W “ 20kHz and P {N “ r104 104; 10 10s. 1000 time slots.
The correlation coefficient and probability value between the time series
and lag-1 series are provided.
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The simulation results are shown in Fig. 3.1. For the instantaneous

capacity cptq, the result shows that the times series exhibits respectively

negative dependence that is shown in the left column with negative correla-

tion coefficient, and positive dependence that is shown in the right column

with positive correlation coefficient. The probability values are both zero,

which rejects the null hypothesis that no correlation exists. It is evident

that the left column has more density in the left-upper and right-lower

clusters than the right column, while the right column has more density

in the left-lower and right-upper clusters than the left column. This phe-

nomena is coherent with the intuition that the large values of a random

variable tends to occur together small values of other random variables for

negative dependence, while large values or small values tend to occur to-

gether for positive dependence. It is interesting to notice that the marginal

distribution of the instantaneous capacity is bimodal, which results from

the mixture of two distribution functions. Since the instantaneous capacity

is non-negative, the cumulative capacity Sptq exhibits extremely positive

dependence, no matter the negative or positive dependence in the instan-

taneous capacity, and the influence of the dependence in the instantaneous

capacity is manifested in the transient capacity cptq. The simulation results

validate the dependence manipulation analysis.

We regard the wireless channel as a queueing system for the infor-

mation transmission of arrivals and the wireless channel capacity as the

service process. In order to study the impact of the dependence in the

wireless channels capacity, we consider a constant arrival process. Accord-

ing to Corollary 6, the wireless channel attains the best performance for

constant arrival process in terms of the asymptotic decay identities. Thus,

the constant arrival is fit for investigating the ultimate quality of service

that the wireless channel can provide. Moreover, it indicates that the

ultimate wireless channel performance is solely determined by the statis-

tical properties of the wireless channel regardless of the arrivals, in terms
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of some measure identities. Specifically, the performance analysis results

with respect to the constant arrival process are as follows.

Corollary 7. Consider a constant arrival process Aptq “ λt and Markov

additive service process pJt, Sptqq with state space E1 and initial distribution

$. The delay conditional on the initial state J0 “ i is bounded by

e´θAp1q ¨ hJ0p´θq

max
jPE1

hjp´θq
¨ e´θλd ď PipD ą dq ď

hJ0p´θq

min
jPE1

hjp´θq
¨ e´θλd, (3.105)

where Ap1q is the amount of arrival in one unit time, ´θ is the negative

root of κpθq “ 0 of the Markov additive process pJt, Sptq ´ λtq and hp´θq

is the corresponding right eigenvector.

Proof. The proof of this special case follows that of Theorem 22.

Remark 60. For a constant arrival process Aptq “ λt and independent

and identically distributed service process cptq
d
“ C, the delay is bounded

by [119, p. 257]

C´e
´θλd ď P pD ą dq ď C`e

´θλd, (3.106)

where

C´ “ inf
xPr0,x0q

Bpxq
ş8

x e
θpy´xqBpdyq

, (3.107)

C` “ sup
xPr0,x0q

Bpxq
ş8

x e
θpy´xqBpdyq

, (3.108)

and B is the distribution of λ´ C and x0 “ suptx : Bpxq ă 1u.

Remark 61. For a queueing system with constant arrival process with

arrival rate λ, the relationship between delay and backlog is expressed as

PpB ą bq “ PpD ą b{λq, and the asymptotic tail decay rate of delay γD

equals that of backlog γB multiplied by the arrival rate λ, i.e., γD “ λ ¨ γB.
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We provide the numerical results of the tail bounds of the performance

measure delay, which are illustrated in Fig. 3.2. We fix the noise power

N “ WN0, and randomize the signal power P in SNR “ P {N . The

results indicate that the dependence resource is exchangeable for other

resources, e.g., the power resource. It is shown, by manipulating the de-

pendence and marginals through the power process, the wireless channel

attains a better performance with a smaller power mean, equivalently a

smaller capacity, compared to the independent power case. Moreover, it

shows the increasing convex order is a sufficient but not necessary condi-

tion, i.e., the order of the mean values is not a necessary condition for the

order of the asymptotic decay rates. Considering the performance gain of

the non-stationary Markov additive process over the stationary additive

process, it indicates that the forms of distribution functions are exchange-

able for the mean values.

The asymptotic decay rates with respect to the dependence parameters

of the Fréchet copula and Gaussian copula are shown in Fig. 3.3. The re-

sults show that the Markov additive process bearing negative dependence,

which results in a smoother fluctuation of the measure identities than the

positive dependence scenario, is less sensitive to the marginal variations,

i.e., while a stronger marginal can have a positive effect in the positive

dependence scenario, a weaker marginal does not necessarily have a nega-

tive effect in the negative dependence scenario. However, the impact of

the marginals counts, because the asymptotic decay rate is a joint effect of

the marginal distributions and the dependence structure of the arrival and

service processes, and the supermodular ordering of the arrival process or

service process is a sufficient but not necessary condition. Particularly, it

is shown, for the positive dependence, the upper envelope and the lower

envelope are both decreasing functions, especially, the lower envelope con-

tinues the decreasing trend of the negative dependence scenario. Since

the Markov additive process is a non-stationary process, with respect to
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Figure 3.2: Delay tail distribution of Rayleigh channel. “-” and “+”
depict respectively negative and positive dependence in capacity, the
lines depict the double-sided bounds with the intervals depicted as the
shaded areas. λ “ 10kbits, W “ 20kHz, SNR “ e0.5 for the indepen-
dence case of additive capacity process, SNR “ re0.5 e0.5; 0.7e0.5 0.7e0.5s,
P “ r0.4125 0.5875; 0.2518 0.7482s calculated from Fréchet copula with
α “ 0.5 for λ ´ cptq indicating positive dependence in capacity and
P “ r0.2875 0.7125; 0.3054 0.6946s calculated from Fréchet copula with
α “ ´0.5 for λ ´ cptq indicating negative dependence in capacity, for the
dependence case of Markov additive capacity process with initial distri-
bution $ “ r0.3 0.7s and stationary distribution π “ r0.3 0.7s. Note
when the initial and stationary distributions are $ “ π “ r0.5 0.5s, we
get two interesting matrices, i.e., P “ r0.5625 0.4375; 0.4375 0.5625s for
positive dependence and P “ r0.4375 0.5625; 0.5625 0.4375s for negative
dependence in capacity, with a similar tail phenomena.
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(a) Fréchet copula.
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(b) Gaussian copula.

Figure 3.3: Decay trend of measure identities of Rayleigh channel with
Markov additive capacity. λ “ 1bit, W “ 1Hz, SNR “ r3 3; 1.5 1.5s, with
initial distribution $ “ r0.5 0.5s and stationary distribution π “ r0.5 0.5s.
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different dependence parameters, it can have different marginals such that

they have a stronger impact than the dependence structure, which explains

the discontinuity of the trend function, on the other hand, the continuity of

the trend function results from that if the difference between the marginals

with respect to different dependence parameters is small, then the depen-

dence structure has the dominant effect rather than the marginals. In

addition, the numerical results indicate that if the marginals are identical

then the extremely negative dependence results in the optimal asymptotic

decay rate, otherwise, the asymptotic decay rate is optimized at the limit

from the weakly positive dependence to the independence.

3.3.3 Manipulation at Large

We provide the dependence manipulation techniques for both the spatial

dependence and temporal dependence of a stochastic process. The ma-

nipulation of the spatial dependence means the dependence manipulation

of the random parameters of the stochastic process at some time epochs,

while the manipulation of the temporal dependence means the manipula-

tion of some random parameters on the time line.

3.3.3.1 Identical Marginals

We present a sufficient condition that the composition of a supermodular

function with some multivariate functions is a supermodular function.

Lemma 4. Let ft : Rn Ñ R, @t ě 1. If g : Rt Ñ R is supermodular, g1 :“

gpf1, . . . , ftq : Rtˆn Ñ R, and gppf1px1q, . . . , ftpxtqq ^ pf1py1q, . . . , ftpytqqq

`gppf1px1q, . . . , ftpxtqq _ pf1py1q, . . . , ftpytqqq ď g1ppx1, . . . ,xtq ^ py1, . . . ,

ytqq ` g
1ppx1, . . . ,xtq _ py1, . . . ,ytqq, then g1 is supermodular.
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Proof. Considering

gppf1px1q, . . . , ftpxtqq ^ pf1py1q, . . . , ftpytqqq

` gppf1px1q, . . . , ftpxtqq _ pf1py1q, . . . , ftpytqqq

ě g1px1, . . . ,xtq ` g
1py1, . . . ,ytq,

the proof follows directly.

Remark 62. The implicit function theorem [130][120] gives a sufficient

condition on the functions for the existence of their inverse in general.

We investigate the scenario, where the multidimensional process is tem-

porally independent and spatially dependent.

Theorem 31. Assume the random parameters are spatially dependent and

temporally independent. Assume ft : Rn Ñ R,

ftpxtq ˛ ftpytq “ ftpxtˆ̨ytq, @xt,yt P Rn, @t ě 0, (3.109)

where ˛, ˆ̨ P t^,_u preserves one of the following three relations for all

t ě 0: ˛ “ ˆ̨, t˛ “ ^|ˆ̨ “ _u, and t˛ “ _|ˆ̨ “ ^u.

If, for any 1 ď j ď t,

`

X1
j , X

2
j , . . . , X

n
j

˘

ďsm

´

rX1
j ,

rX2
j , . . . ,

rXn
j

¯

, (3.110)

and
´

X1
j , . . . , X

n
j

¯

and
´

rX1
j , . . . ,

rXn
j

¯

, and
`

X1
k , . . . , X

n
k

˘

are independent

for all j ‰ k, then

pX1, X2, . . . , Xtq ďsm

´

X1, X2, . . . , rXj , . . . , Xt

¯

, (3.111)

where Xi “ fi
`

X1
i , . . . , X

n
i

˘

, @1 ď i ď t, and rXj “ fj

´

rX1
j , . . . ,

rXn
j

¯

,

1 ď j ď t.
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If

`

X1
j , X

2
j , . . . , X

n
j

˘

ďsm

´

rX1
j ,

rX2
j , . . . ,

rXn
j

¯

, @1 ď j ď t, (3.112)

and
´

X1
j , . . . , X

n
j

¯

and
`

X1
k , . . . , X

n
k

˘

are independent for all j ‰ k, so are
´

rX1
j , . . . ,

rXn
j

¯

and
´

rX1
k , . . . ,

rXn
k

¯

, then, @1 ď k ď j ď t,

´

rX1, . . . , rXk, Xk`1, . . . , Xt

¯

ďsm

´

rX1, . . . , rXj , Xj`1, . . . , Xt

¯

, (3.113)

where Xj “ fj

´

X1
j , . . . , X

n
j

¯

and rXj “ fj

´

rX1
j , . . . ,

rXn
j

¯

, @1 ď j ď t.

Proof. Considering the temporal independence assumption and the con-

junction property of supermodular order [127], we have

`

X1
1 , . . . , X

n
1 , . . . , X

1
t , . . . , X

n
t

˘

ďsm

´

X1
1 , . . . , X

n
1 , . . . ,

rX1
j , . . . ,

rXn
j , . . . , X

1
t , . . . , X

n
t

¯

.

Letting g : Rt Ñ R be supermodular and denote g1 :“ gpf1, . . . , ftq :

Rtˆn Ñ R, we have g1 is supermodular, which follows Lemma 4. Thus, it

directly implies

`

f1

`

X1
1 , . . . , X

n
1

˘

, . . . , ft
`

X1
t , . . . , X

n
t

˘˘

ďsm

´

f1

`

X1
1 , . . . , X

n
1

˘

, . . . , fj

´

rX1
j , . . . ,

rXn
j

¯

, . . . , ft
`

X1
t , . . . , X

n
t

˘

¯

.

The proof of the other result follows the reflexivity and transitivity

property of supermodular order [98].

Remark 63. The results indicate that the spatial dependence of the ran-

dom parameters also influences the dependence of the stochastic process

and more manipulations of the spatial dependence has more strength to

transform the dependence of the stochastic process.
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Remark 64. It is interesting to investigate the relationship between the

requirement of the functional and the spatial dependence of the random

parameters. An example is the comonotonicity dependence structure with

identical marginal distribution, i.e., the random parameters are equal al-

most surely, thus the requirement of the function reduces to the scenario

of the requirement of the univariate functional scenario, i.e., decreasing or

increasing for each variate on the function domain.

We present a result without specification on the spatial and temporal

dependence. Note the relaxation of the specification on dependence is

replaced by the additional conditions on the functionals.

Theorem 32. Assume ft : Rn Ñ R and ft
`

Xi
t |Z

i
t “ z

i
t

˘

are all increas-

ing or all decreasing at each component of Xi “
`

Xi
1, . . . , X

i
t

˘

, for any zit “
`

x1
t , . . . , x

i´1
t , xi`1

t , . . . , xnt
˘

in support of Zi
t “

`

X1
t , . . . , X

i´1
t , Xi`1

t , . . . , Xn
t

˘

,

@1 ď i ď n, @t ě 1. Denote zi “
 

zi1, . . . ,z
i
t

(

, Zi “
 

Zi
1, . . . ,Z

i
t

(

, and
`

Xi|Zi
˘

ďsm

´

ĂXi|Zi
¯

ðñ
`

Xi|Zi “ zi
˘

ďsm

´

ĂXi|Zi “ zi
¯

, @zi P

Zi.

If, for any 1 ď i ď n,

`

Xi
1, X

i
2, . . . , X

i
t |Z

i
˘

ďsm

´

rXi
1,

rXi
2, . . . ,

rXi
t |Z

i
¯

, (3.114)

then

pX1, X2, . . . , Xtq ďsm

´

rX1, rX2, . . . , rXt

¯

, (3.115)

where rXj “ fjpX
1
j , . . . , X

i´1
j , rXi

j , X
i`1
j , . . . , Xn

j q, @1 ď j ď t.

If, @1 ď j ď i,

´

Xj
1 , X

j
2 , . . . , X

j
t |Z

j
¯

ďsm

´

rXj
1 ,

rXj
2 , . . . ,

rXj
t |Z

j
¯

, (3.116)

then

ĂXk
t ďsm

ĂXj
t , @0 ď k ď j ď i, (3.117)
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with rX l
tm “ fmp rX

1
m, . . . ,

rX l
m, X

l`1
m , . . . , Xn

mq, 1 ď m ď t, and ĂX l
t “

p rX l
t1 , . . . ,

rX l
ttq, l P tk, ju.

Proof. The proof follows analogically the proof of the independence sce-

nario, by using the conditional probability.

Remark 65. The orders pX|Z “ zq ďsm pY |Z “ zq and EpX|Zq ďsm
EpY |Zq correspond to the conditional supermodular order in the sense of

the uniform conditional ordering [142][121]. The conditional formulation

influences the stochastic ordering of the probability measures, moreover, it

influences the property of the functions of the random variables, e.g., the

monotonicity.

Remark 66. There is an implicit condition that the spatial dependence

must not influence the temporal dependence ordering, or the temporal de-

pendence ordering is conditional on the spatial dependence. Specifically,

if spatial independence is assumed, the conditional probability disappears.

On the other hand, it is interesting to investigate what type of spatial de-

pendence sufficiently imply the conditional ordering.

Remark 67. It is interesting to investigate the conditional probability and

conditional stochastic order expression of the spatial dependence manipu-

lation scenario, e.g., Theorem 31.

Remark 68. As an example of conditional probability, for the function

of two random variables fpX,Y q, the independence assumption implies

ErfpX,Y qs “ EXEY rfpX,Y qs, while the absence of independence implies

that ErfpX,Y qs “ EXEY |X“xrfpX,Y q|X “ xs.

Remark 69. As an example of conditional monotonicity of deterministic

functions, letting fpx, yq “ xy, x ą 0, then fpx, y|y ą 0q is increasing at

x, fpx, y|y ă 0q is decreasing at x, and fpx, y|y “ 0q “ 1 is constant.
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Remark 70. It is interesting to extend the results in Theorem 32 and

the corresponding results without conditional probability to the increasing

supermodular order ďism and the symmetric supermodular order ďsymsm.

3.3.3.2 Different Marginals

We present a result about the manipulation of stochastic process based on

the marginals.

Theorem 33. Assume the random parameters are spatially independent

and temporally dependent.

If, for any 1 ď i ď n,
`

Xi
1, X

i
2, . . . , X

i
t

˘

ďdcx

´

rXi
1,

rXi
2, . . . ,

rXi
t

¯

, and

fj

´

X1
j . . . , X

n
j

¯

, @1 ď j ď t, are increasing and affine functions, then

pX1, X2, . . . , Xtq ďdcx

´

rX1, rX2, . . . , rXt

¯

, (3.118)

where rXj “ fjpX
1
j , . . . , X

i´1
j , rXi

j , X
i`1
j , . . . , Xn

j q, @1 ď j ď t, and

t
ÿ

j“1

αjXj ďcx

t
ÿ

j“1

αj rXj . (3.119)

where αj P Rě0, @1 ď j ď t.

If, for all 1 ď i ď n,
`

Xi
1, X

i
2, . . . , X

i
t

˘

ďdcx

´

rXi
1,

rXi
2, . . . ,

rXi
t

¯

, and

fj

´

X1
j . . . , X

n
j

¯

, @1 ď j ď t, are increasing and affine functions, then

ĂXk
t ďdcx

ĂXk1

t , @0 ď k ď k1 ď n, (3.120)

with rX l
tm “ fmp rX

1
m, . . . ,

rX l
m, X

l`1
m , . . . , Xn

mq, 1 ď m ď t, and ĂX l
t “

p rX l
t1 , . . . ,

rX l
ttq, l P tk, k

1u, and

t
ÿ

j“1

αjX
k
j ďcx

t
ÿ

j“1

αj rX
k1

j . (3.121)
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where αj P Rě0, @1 ď j ď t.

Proof. We first prove that the composition of a directionally convex func-

tion g : Rt Ñ R with the coordinatewise increasing and affine functions

fj : R Ñ R, @1 ď j ď t, is a directionally convex function gpf1, . . . , ftq.

Considering xi P Rt, i “ 1, 2, 3, 4, with x1 ď x2 ď x4, x1 ď x3 ď x4,

and x1 ` x4 “ x2 ` x3, since fj , @1 ď j ď t, are increasing and affine, we

have f˚px1q ď f˚px2q ď f˚px4q, f
˚px1q ď f˚px3q ď f˚px4q, and f˚px1q`

f˚px4q “ f˚px2q ` f˚px3q, where f˚pxiq “
`

f1px
1
i q, . . . , ftpx

t
iq
˘

, xi “
`

x1
i , . . . , x

t
i

˘

, i “ 1, 2, 3, 4. Thus, gpf1, . . . , ftqpx1q ` gpf1, . . . , ftqpx4q ď

gpf1, . . . , ftqpx2q ` gpf1, . . . , ftqpx3q, which means that gpf1, . . . , ftq is di-

rectionally convex [97].

Without loss of generality, we consider the first variate. Since the

functional tfju1ďjďt is increasing and affine, we obtain

`

f1

`

X1
1 , x

2
1, . . . , x

n
1

˘

, . . . , ft
`

X1
t , x

2
t , . . . , x

n
t

˘˘

ďdcx

´

f1

´

rX1
1 , x

2
1, . . . , x

n
1

¯

, . . . , ft

´

rX1
t , x

2
t , . . . , x

n
t

¯¯

,

@

´

x2
j , . . . , x

n
j

¯

P

´

X2
j , . . . , X

n
j

¯

, @1 ď j ď t. By taking the expectation, we

obtain pX1, X2, . . . , Xtq ďdcx

´

rX1, rX2, . . . , rXt

¯

, which further implies the

convex order of the weighted sum [97].

The rest of the results follows the transitivity of the directionally convex

order.

Remark 71. The results show that the manipulation of the marginal dis-

tributions of one dimension is able to transform the distribution ordering

properties of the overall stochastic process, the more dimensions the more

manipulation strength.

Remark 72. To implement the stochastic ordering pXi
1, . . . , X

i
tq ďdcx

p rXi
1, . . . ,

rXi
tq, it is sufficient to consider that [97][98]

`

Xi
1, X

i
2, . . . , X

i
t

˘
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and
´

rXi
1,

rXi
2, . . . ,

rXi
t

¯

have the common conditionally increasing copula

Cit
`

ui1, . . . , u
i
t

˘

, and Xi
j ďcx

rXi
j, @1 ď j ď t. Similar result [15] holds for

the increasing directionally convex order ďidcx.

Remark 73. The marginal distribution manipulation is feasible only for

positive dependence, while the dependence structure manipulation has no

dependence bias. In other words, the marginal distribution manipulation

with respect to negative dependence should be avoided in practice.

The following theorems provide results of more general functionals with

respect to the increasing directionally convex order.

Theorem 34. Assume the random parameters are spatially independent

and temporally dependent. If fj

´

X1
j . . . , X

n
j

¯

, @1 ď j ď t, are increasing

and directionally convex, and
`

Xi
1, X

i
2, . . . , X

i
t

˘

ďidcx

´

rXi
1,

rXi
2, . . . ,

rXi
t

¯

,

@1 ď i ď n, the results in Theorem 33 extend to the increasing directionally

convex order ďidcx of the random vectors and the corresponding increasing

convex order ďicx of the weighted partial sums.

Proof. The function gpxq “ pf1pxq, . . . , ftpxqq, g : Rnˆt Ñ Rt, is increas-

ing and directionally convex if the functions fj : Rnˆt Ñ R, @1 ď j ď t,

are increasing and directionally convex [127]. The composition of an in-

creasing and directionally convex function g : Rt Ñ R and an increasing

and directionally convex function f : Rnˆt Ñ Rt is an increasing and direc-

tionally convex function g ˝ f [127]. The proof follows that the increasing

directionally convex order is closed under conjunction [127].

Theorem 35. Assume the random parameters are spatially dependent and

temporally independent. If fj

´

X1
j . . . , X

n
j

¯

, @1 ď j ď t, are increasing

and directionally convex, and
´

X1
j , X

2
j , . . . , X

n
j

¯

ďidcx

´

rX1
j ,

rX2
j , . . . ,

rXn
j

¯

,

@1 ď j ď t, then the same results hold as in Theorem 31, but in the sense

of the increasing and directionally convex order ďidcx.
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Proof. Note the composition of an increasing and convex function g : RÑ
R and an increasing and directionally convex function f : Rn Ñ R is

an increasing and directionally convex function g ˝ f [127]. Then, the

proof follows that the increasing and convex order of each elements implies

the increasing and directionally convex order of the random vector with

independent elements.

Remark 74. It is interesting to extend the temporal and spatial manipu-

lation results to the conditional (increasing) directionally convex order.

Assuming independence among the random vectors, we present the di-

rectionally convex order result for random sums, which are not necessarily

independent.

Theorem 36. Let Xj “ pXj,1, . . . , Xj,mq and Yj “ pYj,1, . . . , Yj,mq, j “

1, 2, . . ., be two sequences of non-negative random vectors with indepen-

dence among components, and let M “ pM1,M2, . . . ,Mmq and N “

pN1, N2, . . . , Nmq be two vectors of non-negative integer-valued random

variables. Assume that both M and N are independent of the Xj’s and

Yj’s. Assume that Xj,i ďcx Xj`1,i, @1 ď i ď m, @j ě 1.

If M ďdcx N , then

˜

M1
ÿ

j“1

Xj,1, . . . ,
Mm
ÿ

j“1

Xj,m

¸

ďdcx

˜

N1
ÿ

j“1

Xj,1, . . . ,
Nm
ÿ

j“1

Xj,m

¸

. (3.122)

If Xj ďdcx Yj, @j, then

˜

N1
ÿ

j“1

Xj,1, . . . ,
Nm
ÿ

j“1

Xj,m

¸

ďdcx

˜

N1
ÿ

j“1

Yj,1, . . . ,
Nm
ÿ

j“1

Yj,m

¸

. (3.123)
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If M ďdcx N and Xj ďdcx Yj, @j, then

˜

M1
ÿ

j“1

Xj,1, . . . ,
Mm
ÿ

j“1

Xj,m

¸

ďdcx

˜

N1
ÿ

j“1

Yj,1, . . . ,
Nm
ÿ

j“1

Yj,m

¸

. (3.124)

Proof. The first result is available in [112][127]. For the second result,

Xj ďdcx Yj ùñ Xj,i ďcx Yj,i, @1 ď i ď m, the independence assump-

tion implies that the convex order is closed under convolutions [127], i.e.,
řni
j“1Xj,i ďcx

řni
j“1 Yj,i, @1 ď i ď m, furthermore, it implies

E

«

φ

˜

N1
ÿ

j“1

Xj,1, . . . ,
Nm
ÿ

j“1

Xj,m

¸

|N “ pn1, . . . , nmq

ff

ď E

«

φ

˜

N1
ÿ

j“1

Yj,1, . . . ,
Nm
ÿ

j“1

Yj,m

¸

|N “ pn1, . . . , nmq

ff

,

where φ is directionally convex. By integrating for expectation, we obtain

the final result. The third result follows the transitivity of the directionally

convex order.

Corollary 8. With proper revisions, the results in Theorem 36 extend to

the increasing directionally convex order ďidcx and (increasing) componen-

twise convex order (ďiccx) ďccx. Specifically, the corresponding revisions

are Xj,i ďicx pďcx,ďicxqXj`1,i, M ďidcx pďccx,ďiccxqN , and Xj ďidcx

pďccx,ďiccxqYj.

Proof. The proof follows the properties of each stochastic orders and pre-

liminary results in [112][127].

Remark 75. It is interesting to notice the fact that: Let X “ pX1, . . . , Xmq

be a set of independent random variables and let Y “ pY1, . . . , Ymq be an-

other set of independent random variables, then, X ďdcx pďidcxqY ðñ

Xi ďcx pďicxqYi, @1 ď i ď m ðñ X ďccx pďiccxqY .
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We study the ordering property of the partial sums under the ordering

condition of the sequences.

Theorem 37. If pXt1 , . . . , Xtkq ďidcx

´

rXt1 , . . . ,
rXtk

¯

, @t1, . . . , tk P N,

@k P N, then we have

˜

ÿ

j1PT1

Xj1 , . . . ,
ÿ

jkPTk

Xjk

¸

ďidcx

˜

ÿ

j1PT1

rXj1 , . . . ,
ÿ

jkPTk

rXjk

¸

, (3.125)

for any disjoint subsets T1, . . . , Tk P N.

Proof. The proof follows that, if f : Rm Ñ Rk is increasing and direction-

ally convex and g : Rn Ñ Rm is increasing and directionally convex, then

the composition f ˝ g is increasing and directionally convex [127].

Remark 76. An alternative approach is to treat the functional stochastic

process as a random field on Nn ˆ R, then the comparison result directly

follows the comparison result of random field in [94][127].

Remark 77. The result indicates that the ďidcx ordering of the instanta-

neous values implies the ďidcx ordering of the accumulated values.

Remark 78. It is interesting to study the corresponding property of the

supermodular order or the counter examples.

Since the usual stochastic order has a direct indication on the mean

values, i.e., X ďst Y ùñ EX ď EY ùñ
ř

EXi ď
ř

EYi, Xi PX, Yi P

Y , it is interesting to consider the dependence manipulation with respect

to the usual stochastic order when the mean value is the objective measure.

Theorem 38. Assume the random parameters are spatially independent

and temporally dependent. If fj

´

X1
j . . . , X

n
j

¯

, @1 ď j ď t, are increasing,

and
`

Xi
1, X

i
2, . . . , X

i
t

˘

ďst

´

rXi
1,

rXi
2, . . . ,

rXi
t

¯

, @1 ď i ď n, then

pX1, X2, . . . , Xtq ďst

´

rX1, rX2, . . . , rXt

¯

, (3.126)
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where rXj “ fjpX
1
j , . . . , X

i´1
j , rXi

j , X
i`1
j , . . . , Xn

j q, @1 ď j ď t, for any

1 ď i ď n; and

ĂXk
t ďst

ĂXk1

t , @0 ď k ď k1 ď n, (3.127)

where rX l
tm “ fmp rX

1
m, . . . ,

rX l
m, X

l`1
m , . . . , Xn

mq, 1 ď m ď t, and ĂX l
t “

p rX l
t1 , . . . ,

rX l
ttq, l P tk, k

1u.

Proof. The spatial independence implies the conjunction property of the

usual stochastic order
`

X1, . . . ,Xi, . . . ,Xn
˘

ďst

´

X1, . . . ,ĂXi, . . . ,Xn
¯

,

where Xi “
`

Xi
1, X

i
2, . . . , X

i
t

˘

, then the first result directly follows the

closure property of the usual stochastic order [127]. The second result

follows the transitivity of the usual stochastic order.

Remark 79. Particularly, if
`

Xi
1, X

i
2, . . . , X

i
t

˘

and
´

rXi
1,

rXi
2, . . . ,

rXi
t

¯

have

the common copula Cit
`

ui1, . . . , u
i
t

˘

, the order condition
`

Xi
1, X

i
2, . . . , X

i
t

˘

ďst
´

rXi
1,

rXi
2, . . . ,

rXi
t

¯

can be replaced by Xi
j ďst

rXi
j, @1 ď j ď t. This result is

available in [127, p. 272].

Corollary 9. Assume the random parameters are spatially dependent and

temporally independent. If fj

´

X1
j . . . , X

n
j

¯

, @1 ď j ď t, are increasing,

and
´

X1
j , X

2
j , . . . , X

n
j

¯

ďst

´

rX1
j ,

rX2
j , . . . ,

rXn
j

¯

, @1 ď j ď t, then the same

results hold as in Theorem 31, but in the sense of the usual stochastic order

ďst.

Proof. The results follow the closure property and transitivity of the usual

stochastic order [127].

Remark 80. It is interesting to extend the results to the scenario without

spatial and temporal dependence specification and express the results in

terms of the conditional probability and conditional stochastic order as in

Theorem 32.

We have the following results of the random sums with respect to the

usual stochastic order.
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Remark 81. Let Xj “ pXj,1, . . . , Xj,mq and Yj “ pYj,1, . . . , Yj,mq, j “

1, 2, . . ., be two sequences of non-negative random vectors, and let M “

pM1,M2, . . . ,Mmq and N “ pN1, N2, . . . , Nmq be two vectors of non-negative

integer-valued random variables. Assume that both M and N are inde-

pendent of the Xj’s and Yj’s.

If tXj , j P Nu ďst tYj , j P Nu and M ďst N , then

˜

M1
ÿ

j“1

Xj,1, . . . ,
Mm
ÿ

j“1

Xj,m

¸

ďst

˜

N1
ÿ

j“1

Yj,1, . . . ,
Nm
ÿ

j“1

Yj,m

¸

. (3.128)

This result is available in [127]. Specifically, the proof follows the transi-

tivity of the following results,

˜

M1
ÿ

j“1

Xj,1, . . . ,
Mm
ÿ

j“1

Xj,m

¸

ďst

˜

N1
ÿ

j“1

Xj,1, . . . ,
Nm
ÿ

j“1

Xj,m

¸

, (3.129)

which is provided in [112], and

˜

N1
ÿ

j“1

Xj,1, . . . ,
Nm
ÿ

j“1

Xj,m

¸

ďst

˜

N1
ÿ

j“1

Yj,1, . . . ,
Nm
ÿ

j“1

Yj,m

¸

, (3.130)

which follows the closure property of the usual stochastic order, by condi-

tioning on pN1, . . . , Nmq “ pn1, . . . , nmq and integrating for expectation.



Chapter 4

Conclusion

This work advocates the research on dependence control, which concerns

transforming the dependence structure of a stochastic process in the sys-

tem through dependence manipulation to improve the system performance.

Specifically, we develop a dependence control theory and formulate three

principles of dependence control, namely measurability, duality, and trans-

formability. In the development of the theory, we adopt various mathemat-

ical techniques, like large deviation, change of measure, stochastic order,

martingale, and copula. In addition, several assumptions are made, which

allow to characterize weak forms of dependence and light-tailed process,

and an example is the Markov additive process. We remark that, among

the three principles, these assumptions are necessary only for the first.

For the second principle, it relies on the assumptions when the dual po-

tency of arrival and service dependence implies the ordering of the measure

identities, and for the third principle, the results do not require these as-

sumptions provided that the stochastic orders make sense.

We apply the dependence control theory to the wireless channels. We

find that the light-tail behavior is an intrinsic property of the wireless

channel capacity, which is due to the passive nature of the wireless prop-
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agation environment and the power limitation in the practical systems. It

is interesting to note that the marginal manipulation has a dependence

bias, i.e., it is effective with respect to positive dependence rather than

negative dependence. Considering the trade-off between the dependence

and the marginal distributions, it is reasonable that a process with positive

dependence has a better effect on system performance than a process with

negative dependence and vice versa. This property indicates that the de-

pendence is a tradable resource in the physical world and it sheds light on

the development of new wireless technologies to trade off the dependence

resource and other resources, e.g., exchanging dependence for transmis-

sion power. While the focus of the application is on dependence control

in wireless channel capacity, many of the obtained results hold for general

stochastic processes and queueing systems.

An Outlook on Future Research

We believe that dependence control is a new direction for research. On

the one hand, we hope this work paves the way for the development of

the dependence control theory, on the other hand, we hope the theoretical

results can stimulate the development of new mathematical techniques and

new engineering technologies. Specifically, the potential research directions

are outlined as follows.

1. It is interesting to study the tail property of the wireless channel ca-

pacity in the wireless network scenarios, e.g., the multi-user scenario of

multiple access channel and the broadcast channel. Moreover, it is inter-

esting to take into account the tail behavior of the noise process.

2. It is interesting to study the extreme strength of dependence transform,

e.g., whether there are some strong forms of dependence that are unable

to be transformed from strong to weak, or one form of dependence that
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can not be transformed from one form to another form. It is interesting

to study the mixing property of the Markov additive process when the

dependence of the Markov chain goes from positive dependence or negative

dependence to independence.

3. It is interesting to define a probability metric to quantify the depen-

dence advantage, e.g., the distance between average power of different de-

pendence schemes or the distance between the power distributions in the

wireless channel capacity, or the distance between the asymptotic decay

rates of the performance measures of a queueing sytem. While the stochas-

tic orders provide comparison results in a qualitative way [98], it is inter-

esting to investigate the quantitative properties regarding the comparison

results, e.g., the probability metrics [36]. It is interesting to investigate the

dependence advantage in different wireless channel situations or scenarios,

e.g., of different signal-to-noise ratios.

4. It is interesting to consider the dependence control principles in the

queueing network, where the dynamics are expressed as a high-order Lind-

ley equation [75], which is an extension of the simple Lindley equation of

the single-server queue. In addition, it is interesting to consider the sce-

nario of a multi-server queue, where the dynamics are expressed as one

type of recursive equations [79][3]. It is interesting to notice the poten-

tial duality among the multi-class arrivals [143], parallel queues [86], and

multi-component shock models [87].

5. It is interesting to study new ideas of dependence control, e.g., new

perspectives on dependence and new methods to transform the depen-

dence. Specifically, it is interesting to study the additional perspectives

on the measure identity, diverse manipulation techniques to transform the

dependence structure, and more application scenarios. For example, it is

interesting to study the left tail of the performance measures besides the

right tail and it is interesting to extend the three principles of dependence
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control to other forms of dependence and heavy-tailed processes.

6. It is interesting to apply the dependence control theory to simulation,

e.g., for generating statistically independent random variables and for vari-

ance reduction. Specifically, the simulation provides a controllable envi-

ronment, which eases the difficulty of manipulating the dependence of the

stochastic process.

7. It is interesting to apply the dependence control to different physical

systems, e.g., the real-time system that has strict delay requirement, the

data center services, and the future Internet architecture. It is interesting

to apply the dependence control concept to different research fields, e.g.,

economics, finance, and insurance. For instance, an analogical result is

to improve the ruin probability by controlling the dependence in the risk

process. In addition, the application of dependence control to reliability

theory is also of interest.

8. It is interesting to develop new technologies that implement the depen-

dence control theory as proof-of-principle of the mathematical analysis in

this work. For example, by analogy with power allocation in wireless com-

munication, it is interesting to define new dependence measures and study

the mechanism of dependence allocation. It is interesting to study the pos-

sibility to encode information into dependence and decode the information

from dependence. It is interesting to study the dependence management

and dependence engineering.

9. It is interesting to extend the mathematics of the dependence control

theory to other probability foundations, e.g., from the concrete probability

space to the abstract probability space, from commutative probability to

non-commutative probability, and from quantitative probability to quali-

tative probability. The extension requires the definitions of new concepts

and relations, which are the opportunities to create new mathematics.
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Appendix A

Probability Preliminaries

A.1 Basics

A probability space is a triplet pΩ,F ,Pq, where pΩ,F q is a measurable

space and P is a probability measure. A filtration tFtutPT, T “ N or

T “ Rě0, is an increasing and right-continuous family of sub-σ-field of F ,

i.e., Fs Ă Ft for s ď t and Ft “
Ş

sąt Fs.

A stochastic basis pΩ,F , tF tutPT,Pq, which is also called a filtered

probability space, is a probability space pΩ,F ,Pq equipped with a filtration

tFtutPT.

A random time τ ď 8 is a stopping time with respect to the filtration

tFtutPT if tτ ď tu P Ft for all t P T.

More about the stochastic basis and stopping time are available in

[66][6].

A.2 Transforms

For a random variable X with distribution function F pxq, the moment

generating function is defined as pF rθs “ E
“

eθX
‰

“
ş

eθxF pdxq and the

cumulant generating function is defined as κpθq “ log pF rθs.
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The kth derivative of the moment generating function or cumulant

generating function at 0 is the kth moment or cumulant of the distribution.

Specifically, the first cumulant is the mean, the second cumulant is the

variance, and the third cumulant is the central third moment [6].

A.3 Time Reversal

Consider a stochastic process Xt. The reversed process X˚t with respect

to time τ is defined as

X˚t “ Xτ´t. (A.1)

If the reversed process X˚t and the original process Xt are statistically

indistinguishable, i.e.,

pXt1 , Xt2 , . . . , Xtnq
d
“ pXτ´t1 , Xτ´t2 , . . . , Xτ´tnq for all t1, t2, . . . , tn and n

(A.2)

the process Xt is said to be time reversible with respect to time τ .

A.4 Stochastic Order

The stochastic orders are special cases of the partial orders [98].

Definition 1. A binary relation ďX on an arbitrary set X is called a

partial order if it satisfies the following three properties.

1. Reflexivity: x ďX x for any x P X;

2. Transitivity: if x, y, z P X are such that x ďX y and y ďX z, then

x ďX z;

3. Antisymmetry: if x, y P X are such that x ďX y and y ďX x, then

x “ y.

A partially ordered set is a set X together with a partial order ďX on X.
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We introduce the univariate usual stochastic order, the convex order,

and the multivariate usual stochastic order.

Definition 2. The random variable X is said to be smaller than the ran-

dom variable Y with respect to the usual stochastic order ďst, if

PpX ą xq ď PpY ą xq, @x P p´8,8q, (A.3)

or equivalently,

ErφpXqs ď ErφpY qs for all increasing functions φ : RÑ R, (A.4)

provided the expectations exist.

Definition 3. The random variable X is said to be smaller than the ran-

dom variable Y with respect to the convex order ďcx, if

ErφpXqs ď ErφpY qs for all convex functions φ : RÑ R, (A.5)

provided the expectations exist.

Remark 82. Similarly, the increasing convex order ďicx, the concave or-

der ďcv, and the increasing concave order ďicv are defined in terms of

the increasing convex functions, the concave functions, and the increasing

concave functions.

Let x “ px1, x2, . . . , xnq and y “ py1, y2, . . . , ynq. We denote x ď y

if xi ď yi for i “ 1, 2, . . . , n. We say that the function φ : Rn Ñ R is

increasing (decreasing), if φpxq ď pěqφpyq whenever x ď y.

Definition 4. The random vector X is said to be smaller than the random

vector Y with respect to the usual stochastic order ďst, if

ErφpXqs ď ErφpY qs for all increasing functions φ : Rn Ñ R, (A.6)
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provided the expectations exist.



Appendix B

Elements of Dependence

B.1 Dependence Order

The dependence orders are reviewed. There are many concepts of depen-

dence corresponding to different dependence orders [98][123].

For a function, f : Rn Ñ R, ε ą 0, the difference operator is defined as

[98][123]

∆ε
ifpxq “ fpx` εeiq ´ fpxq, i P t1, . . . , nu, (B.1)

where ei “ p0, . . . , 0, 1, 0, . . . , 0q denotes the i-th unit vector.

Let f : Rn Ñ R. f is ∆-monotone [98][123], if for every subset

ti1, . . . , iku P t1, . . . , nu and ε1, . . . , εk ą 0,

∆ε1
i1
. . .∆εk

ik
fpxq ě 0, @x. (B.2)

Corresponding to the ∆-monotone functions F∆, the ∆-monotone func-

tions F∆ is defined as [123] F∆ “ th : Rn Ñ R; Df P F∆, hpxq “ fp´xqu.

The functions h P F∆ are decreasing and satisfy p´1qk∆ε1
i1
. . .∆εk

ik
hpxq ě

0, @x, for every subset ti1, . . . , iku P t1, . . . , nu and ε1, . . . , εk ą 0. In brief,

fpxq P F∆ if and only if ´fp´xq P F∆.
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The function f : Rn Ñ R is supermodular [98][123], if for all 1 ď i ă

j ď n, ε, δ ą 0,

∆ε
i∆

δ
jfpxq ě 0, @x. (B.3)

Equivalently, the function is supermodular, if

fpx^ yq ` fpx_ yq ě fpxq ` fpyq, @x,y, (B.4)

where x^ y “ pmin tx1, y1u, . . . ,min txn, ynuq and x_ y “ pmax tx1, y1u,

. . . ,max txn, ynuq.

If the function log fpxq is supermodular, i.e., log fpxq P Fsm, then

the function fpxq is multivariate totally positive of order 2 [123], i.e.,

fpxq P FMTP2 .

If ∆ε
i∆

δ
jfpxq ě 0 holds for all i ď j, then f is directionally convex

[98][123]. A function is directionally convex if it is supermosular and com-

ponentwise convex [98].

Definition 5. The stochastic orders generated by the supermodular func-

tion, the increasing supermodular function, the symmetric supermodular

function, the directionally convex function, and the increasing direction-

ally convex function are respectively defined as the supermodular order

ďsm, the increasing supermodular order ďism, the symmetric supermod-

ular order ďsymsm, the increasing directional convex order ďdcx, and the

increasing directional convex order ďidcx.

Remark 83. Since the supermodular order is invariant to both compo-

nentwise increasing transforms and componentwise decreasing transforms

[98], we have X ďsm Y ðñ ´X ďsm ´Y . Thus, we have the chain

rule, X ďsm Y ðñ ´X ďsm ´Y ùñ
ř

X ďcx
ř

Y ðñ ´
ř

X ďcx

´
ř

Y .

The classical dependence ordering is based on the orthant ordering

[123]. For two random vectors X,Y P Rn, the upper orthant order is
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defined as X ďuo Y , if FXpxq ď FY pxq, @x P Rn; the lower orthant order

is defined as X ďlo Y , if FXpxq ď FY pxq, @x P Rn; and the concordance

order is defined as X ďc Y , if X ďuo Y and X ďlo Y . Particularly, we

have [98], if X ďst Y , then X ělo Y and X ďuo Y . Note ďlo and ďuo

are denoted as the lower concordance order and upper concordance order

in [98]. We denote the stochastic order ď∆ and ď∆, which are respectively

generated by the ∆-monotone functions and ∆-monotone functions. Then,

the upper orthant order is equivalently expressed as [123]

X ďuo Y ðñ X ď∆ Y , (B.5)

and the lower orthant order is equivalently expressed as [123]

X ďlo Y ðñ X ď∆ Y . (B.6)

In addition, the positive orthant order and negative orthant order are

defined by comparing the probability measure with the probability measure

of independence [98].

Since the multivariate distribution function and survival function are

supermodular functions, for X,Y P Rn, we have the follows relation

[98][123]

X ďsm Y ùñ X ďc Y , @n ě 2, (B.7)

particularly, X ďsm Y ðñ X ďc Y and X ďuo Y ðñ X ďlo

Y ðñ X ďc Y , for n “ 2. It indicates that the comparison based

on the supermodular order is stronger than the comparision based on the

orthant order [123].

Remark 84. The relationships between the supermodular order, (weak) as-

sociation, and (weakly) conditional increasing are elaborated in [98][26][123].

Another reference is [81]. In case of positive dependence, the dependence

concepts ranging from strong to weak are as follows [123]: multivariate
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totally positive of order 2, conditional increasing, conditional increasing

in sequence, associated, weak associated, weak associated in sequence, and

positive supermodular dependent. In case of negative dependence, the strong

to weak ranging is as follows [98][26][63]: negatively associated, negatively

supermodular dependent, negative concordance, and negatively lower and

upper orthant dependence.

Remark 85. The directionally convex order, compared to the convex or-

der, is more suitable for the comparison of random vectors with a common

copula [97], moreover, the convex order of the marginals can not imply the

convex order of the partial sum, if the components are negatively depen-

dent [98]. Thus, a common conditionally increasing copula, which indicates

positive dependence, is assumed for the comparison of the partial sum.

Remark 86. For a Polish space with a closed partial order, that the space

is totally ordered is equivalent to that every probability measure on this

space is associated [98, p. 124], i.e., exhibiting positive dependence.

Remark 87. It is interesting to find the extreme negative dependence by

symmetric of the extreme positive dependence in terms of some stochastic

orders, i.e., letting X˚ be with the extreme positive dependence and T pX˚q

be with the extreme negative dependence for some transform T , such that

T pX˚q ďF X ďF X˚ for any X, provided the order ďF exists. Thus,

to find the symmetric negative dependence, it is fundamental to find the

transform that is symmetric with respect to the dependence structure and

equivalent with respect to the stochastic order, which boils down to the

definition of the symmetry and equivalence.

Remark 88. It is interesting to give an overview of the different depen-

dence concepts and link the dependence concepts to the stochastic orders. It

is interesting to investigate the the extension of the dependence control with

respect to different dependence orders, which manifests the characteristics

of different dependence definitions.
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B.2 Markov Process

Let pΩ,F , pF tqtPN,Pq be a filtered probability space and pXtqtPN be an

adapted stochastic process. X is a Markov process if and only if

P pXt ď x|Xt´1,Xt´2, . . . ,X0q “ P pXt ď x|Xt´1q . (B.8)

A Markov additive process is defined as a bivariate Markov process

tXtu “ tpJt, Sptqqu where tJtu is a Markov process with state space E and

the increments of tSptqu are governed by tJtu in the sense that [7]

E rfpSpt` sq ´ SptqqgpJt`sq|Fts “ EJt,0 rfpSpsqqgpJsqs . (B.9)

We consider the finite state space and discrete time scenario [6][7].

In discrete time, a Markov additive process is specified by the measure-

valued matrix (kernel) Fpdxq whose ijth element is the defective probabil-

ity distribution

Fijpdxq “ Pi,0pJ1 “ j, Y1 P dxq, (B.10)

where Yt “ Sptq ´ Spt ´ 1q. An alternative description is in terms of the

transition matrix P “ ppijqi,jPE , pij “ PipJ1 “ jq, and the probability

measures

Hijpdxq “ PpY1 P dx|J0 “ i, J1 “ jq “
Fijpdxq

pij
. (B.11)

With respect to a transition probability pij , the increment of tStu has a

distribution Bij .

Consider the matrix pFtrθs “ pEireθSptq; Jt “ jsqi,jPE . In discrete time,

pFtrθs “ pFrθst, (B.12)

where pFrθs “ pF1rθs is a E ˆ E matrix with ijth element pF pijqrθs “
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pij
ş

eθxHpijqpdxq, and θ P Θ “ tθ P R :
ş

eθxHpijqpdxq ă 8u [6]. By

Perron-Frobenius theorem, pFrθs has a positive real eigenvalue with max-

imal absolute value eκpθq. The corresponding right and left eigenvectors

are respectively hpθq “ phipθqqiPE and vpθq “ pvipθqqiPE , with the normal-

ization in particular, vpθqhpθq “ 1 and πhpθq “ 1, where π “ vp0q is the

stationary distribution and hp0q “ 1.

If the stationary distribution π “ pπpjqqjPE exists, the time reversed

process, tpJ˚n , X
˚
nqu, is represented by [5]

F ˚pi, j;Aq “ PπpJ0 “ j,X1 P A|J1 “ iq “
πpjq

πpiq
F pj, i;Aq, (B.13)

i.e., πpiqF ˚pi, j;Aq “ πpjqF pj, i;Aq. The time-reversed transition proba-

bility, when looking at tJ˚nu alone, is p˚ij “
πpjq
πpiq pji, i.e., P ˚ “ ∆´1

π P
T∆π,

where ∆π is the diagonal matrix with π on the diagonal, see [6, p. 314],

and that the conditional distribution of X˚1 given J˚0 “ i and J˚1 “ j is the

same as the conditional distribution of X1 given J0 “ j and J1 “ i, i.e.,

H˚pi, j;Aq “ Hpj, i;Aq. Considering the matrix pF˚rθs “ ∆´1
π

pFrθsT∆π,

the roots of det
´

pFrθs ´ I
¯

“ 1 and det
´

pF˚rθs ´ I
¯

“ 1 are the same [6,

p. 331], i.e., the same eigenvalues with the Perron-Frobenius eigenvalue in

particular

λ˚pθq “ λpθq. (B.14)

Letting pFrθsh˚pθq “ λpθqh˚pθq, then h˚pθqT∆π
pFrθs “ λpθqh˚pθqT∆π.

Thus, if the matrix pFrθs has the Perron-Frobenius eigenvalue λpθq with

the corresponding left eigenvector νpθq, the matrix pF˚rθs has the same

Perron-Frobenius eigenvalue λpθq with the corresponding right eigenvector

h˚pθq “ ∆´1
π νpθq

T . (B.15)

Similarly, if the matrix pFrθs has the Perron-Frobenius eigenvalue λpθq with

the corresponding right eigenvector hpθq, the matrix pF˚rθs has the same
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Perron-Frobenius eigenvalue λpθq with the corresponding left eigenvector

ν˚pθq “ νpθqT∆π. (B.16)

Remark 89. The fact that the time reversed process and the original pro-

cess have the same Perron-Frobenius eigenvalue for a Markov additive pro-

cess, which further determines the asymptotic decay rate of the performance

measures in the queueing system, implies that the influence of dependence

is robust to the time reversibility assumption.

Considering a Markov additive process pJt, Sptqq with the kernel FpAq

and a linear transformation T : R Ñ R, letting S‹ptq “ T pSptqq, then

pJ,S
‹ptqq is a Markov additive process with the kernel F‹pBq such that

[105]

F ‹ijpBq “ Fij
`

T´1pBq
˘

. (B.17)

The more general formation is shown in [105]. The result is useful for

studying the dual process of the queueing processes, e.g., the dual process

of the service process or the arrival process. The problem lies in the spec-

ification of the process, e.g., letting the dual process be pJt,´Sptqq, the

transition matrix remains the same as the original process. Particularly,

for the kernel matrix of the moment generating functions, considering the

dual process on the positive parameter axis is equivalent to considering

the original process on the negative parameter axis.

Remark 90. It is interesting to study the marginal distribution of the

Markov additive process. Since the Markov additive process is not station-

ary in general, it can not be compared with an independently and identically

distributed process based on the supermodular order. On the other hand, it

is interesting to study whether or not the Markov additive processes with

respectively negative and positive dependence can be compared based on the

supermodular order.
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B.3 Copula

Consider a joint distribution F pX1, . . . , Xnq with marginal distribution

FipXiq, i “ 1, . . . , n. Denote ui “ Fi pXiq, which has a uniform distribu-

tion, then

F pX1, . . . , Xnq “ F
`

F´1
1 pu1q , . . . , F

´1
n punq

˘

(B.18)

” C pu1, . . . , unq , (B.19)

where C is a copula, with standard uniform marginals [40]. Specifically,

if the marginals are continuous, the copula is unique. It is interesting to

study the relationship between copula and other dependence concepts, e.g.,

autocorrelation, regression and association.

It is well known that the copula is invariant to the strictly increasing

transforms. However, for the strictly decreasing transform, we have the

following result [43]. Let pX1, . . . , Xnq be a vector of continuous random

variables with copula CX1,...,Xn . Let f1, . . . , fn be strictly monotone on the

range RanX1, . . . ,RanXn, respectively, and let pf1pX1q, . . . , fnpXnqq have

copula Cf1pX1q,...,fnpXnq. Furthermore let fk be strictly decreasing for some

k. Without loss of generality let k “ 1. Then [43],

Cf1pX1q,...,fnpXnqpu1, . . . , unq “ Cf2pX2q,...,fnpXnqpu2, . . . , unq

´ CX1,f2pX2q,...,fnpXnqp1´ u1, u2, . . . , unq. (B.20)

Recursively, the copula Cf1pX1q,...,fnpXnq can be expressed in terms of the

copula CX1,...,Xn and its lower-dimensional marginals [43].

Example 3. For the 2-dimensional case, let f1 and f2 be strictly decreas-

ing, then [43]

Cf1pX1q,f2pX2qpu1, u2q “ u1 ` u2 ´ 1` CX1,X2p1´ u1, 1´ u2q. (B.21)
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The Markov property is solely a property of copula [32, 104]. The n-

dimensional process X is a Markov process, if and only if, for all t1 ă t2 ă

. . . ă tp, the copula Ct1,...,tp of pXt1 , . . . ,Xtpq satisfies [104]

Ct1,...,tp “ Ct1,t2
Ct2 p¨q
‹ Ct2,t3

Ct3 p¨q
‹ . . .

Ctp´1 p¨q

‹ Ctp´1,tp , (B.22)

where Cti,ti`1 is the (n + n)-dimensional copula between Xti and Xti`1 ,

and Cti`1 is the copula of Xti`1 . Provided that the integral exists for all

x, y, z, the operator
Cp¨q
‹ is defined by

pA
Cpzq
‹ Bqpx,yq “

ż z

0
A,Cpx, rq ¨BC,pr,yqCpdrq, (B.23)

where A is a pk`nq-dimensional copula, B is a pn` lq-dimensional copula,

C is a n-dimensional copula, A,Cpx,yq and BC,px,yq are defined by the

derivative of the copula Apx, ¨q and Bp¨,yq with respect to the copula C,

i.e, Apx, dyq “ A,Cpx,yqCpdyq and Bpdx,yq “ BC,px,yqCpdxq. A,C and

BC, are well-defined. Specifically, for 1-dimensional Markov process, the

copula is expressed by [32]

Ct1,...,tp “ Ct1,t2 ‹ Ct2,t3 ‹ . . . ‹ Ctp´1,tp , (B.24)

where Ct1,...,tp is the copula of
`

Xt1 , . . . , Xtp

˘

, Ctk´1,tk is the copula of
`

Xtk´1
, Xtk

˘

, and A ‹B is written as

A ‹B px1, . . . , xm`n´1q

“

ż xm

0
A,ξpx1, . . . , xm´1, ξqBξ,pξ, xm`1, . . . , xm`n´1qdξ, (B.25)

for m-dimensional copula A and n-dimensional copula B.

Remark 91. Considering the supermodular order of the Markov process,

X ďsm ĂX, the question reduces to the supermodular order of the cop-
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ula of the Markov process, i.e., C ďsm rC. It is interesting to study the

stochastic ordering of the Markov copula. Specifically, it is interesting to

study the relationship between Cti,ti`1 ďsm
rCti,ti`1, @0 ă ti ă tp ă t, and

Ct1,...,tp ďsm
rCt1,...,tp.

The copula representation of the Markov property requires the Markov

family copula [32][104][64]. Examples of Markov family copula are Gaus-

sian copula and Fréchet copula [104]. The 2-dimensional Fréchet copula is

available in [32] and the n-dimensional extension is available in [104].

Example 4. The n-dimensional Gaussian copula is written as [104]

CΣpuq “ ΦΣ

`

Φ´1pu1q, . . . ,Φ
´1punq

˘

, (B.26)

where ΦΣ denotes the joint distribution of the n-dimensional standard nor-

mal distribution with linear correlation matrix Σ, and Φ´1 denotes the

inverse of the distribution function of the 1-dimensional standard normal

distribution. The Gaussian copula allows for equal degrees of positive and

negative dependence. [136].

Remark 92. Considering the two Gaussian random vectors, X „ N pµ,Σq
and ĂX „ N

´

rµ, rΣ
¯

, X ďsm ĂX if and only if X and ĂX have the same

marginals and σij ď rσij for all i, j [98, p. 144]. Specifically, the Gaus-

sian copulas are supermodular ordered if and only if the linear correlation

matrices are correspondingly ordered.

Example 5. The extremely positive dependence, independence, and ex-

tremely negative dependence are expressed by copulas. For 2-dimensional

copula, the extremely positive copula, product copula (independence), and

extremely negative copula are defined as Mpx, yq “ minpx, yq, P px, yq “

xy, and W px, yq “ maxpx` y ´ 1, 0q.

A convex combination of M , P , and W is a Fréchet copula [32], i.e.,

Cst “ αps, tqW ` p1´ αps, tq ´ βps, tqqP ` βps, tqM, (B.27)
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if and only if [32, 104], for s ă u ă t,

αps, tq “ βps, uqαpu, tq ` αps, uqβpu, tq, (B.28)

βps, tq “ αps, uqαpu, tq ` βps, uqβpu, tq, (B.29)

where αps, tq ě 0, βps, tq ě 0, and αps, tq ` βps, tq ď 1. For homogeneous

case, αps, tq “ αpt´ sq and βps, tq “ βpt´ sq, a solution is as follows

αphq “ e´2hp1´ e´hq{2, (B.30)

βphq “ e´2hp1` e´hq{2. (B.31)

Let α “ e´h, it’s a one-parameter copula [32]

Cα “
α2p1´ αq

2
W ` p1´ α2qP `

α2p1` αq

2
M, (B.32)

where ´1 ď α ď 1, if |α| is small, independence is indicated, if α is near

1, strongly positive dependence is indicated, and if α is near ´1, strongly

negative dependence is indicated. The n-dimensional extension is available

in [104].
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