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Abstract

Skin is the human’s largest organ and has many vital functions including protection
from pathogens, temperature regulation, touch sensation, vitamin D synthesis and
protecting the water inside the body. It does not only protect the body from the
environment but also carries information about the health of individuals.

Diagnosis and monitoring of skin and vital functions measured in non-contact is
a broad field of research. Measuring vital signs, monitoring oxygenation and skin
diagnosis can benefit from spatially resolved images of the tissue. Standard three-
channel colour imaging provides the ease of use and acquisition speed for a clinical
setup but lacks the spectral resolution to identify specific narrow bands of interest
containing the essential information. Spectral imaging has been used to quantify
diagnostically relevant physical properties of living tissue but suffers from slow
acquisition speed and time delays between the acquisition of different bands. Re-
cent sensor development has led to so-called spectral filter array (SFA) cameras,
which combine the acquisition speed and ease of use of standard RGB imaging
with the spectral resolution of spectral cameras. To utilise all the benefits of this
new imaging modality, additional processing steps are required. This thesis ex-
plores SFA imaging in the context of skin diagnosis, and the imaging is enhanced
with physical skin simulation models.

Skin models based on Monte Carlo simulation allow change and control over op-
tical properties and resulting spectral reflectance from skin can be recorded. The
simulated spectral reflectance with known optical properties is used in three dif-
ferent ways within this research. First, they are tested, by studying the impact of
the optical properties on a resulting colour patch. This provides a better under-
standing of the relationship between colour shade and different combinations of
optical properties. Secondly, the simulations are used to enhance the interpretab-
ility of spectral measurements regarding important physical skin properties with
diagnostic value. This approach is applied to two different spectral filter array
cameras and an RGB imager in conjunction with multiple LEDs. Thirdly, skin
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vi Abstract

simulations are performed to generate an exhaustive spectral reflectance database,
for training and enhancement of spectral reconstructions of skin reflectance. This
specialised database covers a wide range of physically, but not physiologically
possible optical properties.

Different spectral imagers in the visual and near-infrared spectrum are applied to
measuring oxygenation spatially resolved in living tissue. Additionally, a pro-
cessing framework is proposed for spectral filter array cameras. This framework
combines several SFA camera-specific processing steps and shows transferability
to other cameras. It is tested by comparing oxygenation estimations from both a
visual range (VIS) and a near-infrared (NIRS) spectral filter array camera with the
de facto clinical standard in an upper arm occlusion test.

Finally, this work proposes a framework for selecting and testing SFA cameras for
skin diagnosis tasks without the need of (extensive) clinical studies. This frame-
work could aid in the development of SFA cameras for specific tasks and explores
currently commercially available models for skin oxygenation measurements. In
the future, it can be expected that spectral filter array cameras will become cheaper
and more common. This work establishes a solid foundation for applying this new
versatile form of spectral imaging in the context of skin diagnosis. Both general
practitioners, dermatologists and, anesthesiologists can benefit from an easy to use,
spatially resolved, real-time oxygenation measurement tool.
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Chapter 1

Introduction

1.1 Motivation
The human skin is the largest organ and protects our body from external threats
like heat, infection, impact and harmful radiation. The skin is affected by our
health, mood, diet, age, well-being, and visual inspection of the skin is an ancient
and widely used form of health assessment.

Visual inspection allows minimally invasive large scale non-contact diagnosis of
disease, decreasing the infection risk, and avoiding weakening or hurting patients.
This is especially important for critical care patients, new-borns and situations with
high risks of infections.

The skin itself should be assessed for skin cancer, inflammations, and other skin
pathology’s and carries relevant systematic information about the health condition
for health monitoring. Visual diagnosis is subjective to the examining physician
and objective and quantitative tools are desirable and can aid physicians. Optical
diagnosis is based on the interaction of light with living tissue. The color of the
reflected light from the skin contains chemical and physiological information.

One technological equivalent to visual diagnosis is digital imaging. Digital ima-
ging allows objective measurement of light reflected from the surface of an object.
It provides a two-dimensional image that allows spatial interpretation of the re-
flected light signal. Standard three-channel (RGB) imaging systems acquire three
wide bands along the visual spectrum of light. These wide bands can lack the
spectral resolution to sense small changes in the spectral signature and are usually
limited to the visual spectrum of light.
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4 Introduction

Multispectral imaging is a technique to acquire multiple narrow spectral bands
of a scene to increase the spectral resolution. Different approaches have been
developed and used in the medical field including liquid crystal tuneable filters,
filter wheel cameras, and tuneable illumination imaging systems. All of these
approaches sample the spectrum temporally, which introduces short delays in the
moment of acquisition for each of the spectral bands. Spectral bands are acquired
in sequence with these techniques rendering snapshot image capture impossible.
This makes these techniques less suitable for capturing dynamic processes.

Ximea Silios

Figure 1.1: Examples of commercially available spectral filter array cameras. Ximea [1]
(on the left). Silios [2] (on the right).

The recent development in sensor technology-enabled so-called spectral filter ar-
ray cameras(with commercial examples in Figure 1.1). Each pixel of this type of
camera has a unique spectral sensitivity curve and acts as a spectral filter. There-
fore, each of the sub-pixels or pixels represents one wavelength allowing the re-
construction of a full spectral image. This captures both spectral and spatial as-
pects of the scene in a snapshot. It could allow physicians to distinguish between
small changes in the spectral reflectance signature and can exceed the visual range
of the spectrum. The special architecture of the sensors requires hardware aware
processing of the data and adequate methods to analyze the data in a medically
relevant context.

General practitioners and dermatologists are facing increasing amounts of patients.
Easy to use non-contact imaging techniques could be beneficial to aid in tackling
the increasing amounts of patients and provide an objective, sterile way of meas-
uring. Telemedicine is also of increasing importance especially in areas where
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specialists are rare or far away. For telemedicine, it is important to acquire dense
data sets and provide the physicians with detailed information about the patient.
Spectral filter array imagers could be beneficial for these applications.

1.2 Aims and research questions
This research aims to provide additional tools for physicians to analyze the skin
and visualize processes invisible to the human eye. In particular enabling spectral
filter array cameras as a medical imaging modality, while maintaining acquisition
speed, spectral and spatial resolution, ease of use and versatile applicability of
this new technology. Skin simulations are used as a tool aiding the interpretation
of measured data and used to create controlled data sets. The thesis is centered
around the principles of imaging and focused on the estimation of physiological
properties from skin images. Skin imaging is a diverse field of research and this
study focuses on skin oxygenation as the main application.

The main contributions of this work fall within the triangle of imaging, skin (as the
object) and processing and medical applications in the center, this is illustrated in
Figure 1.2. All three elements are investigated to help develop tools for physicians
with concrete medical applications. Spectral imaging is used as the main mode of
data acquisition.

Images of the skin face the challenge to provide physiologically relevant informa-
tion. This process is not trivial and often referred to as the inverse problem. Spe-
cific knowledge of skin light interaction serves as a way to select bands of interest
and aims to enhance the interpretability of images of the skin. Monte Carlo simu-
lation, in particular, allows to numerically simulate optical properties and spectral
reflectance of skin. Objective measurements of the color of skin, interpretation,
and quantification of chemical and physiological parameters provide additional
value for physicians. With processing tailored to the image acquisition and util-
izing specific knowledge about skin optics via simulations, the image analysis is
enhanced for medical applications.

The overall goal of this research is to develop new imaging tools for physicians
with clinical value. To achieve this goal different aims were formulated to guide
the research.

The first aim is to use computational simulations of optical properties of the skin to
improve imaging. Ideally the models could be used to generate skin spectra with
known optical properties in a controlled environment. These controlled simula-
tions could then be used for training and testing and to guide the design of spectral
skin imaging devices. It is then the aim to utilize these models in conjunction with
new types of imaging methods.
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Imaging

Object Processing

Application

Figure 1.2: Triangle of imaging, processing and object aiming towards specific applica-
tions.

The second aim is to establish spectral filter array cameras, which combine acquis-
ition speed, spatial and spectral resolution as a viable medical imaging modality.
Specific processing is required to obtain a spectral image cube that can be ana-
lyzed and useful for physicians. This framework should apply to many instances
of spectral filter array cameras and this research also aims to test this.

The final aim is to provide tools that can be used to guide design and optimize
spectral filter array imagers for specific applications and to provide a comparison
of currently commercially available cameras. This can be useful for other research
to get an overview of existing spectral filter array techniques and should provide a
tool to develop this novel technique further. Lastly it should be studied how useful
SFA cameras are for physicians and in a clinical setup.

From these aims four research question (RQ) can be formulated and are presented
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here:

RQ1: How to use skin simulations to improve the inter operation of measured skin
reflectance data?

RQ2: How to use spectral filter array cameras efficiently for medical skin imaging?

RQ3: How to select spectral filter array cameras for specific applications and what
to focus on for further development?

RQ4: How useful are SFA cameras in a clinical setup?

Spectral 
imaging

Skin Processing

Medical 
application

Physical properties

Object knowledge

Monte Carlo
simulation

Enhances

Spectral
cameras

Spectral bands

Spatial information 

Chromophore
estimation

Skin
Imaging

Preprocessing

Interpretation

Visualisation

Vital signs

Interprets

Gui
de

s

Figure 1.3: Concrete organisational triangle of spectral imaging, processing, and skin.
Illustrating the specific application.

Figure 1.3 shows the above-mentioned triangle with examples of the aspects stud-
ied in this thesis and their connections. Spectral imagers can be used, among other



8 Introduction

applications, to monitor vital signs, provide chromophore maps and, to visualize
the oxygenation levels spatially resolved. The main medical applications studied
in this research is the estimation of oxygen levels in the skin.

1.3 List of published papers
This research is represented in six papers. All are published and available online.
A list of the papers included in this thesis is provided below. These six papers
are included and constitute the core of this thesis. Paper F is as clearly stated a
collaborative effort with medical doctors from the Vrije Universiteit Amsterdam
medical center. The contributions by the author to this work will be clearly stated
in Chapter 3 which provides a summary of each paper. Figure 1.4 provides an
overview of the locations of the papers in the organisational triangle. Paper A
focused on Monte Carlo skin simulation, Paper B, C and D exploring spectral
imaging, Paper E proposing a framework for SFA cameras, and Paper F showing
a medical application of the research.

List of included papers:

Paper A Jacob R. Bauer; Marius Pedersen; Jon Y. Hardeberg; and Rudolf M. Ver-
daasdonk; “Skin color simulation - review and analysis of available Monte
Carlo-based photon transport simulation models,”; CIC25, 25th Color and
Imaging Conference: Color Science and Engineering Systems, Technolo-
gies, and Applications, 2017, Lillehammer, Norway.

Paper B Jacob R. Bauer; Jon Y. Hardeberg; and Rudolf M. Verdaasdonk; “Optical
skin assessment based on spectral reflectance estimation and Monte Carlo
simulation,”; Proceedings of SPIE Volume 10057, Multimodal Biomedical
Imaging XII 1005703; Event: SPIE BIOS, 2017, San Francisco, California,
United States.

Paper C Jacob R. Bauer; Arnoud A. Bruins; Jon Y. Hardeberg; Rudolf M. Ver-
daasdonk; “A Spectral Filter Array Camera for Clinical Monitoring and Dia-
gnosis: Proof of Concept for Skin Oxygenation Imaging” Journal of Ima-
ging 2019, 5, 66.

Paper D Jacob. R. Bauer; Karlijn v. Beekum; John H.G.M Klaessens; Herke J.
Noordmans; Christa Boer; Jon Y. Hardeberg, and Rudolf M. Verdaasdonk;
Towards real-time non contact spatial resolved oxygenation monitoring us-
ing a multi spectral filter array camera in various light conditions; Proceed-
ings of SPIE Volume 10489, Optical Biopsy XVI: Toward Real-Time Spec-
troscopic Imaging and Diagnosis; Event: SPIE BIOS, 2018, San Francisco,
California, United States.
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Paper E Jacob R. Bauer; Jean-Baptiste Thomas; Jon Y. Hardeberg and Rudolf M.
Verdaasdonk; “An Evaluation Framework for Spectral Filter Array Cameras
to Optimize Skin Diagnosis” Sensors 2019, 19(21), 4805.

Paper F Arnoud A. Bruins; Diederik G.P.J. Geboers; Jacob R. Bauer; John H.G.M
Klaessens; Rudolf M. Verdaasdonk; Christa Boer; “The vascular occlusion
test using multispectral imaging: a validation study.” Journal of Clinical
Monitoring and Computing (2020).

1.3.1 Original contributions

Paper A can be considered an overview of three Monte Carlo methods for tis-
sue optics simulation. Additionally the paper provides a visualization technique
by simulating camera responses to spectra simulated with different optical config-
urations. Paper B is a proof of concept for a low cost spectral imaging device
in combination with Monte Carlo simulations to retrieve oxygenation measure-
ments. It showcases the combination of spectral estimation techniques in conjunc-
tion with Monte Carlo models to extract skin optical properties from reflectance
measurements. Paper C explores a spectral filter array camera as a non contact
oxygenation measurement and addresses unique preprocessing steps for this novel
spectral imaging modality. These processing steps are developed into a framework
and tested in a clinical setup. Paper D tests the transferability of the developed
framework with a spectral filter array camera in the near infrared region. Both
showcasing the validity of this spectral region for oxygenation measurements and
showing the adaptability of the developed framework for other camera instances.
Paper E can be considered a further abstraction of the developed framework and
allows a complete investigation into most suitable spectral filter array cameras
for specific biomedical optics tasks. This can be used as a guideline for the de-
velopment of application specific spectral filter array cameras and as a complete
overview of all aspects that need to be considered if applying these cameras in the
medical domain. Paper E applies the complete SFA setup in a clinical research
environment in collaboration with medical doctors. While Paper C describes the
technical details Paper E describes the medical implications and tests the proof of
concept clinically.

1.3.2 Roles of the authors

Paper A Jacob Renzo Bauer was responsible for conceptualization, carrying out
the research, writing of the manuscript, creation of the figures and validation
of the research results. All Monte Carlo Simulations were performed and
submission handled by Jacob Renzo Bauer. The work was presented at CIC
by Jacob Renzo Bauer as a poster presentation. Marius, Pedersen and Jon
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Y., Hardeberg and Rudolf M. Verdaasdonk were supervising the work and
reviewing the manuscript prior to submission.

Paper B Jacob Renzo Bauer was responsible for conceptualization, carrying out
the research, writing of the manuscript, creation of the figures and valida-
tion of the research results. The work was presented at SPIE by Jacob Renzo
Bauer as a conference presentation. Jon Y. Hardeberg and Rudolf M. Ver-
daasdonk were supervising the work and reviewing the manuscript prior to
submission.

Paper C Jacob Renzo Bauer was responsible for conceptualizing, carrying out the
research, implementation of python code, writing of the manuscript, creation
of the figures, validation of the research results and the corresponding author
for the review process. All revisions were done by Jacob Renzo Bauer.
Arnoud A. Bruins provided medical background and validation and carried
out the patient measurements. Measurement protocol and handling of the
spectral camera was co developed by Jacob Renzo Bauer and Arnoud A.
Bruins. Jon Y. Hardeberg and Rudolf M. Verdaasdonk were supervising the
work and reviewing the manuscript prior to submission.

Paper D Jacob Renzo Bauer was responsible for conceptualizing, carrying out the
research, writing of the manuscript, creation of the figures and validation of
the research results. The work was presented at SPIE by Jacob Renzo Bauer
as a conference presentation. Karlijn v. Beekum carried out measurements
under supervision by Jacob Renzo Bauer and John H.G.M. Klaessens. Ad-
ditional analysis software used in the research was implemented by Herke J.
Noordmans and Jacob Renzo Bauer. John H.G.M. Klaessens, Jon Y., Harde-
berg and Rudolf M. Verdaasdonk were supervising the work and reviewing
the manuscript prior to submission. Christa Boer and Rudolf M. Verdaas-
donk provided the spectral camera for this research.

Paper E Jacob Renzo Bauer was responsible for conceptualizing, carrying out the
research, implementation of python code, writing of the manuscript, creation
of the figures, validation of the research results and the corresponding author
for the review process. All revisions were done by Jacob Renzo Bauer. Jean-
Baptiste Thomas co-developed the concept for this research. Jean-Baptiste
Thomas, Jon Y. Hardeberg and Rudolf M. Verdaasdonk were supervising
the work and reviewing the manuscript prior to submission.

Paper F This paper can be considered the medical extension of Paper C. Jacob
Renzo Bauer developed the technical solution and contributed to the creation
of figures, validation of the research results and revision of the technical
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parts of the paper. All implementations in python and the spectral camera
measurement concept and its data analysis were performed by Jacob Renzo
Bauer. Arnoud A., Bruins and Diederik G.P.J., Geboers were responsible for
carrying out the research, writing of the manuscript and Arnoud A., Bruins
was the corresponding author for the review process. John H.G.M, Klaes-
sens, Rudolf M. Verdaasdonk and Christa, Boer were supervising the work
and reviewing the manuscript prior to submission.

1.4 Thesis organization
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Medical
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Figure 1.4: Overview of the included papers organized in to the triangular structure of
skin, processing and spectral imaging.

This thesis provides context and background for clinically relevant imaging and
diagnostics using spectral filter array cameras in particular. It is intended to provide
context for the papers published during this research. The thesis has two main
Parts. For most readers Part I Overview will provide a more readable text. Part
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II Original Papers consists of reprints of all papers included in this thesis.

Part II has five chapters: The introduction Chapter 1 motivates the study in Sec-
tion 1.1 formulates the research aims and Research Question (RQ) in Section 1.2,
provides a list of the published and included papers in Section 1.3, and finally
provides this structure of the thesis in Section 1.4.

The background Chapter 2 is organised around the triangle illustrated in Figure
1.3 and introduces skin, spectral imaging, processing, and medical applications.
The interdisciplinary nature of the topics covered resulted in an attempt for each
paper to be "stand-alone" and they provide extensive background information for
readers of multiple fields. Therefore, the background included in this document is
not exhaustive and is a starting point and overview for all the topics covered. Each
section provides literature references for further reading.

Chapter 3 provides a summary of the included papers and is composed of one
section for each of the published and included papers.

Chapter 4 is a discussion and organised around the research questions (RQ) for-
mulated in Section 1.2. Conclusions with a future outlook for the research are
presented in Chapter 5.



Chapter 2

Background

This background chapter is included to provide information to appreciate the con-
tributions and topics covered in this thesis. It is not the intention to cover all topics
in-depth, but rather to provide an overview and starting point. Each of the papers
included in this thesis also contains a significant background, due to their wide and
interdisciplinary audiences. The background is organised around the three pillars
of this research introduced in Figure 1.3, skin as the main object of measurement,
spectral imaging as the tool for acquisition and processing as the way to make use
of the acquired data.

2.1 Skin
The main subject of investigation in this research is the complex tissue skin. It is
important to understand the basics of skin anatomy, physiology, and physics (skin
optical properties), which are in-fact intertwined. The skin is the largest organ and
a protective layer against temperature, radiation, mechanical impact, infection and
dehydration [3], [4]. Other than protection, skin has two other functions, namely
regulation and sensation. All of these functions are represented in the physiology
of skin and impact its optical properties directly.

2.1.1 Skin anatomy and physiology

The three-layer skin model is a simplified, but commonly used model of skin [3],
[7] explaining the main functional components. Each of the layers presented in
this work is the combination of multiple sub-layers.

Epidermis can be subdivided into five sublayers from the surface: stratum corneum,
stratum lucidum, stratum granulosum, stratum spinosum and stratum basale with

13
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Figure 2.1: Overview of skin layers and penetration depths of different wavelengths into
the the tissue [5]. Penetration depths from [6].

different functions. The thickness of the epidermis depends on the body loca-
tion, age, ethnicity and dietary habits, but it is typically from 50µm to 200µm.
Essentially the epidermis forms skin cells or keratinocytes in the stratum basale
and transports them outward towards the skin surface. The stratum spinosum con-
tains many of the newly formed keratinocytes, Langerhans and Merkels cells that
protect against infections [3]. This basale layer also contains optically important
melanocytes that are responsible for the creation of melanin. Melanin is the main
absorber of UV light in skin and the concentration of melanin strongly influences
the skin color [8]. Common values for the coverage of the epidermis by melano-
somes varies from 1.3 % – 6.3 % for lightly pigmented adults, 11 % – 16 % for
moderately pigmented adults and 16 % – 43 % for darkly pigmented adults [8].
Stratum granulosum contains more keratinocytes moving towards the surface of
the skin. The stratum lucidum only exists at the palm of the hands and sole of the
feet and is a thicker protective layer of keratinocytes [9]. The outermost layer is
the stratum corneum and consists mainly of dead keratinocytes cells. It is the first
protective layer against infection, mechanical impact and prevents the body from
drying out.

The Dermis layer of skin is the thickest (1−4mm) and most complex layer of skin
containing, hair follicles, sweat glands, sensory nerve systems, blood vessels and,
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connective tissue [10]. It provides the nourishment for the upper layers through
interconnected blood vessels throughout the dermis [11]. The sensation of touch
and thermal changes also stems from the dermis. Hair follicles originate in the
dermis region and the hair grows through the epidermis to the surface providing
additional protection from radiation and thermal insolation. Oxygen is delivered
through the blood vessel network present in the dermis and diffused into the lower
epidermal region.

The final layer considered for this research is the so-called subcutaneous tissue
which is an additional thermal insulator and shock absorber consisting of mainly
fat cells. Subcutaneous Tissue is the third layer of skin it can be up to 3 cm thick
[8]. It mainly consists of fat cells, which reflects most of the visual range of light
to the upper skin layers [8]. This increases the absorption events in the dermis and
epidermis layers of skin, since the light passes through the both layers twice.

Figure 2.1 provides an overview of the three main layers and the penetration depth
of different wavelengths.

2.1.2 Skin optical properties

Skin optical properties are directly connected to the anatomy and physiology of
skin. If light is considered as a near-normal ray incident on the skin surface a
portion of the light is reflected [12]. The characteristics of the reflected light are
changed through interaction with the skin. Consequently, it contains information
about skin characteristics based on intensity, wavelengths, polarization, coherence,
etc [7]. In this work, we will focus on wavelength intensity distributions of reflec-
ted light.

Some of the light that enters the skin interacts with specific particles in the skin
changing the intensity of some wavelengths based on absorption profiles of the
particles. Penetration depth of visible light into skin depends on wavelength as
shown in Figure 2.1 [6]. The longer the wavelength the deeper it penetrates the
skin. After multiple scattering and absorption events, some of the light will be
scattered back to the surface of the skin and make up the spectral reflectance and
appearance of skin with information from different layers.

For an in-depth study of the complex optical properties the reader is referred to
published work including [3], [4], [10]–[14] which also provide the basis for the
following sections.

Absorption and scattering

The photons entering the skin are either absorbed, reflected, scattered or trans-
mitted [15]. Concentrations of specific scattering or absorbing particles and the
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wavelength of the incoming light define the path and interactions of the light within
the tissue.

Absorption is the physical phenomenon in which a photon transfers its energy
to matter. This transfer depends on resonance between the photon and the energy
levels of molecules in the absorbing medium and is wavelengths dependent. A
medium containing many absorbing particles can be described with µa = ρaσa.
ρa describes the volume density of particles in the medium and σa = QaA the ef-
fective cross-section withQa as the absorption efficiency andA as the area of each
particle [16]. The Lambert-Beer law is commonly used to describe the absorption
in a homogeneous non scattering medium as [15], [17]: I(x) = I(0)e−µax. I(0)
describes the incoming light and µa describes the absorption coefficient of the me-
dium. The total absorption of a medium is the sum of all absorbing particles within
the tissue. This energy transfer results in an excited energy state in the receiving
molecule in the form of vibrations or electronic charges.

Scattering is the second physical interaction between photons and matter. When
a photon hits specific particles in the medium it will be deflected. The size of the
particle plays an important role in this interaction. For particles smaller then the
wavelength of the photon the so-called Rayleigh scattering occurs. One commonly
known phenomenon, caused by Rayleigh scattering is the blue shade of the sky.
Since the air and atmosphere molecules scatter shorter wavelength stronger then
longer wavelength more of the blue light reaches the surface of the earth. The
interaction for particles larger then the wavelength is described through Mie the-
ory. Mie scattering is predominantly forward scattering and common examples
are clouds in the air or fat molecules in milk that scatter the light according to Mie
theory.

The distance the light travels without hitting any scattering particles is called the
mean free path ls. This is usually described as a property of a medium with
ls = 1/µs, where µs describes the scattering coefficient. The scattering coefficient
monotonically decreases with increasing wavelength. In the case of diffuse skin
reflectance, scattering needs to be examined based on countless scattering events.
For these kinds of environments, it is important to consider the angular distribu-
tion or directionality of scattering. After each scattering event the direction of
light will change depending on the amount and scattering efficiency of the present
particles. The anisotropy factor describes the average cosine angle in which the
photons travel after scattering events g = cosΘ. Θ describes the scattering angle
and the direction of the photon after the scattering event. In the case of skin, the
scattering is predominantly forward scattering and a g is approximately 0.8 [14].
It is, however, wavelengths dependent and has been determined experimentally
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with: g(λ) = 0.62 + 29 · 10−5 · λ [16]. With λ describing the wavelength. After
many scattering events the photons lose all information about incident angle, this
is described as reduced scattering mean free path with: l′s = ls

1−g .

Reduced scattering coefficient µ′s is therefore given with: µ′s = l
l′s

A combined
transport coefficient is then the addition of the reduced scattering coefficients and
absorption coefficients of a medium with µtr = µ′sµa.

The combination of scattering and absorption is given for a medium with the at-
tenuation coefficient µt = µa + µs [15].

Chromophores

The main particles in the skin tissue that interact through scattering and absorp-
tion with light are chromophores [18]. The Skin’s diffuse reflectance spectrum is
directly connected to the chromophore concentrations and locations in the tissue.

The unique absorption profile of the different skin layers defines a specific op-
tical or spectral window [13] for diagnostics. Shorter wavelength in the ultraviolet
range is absorbed by proteins, the longer wavelengths of the infrared region are
absorbed by tissue and water contained in the skin. This leaves the visual and
near-infrared region as an optical window. In this spectral region, the diagnost-
ically less important particles absorb low amounts of light [19]. Blood, on the
other hand, is a strong absorber in this NIR wavelength range. Low concentrations
of blood in the outermost layers of the skin, allow the light to travel deeper into
the tissue in this wavelength region. The outer layer epidermis contains another
absorber: melanosomes and melanin [20].

These two absorbers, hemoglobin and melanin, play an important role in the skin
color. Hemoglobin as the carrier of oxygen occurs in two different states: oxy-
hemoglobin and deoxyhemoglobin with different absorption spectra. Figure 2.2
shows the extinction coefficients or molar extinction coefficients (e(λ)) of the main
chromophores and absorbers in skin tissue. The absorption of a medium depends
on the concentration of absorbing particles in the medium. A typical µa (absorp-
tion) of blood can be calculated with:

µa(λ) = 2.303e(λ) · 150 (g/L) / 64500 g (Hb/mole),

which assumes 150 gHb/L and 64,500 gram as the molecular weight of hemo-
globin [16].

Deoxyhemoglobin has an absorption maxima at around 430 nm, 555 nm and 760 nm,
whereas oxyhemoglobin at 415 nm, 540 nm and 576 nm [19]. The low absorption
at wavelength longer than 600 nm explains the red color of blood. Hemoglobin is
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Figure 2.2: Molar extinction coefficient of oxy and deoxy hemoglobin (top left). Molar
extinction coefficient of bilirubin (top right). Extinction coefficient of pheomelanin and
eumelanin (bottom left). All data obtained from Jacques et al. [16]. Representative nor-
malized skin reflectance spectrum (bottom right) data obtained from Cooksey et al. [21]

mainly found in the dermis typically at least 500µm below the skin surface.

The strongest absorber in the visible range of light is melanin. Melanin is the
colorant of hair, skin and eye color. Among humans, there are many different
melanin concentrations in the skin ranging from very low in light Caucasians to
very high in dark skin. These different types of skin colors were classified by
Fitzpatrick et al. [22] into 6 different skin types.

Bilirubin is another absorbing chromophore and a decomposition product of hemo-
globin. When skin is compressed due to impact blood can diffuse into the sur-
rounding tissue. This misplaced blood will be decomposed by the body and bi-
lirubin is a product of hemoglobin. As a result, bruises can occur yellowish, due
to increased bilirubin concentrations in the tissue. These decomposition processes
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are well studied and spectral reflectance can provide information about the age
of bruises [23]. Bilirubin is also important in newborns, who lack the ability to
further decompose the bilirubin. In high concentrations and if it enters the blood-
stream in can be toxic and fatal. Neonatal jaundice is a common complication
for newborns and a diagnostic tool to detect it early could save lives and has been
studied intensively [24], [25].

2.1.3 Skin modeling

Skin modeling is the process of solving complex skin tissue light interactions nu-
merically. In the process, spectral reflectance of skin with pre-defined optical prop-
erties can be generated in a controlled simulation environment. Three main models
have been applied to skin analysis, straightforward models based on the Kubelka-
Munk theory [26], diffusion approximation as described by Spott et al. [27] and
Randeberg et al. [15], [28] and Monte Carlo based methods. Human skin model-
ing has also found importance in the computer graphics domain [13], [29]–[34]. In
that domain, the general goal is to create realistic-looking skin in various situations
based on advanced modeling [34]–[36]. The complexity of these models has been
increasing in recent years with more and more realistic looking results [13], [29],
[30], [32]–[34]. In this research, Monte Carlo models were utilized to simulate
skin reflectance spectra with known optical properties.

Monte Carlo simulation

Monte Carlo simulation is a random sampling method numerically solving for
physical quantities. This non-deterministic method is used in the context of optics
as a ray-tracing method. Each photon propagates through the medium and the
direction of propagation and interaction with other particles is based on probability
distributions. Through simulation of thousands of photons skin tissue interaction
with light can be simulated. This method is computationally demanding since
each photon interaction needs to be calculated individually. In recent years the
introduction of parallel computing and the computational power and design of
graphical processing units (GPU) have significantly improved the computational
time necessary for Monte Carlo simulations [37], [38]. These techniques allow
simulating the independent photon particle interactions in parallel.

Monte Carlo simulation has been widely adopted to simulate light tissue interac-
tions in the field of biomedical optics and has been studied intensively [24], [39]–
[46].

The models have been used to simulate particles in different depth of the skin [47].
Monte Carlo Skin modeling has been often used to model the relationship between
reflectance spectra and underlying chromophore concentrations[48].
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To decrease the computational time Yamamoto et al. [49] have proposed the op-
tical path length matrix method. The optical path length matrix is obtained by a
probabilistic density histogram of the optical path length in skin based on Monte
Carlo simulation. They report a decreased computational time of 26.000 times
shorter than conventional Monte Carlo simulation. Naglic et al. [45] have pro-
posed a combination of diffusion approximation and Monte Carlo simulation to
overcome known inaccuracies of diffusion approximation and maintain fast pro-
cessing.

For a comprehensive summary of the skin simulation tools used in this research
reading Wang et al. [39] is recommended. Additionally, Atencio et al. [24] de-
scribes a practical application of the models and they provide the source code for
the adapted simulation environment used for this research.

2.2 Spectral imaging
Imaging usually describes three-channel (RGB) digital imaging. The three color
channels are based on mimicking the human visual system and provide accurate
color reproduction for human observers. Imaging can also incorporate spectral
information usually referred to as multispectral or hyperspectral imaging. Multis-
pectral imaging has a lower number of bands compared to hyperspectral imaging.

In opposition to the commonly used three-channel digital imaging, multispectral
imaging allows capturing more spectral bands in the same instance making it ana-
logue to spectral measurements at each pixel. These spectral measurements are
spatially resolved and provide a spectral map or spectral image cube of the scene.

Multiple techniques to measure these spectral image-cubes have been proposed.
These include scanning methods where the spectral resolution is achieved through
the temporal decomposition of the signal and recently proposed snapshot methods,
where all bands are acquired in the same instance. The scanning and temporally
resolved spectral imaging techniques include liquid crystal tunable filter (LCTF),
acousto-optical filters (AOTF) and so-called filter wheel systems. Another big
category of recent spectral imaging devices is a combination of selected illumina-
tions and an imaging sensor. The illumination has multiple discrete narrow spec-
tral bands and through sequential illumination of the object and consecutive image
acquisition a spectral cube can be generated.

Most of the mentioned spectral imaging modalities rely on a temporal decomposi-
tion of the spectral signal. Recent sensor development resulted in so-called spectral
filter array cameras. This is a new spectral imaging modality that allows acquir-
ing a complete spectral image cube with one snapshot. Details of this particular
spectral imaging modality will be discussed in the following Section 2.2.2.
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Figure 2.3: Overview of things to consider for spectral imaging.

Spectral imaging has some unique requirements and aspects that need to be spe-
cifically considered and Figure 2.3 provides an overview of these aspects. Some
of these aspects interact with each other and need to be considered together. It in-
cludes six main aspects that need special attention: The camera or the imaging sys-
tem used, acquisition parameters, illumination, object, preprocessing of the signal
and finally the processing or the interpretation. Each of these has multiple aspects
that need to be considered for the successful application of spectral imaging.

450nm 551nm 693nm

Figure 2.4: Different spectral bands of the same skin area, illustrating the wide range of
information captured with multiple wavelengths. Image courtesy to Rudolf Verdaasdonk
and Herke Jan Noordmans.
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Figure 2.4 shows an illustration of the difference of information captured with
different spectral bands. Each of the images is captured of the same area with
different wavelengths sensed. The tissue light interaction differ depending on the
wavelengths and therefore useful information can be gathered from these different
spectral bands.

An overview of different spectral imaging techniques is provided by Hardeberg
[50].

2.2.1 Illumination

Another important aspect to consider when designing spectral imaging measure-
ments is the illumination. Both frequency and spectral power distribution can af-
fect the measurements drastically. Since many of the spectral imaging techniques
are based on temporal decomposition of the spectral signal it is important to se-
lect the illumination frequency adequately. The spectral power distribution should
be selected as a smooth as possible and with adequate intensity at the bands of in-
terest. The delivered energy should be as homogenous as possible over the spectral
range of interest.

2.2.2 Spectral filter array cameras

A recent summary of spectral filter array cameras has been provided by Lapray et
al. [51] and a review of this novel technique has been published by Hagen et al.
[52].

Spectral filter array imaging is a new form of spectral imaging [53]. The core
concept is based on a spectral filter pattern on top of a sensor similar to the con-
ventional Bayer pattern. The increasing spatial resolution of sensors in recent
years coupled with the advancement in interference filters allowed this new tech-
nology. Some of the spatial resolution is sacrificed for more spectral bands. The
advancements in interference filters allow producing narrow spectral bands.
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Figure 2.5: Illustration of standard RGB image sensor pixel pattern compared to spectral
filter array image sensor patterns.

These narrow spectral bands allow more robust recognition of particular features
in the skin spectrum this is illustrated in Figure 2.6. A normal skin reflectance
spectrum is shown and juxtaposed with relative sensor sensitivities illustrating that
the RGB sensor misses important features of the skin spectrum. The SFA camera
on the other hand does pick up the difference in skin reflectance of the 540nm and
560nm wavelengths.
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Figure 2.6: Illustration of standard RGB image sensor sensitivities compared to spectral
filter array sensitivities, juxtaposed with the spectral reflectance of skin.

This new type of spectral imaging requires specific processing steps that will be
touched upon in the next section.
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2.3 Processing
Processing is an important step of the pipeline necessary to make data acquired
with spectral imaging devices useful. These steps with different goals are usu-
ally included in common imaging pipelines. Usually, the signal is preprocessed,
which includes calibration steps, corrections, and possibly noise handling. This is
followed by an interpretation step where the measured data is processed into the
domain of interest. And finally, the acquired data is visualized in a way that is
use-full for the end-user. These steps are illustrated in Figure 2.7 and discussed in
the next section.
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Figure 2.7: Overview of common processing steps

The details of the particular processes in each of the included articles can be found
in the publications.

2.3.1 Preprocessing

Preprocessing is the first step in common imaging pipelines. Often the first step
is to incorporate calibration steps like black and white corrections. The white
correction can in some cases account for the spectral power distribution of the
light sources and convert the measured signal to a reflectance signal. The black
correction on the other hand is in order to suppress the impact of dark current noise.
SFA cameras in particular require unique hardware-specific processing steps.
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SFA specific preprocessing is necessary, since spectral filter array cameras are a
unique spectral imaging modality. SFAs decompose the spectral signally spatially
as opposed to most other spectral imaging techniques, which decompose the spec-
tral information temporally. This spatial decomposition needs to be converted to a
spectral imaging cube. Each slice of this imaging corresponds to one spectral band
and the full spatial resolution of the sensor.

These sensors often based on Fabry-Pérot interference have second-order harmon-
ics that need to be accounted for. The passing wavelengths depend on destruct-
ive and constructive interference, but the chosen wavelengths will always have
a secondary wavelength peak that also interferes constructively. This results in
two wavelengths peaks being transmitted. These second-order harmonics can be
filtered out by large bandpass filters. Depending on the intended spectral sensitiv-
ity range of the imager the possibility for hardware-based filtering of these extra
sensitivity peaks can be limited.

Some SFA cameras, therefore, require a spectral calibration which is equivalent to
mathematically transposing the spectral sensitivities to new theoretical sensitivities
correcting for the inadequacies. The new virtual filter bands are corrected of the
second-order harmonics.

2.3.2 Interpretation

The interpretation step is important to transfer the measured data into useful in-
formation. It includes to transfer physical measurements into relevant parameters
for the end user.

Spectral estimation or reconstruction is a common technique in the field of spec-
tral imaging [54]–[58]. The goal is to reconstruct spectral reflectance curves from
a limited number of bands. Generally, these estimation methods are based on in-
verting a common imaging model.

Pi =

∫

λ
E(λ)Rj(λ)Qi(λ)dλ, (2.1)

where Pi is the channel response of the ith channel of the sensor. E(λ) is the
illumination spectral power distribution (SPD) per wavelength, Rj(λ) is the spec-
tral reflectance of sample j, and Qi(λ) describes the spectral sensitivity of the ith
channel of the sensor. This equation is inverted and pairs of training reflectances
and the camera responses to these training reflectances utilised to calculate a trans-
formation matrix that minimises the error between reconstructions and the train-
ing data. The pre-calculated matrix can then be used to reconstruct spectra based
on camera channel responses to a given spectral signal. Several different tech-
niques to estimate this matrix have been proposed including the pseudo-inverse
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method (least-square fitting) or linear least-square fitting in a lower-dimensional
space (Imai–Berns method) [59]. Another widely used method that includes a
possible noise term in the imaging model is called the Wiener estimation [55]–
[57], [59]–[61] method.

Chromophore estimation is one processing step that can be applied to estimated
or measured spectra. Chromophore concentrations are of clinical value for phys-
icians. The concentration and location of specific chromophores, like melanin,
can help physicians to distinguish between different skin pathologies. Measuring
these concentrations with optical methods to avoid scaring, scarring and hurting
the patient is beneficial. Spectral reflectances of skin have been used to estimate or
measure the concentrations of particular chromophores. The differences in absorp-
tion of these particles allow distinguishing between different chromophores when
measuring reflected light from a defined light source. Many different methods have
been proposed to estimate these chromophores from the reflectance spectrum [28],
[62]–[74]. Many of the approaches utilize ratios of specific spectral bands to em-
phasize differences in the absorption spectrum [73]. Other methods are based on
solving equation systems to solve for a complex combination of given absorption
spectra [72]. Inverse Monte Carlo [75] methods are based on the idea to simulate
spectra with given optical properties and create lookup tables to find the best fit
between measured spectrum and previously simulated spectrum. Other techniques
are based on different photon transport models fitting the modeled spectra to meas-
ured reflectance spectra [28]. Often the Beer-Lambert law is modified or enhanced
to account for scattering events [64]. Also, simple color measurements have been
applied to chromophore estimation and correlations between color coordinates and
specific chromophore concentrations have been formulated [67].

2.3.3 Visualisation

Another important aspect for clinicians is the visualisation of parameters they can
use for diagnostics. These parameters can be invisible for the human eye or the
physicians benefit from false color maps which are intuitive.

Chromophore maps are a common and well studied application of visualiza-
tions of the skin surface [70], [76]–[80]. They can visualize pigmentation [81],
or provide color coded distribution maps as proposed by many groups including
[70], [77]. These maps help the physicians to judge distributions of important
chromophores and provides additional information about the skin surface.
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2.4 Medical Applications
The final goal of this research is to develop new tools applicable for physicians
in the field of skin imaging. A special focus is the measurement of oxygenation
levels.

2.4.1 Skin imaging

Several different imaging modalities are applied to skin with unique use-cases for
each of them. Optical coherence tomography (OCT) is a sophisticated imaging
modality allowing to image into the skin tissue and visualize its structure [82],
[83]. OCT is based on interference imaging resulting in a structural vertical cross-
section of the skin and can even incorporate color information of the layers [84].
The penetration depth is in the order of 1mm with a few micrometer resolution.

Reflectance confocal microscopy (RCM) is another optical technique that provides
high-resolution imaging of very small areas of the skin. RCM can be tuned to
different penetration depth into the skin [85].

Dermatoscopy is the most widely used technique to examine skin and provides
physicians with impressions of a couple cm in areas. These magnifiers of 10x to
400x suppress skins specular reflection and some provide digital images of import-
ant areas for the physicians [86].

Other commonly diagnostic measurements of the skin are performed as point re-
flectance measurements (spectroscopy) [87]. The reflected signal from the skin is
measured as an average over an area of the skin tissue. This assumes skin as a ho-
mogeneous or uniform surface. The heterogeneity and spatial information about
chromophore concentrations are lost. It can not be distinguished between dark
skin with uniformly distributed higher melanin concentration or a localized lesion
within the captured area. For dermatologists, this information can be beneficial.
The shape of suspicious lesion is another indicator for dermatologists and carries
diagnostic value.

Skin imaging, on the other hand, provides a spatially resolved measurement of the
reflectance spectrum. Each pixel corresponds to a measurement and differences
in location can be captured. It allows us to quantify the heterogeneity of skin and
visualize the shapes of lesions. Many three-channel digital cameras have been
applied in dermatology as techniques for tracking changes over time or to charac-
terize and categorize different skin pathologies. In recent years recommendation
systems have also been developed to show dermatologists different examples of
their diagnoses in other patients based on digital images. The role of digital im-
ages for telemedicine and personalized medicine will also most likely increase
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dramatically [88]. Standard three-channel digital images have the advantage to ac-
quire a spatially resolved image of the pathology but do not capture subtle spectral
differences.

Spectral skin imaging techniques have been applied to a variety of different ap-
plications [89]. For instance the severity or maliciousness of cancers have been
studied using spectral imaging techniques [90]–[92], it has been applied for veri-
fication of effectiveness of treatments [93], for segmentation tasks in dermatology
[94], cervical cancer screening [95], bruise analysis [47], cholesterol [96], skin
lesions [97] and others.

Another application of spectral imaging is a relatively new field of study the so
called spatial frequency domain imaging (SFDI) [63], [98]–[103]. This technique
has been popularized in the medical field by Cuccia et al. [63], [99]–[102]. It
is based on displaying spatial line patterns on the tissue and acquiring spectral
images at the same time. Through some complex mathematical operations, the
images of different spatial line patterns can then be decomposed into absorption
and scattering images of the tissue. Separating these two components during the
imaging process.

Some spectral filter array cameras have already been studied. First, commercially
available models have been applied in studies to measure hemodynamics of brain
tissue Pichette et al. [104], or oxygenation of skin tissue by Saager er al. [105].

An extensive hardware focused analysis of spectral imagers for biomedical applic-
ations is provided by Gutiérrez-Gutiérez et al.[106]. The main focus of their work
are the technical limitations including acquisition speed, efficiency, object plane
curvature, spatial resolution, distortions, and noise. Another comprehensive emu-
lation framework has been proposed by Saager et al.[107]. Saager et al. provide
an emulation framework and an overview of the performance of different spectral
imagers. They include two experiments a burn wound mouse model and an ex-
periment concerning photoaging (sun exposure experiment). For all experiments,
high-resolution spectral measurements using an SFDS system are required. Valid-
ation of the performance of SFA cameras is usually based on application-specific
measurements [107].

2.4.2 Vital signs

Another area that benefits from non-contact measurement is the monitoring of vital
signs. Four primary vital signs are of specific clinical importance quantifying the
body’s life-sustaining functions: Body temperature, blood pressure, pulse (heart
rate) and respiratory rate are most commonly referred to as the main vital signs.
Often the so-called oxygen saturation is added as a fifth vital sign quantifying the
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oxygen saturation of the blood. The body maintains a stable oxygen saturation
to keep tissue a-life. Clinically oxygen saturation is commonly measured with
so-called pulse oximeters as a point measurement and quantified as a systematic
value. The peripheral oxygen concentration of the blood is estimated using the
absorption differences of oxygenated hemoglobin and deoxygenated hemoglobin
[108].

2.4.3 Occlusion test

A widely used experiment to analyze oxygenation levels is the so called upper
arm occlusion test (vascular occlusion test - VOT) [55], [109]–[113]. The blood
delivery to the volunteer’s hand is occluded by using an inflatable cuff on one of the
upper arms. This occlusion results in reduced blood delivery to the hand. Tissue
needs oxygen to survive and consumes the oxygen in the blood decreasing the total
oxygen concentration in the blood. After a certain time has passed or until the
oxygen concentration in the blood reaches a certain level the occlusion is released.
Allowing the blood flow back into the hand and causing an oxygen overshoot for
a short time. The behavior is illustrated in Figure 2.8. Three different phases can
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Figure 2.8: Example of oxygen concentration levels during the upper arm occlusion and
shortly after the release of the inflatable cuff. Including the oxygen overshoot after release.

be described in the oxygenation pattern throughout the experiment. First, the so-
called baseline oxygenation, represented in the beginning and during unprovoked
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measurement. It is followed by the deoxygenation or desaturation slope invoked
by the occlusion and inflation of the cuff. This time frame within the experiment is
usually called the vascular occlusion test (VOT) and has been correlated with the
health status of patients or as an indicator for complications during surgery or the
application of anesthesia [109], [110]. The last phase of this VOT is the so-called
reoxygenation or resaturation, where the oxygenation overshoots the baseline very
rapidly after cuff deflation. After this, the hyperemic phase is the time frame where
the oxygen levels decrease back to baseline. The area under the curve is also
known as the hyperemia recovery area has been correlated to venal health [109]
metrics. Finally, the oxygenation levels return back to the baseline. Since the
behavior of oxygenation levels is well understood for this provocation it is a good
experiment to test new oxygenation level estimation methods.



Chapter 3

Summary of included papers and
contributions

The following chapter will summarize the included and published papers. All ab-
stracts of the papers are included together with short sections of motivation, meth-
ods, results, and conclusion. The introduction section will provide an overview of
the contributions and connections between the papers.

3.1 Introduction
As explained in the Chapter 1 all papers fall into a triangle spun from the object,
the imaging technology and the processing of the image data. The medical applic-
ation is the final goal for these processing steps and illustrated in the center of the
triangle. The papers can be placed within this triangle as illustrated in Figure 1.4.

Paper A is mainly related to skin modeling utilizes some processing and has a
small medical application. The skin modeling is studied to find a relation between
optical properties and RGB camera values in a controlled setup. Different simula-
tion environments are publicly available and the paper provides an overview. The
skin modeling is also used to enhance the interpretation of spectra obtained with
the different imagers introduced in Papers B, C and D.

Papers B, C, and D all fall into the imaging side, and focus on concrete imaging
devices to acquire oxygenation level estimations from non-contact reflectance im-
ages during an upper arm occlusion experiment. In order to interpret the data from
the imagers both processing and simulated skin spectra are utilized to enhance
the interpretation. Paper B is focused on a multi-illumination prototypical spec-
tral imaging system. This imager is then used for spectral reconstruction and the

31



32 Summary of included papers and contributions

estimated spectra are analyzed regarding the medical interpretability and in par-
ticular the estimation of oxygenation levels during the upper arm occlusion test.
For Paper C a spectral filter array camera processing framework is proposed and
used for the same diagnosis with a volunteer study including 58 volunteers. Pa-
per D utilizes the same general framework with a spectral filter array camera in
the near-infrared spectrum and shows the generality and transferability of the pro-
posed framework.

In Paper E different spectral filter array cameras and an RGB camera are com-
pared proposing a framework to guide the selection and design of spectral filter
arrays. This paper builds upon simulations from Paper A since the simulation en-
vironment is extended to simulate 10.000 combinations of optical properties and
to generate a training set of skin samples for spectral reconstruction. The proposed
framework compares different commercially available spectral filter array mod-
els including theoretical Gaussian based filter sensitivities. All of the investigated
models are compared regarding different metrics including an oxygenation level
estimation metric. The influence of different data sets for training is also analyzed
in this publication.

Paper F is the result of a collaboration with medical doctors and it analyses the
same dataset as Paper C of 58 volunteers. The main information that is analyzed
from the dataset is the venal health status of the volunteers. The framework first
proposed in Paper C is used in conjunction with the same camera.

3.2 Paper A: Skin color simulation - review and analysis of
available Monte Carlo-based photon transport simulation
models

Jacob R. Bauer; Marius Pedersen; Jon Y. Hardeberg; and Rudolf M.
Verdaasdonk; “Skin color simulation - review and analysis of avail-
able Monte Carlo-based photon transport simulation models,”; CIC25,
25th Color and Imaging Conference: Color Science and Engineering
Systems, Technologies, and Applications, 2017, Lillehammer, Nor-
way.

3.2.1 Abstract

Optical assessment is a useful tool for non-invasive skin assessment avoiding scar-
ring, time-delayed diagnosis, hurting, and inconvenience for patients and practi-
tioners. This has led to the wide adaption of digital imaging and other optical
technologies in dermatology. Many of these optical technologies lack quantifiabil-
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ity, therefore, the reproduction, comparison or absolute meaning of measurements
or images is an open challenge. Monte Carlo simulation for multi-layered turbid
media provides an accurate tool for simulating the optical path of photons travers-
ing in the skin and the diffuse spectral reflectance of skin. With this tool at hand
the missing link between health metrics and measurable optical phenomena can
be provided and it can help to establish optical assessment and digital images as a
standard for health monitoring of skin. A number of publicly available simulation
codes and several different approaches have been proposed. In this work, we give
an overview of three Monte Carlo simulation tools and compare the different ap-
proaches. Furthermore, we will use Monte Carlo Simulations to generate different
spectra based on varying optical properties and use these spectra to generate colour
patches to analyse the impact of different optical properties on the resulting RGB
colour patches.

3.2.2 Motivation

Monte Carlo simulation is a useful and well-known technique to simulate the op-
tical properties of tissue. The simulation environment allows to specify particular
chromophores in the skin and numerically simulate the light tissue interaction.
This Paper aims to provide an overview of available Monte Carlo tissue simu-
lation tools. Direct influence on skin color or shading in connection to specific
chromophores is of great interest for physicians and a direct link between colour
appearance and physiological properties would be useful. Therefore, the Paper ex-
plores the effects of chromophore concentrations on color patches generated from
Monte Carlo simulations with defined chromophore concentrations.

3.2.3 Methods

The overview of different techniques is obtained by summarizing the state of the
art tools and compiling an overview of the different methods that are publicly avail-
able. As a case study, several concentration levels of particular chromophores were
simulated and color patches were generated from the resulting spectral reflectance
curves. The color-patches assumed D65 lighting and were presented in the display
sRGB colourspace.

3.2.4 Results

The color-patches confirm visually that particular chromophores influence the color
of skin in different cardinal colour directions. Bilirubin influences mainly the blue-
yellow axis, whereas higher melanin shifts the appearance towards the brown or
darker shades of skin color. Increasing the hemoglobin or total blood volume shifts
the color shades as expected towards the red region of the colourspace.
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3.2.5 Conclusions

Chromophore color changes behave mainly as expected. New Monte Carlo sim-
ulation models are being developed and utilize the processing power of graphics
processing units and an overview of these developments has been provided.

3.3 Paper B: Optical skin assessment based on spectral re-
flectance estimation and Monte Carlo simulation

Jacob R. Bauer; Jon Y. Hardeberg; and Rudolf M. Verdaasdonk; “Op-
tical skin assessment based on spectral reflectance estimation and Monte
Carlo simulation,”; SPIE Proceedings Volume 10057, Multimodal Bio-
medical Imaging XII; 1005703 (2017); Event: SPIE BIOS, 2017, San
Francisco, California, United States.

3.3.1 Abstract

Optical non-contact measurements in general and chromophore concentration es-
timation in particular have been identified to be useful tools for skin assessment.
Spectral estimation using a low cost hand held device has not been studied ad-
equately as a basis for skin assessment. Spectral measurements on the one hand
which require bulky, expensive and complex devices and direct channel approaches
on the other hand which operate with simple optical devices have been considered
and applied for skin assessment. In this study we analyse the capabilities of spec-
tral estimation for skin assessment in form of chromophore concentration estima-
tion using a prototypical low cost optical non-contact device. A spectral estimation
workflow is implemented and combined with pre-simulated Monte Carlo spectra
to use estimated spectra based on conventional image sensors for chromophore
concentrations estimation and obtain health metrics. To evaluate the proposed
approach we performed a series of occlusion experiments and examined the cap-
abilities of the proposed process. Additionally the method has been applied to
more general skin assessment tasks. Results obtained are both compared to chro-
mophore estimations based on spectral measurements and to direct channel ap-
proaches. The proposed process provides a more general representation in form of
a spectral image cube which can be used for more advanced analysis and the com-
parisons show good agreement with expectations and conventional skin assessment
methods. Utilising spectral estimation in conjunction with Monte Carlo simula-
tion could lead to low cost, easy to use, hand held and multifunctional optical skin
assessment with the possibility to improve skin assessment and the diagnosis of
diseases.
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3.3.2 Motivation

Low cost handheld skin imaging tools could be useful for general practitioners
(GP), dermatologists and other physicians. This work explores to combine spec-
tral reconstruction from a prototypical spectral imaging device with simulations of
tissue using Monte Carlo spectra. The simulated Monte Carlo spectra allow the
calculation of physiologically relevant parameters from estimated spectra. A com-
pact handheld non-contact multi-band LED illumination imaging device is used to
acquire the data for reconstruction of full spectra.

3.3.3 Methods

Monte Carlo simulations are performed prior to the measurements with a variety
of different configurations regarding the chromophore contents in the skin. The
prototypical imaging device is based on an RGB sensor and six LEDs illuminat-
ing the scenes with different spectral. This multi-band imaging device is used to
estimate full spectra and measurements of six volunteers are conducted during the
upper arm occlusion test. The final estimated spectra are then used in conjunction
with the Monte Carlo simulations to estimate chromophore concentrations among
the volunteers.

3.3.4 Results

The combination of spectral estimation and prior simulation of chromophore con-
centration via Monte Carlo shows expected occlusion experiment results. Spectral
estimation allows us to generate a full spectral cube from RGB+ data and the in-
terpretability of these has been enhanced through Monte Carlo simulations.

3.3.5 Conclusions

Combining spectral reconstruction from an RGB imaging system with Monte Carlo
simulations showed expected occlusion test results. The full spectral cubes could
be used for other diagnoses, for which the accuracy of spectral estimation needs to
be tested.

3.4 Paper C: A Spectral Filter Array Camera for Clinical Monit-
oring and Diagnosis: Proof of Concept for Skin Oxygena-
tion Imaging

Jacob R. Bauer; Arnoud A. Bruins; Jon Y. Hardeberg; Rudolf M.
Verdaasdonk; “A Spectral Filter Array Camera for Clinical Monitor-
ing and Diagnosis: Proof of Concept for Skin Oxygenation Imaging”
Journal of Imaging 2019, 5, 66.
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3.4.1 Abstract

The emerging technology of spectral filter array (SFA) cameras has great potential
for clinical applications, due to its unique capability for real-time spectral imaging,
at a reasonable cost. This makes such cameras particularly suitable for quantific-
ation of dynamic processes such as skin oxygenation. This is useful, for instance,
for assessment of the healing of burn wounds, and as an indicator of patient com-
plications in the operating room. Due to their unique design, in which different
pixels of the image sensor are equipped with different optical filters, SFA cameras
require suitable image processing to obtain meaningful high-quality spectral image
data, including spatial rearrangement, SFA interpolation, and spectral correction.
In this Paper, the feasibility of a commercially available SFA camera for clinical
applications is tested. A suitable image processing pipeline which is generalizable
to other SFA cameras is proposed. As a ’proof of concept’ a complete system
for spatial dynamic skin oxygenation measurements is developed and evaluated.
In a study including 58 volunteers, oxygenation changes during upper arm occlu-
sion were measured with the proposed SFA system and compared with a validated
clinical device for localized oxygenation measurements (INVOS 5100C-PA). The
comparison of the INVOS and SFA results shows a good correlation for the rel-
ative oxygenation changes, which are of clinical value. The proposed processing
chain for SFA cameras is thus shown to be effective for imaging relative oxygen-
ation changes. It can be implemented in real-time and further developed to yield
absolute spatial oxygenation measurements.

3.4.2 Motivation

In this work, we propose an imaging pipeline that solves limitations of spectral
filter array cameras and shows their applicability to the medical field with a 58
volunteer upper arm occlusion comparison study. Comparative golden standard
measurements are obtained with a clinically accepted oximeter. The main goal is
to provide a straight forward processing pipeline for spectral filter array cameras
and show the effectiveness of these cameras for oxygen level estimation. Oxygen-
ation estimation is a clinically relevant measurement for physicians and provides a
measurement of nutrition delivery to the living tissue, new ways of measuring this
parameter in real-time with non-contact to the patient is useful.

3.4.3 Methods

The image processing pipeline is based on spatial rearrangement, spectral calib-
ration and finally oxygenation estimation. Spectral calibration takes the unique
spectral sensitivities of each of the channels into consideration and reduces spec-
tral double lobes mathematically. The influence of this spectral calibration step
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is shown regarding the spectral reconstruction accuracy. Finally, the spectral data
from the camera is used to estimate oxygenation levels and compared to a clinical
golden standard.

3.4.4 Results

The spectral reconstruction and image processing pipeline increase the spectral
accuracy. Comparing the clinical golden standard oxygenation level measurement
and the estimated estimates good agreement of the general shape of the curves was
found. Additionally, some key features of the oxygenation curves were extracted
and compared to the clinical golden standard device. For the 58 volunteer study,
these showed lower correlations.

3.4.5 Conclusions

Spectral filter array cameras have the potential to be a powerful clinical imaging
tool. Some of the challenges with this new imaging technique have been solved
with the proposed transferable image processing pipeline. The agreement between
estimated oxygenation curves was strong whereas correlation, between the key
slope features was lower.

3.5 Paper D: Towards real-time non-contact spatial resolved
oxygenation monitoring using a multispectral filter array
camera in various light conditions

Jacob. R. Bauer; Karlijn v. Beekum; John H.G.M Klaessens; Herke
J. Noordmans; Christa Boer; Jon Y. Hardeberg, and Rudolf M. Ver-
daasdonk; Towards real-time non-contact spatial resolved oxygena-
tion monitoring using a multispectral filter array camera in various
light conditions; SPIE Proceedings Volume 10489, Optical Biopsy
XVI: Toward Real-Time Spectroscopic Imaging and Diagnosis; Event:
SPIE BIOS, 2018, San Francisco, California, United States.

3.5.1 Abstract

Non-contact spatial resolved oxygenation measurements remain an open challenge
in the biomedical field and patient monitoring. Although point measurements are
the clinical standard until this day, regional differences in the oxygenation will
improve the quality and safety of care. Recent developments in spectral imaging
resulted in spectral filter array cameras (SFA). These provide the means to acquire
spatial-spectral videos in real-time and allow a spatial approach to spectroscopy. In
this study, the performance of a 25 channel near-infrared SFA camera was studied



38 Summary of included papers and contributions

to obtain spatial oxygenation maps of hands during occlusion of the left upper arm
in 7 healthy volunteers. For comparison, a clinical oxygenation monitoring system,
INVOS, was used as a reference. In case, of the NIRS SFA camera, oxygenation
curves were derived from 2-3 wavelength bands with a custom made fast analysis
software using a basic algorithm. Dynamic oxygenation changes were determined
with the NIR SFA camera and INVOS system at different regional locations of
the occluded versus non-occluded hands and showed to be in good agreement. To
increase the signal to noise ratio, algorithm and image acquisition were optimised.
The measurements were robust to different illumination conditions with NIR light
sources. This study shows that imaging of relative oxygenation changes over larger
body areas is potentially possible in real-time.

3.5.2 Motivation

This Paper can be considered as a proof of concept for using a spectral filter array
camera operating in the near-infrared wavelengths regime for oxygenation level
estimation. Melanin as the main absorber of the outer layer of skin is semi-
transparent in the near-infrared wavelengths regime. This means that a spectral
camera operating in that regime will be more suitable for oxygenation level estim-
ation. Furthermore, wavelengths exceeding 800nm are not visible for the human
eye and could allow implementation of oxygen estimation in the dark.

3.5.3 Methods

The unique spectral sensitivities of the camera were considered and a spectral cal-
ibration, correcting for overlaps within the sensitivities mathematically was ap-
plied. Spectral calibration was followed by a straight forward oxygen level estim-
ation. A limited proof of concept experiment including six volunteers and upper
arm occlusion with parallel clinical golden standard measurements was carried out
using different light-sources. The resulting oxygenation level curves were then
compared.

3.5.4 Results

Golden standard oxygenation levels and its estimations from the spectral filter ar-
ray camera were in good agreement under different illuminations. The included
control of the right hand which was not occluded within the experiment displayed
no provocation of the oxygenation levels.

3.5.5 Conclusions

This work shows that the near-infrared regime is a valid regime for oxygenation
level estimations. It is additionally robust regarding illumination and showed good
agreement with the golden standard oximeter measurements.
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3.6 Paper E: An Evaluation Framework for Spectral Filter Array
Cameras to Optimize Skin Diagnosis

Jacob R. Bauer; Jean-Baptiste Thomas; Jon Y. Hardeberg and Rudolf
M. Verdaasdonk; “An Evaluation Framework for Spectral Filter Array
Cameras to Optimize Skin Diagnosis” Sensors 2019, 19(21), 4805.

3.6.1 Abstract

Comparing and selecting an adequate spectral filter array (SFA) camera is application-
specific and usually requires extensive prior measurements. An evaluation frame-
work for SFA cameras is proposed and three SFA cameras are tested in the context
of skin analysis without the need for measurements. Spectral sensitivities and the
number of bands are the main focus and spatial aspects are excluded. A skin optical
model and skin spectral measurements are used in conjunction with known filter
sensitivities for training and testing of a spectral reconstruction matrix. The quant-
itative comparison of the cameras is based on spectral reconstruction, colorimetric
accuracy, and oxygenation level estimation differences. Specific spectral sensit-
ivity shapes influence the results directly and a 9 channel camera performed best
for spectral reconstruction metrics. Whereas Sensitivities at key wavelength influ-
enced the performance for oxygenation level estimation the most. The proposed
framework allows to compare and guide the development of application-specific
spectral filter array cameras and provides recommendations for the case of skin
analysis.

3.6.2 Motivation

This work aims to guide the selection and development and provides a processing
pipeline for spectral filter array imagers. Selection criteria for spectral filter array
cameras are application-specific, this is illustrated with the example of skin ima-
ging. The influence of specific spectral sensitivity shapes and different spectral
filter implementations need to be compared. A standardized way of comparison is
amiss and this study aims to provide a possible framework.

3.6.3 Methods

Different spectral sensitivities of SFA cameras and idealized Gaussian sensitiv-
ities are considered. Through spectral estimation using varying training sets the
cameras are compared regarding spectral reconstruction accuracy. As a specific
application, the suitability of each of these cameras is tested for oxygenation level
estimation.
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3.6.4 Results

Spectral reconstruction accuracy is not directly analogous to estimating the oxy-
genation level. The RGB camera performed the worst if compared to multi-band
spectral imaging devices. Specialized training sets had a positive effect on skin
spectra estimation and spectral shapes are important for spectral reconstruction
quality.

3.6.5 Conclusions

A framework for comparing different spectral filter array cameras has been pro-
posed and tested with four available spectral cameras. Spectral sensitivity shapes
influenced the spectral reconstruction stronger then sensitivities at key wavelengths,
which in turn influences the oxygenation level estimation stronger.

3.7 Paper F: The vascular occlusion test using multispectral
imaging: a validation study. The VASOIMAGE study.

Arnoud A. Bruins; Diederik G.P.J. Geboers; Jacob R. Bauer; John
H.G.M Klaessens; Rudolf M. Verdaasdonk; Christa Boer; “The vas-
cular occlusion test using multispectral imaging: a validation study.
The VASOIMAGE study” Accepted in Journal of Clinical Monitor-
ing and Computing (JCMC).

3.7.1 Abstract

This study aims to validate multispectral imaging (MSI) as a measure for micro-
circulatory perfusion. Vascular occlusion tests for fifty-eight volunteers were per-
formed with an MSI and near-infrared spectroscopy in parallel and correlations
calculated. Moderate correlation were found, that could be ascribed to differences
in physiology of measurement areas.

3.7.2 Motivation

Multispectral Imaging (MSI) is a new, non-invasive method to continuously meas-
ure oxygenation and microcirculatory perfusion, validion on healthy volunteers
has been limited. The present study aimed to validate the potential of multispec-
tral imaging in the detection of microcirculatory perfusion disturbances during a
vascular occlusion test (VOT).

3.7.3 Methods

Two consecutive VOT’s were performed on healthy volunteers and tissue oxygena-
tion was measured with MSI and near-infrared spectroscopy (NIRS). Correlations



3.7. Paper F: The vascular occlusion test using multispectral imaging: a validation study. The
VASOIMAGE study. 41

between the rate of desaturation, recovery and the hyperemic area under the curve
(AUC) measured by MSI and NIRS were calculated.

3.7.4 Results

Fifty-eight volunteers were included. The MSI oxygenation curves showed iden-
tifiable components of the VOT, including a desaturation and recovery slope and
hyperemic area under the curve, similar to those measured with NIRS. The correl-
ation between the rate of desaturation measured by MSI and NIRS was moderate:
r = 0.42 (p = 0.001) for the first and r = 0.41 (p = 0.002) for the second test.

3.7.5 Conclusions

Our results suggest that non-contact multispectral imaging is able to measure changes
in regional oxygenation and deoxygenation during a vascular occlusion test in
healthy volunteers. When compared to measurements with NIRS, correlation of
results was moderate to weak, most likely reflecting differences in physiology of
the regions of interest and measurement technique.
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Chapter 4

Discussion

In this chapter, we will discuss the logic behind selecting specific techniques and
methods and provide more context for the progression of this research. The con-
nections of the papers will be revisited and explained in detail. All research ques-
tion posed for this research project are revisited. Most of the initial research ques-
tions (RQ) have evolved and are reformulated here. The discussion should give the
reader an answer to all of the research question according to the published papers.
Limitations of the approaches are be pointed out and discussed.

4.1 Connections between the included papers
This research is from start to finish an interdisciplinary attempt to develop new
imaging-based solutions with clinical value. Spectral reflectance of skin carries
useful health metrics and is the main physical property that can be measured by
imaging. The spectral reflectance has to be measured with the right equipment and
and has to be interpreted to be of value for physicians. The connections between
the papers are illustrated in Figure 4.1.

Skin modeling can be seen as a tool to enhance the interpretation of measured
spectra regarding clinically relevant parameters like oxygenation levels. At the
same time, it provides a simulation environment in which all skin parameters are
controllable and allows to simulate meaningful data sets for data-driven learning
algorithms. In this research, it has been used to enhance the interpretation of meas-
ured spectra and extract information of particular chromophores from tissue re-
flectance spectra, furthermore a data set of 10000 skin reflectances is generated
and used for spectral reconstruction training.

Paper A studied Monte Carlo simulation as a commonly used skin modeling en-
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Figure 4.1: Overview of the included papers organized in to the triangular structure of
skin, processing and spectral imaging. Illustrating the connections between the different
publications

vironment. It focused on the impact of changes in chromophore concentration on
measurable physical properties like the reflectance spectrum and colour. In Pa-
per B these simulated spectra were utilized to extract physiological information
from estimated spectra. It investigates if the accuracy of estimated spectra could
be sufficient to quantify chromophores.

With the development of spectral filter array cameras, spectral single-shot capture
in real-time is possible. Each of the bands can be acquired simultaneously and
the spectral resolution is greater in comparison to RGB cameras. The estimated
spectra from the multichannel RGB and LED system from Paper B had prom-
ising results for oxygenation level estimations, but the versatility of SFA cameras
for medical applications had to be explored. SFAs are not yet a mature imaging
modality and are currently prototypical. A lot of processing had to be developed
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to use these imaging systems with clinical relevance. The Monte Carlo simula-
tions were further developed and served as a way to interpret measured spectra for
physiologically relevant parameters in Paper B, C and D. In Paper C a camera
operating in the visual spectrum is tested as a two-dimensional spectral acquisition
of parameters relevant for physicians.

The proposed framework was designed to be transferable and this was tested for an
SFA camera operating in the near-infrared region of the spectrum in Paper D. This
wavelength region is closer to the wavelengths used by the clinical standard and
has the advantage of penetrating the skin deeper. Also epidermal (outer layer of
the skin) melanin is more transparent in this wavelength region allowing to meas-
ure in the presence of high melanin concentrations. Another potential advantage
of measuring in the near-infrared region is that it could be possible to design a
light-source invisible for the human eye providing enough light to carry out meas-
urements in the dark. It could be a way to measure oxygenation levels while a
patient is sleeping.

Paper E proposes a framework, which allows to compare different SFA cameras
and to tests the applicability of SFA cameras for specific applications. Monte Carlo
simulations are used to create an exhaustive database of spectral reflectances and
applied for training the spectral reconstruction in this paper. Paper F is a collab-
orative extension of the framework introduced with Paper C and demonstrates the
value for physicians.

4.2 RQ1: How to use Monte Carlo simulation to improve the
interpretation of measured skin reflectance data?

Related to RQ1 we discuss Monte Carlo simulation in particular for interpreting
measured skin reflectance data. Monte Carlo has been chosen for its long history
of application to optical skin simulations and the validations it has gone through
in the medical field.

In Paper A the concept of Monte Carlo skin simulation is introduced and re-
cent implementations of Monte Carlo algorithms and their differences discussed
in a brief review. The recent development in graphic processing units (GPU) and
new implementations leveraging this different processing architecture lead to new
Monte Carlo model implementations. Monte Carlo Modeling of Light Transport
in Multilayered Tissues - MCML is a publicly available open source code written
by Wang et al. [40].

For Paper A, this source code has been modified and extended to simulate re-
flectance spectra of skin based on changing optical properties defined as inputs for
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the simulation. These simulated reflectance spectra were tested to generate skin
colour patches with known optical properties. For each of the patches the con-
centration of chromophores was known. These colour patches based on Monte
Carlo simulation were then generated with increasing blood level, melanin levels
and bilirubin levels in their respective locations within the layered skin model.
The main purpose of this experiment was to test the influence of these common
chromophores on the final simulated skin colour.

This type of visualisation with a direct connection between the concentration of
particular chromophores and colour patches can be of interest to dermatologists
and anesthesiologists as educational systems. An interactive tool could provide
dermatologists with a better understanding of the impact of depths, concentra-
tion, and interactions between the chromophores regarding colour. The depth of
melanin, for instance, can be important information for some skin diagnoses like
vitiligo and dermatosis [114], [115]. Paper A not only provides an overview of the
available Monte Carlo simulation tools but also explores the cardinal colour axis
affected by changes in the concentration of one particular chromophore as seen by
the human eye.

The reflectances generated with known concentrations of chromophores are also
used in Paper B,C, and D. These papers focus on spectral imaging with multiple
bands and the controlled simulation environment allows enhancing the interpreta-
tion of spectra measured. With corresponding optical characteristics to each simu-
lated spectral reflectance, they can be used to find close matches between estimated
or measured spectral reflectances and enhance the accuracy of chromophore level
estimations. Monte Carlo simulations are also the basis for generating an exhaust-
ive training data set used to enhance spectral reconstructions in Paper E. A data-
base of 10.000 skin spectra with varying concentrations of the main chromophores
is used as a specialized training dataset improving the chromophore estimations
from different camera models.

Paper A is missing a final and quantitative comparison of the different Monte
Carlo models. Different implementations are discussed, but the simulation of col-
our patches is only carried out with one of the models. A comparison between the
different models would be very interesting and could be extended by comparing
the Monte Carlo based methods to the others including Kubelka-Munk diffusion
theory approximations [12], [116]. These other approximations have the advantage
that the processing times can be faster.

The comparison of colour patches based on Monte Carlo models is novel, but com-
parisons like these have been widely used in the computer graphics field. Within
that field, the complexity of optical models is ever-increasing and physically ac-
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curate models are able to generate realistic looking visualizations of the skin in
many lighting situations. A quantitative comparison with these types of models
could have been included. These two fields; computer graphics and medical skin
modeling should be connected more and it can be considered a shortcoming of
this publication and this thesis. Many structural elements of skin were also not in-
cluded for the simulation of these skin patches including the wrinkles on the skin
surface, more layers within the skin structure and three-dimensional complications
like freckles. All patches considered homogenous skin areas.

The complex structure of skin with all its different options for optical configura-
tions poses a challenge. Generating meaningful controlled skin spectra is an open
challenge for research and validating model results a challenge of the entire com-
munity. Especially the generation of a meaningful representative skin poses a chal-
lenge. The existing skin models are also often only verified on caucasian skin.

4.3 RQ2: How to use SFA imaging systems for oxygenation
level measurements?

Regarding RQ2 we chose oxygenation level estimations as the particular skin ima-
ging application. In Paper B a prototypical multispectral skin imaging device is
investigated. The device is based on an RGB imaging sensor and multiple different
coloured polarized LED illuminations. This device is used to estimate full spectral
curves from the six broad spectral bands. These spectral estimations are utilized
to estimate oxygenation levels in the skin. Narrow LED illumination highlight
differences caused by changing chromophore concentrations. This allows using
relatively broad spectral bands from an RGB camera to measure parameters like
oxygenation levels.

A full spectral estimation workflow is introduced to this multi-channel system to
allow analysing a full spectrum, as opposed to just a limited number of bands.
These systems are usually used with ratios between different spectral bands to es-
timate chromophore concentrations. Spectral estimation is an alternative way to
reconstruct full spectra. Previously simulated Monte Carlo simulations can then
be used to solve for chromophore concentrations. In Paper B the chromophore
concentration is based on solving an equation system with the spectral reconstruc-
tions and simulated Monte Carlo spectra to estimate chromophore concentrations.
A spectral imager, which acquires all different spectral bands in the same instance
has great potential for the medical sector.

Spectral filter array cameras have the potential to acquire multiple spectral bands
in the same instance and provide spectral imaging in real-time. These images can
have an adequate spectral resolution while maintaining a spatial 2D image of the
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scene.

Oxygenation levels of skin can be a useful health metric for measuring skin flap
transplantation acceptance, burn wound severity, anesthesia effectiveness, and other
diagnostic applications. For these types of measurements in particular spatial dif-
ferences are a subject of study. Currently, oxygenation is often measured as a point
measurement and systematic parameter e.g. pulse oximeter for your fingertip. The
ability to visualize spatial differences in the same time instance has clinical value.
Different areas can be oxygenated differently and it can be important to monitor
these differences. Efficacy of anesthesia can affect the oxygenation in particular
regions for instance.

Different spectral imaging techniques have been applied to creating oxygenation or
chromophore maps from skin reflectance measurements. Most of these techniques
sample the spectral signal in the time domain. For instance, liquid crystal filter,
filter wheel or line-scanning spectral imaging systems all have a small time delay
between measuring different spectral bands or at different locations. In highly
dynamic processes in human tissue, these time differences can negatively influence
the measurements.

Another aspect are movements of the patient or volunteer, which can introduce
artifacts to the measurement. Both of these emphasize the need for measuring in
real-time and with as little as possible time delay between spectral bands and spa-
tial locations. Three-channel systems have also been applied to the estimation of
oxygen levels, but lack spectral accuracy to provide accurate and absolute meas-
urements as shown in Paper A. These systems also lack the spectral versatility to
be applied for multiple different spectral bands of interest.

In Paper C a framework is developed to establish spectral filter array cameras
to estimate oxygenation levels. SFA cameras and in particular some commercially
available models have unique spectral sensitivity properties that need to be accoun-
ted for. The selected filter bands were not intended for clinical and is, therefore,
not optimal. The proposed framework in Paper C solves the spatial rearrange-
ment, applies the spectral correction and estimates relative oxygenation levels. All
methods were chosen with low computational complexity in mind. This maintains
the possibility to apply the processing on a live data feed from the camera and
allows the development of a real-time visualisation in the future.

The validation of the framework was performed using 58 healthy volunteers and
an upper arm occlusion experiment, where a clinical standard oxygenation meas-
urement tool was directly compared to the oxygenation levels estimated with the
proposed framework. Even-though the clinical measurement tool is widely used in
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the clinic it is not considered a ground-truth measurement of oxygenation. Ground
truth of tissue oxygenation is difficult to measure. Chemical methods require the
extraction of blood and that process might already influence the oxygenation state.
The measurement with the INVOS system, a point measurement currently used in
the clinic also requires a probe in direct contact with the skin tissue. This makes
it impossible to measure the same location since it would be partially covering the
tissue.

The clinical standard measures absolute oxygenation levels, in its current status
the proposed framework only provides relative oxygenation level estimations. Ab-
solute values could be achieved, but would require further calibration among many
other improvements of the processing. These kind of calibrations would require a
fixed optical setup and decrease the versatility of the setup.

The comparison between measured oxygenation levels and estimated oxygenation
levels by the SFA setup was based on physiologically relevant properties of the
oxygenation behavior during the upper arm occlusion test. These physiologic-
ally important parameters were chosen in dialogue with an anesthesiology depart-
ment. Correlations between these parameters and operating room complications
have been suggested.

Paper D illustrates the transferability of the proposed framework and applies it
to a different camera model operating in the near-infrared (NIR) spectral region.
The NIR region is of special interest for skin imaging, since melanin is increas-
ingly transparent in that wavelength range and the light penetrates deeper into the
tissue. This deeper penetration allows to sample deeper tissue levels and could
potentially be used to measure more systematic oxygenation measurements. This
shows the adaptability of the proposed framework to other camera models. For the
experiments in Paper D a different and smaller set of volunteers was measured.
The wavelength range of the clinical standard and this near-infrared camera are
much closer and therefore the sampling depth of the signal is comparable. For this
study, different light-sources were compared.

One question that is not answered in Paper B is if the spectral estimation increases
the accuracy of the oxygenation level estimates. Comparing estimated oxygenation
levels from spectral reconstructions and directly from the channel signals using the
ratio-of-channels approach could have provided some insides into this question.
It would also be good to quantify the impact the spectral estimation has for the
linear system approach. The additional information on the general shape about the
spectrum might increase the accuracy of oxygenation estimations if compared to
previously simulated Monte Carlo spectra. The quantification of the results in this
publication is only based on relative qualitative studies and shows potential for the
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system but is not an extensive verification of the system.

Depending on the application it can be argued that there is no clinical need for
introducing a relatively expensive camera to the measurement of oxygenation. It
is, however, beneficial to have a spatial resolution to oxygenation level measure-
ments, which allows studying differences in oxygenation over a large area. A direct
comparison between the two cameras could have been very insightful. Comparing
the different sampling depth of the two wavelengths regime and their oxygenation
qualities could have been considered. All methods within the framework were
chosen based on computational simplicity for future real-time applications, which
was not achieved within this dissertation. The lack of absolute oxygenation levels
is a limitation of the proposed framework. While the agreement between general
oxygenation level shapes during the occlusion experiment was shown the correla-
tion between the obtained parameters was moderate.

Another limitation is the use of basic oxygenation estimation methods. The meth-
ods used are based on single channels in opposition to using the full spectrum
measured by the camera. A more sophisticated estimation method based on in-
verse Monte Carlo calculations could improve oxygenation estimations and utilize
the full spectrum. Comparing the oxygenation estimation performance using the
whole spectrum vs chosen single wavelengths could be studied in the future.

In conclusion, it can be argued that spectral filter array cameras hold great potential
for the medical field and skin imaging in particular. The studies proposed in this
research can be considered a step towards implementing this new imaging modal-
ity into the clinic. Different approaches to improve the results have been proposed
and straightforward processing procedures established.

4.4 RQ3: How to select the correct spectral filter array camera
and how to guide development?

RQ3 poses the question about selection criteria and guidance for future develop-
ment. The development of SFA cameras and the potential for the medical sector
require methods to select adequate cameras and guide their design. Paper E pro-
poses a framework to select SFA cameras based on specific applications and can
guide development. With limited space on the sensor and a, therefore, limited
number of channels, SFA cameras need to balance a trade-off between spectral
resolution and covering the entire spectrum of sensitivity. Very narrow spectral
filters increase the spectral resolution but require a high number of bands to cover
the full spectral range. Broader spectral filters, on the other hand, require fewer fil-
ters but decrease spectral resolution. One method to account for different spectral
sensitivities is the method of spectral reconstruction which is studied in Paper E .
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This method allows us to take the unique spectral sensitivity curves of each of the
cameras into account and mathematically reconstruct full spectral measurements
from a limited number of bands. For SFA cameras this can be a useful technique,
especially if the spectral bands of interest for particular applications are unknown.
Or if like in the case of oxygenation level estimations the spectral sensitivities are
not optimal for clinical application. These spectral reconstruction methods require
training reflectances and Paper E explores the impact of a generated specialized
training set. This training set is based on Monte Carlo simulations of a wide range
of different possible skin reflectances based on changing the concentrations of
chromophores and evolution of the methods used in Paper A.

The proposed framework allows comparing SFA cameras based on publicly avail-
able databases and known spectral sensitivities of the cameras. It does not require
other measurements. Paper E tests this framework in the context of measuring
skin oxygenation levels and compares different commercially available SFA mod-
els. To further explore the impact of the trade-off between broad and narrow spec-
tral sensitivities and to investigate the impact of ideal Gaussian spectral shapes,
Gaussian versions of each SFA camera and an RGB sensor are included in the
comparison. All models are compared regarding three different metrics. The first
two metrics are considering the spectral reconstruction quality of each of the con-
sidered sensors. Both root mean square error (RMSE) and ∆E00 [117] colour dif-
ferences are calculated for the reconstructed spectra using all considered sensors
and test sets of reflectance measurements. The final metric is based on estimating
the oxygenation level both in the test spectrum and the reconstructed spectrum and
comparing the results.

Interactions between specific spectral sensitivities, training data and application-
specific bands of interest need to be studied camera dependent. The design of an
optimal sensor is not straightforward and all these aspects need to be considered.
The framework proposed in Paper E allows changing the parameters and study the
impact of each of them without the need for physical measurements. This allows us
to optimise for specific applications and to study spectral filter array configurations
in a theoretical environment.

For Paper E oxygenation level estimation was the application for comparison.
Different techniques have been proposed to estimate oxygenation levels based on
the spectral reflectance of skin tissue. Some of these methods are single-channel
methods, based on differences in the absorption characteristics of different chro-
mophores. Other techniques are based on the entire spectral reflectance spectrum
of skin. This makes oxygenation level estimation a good application to test the
capability of spectral filter array cameras. Estimating full spectral reflectance from
the limited number of bands makes it possible to use full spectral based estimation



52 Discussion

techniques.

The performance of the spectral estimations is affected by the choice of training
reflectances used for the spectral reconstruction. In Paper E a training dataset
is proposed that is based on simulated skin spectra. The simulations are based on
Monte Carlo simulations with different chromophore concentrations. This special-
ized reflectance spectrum increased the reconstruction of spectral reflectances and
can be used for generating a controlled dataset for data-driven training algorithms.
To check the validity of the proposed simulated dataset, a principal component
analysis is included in Paper E.

Paper E does not include measurements on patients. These are necessary to verify
the usability of any particular SFA camera in a medical context. It does, however,
propose a novel way to compare and optimize SFA’s without the need of additional
extensive measurements.

Not considering noise is a simplification present in the current implementation of
the framework. SFA cameras, in particular, are prone to noise due to the trade-off
between spectral sensitivity and covering the spectral range. The framework is
implemented in a way that noise could be considered in the future.

The framework provides the non existing means to test any creation of spectral
filter array sensors. Testing an SFA sensor with spectral sensitivity peaks overlap-
ping with the different hemoglobin absorption peaks could have been considered.
Comparing this specialized oxygenation SFA camera with other cameras would
have been a good and possible addition. Another approach is to optimize the spec-
tral reconstruction to estimate only the exact bands of interest. The effect of the full
spectral reconstruction should be further quantified regarding oxygenation level es-
timations. This is particularly interesting for more complex methods of estimating
the oxygenation levels. In this implementation, only a channel approach utilizing
only three or six bands were studied. A quantitative comparison between applying
the spectral reconstruction and using a more complex oxygenation level estimation
could be included.

It could also be interesting to compare the performance of oxygenation level estim-
ations at the hemoglobin absorption peaks vs the sensitivity peaks of each of the
cameras. The implemented Gaussian sensor creation allows to even formulate an
optimization to find the optimal spectral sensitivities for oxygenation estimation.

The outcome: it can be concluded that the framework provides a novel previously
non existing way to study SFA cameras and find optimal filter sensitivities for a
given applications. The complex interaction of broad vs narrow filters, number
of bands vs bands of interest can be optimized with this proposed framework.
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Generated specialised skin reflectances, as a dataset for reconstructing spectra is
also studied and shows reconstruction improvements.

4.5 RQ4: Can SFA cameras actually be used in the clinic?
RQ4 raises the question about how useful SFA cameras are in a clinical setup. Pa-
per F is a collaborative work with the anesthesiology department of Vrije Unvi-
ersiteit amsterdam medical center that starts to address this question. The methods
of estimating the oxygenation levels are described in detail in Paper C and the
data analyzed for these two papers are identical.

Clinically it has recently been shown that recovery behavior from the upper arm
occlusion experiments can be indicators for complications in the operating room.
This Paper focuses on interpreting the obtained oxygenation curves regarding these
parameters. As opposed to Paper C additional clinically relevant parameters are
obtained from the oxygenation curves. At the same time, these parameters are
obtained from a clinically accepted and standard oxygenation level measurement
device and both are compared.

The correlation is too low to suggest an immediate application in the clinic. For
the operating room, absolute oxygenation values would be more beneficial and
future development should aim for estimating absolute oxygenation levels. The
paper also discusses several other reasons for the low correlations including the
difference in sampling depth, normalisation procedures in the data analysis and
measurement frequency differences.

During the processing of the data, normalization was applied to the absolute oxy-
genation level results from the clinical standard and the estimations from SFA. It
can be argued that this normalization affects the results positively with regards to
the comparability of the two curves. But this normalization also emphasizes small
differences in the sampling frequency. A small offset of a peak of the resaturation
effects the slope drastically. This raises the question if the slope is the best para-
meter for comparison. The process of normalisation is, however, necessary since
the two systems measure on different scales. All volunteer data including outliers
was included and provides a good estimate about the accuracy obtained with the
proposed setup.

In summary: the results obtained clearly show the relative changes, but the com-
parison with the INVOS system needs to be reconsidered. It has been shown that
SFA cameras provide a unique and interesting tool to study oxygenation spatially
resolved. The acquisition speed can also be beneficial for physicians and the po-
tential for further development is great.
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4.6 Summary of the main limitations
For each of the posed research questions significant progress has been made in
this dissertations and through the publications. This section provides a brief sum-
mary of the main limitations considering each of the different research questions.
Regarding RQ1 the main limitation is a missing quantitative comparison with dif-
ferent types of models. These include both different models published in the com-
puter graphics domain as well as models published in the biomedical optics do-
main.

The main limitation for RQ2 is the missing ground truth of tissue oxygenation
data. Furthermore, the final evaluation framework (from paper Paper E) for SFA
cameras does not include real world measurements on volunteers and using real
cameras. For a final evaluation and verification for the applicability in the medical
domain this is mandatory.

The main omission regarding RQ3 is the lack of a final optimization of the pro-
posed framework. In order to recommend and design an optimal camera for skin
oxygenation measurements the framework would have to be optimized with con-
sidering parameters such as sensor sensitivity, number of bands and training data
as free parameters and provide an optimal camera as a result.

The biggest limitation regarding RQ3 is the low correlation, which does not sug-
gest an immediate application in the clinic. Many strategies, in order, to improve
these correlations including: more complex oxygenation estimations methods, dif-
ferent accuracy metrics and differences in sampling depth have been proposed to
overcome this limitation.
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Conclusion and perspectives

5.1 Conclusion
In this dissertation, we aimed to advance and validate the potential of spectral
filter array cameras for medical diagnosis and skin imaging. Spectral imaging
allows us to acquire scenes with more than three colour channels and to measure
physiological changes visible in specific (narrow) bands in the spectrum. Spectral
filter array cameras are a novel spectral imaging modality with great potential for
the medical field. SFA imaging allows acquiring spectral images with no time-
delay between different bands and in real-time. The unique hardware requires
specialized processing of the available bands.

This research proposes a framework to process the data from this special type of
SFA camera. Interpreting the acquired spectral information for medically relev-
ant parameters can be enhanced by simulations of the optical interactions of skin.
Monte Carlo methods have been used to improve the interpretation of measured
skin reflectances and to reconstruct reflectances accurately.

The proposed framework is tested in the context of oxygenation level estimations
of volunteers and compared to a clinical standard measurement. Oxygenation level
of skin is a relevant clinical parameter and benefits from spatial acquisition. The
proposed framework is applied to three different imaging systems covering the
visual and near-infrared spectrum of light.

Finally, another framework is proposed to help to select and develop suitable SFAs
for skin imaging and oxygenation level estimation. This framework is used to com-
pare commercially available SFA cameras and study the influence of computer-
generated training data based on Monte Carlo skin simulations. It does not require
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additional measurements and is only based on publicly available databases.

This dissertation develops the applicability of SFA cameras further and establishes
basic processing pipelines to use this novel technology in the medical field. Ad-
equate agreement for a proof of concept study has been found between the clinical
golden standard oxygenation device and different spectral cameras. SFA imaging
improved the accuracy of oxygenation level estimations and produced good agree-
ment of oxygenation progression curves during an upper arm occlusion experi-
ment. A clinical study of the proposed technique showed a moderate correlation
between oxygenation level estimations and oxygenation level measurements in a
clinical context. An abstract computer-based framework has been used to com-
pare commercially available SFA models for oxygenation estimation. The positive
impact of a generated specialized skin reflectance database for reflectance recon-
structions has been shown.

SFA cameras are currently not optimally designed for medical applications with
the filter selection as shown in this thesis. However, using the suggested frame-
work, depending on the application, the optimal filter selection can be selected for
newly developed SFA cameras. Design recommendations can be inferred from the
proposed framework and it can aid the development of future application-specific
SFA imaging systems in the medical and other fields.

5.2 Perspectives
The proposed framework for oxygenation level estimation is designed with low
computational complexity in mind and based on straightforward methods. At the
current implementation, the method does not provide absolute oxygenation levels.
With further calibration and more sophisticated methods, absolute oxygenation
levels could be obtained. Data-driven learning algorithms could be trained with the
proposed and simulated skin reflectance database and improve estimations from
measured data. Optimization techniques could be also applied to the comparison
framework to generate an optimal sensor for predefined constraints.

The demand for the development of imaging sensor technology of the last dec-
ade is likely to continue. This demand is driven by the innovation pressure within
the consumer market for miniature sensors in the smartphone industry as one ex-
ample. It might lead to wider adoption of multi-channel spectral filter array-based
systems. Already now many sensor manufacturers offer the small scale production
of sensors with custom sensitivity bands specialized for particular applications.

In the scenario, that sensor innovation and miniaturization continue, the costs of
SFA cameras will decrease drastically. The need for tools to guide and optimize
the spectral filters will increase and in turn, increase the relevance of this work.
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Specialized systems for particular applications are already a reality and the demand
for these custom imaging sensors is likely to increase. In case these sensors find
commercial success in one of possible applications it could decrease the prices
drastically. With drastically reduced prices the range of applications increases
further and wider adoption of customized sensors becomes more likely.
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Abstract
Optical assessment is a useful tool for non-invasive skin as-

sessment avoiding scarring, time delayed diagnosis, hurting, and
inconvenience for patient and practitioner. This has led to wide
adaption of digital imaging and other optical technologies in der-
matology. Many of these optical technologies lack quantifiability,
therefore, the reproduction, comparison or absolute meaning of
measurements or images is an open challenge. Monte Carlo sim-
ulation for multi-layered turbid media provides an accurate tool
for simulating the optical path of photons traversing in the skin
and the diffuse spectral reflectance of skin. With this tool at hand
the missing link between health metrics and measurable optical
phenomena can be provided and it can help to establish optical
assessment and digital images as a standard for health monitor-
ing of skin. A number of publicly available simulation codes and
several different approaches have been proposed. In this work we
give an overview of three Monte Carlo simulation tools and com-
pare the different approaches. Furthermore, we will use Monte
Carlo Simulations to generate different spectra based on vary-
ing optical properties and use these spectra to generate colour
patches to analyse the impact of different optical properties on
the resulting RGB colour patches.

Introduction
Useful health information with a minimal impact for the pa-

tient can be achieved through optical techniques. Common op-
tical techniques for skin assessment are diffuse reflectance spec-
troscopy [1–3] and standard RGB sensors [4–7]. Quantifiability
of these medical skin imaging or optical health assessment tech-
nologies is an open challenge. Several approaches to obtain more
reliable and quantifiable results are based on photon simulation
in tissue [8–15]. Next to the bio medical field optical skin sim-
ulation has been applied in the computer graphics community in
order to generate realistic looking skin. The complexity of the
models used has been gradually increasing incorporating and tak-
ing into account more physiological properties. Nevertheless the
impact of tresearch in the computer graphics community did not
have a big effect on the bio medical sector [16]. Many of the
techniques are based on diffusion theory [17].

Also some proposed techniques for the simulation of tissue
light interaction in the bio medical field are based on diffusion
theory [3, 15] or and many on Monte Carlo sampling [8, 12, 18].
Diffusion theory is only applicable under the assumption that the
scattering dominates over absorption [3] and is limited for thin
layers. It is computationally efficient and can provide results in
near real time [19].

Monte Carlo simulation on the other hand is considered to
provide accurate [9] results of tissue light interactions unrelated
to the thickness of the layers. It is a sampling technique allow-
ing an accurate description of light transport over a wide range
of length scales. This can be performed in absence of a complete
analytic model due to statistical sampling. Each photon is hereby
simulated with an energy level and moved through the predefined
medium interacting with it based on optical parameters and sta-
tistical sampling. The photon energy decomposition and its di-
rectionality are preserved. Simulation provides insights into com-
plex light tissue interactions including photon path length trav-
eled, depth sensed, spectral response and others. It allows investi-
gation of the influence of optical properties which can be difficult
or impossible to control. Publicly available implementations of
Monte Carlo simulation have been used in recent years [8, 12].
Wang et al. [12] proposed a versatile publicly available C imple-
mentation in 1995, which has found great attention in the scien-
tific community and resulted in many studies [8–10, 13]. New
implementations of Monte Carlo simulation have emerged and
are making use of the graphics processing unit (GPU)in modern
computers. One example of such a code is the GPU based MCX
code by Fang et al. [8]. Fang’s implementation is based on the
same general principles but is designed to be executable on mod-
ern GPUs which allows the calculation of multiple photons at the
same time speeding up the simulation process significantly.

In this study we compare different implementations of
Monte Carlo simulation for skin. Namely the MCML (Monte
Carlo for multi-layered media) by Wang et al. [12], MCXYZ (3D
Monte Carlo) for heterogeneous tissue code published by Jacques
et al. [20] and the MCX Monte Carlo extreme implementations
including MMC (mesh based Monte Carlo) by Fang et al. [8] We
will compare the simulation results and give insights on how to
use the different Monte Carlo simulation codes for simulating dif-
fuse spectral reflectance of skin. These simulated spectra will be
used to generate color and the influence of different parameters
onto the final color patches will be compared. They can give in-
formation about the relationship between skin color and health
relevant chromophore concentrations and the impact of underly-
ing pathologies or structures onto the skin color. Furthermore,
the generated images can illustrate the impact of different light
sources used for skin imaging and its influence on the final color
image.

Background
Skin optical properties

In the following section we discuss general skin optical prop-
erties based on the book by Wang et al. to give an overview of the
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Figure 1. General skin structure and simplified interaction of skin and

radiation. Figure reproduced from Bauer [22].

relevant parameters for optical skin simulation [21]. The interac-
tion of light and tissue is mainly based on scattering and to a sig-
nificantly smaller degree on absorption. The absorptions is espe-
cially weak in the 400-1350nm spectral region and the mean free
path between photon scattering events is on the order of 0.1mm
compared to the mean absorption path length in the order of 10-
100nm. In order to simulate skin we have to define optical prop-
erties and formulate a general model describing the skin structure.
As a simplification skin can be described as a three layer model
with three main layers defining different areas of optical proper-
ties. These layers are usually the epidermis, dermis and the subcu-
taneous tissue from the outside to the inside of the skin. Figure 1
shows the simplified light tissue interaction we use for the defini-
tion of our input tissue structure for simulation. Absorption plays
a significant smaller role compared to scattering events for light
simulation. The absorption can be described as:

I0/I = �µadx, (1)

where x denotes the distance traveled of the light, I0 denotes the
incoming light and I the outcoming light in a set up where light
is incident to a medium and the resulting light on the other side is
measured. The equation describes the proportionality percentage
of the light absorbed in the interval (x,x+dx) to the product of
µa and dx. This is usually formulated in the well known Beer
Lambert law as:

I(x) = I0e�µax. (2)

Specific components in the skin the so called chromophores
can be considered the main absorbers in skin and are of inter-
est for skin and general health assessment. Figure 2 shows the
absorption coefficients of the most common chromophores in bi-
ological tissue per wavelength. These absorption curves can then
be used to define the total absorption of the different skin layers
with varying concentrations of the different chromophores. The
optical properties are mainly governed by scattering in the tissue.
To describe the scattering properties we define the scattering co-
efficient µs as the probability of photon scattering in a medium
per unit path length [21]. This leads to Beer’s law describing the
probability of a photon propagating distance x without a scatter-
ing event,

T (x) = e�µsx. (3)
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Figure 2. Optical absorption spectrum of common chromophores in human

skin data from Jacques et al. [23]

T(x) is hereby the ballistic transmittance and µs the reduced scat-
tering coefficient. The scattering is strongest for biological struc-
tures with a size which matches the optical wavelength of the
photon, therefor the scattering is wavelength dependent. Another
important property for optical skin simulation is the so called
anisotropy factor g. This factor is defined as the cos(Q) with val-
ues from -1 to 1. Q describes the angle of the scattering direction
and g = 0 corresponds to isotropic scattering and 1 dominantly
forward scattering and correspondingly -1 dominantly backward
scattering. In biological tissue the anisotropy factor is usually 0.9
so mainly forward scattering [21].

The last important quantity for Monte Carlo simulation is the
fluence rate F . Fluence rate F measured in W/cm2 is commonly
the output of Monte Carlo simulation tools. It refers to the irra-
diance which is incident from all angles onto a small region of
space [23]. This is used for turbid media where light is scattered
towards the target from all directions. It describes the total irra-
diance impinging onto a target region from all directions. The
fluence rate F is the power absorbed by that region, Pabsorbed , di-
vided by its cross sectional area, A (total area of the light cross
section):

F = Pabsorbed/A. (4)

In the case of a small region the fluence rate is independent on
the size of the region and depends on the primary plus secondary
irradiance impinging onto that region.

Skin simulation
The simulation requires the definition of skin optical proper-

ties, specific structures and the user choices of simulation param-
eters. Simulation parameters include: number of photons, vol-
ume (input structure), properties (optical properties of the struc-
ture usually µs,µa,n,g), tstart , tstep, tend or the duration of the sim-
ulation, source position, source direction, type of source. In the
cases discussed in this paper the input structure is a 2D structure
a 3D cube or mesh grid. Each layer, voxel or triangle respectivel
is associated to optical properties defined as an input variable for
the simulation. The absorption µa is calculated as a combina-
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tion of several parameters including the blood concentration with
oxygenated hemoglobin and deoxygenated hemoglobin, melanin
concentration, and water concentration. It is then calculated with
the following formula:

µa = B⇤ (S⇤µa(l )oxy +(1�S)⇤µa(l )deoxy)+

W ⇤µa(l )wat +M ⇤µa(l )mel)
(5)

In which B denotes the total blood concentration S denotes an
oxygenation saturation and W and M correspond to the melanin
and water concentrations. Depending if the voxel belongs to the
dermis or the epidermis these values vary. In healthy skin we
would not expect the majority of melanosomes in the epidermis
and only a small amount of oxy- and deoxyhemoglobin in the
epidermis [24]. Equally we would expect a small concentration
of melanin in the dermis and a higher concentration of blood in-
cluding oxy- and deoxy-hemoglobin in the dermis. Additionally
areas with for example increased melanin concentration could be
defined and correspond for example to a mole in the epidermis.

The next parameter which has to be defined is the µs reduced
scattering coefficient. Jacques [25] proposed a formula which has
been used extensively in the domain of skin simulation to calcu-
late the scattering coefficient wavelength dependent.

µ 0
s(l ) = a0( fray(

l
500nm

)�4 +(1� fray)(
l

500nm
)�bmie) (6)

To obtain a dimensionless equation dependent on the wavelength
it is normalised and divided by the reference wavelength at
500nm. The factor a0 is the µs(500nm) scattering coefficient at
500nm. Wavelength dependence is then described separately for
its Rayleigh scattering contribution and its mie scattering contri-
bution. All the different simulation algorithms examined in this
paper require the definition of these structures priori to run time.

Monte Carlo simulation of photon transport follows this sim-
ulation pattern or concept. Each photon has an initial amount
of energy and is propagated in a direction. In the beginning
this direction is defined by the user input parameters for the
x f ocus,y f ocus and z f ocus. Each photon is then moved a specific
step forward in case the photon crossed a boundary it is either
reflected or transmitted in the case it did not cross a boundary it
will be absorbed or scattered. The absorption properties of the
medium define the amount of energy absorbed by the correspond-
ing voxel. Scattering properties and Monte Carlo sampling define
the new direction of the photon. As the last step of one iteration
the photon depending on the energy left and a random roulette
is either terminated or it will go through the whole cycle again.
This whole process is continued until the last photon died which
terminates the algorithm.

MCML Monte Carlo for multi layered media (MCML) is a
Monte Carlo simulation code which has been publicly available
since 1995 and was released by Wang et al. [12] [23]. It has
been used by many research groups in the past years some ex-
amples are it was utilised to generate lookup tables providing the
link between diffuse spectral reflectance and chromophore con-
centrations in phantoms by Hennesy et al. [26], to obtain look up
tables for a multiple regression approach to obtain melanin and
hemoglobin concentration by Nishidate et al. [13] , it has been ex-
tended to consider 3D structures in skin by Paquit et al. [27] and

Naglic et al. combined MCML with diffusion theory to get health
information from diffuse spectral reflectance [10]. The model on
which MCML is based on considers multilayered skin as infinte
wide layers parallel to each other. Light is introduced to this struc-
ture perpendicular to these layers. MCML works in a cylindrical
space with a radial coordinate system assuming an indefinite ex-
pansion if the optical properties provided to the model. It is build
to simulate the photon transport through these media and consid-
ers photons as particles therefore polarisation and wave properties
are neglected.

Table 1 shows the input properties for the MCML code. The
optical properties of the layers µs,µa,n,g can then be calculated
from given blood, melanin and oxygen saturation values accord-
ing to the formulas discussed in section .

MCXYZ Monte Carlo XYZ indicating the dimensionality of
the model (MCXYZ) is a C code provided by Jacques et al. [23]
it is designed to work with 3D cubes which are composed of 3D
voxels. It is provided including two Matlab scripts allowing the
preparation of the input file and the viewing of simulation results.
In order to use the code several paramaters have to be defined
with some variations compared to general Monte Carlo param-
eters. Most of them are inherit to the architecture of the tissue
definition. Defining the optical properties can be considered as
the definition of a palette of tissue types each tissue type gets an
integer identifier 1-19 and its optical properties (µs,µa,g). These
can then be used to define the 3D structure which contains a 3D
cube with the corresponding tissue type identifier. The Matlab
file maketissue.m can be used to define different tissues by creat-
ing shapes inside the defined cube. MCXYZ can then be used to
simulate the light tissue interaction with the input structure.

MCX Another Monte Carlo simulation tool we will consider is
the Monte Carlo extreme (MCX) implementation being the most
recent implementation by Fang et al. [8] it is completely paral-
lelised and optimised to run on a GPU. Parallelisation and GPU
processing can speed up the Monte Carlo simulation significantly,
since each photon can be treated individually and many photons
can be processed simultaneously. This speeds up the simulation
time by a factor of 300 or more, depending on the computing
power of the GPU used [8]. Due to the different implementation
MCX also requires some additional input variables compared to
the unparellised mcml and MCX described in section . The MCX
code follows a similar concept to the MCXYZ code based on a cu-
bic voxel grid, where each element has optical properties assigned
to it. General functionality is close to MCXYZ but it provides a
lot more flexibility for the user to define the input lightsource. Ad-
ditionally it runs significantly faster to the unparallelised MCXYZ
code. This comes of course with the necessity of a CUDA capable
graphics card to use this implementation.

MMC Fang also proposed MMC a mesh based Monte Carlo
simulation code. This code is not parallelised (at the time of writ-
ing of this paper) for a GPU but it is the principles are the same
to the MCX code. The main difference between MMC and MCX
is the input structure definition since, it is based on a mesh def-
inition of the input structure. So to define the tissue structure
it requires nodes for a tetrahedral mesh grid and an element ar-
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Table 1: Monte Carlo methods predefined variables
General Monte Carlo MCML MCXYZ MCX
number of photons input file determined by simulation time defined as input
volume (input structure) just layers considered infinitely wide 3D voxel integers (1-19) 3D voxel integers
optical properties(µs,µa,n,g) input file list defining tissue 1-19 list defining tissue
simulation time determined by number of photons total simulation time defined tstart , tendtstep
source position on top of the tissue x,y, z, coordinates x,y, z, coordinates
source direction perpendicular to tissue in z(depth) x f ocus,y f ocus,z f ocus x f ocus,y f ocus,z f ocus
type of source infinitely narrow beam uniform, gaussian, isotropic pt 14 different types
wavelength defined in input file wavelength for simulation wavelength for simulation
cuda parameters none none nblocksize,nthreads,seed,maxgate
detector definition none none define locations of detectors

ray. This allows an even more efficient definition of very thin
layers and can result in significant computational efficiency im-
provements. Furthermore a mesh grid input definition allows for
different and more complex structures opposed to the voxel defi-
nition of MCXZY.

Experiments
We have simulated a 3 layer skin structure using the MCML

(Monte Carlo for multilayered media). As a proof of concept
we chose the implementation and optical properties published by
Atencio et al. [24]. Atencio et al. have used MCML to generate
spectra for different concentrations of bilirubin in the dermis re-
gion of the skin. We defined the optical properties of the skin and
ran the simulations and plotted the resulting spectra with varying
bilirubin concentrations in the epidermal layer. Figure 3 shows
the results obtained by simulating the different amounts of biliru-
bin in the dermis region of skin.

Figure 3. Different concentrations of bilirubin in the skin simulated spectra

using MCML and the configuration proposed by Atencio et al. [24]

We then used these simulated spectra for the generation of
colour patches based on Monte Carlo simulations. As a first step
we simulated a simple 3 layer model using the mcml implemen-
tation discussed in section and using publicly available Matlab
code. The model and the code used for the simulation is pub-
licly available by Atencio et al. and discussed in detail in [24].
It is based on a 3 layer model with a thin epidermal layer a hy-
podermis and a bone layer, this model assumes the measurement

on the skull of neonatal babies. The optical parameters mainly
the concentrations of different chromophores in the skin for the
simulation were varied between the different runs but the struc-
ture itself remained unchanged. In order to simulate with dif-
ferent chromophore concentration we had to adjust the publicly
available simulation code by Atencio et al., while still keeping
the general structure. Three experiments were performed, while
changing different chromophores Melanin, Bilirubin and the to-
tal blood concentration (haemoglobin). Correspondingly we kept
the other chromophore concentrations constant in this experiment.
The mcml code was then used to generate diffuse spectral re-
flectance curves with known chromophore concentrations. In or-

Figure 4. Measured spectral sensitivities of a Nikon D300

der to simulate colour patches we assumed the mcml resulting
spectra, the camera sensitivity curves of a Nikon D300, and in
this proof of concept study we used a white LED as the primary
lightsource. The sensitivities of the camera were measured prior
to this experiment and can be seen in Figure 4.

In figure 5 we plotted different resulting colour patches B1-
B6 the numbers under the images indicate the different total blood
concentration. We can clearly see the trend of increasing redness
depending on the total blood concentration in the model. This
agrees well with the expectations for increased blood concentra-
tion in the tissue. Due to the optical properties of haemoglobin
we would expect a more reddish appearance of the skin. In the
next set of simulations, shown in figure 6, we varied the biliru-
bin. Bilirubin is another chromophore which occurs naturally as a
decomposition product of haemoglobin. So commonly we would
see higher bilirubin after bruising the skin.
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B1 B2 B3 B4 B5 B6

0.002 0.005 0.006 0.01 0.02 0.03
Figure 5. Colour patches based on Monte Carlo simulations with varying blood concentration as an input variable

Bi1 Bi2 Bi3 Bi4 Bi5 Bi6

0 0.05 0.1 0.15 0.20 0.25
Figure 6. Colour patches based on Monte Carlo simulations with varying bilirubin concentration as an input variable

Me1 Me2 Me3 Me4 Me5 Me6

0.0 0.02 0.04 0.05 0.06 0.07
Figure 7. Colour patches based on Monte Carlo simulations with varying melanin concentration as an input variable

The results shown in figure 6 also agree well with expec-
tations. A higher bilirubin results in a more yellowish appear-
ing skin. Bilirubin in newborns can be a deadly disorder if not
treated accordingly. The detection of bilirubin as soon and as
non-invasive as possible is therefore of great importance. We can
observe the increasing yellowness in our simulation results very
well. In the next experiment we increased the melanin concentra-
tion in the epidermal region. Also these results shown in figure 7
agree well with expectations. Melanins with its high absorbance
colours the skin in a brown or darker shade. We can observe this
colouring in the simulated melanin colour patches.

Conclusion
MCML assumes a homogenous tissue it provides good re-

sults for small skin volumes or for simulating probe measure-
ments. In the case of spatial skin imaging we are especially in-
terested in the inhomogeneous aspects therefore MCML is less
suitable. Nevertheless the MCML simulations and the generated
skin patches show the expected behaviour.

This paper gives an overview of publicly available Monte
Carlo simulation codes and outlines some of their capabilities and
limitations. The given codes have been described and differences
have been pointed out. Additionally we performed a basic quan-

titative comparison of the methods by running the different codes
with similar input parameters and we are reporting the results.
MCX (Monte Carlo extreme) stands out from the implementa-
tions discussed since it has the most advanced light source def-
inition, a flexible 3D structure to define the input tissue and has
run time and computational efficiency advantages over the other
implementations. For very thin layers (like skin) we recommend
the MMC implementation, since the runtime should be further
decreased by the efficient representation of the input structure
in the form of tetrahedral. It comes even more apparent if the
author provides a parallelised version of the MMC code. Fur-
thermore we performed an experiment in order to evaluate the
usefulness of MonteCarlo simulated spectra for visualising dif-
ferent chromophore concentration levels. As a proof of concept
this approach shows good results. All the different chromophores
simulated for this study show good agreement with expectations.
This could be useful in educational purposes for dermatologists
in order to aid to give them a better understanding how depth or
general concentration of these chromophores influences the re-
sulting colours imaged by for example a digital three channel sen-
sor. Furthermore, the mechanisms of colour image formation and
chromophore concentrations can be further studied.
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ABSTRACT

Optical non-contact measurements in general, and chromophore concentration estimation in particular, have
been identified to be useful tools for skin assessment. Spectral estimation using a low cost hand held device
has not been studied adequately as a basis for skin assessment. Spectral measurements on the one hand, which
require bulky, expensive and complex devices and direct channel approaches on the other hand, which operate
with simple optical devices have been considered and applied for skin assessment. In this study, we analyse
the capabilities of spectral estimation for skin assessment in form of chromophore concentration estimation
using a prototypical low cost optical non-contact device. A spectral estimation workflow is implemented and
combined with pre-simulated Monte Carlo spectra to use estimated spectra based on conventional image sensors
for chromophore concentrations estimation and obtain health metrics. To evaluate the proposed approach, we
performed a series of occlusion experiments and examined the capabilities of the proposed process. Additionally,
the method has been applied to more general skin assessment tasks. The proposed process provides a more
general representation in form of a spectral image cube which can be used for more advanced analysis and
the comparisons show good agreement with expectations and conventional skin assessment methods. Utilising
spectral estimation in conjunction with Monte Carlo simulation could lead to low cost, easy to use, hand held
and multifunctional optical skin assessment with the possibility to improve skin assessment and the diagnosis of
diseases.

Keywords: spectral estimation, skin assessment, chromophore concentration, occlusion measurment, optical,
non- contact

1. INTRODUCTION

Skin assessment is usually performed by visual examination by a physician. The diagnosis depends on the
subjective judgement of the physician and the skin samples have to be extracted for further investigation of
the health status. Optical measurements, on the other hand, could provide objective non-invasive examination.
Hence these techniques could avoid scarring and pain for the patient during the diagnoses. Skin colorants like
melanin, oxygenated hemoglobin and deoxygenated hemoglobin called chromophores and their concentrations can
provide useful information about the health status of skin. This research addresses chromophore concentration
estimation and mapping with a prior proposed skin assessment device based on spectral estimation in combination
with Monte Carlo simulation.

The SkImager proposed by Spigulis et al.1 is a low cost non-contact optical measurement device for skin
assessment. It has been proposed designed and tested prior to this study, but will be a tool of investigation for
this research. Jakovels et al.2 used a similar technology for monitoring of vascular lesion phototherapy efficiency.

In this research we shall develop and investigate the capabilities of the SkImager for spectral estimation of
skin reflectances. The estimates shall be used for skin assessment in general and skin chromophore estimation
in particular, furthermore the process shall be extended with priori Monte Carlo simulated diffuse reflectance
spectra.
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Processor Nvidia Tegra 2 T20 a dual-core ARM Cortex-A9 processor (clock frequency 1 GHz)
Sensor RGB CMOS, 3Mpix ( 2048 x 1536 pixels ), Pixelsize: 3.2µm2 (MT9T031)
Storage Removable SD card
Display 4.3 inch 480 x 272 pixel touchscreen
Dimensions 121 x 205 x 101 mm
Weight ˜440g

Table 1. Technical Data of the SkImager and the Aptina CMOS sensor

2. THEORETICAL BACKGROUND AND THE SKIMAGER

The SkImager is a previously proposed prototypical compact device for skin assessment. It was developed in the
Biophotonics Laboratories in Riga Latvia and is described in detail in a previous publication.1 A round skin spot
illuminated with 5 polarized narrow band LED’s can be imaged by a cross oriented polarized CMOS Sensor. The
illuminations covers the VIS (visible) and IR (infra red) spectrum with narrow band LED’s at 450nm, 540nm
660nm and 940nm and a white LED. The controls of the SkImager are realized in form of a touchscreen on the
back of the device. All parts are assembled in a 3D printed housing.

2.1 Spectral Sensitivity

The spectral sensitivity of the sensor is an important factor for the spectral estimation the data sheet sensitivities
were taken to evaluate the coverage of spectral sensitivity along the visual spectral band. The spectral sensitivity
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Figure 1. Spectral Sensitivity of the sensor in SkImager according to data sheet.

given by the manufacturer were used and are presented in Figure 1. These curves are an important factor of a
sensor of an imaging system used for spectral estimation.

Both color quality and spectral estimation results are connected to the spectral sensitivity. Another very
important spectral feature of an imaging system are the spectral power distributions of the LEDs discussed in
the following section.

2.2 Spectral Power Distribution of the LEDs

The Spectral Power Distribution of the Illumination is an important aspect for modeling the reflectance of
a sample with known spectral reflectance. To measure the spectral power distribution of the SkImager its
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Skimager Illumination 0° to Refe-
rence White

illumination was directed towards (0◦) a reference white and the reflected light was measured with an Avantes
AvaSpec-ULS2048. The measurement fibre was directed in a 45◦ angle towards the reference white to avoid
specular reflections of the light source. Following the CIE norm (0◦/45◦) discussed in3

Figure 2. Measurement setup to measure the spectral power distribution of the LEDs in the SkImager with a 0◦/45◦

measurement setup according to the CIE3

The Avantes AvaSpec-ULS2048 with a spectral range of 350nm to 1100nm and a spectral resolution of 0.5nm
was used. To account for the dark current and ambience light during the measurement a black measurement
was taken and subtracted from the measurements. All measurements were repeated three times and averaged to
decrease effects of random noise. Figure 3 shows the measured spectral power distributions of the illumination
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Figure 3. Relative measurement of the LED spectral power distribution measured as described in Section 2.2 and

in a relative measurement scale of the device. Figure 4 on the other hand shows a normalized spectrum ranging
from 0to1.

To obtain the normalized spectra each value of all curves was divided by the curves maximum value. We can
clearly see that the relative power of the IR LED was considerably lower than the other LEDs. The Blue LED
provides by far the highest output.
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Figure 4. normalized LED spectral power distributions normalized by dividing with the highest value of each curve

2.3 Effective Spectral Sensitivity

In order to compute the effective spectral sensitivity per channel of the SkImager we multiplied the spectral power
distribution of the LEDs and the spectral sensitivity of the sensor. The Figure 5 shows the effective sensitivity

Wavelength in [nm]
350 400 450 500 550 600 650 700 750

Q
u
a
n
tu

m
 E

ff
ic

e
n
c
y
 i
n
 [
%

]

-500

0

500

1000

1500

2000

2500

3000

3500

4000

4500
Effective spectral sensitivity

Figure 5. Effective spectral sensitivity computed by multiplication of SPD of the LEDs and spectral sensitivity of the
Sensor

per channel in the visual range of the spectrum from (400 to 700nm) and shows that it is not evenly distributed
over the spectral range. Infrared region of the spectrum was left out in this study also due to the fact that the
manufactures didn’t provide the spectral sensitivity of the sensor in this region. For spectral measurements or
spectral estimation it is desirable to have an uniform spectral sensitivity over the whole range of the spectrum.
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Both benefit from a spectrally uniform illumination with enough signal along the whole spectral band of interest.
Especially,the signal is weak around 500nm were none of the illuminations provides an adequate output of energy.

3. METHODS

3.1 Monte Carlo Simulation

Prior to the spectral estimation we performed a series of Monte Carlo simulations using MCML by Wang et
al.4 For the configuration of the MCML simulation we followed the published code by Atencio et al.,5 defining
a 3 layer model. With an epidermis, dermis and subcutaneous tissue layer. In total we simulated four different
sets of diffuse skin spectra changing the concentration of the dominant chromophore. One set of simulations
with dominant oxyhemoglobin and different concentrations, one with different overall concentrations of blood
with a constant oxygenation level, one set with dominant but varying bilirubin concentration and one set with
dominant but varying melanin concentration.

In the case of oxyhemoglobin we changed the oxygen saturation of the blood from 0.20 - 0.70 in 0.10 steps,
while keeping blood volume fraction constant (0.02 mg/L), melanin concentration constant(0.02 mg/dl) and
a low level of bilirubin (0.1g/L) constant through the simulations. For the simulation with different volume

Figure 6. example of simulated spectra in this case with varying total blood concentration and constant bilirubin, oxygen
saturation, and melanin based on plots MCML simulation code and theory proposed by Atencio et al.5

fractions of blood we kept the bilirubin concentration (0.1 g/L), melanin concentration (0.02) and the oxygen
saturation (0.70) as constant, while varying the blood volume fraction to 0.002, 0.005, 0.006, 0.01, 0.02, 0.03.
The plot for different blood concentrations can be seen in Figure 6.
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Furthermore one set with changing the total bilirubin concentration (0 0.05 0.1 0.15 0.20 0.25) while keeping
melanin (0.02), blood volume (0.02) fraction and oxygen saturation (0.70) constant was simulated. And similarly
one set with varying melanin concentration keeping blood, oxygenation and bilirubin constant.

3.2 Linear Least Square Fitting in Lower Dimensional Space

The spectral estimation we choose is a linear least square fitting in a lower dimensional space also known as the
Imai Berns Method.6 Lower dimensional reflectance factors are obtained by performing dimensionality reduction
on a set of training reflectances. The method requires a prior taken training set with corresponding training
reflectances. Principal component Analysis (PCA) is then performed on the training data set to obtain the linear
base and the training set coefficients. This method is according to the authors6 more robust to noisy channels
as a result of the optimization in a lower dimensional space. We then obtain a full spectral image cube with an
estimated spectrum for each pixel in the image.

3.3 Chromophore estimation

The estimated spectra were used to estimate chromophore concentrations per pixel which can then be visu-
alised using chromophore heat maps. An overview of the flow chart of the proposed method can be seen in

Simulated 
Spectra

Estimated 
Spectra

Imai Berns 
spectral 

estimation
Matrix operation

SkImager 
image cube Spectral Image 

Cube 

Monte Carlo

Chromophore 
estimates

Figure 7. Flowchart of the proposed method, spectral estimations based on Imai Berns6 method are used in conjunction
with Monte Carlo simulations to obtain chromophore estimates

Figure 7. The estimated spectra are used in conjunction with the simulated spectra to estimate chromophore
concentrations. For the further investigation usually an average of a pixel mask was used to account for noise.
A main consideration for the estimation of the chromophore concentration was computationally efficiency and
robustness. Following the limitations of the SkImager hardware and to ensure a work flow with instantaneous
results. All the development of algorithms was performed in Matlab. Considering computational efficiency in
Matlab matrix operations are well suited. A simple matrix model was formulated to estimate the chromophore
concentrations based on the Monte Carlo simulations with a dominant chromophore,

C̃Csxn = Cpxs ∗ Ã>nxs (1)

where CC is the concentration of each chromophore per pixel, C is a matrix with the different Monte Carlo
simulated spectra with p different dominant chromophores and Ãhxs, Ãhxs is the estimated absorption spectrum
for each pixel (h) resulting from the SkImager.

3.4 Occlusion Measurement

In order to verify the performance of the proposed method. We performed the occlusion test often used to study
diffusion of tissue.7–10 The occlusion test requires consecutive measurements of the hand of a patient who’s arm
is clamped with an inflatable cuff. Inflating the cuff blocks the incoming flow of blood and simultaneously stops
the flow of blood out of the hand. The occlusion test is a well known study with a known outcome and therefore
a suitable proof of concept measurement to verify the performance of the proposed algorithm. The concentration
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Skimager Illumination
white L D 0°

of oxygenated Hemoglobin in the hand should fall exponentially during the occlusion (starting from the point of
cuff inflation).7–10 Deoxygenated hemoglobin increases exponentially during the occlusion.8–10

In total 12 volunteers (4 female and 8 male) all caucasian skin type with 2 of the male subjects with darker
skin and an age distribution from age 22−34 years were measured in a time frame of 5 minutes. The measurement
setup was chosen to minimize the effects of specular reflection for the spectrophotometer measurement and to
minimize the time between the two measurements. A white LED was used to take the spectral measurements
as a result of the limited space for the measurement setup. The measurement geometry was 0◦/45◦ with the

Figure 8. Measurement setup to measure the skin training set with ground truth reflectance measurement using Avantes 
Avaspec and the corresponding SkImager responses of the LEDs SkImager white LED illumination with a 0◦/45◦ mea-
surement Setup according to the CIE3

light source normal to the sample and the detector in a 45◦ angle to avoid specular reflections according to the 
CIE3 the setup can be seen in Figure 8. Using a white LED for the spectral measurements is not optimal but 
it was unavoidable for the limited space for the measurement setup. We can also consider the white LED as 
sufficiently uniform in the spectral band of interest (450 − 650nm). Considering the temporal arrangement of 
the measurement a single measurement with both devices took about 15 seconds where the SkImager imaging 
took 6 − 10 seconds and the spectrophotometer measurement about 5 seconds.

4. RESULTS AND DISCUSSION

In the following paragraph we discuss results of the proposed method applied to occlusion measurements. The 
chromophore estimation described in Section 3.3 based on prior estimated spectra calculated with the colorchecker 
training using 6 channels and the Imai Berns method as discussed in Section 3.2 and Monte Carlo simulated 
skin spectra. Figure 9 shows the results for all subjects. All subjects chromophore concentration images were 
averaged and then combined into one average subject. Average estimate concentrations were then plotted over 
time. The curve shows the exponential decay of oxygenated hemoglobin saturation during the 2 minute period of 
occlusion. We can clearly see a good agreement of the general expected shapes or physiological behaviour which 
has been discussed in the literature.7–10 The measurements were normed to have zero concentration for the first 
measurement by subtracting the average concentration of the first five measurements. Therefore, the plot shows 
relative changes over time compared to the base line measured prior to occlusion. Also the expected oxygen 
overshoot can be seen in the plots obtained through spectral estimation combined with monte carlo simulation.

5. CONCLUSION

In this research we analyzed an existing optical non-contact skin assessment device called SkImager and proposed 
a spectral estimation workflow for chromophore estimation.

A spectral estimation workflow has been implemented for the SkImager. The estimated spectral image cube 
were used to estimate chromophore concentrations. The main objective was hereby a computationally efficient 
implementation usable for the SkImager and with the possibility to operate in real time.
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Figure 9. Average deoxygenated hemoglobin concentration of all patients averaged. Expected exponential increase during
occlusion

Occlusion experiments were used to verify, chromophore concentration estimation in a realistic experiment.
The results indicate that the proposed spectral estimation workflow combined with Monte Carlo simulation
provides promising results and leads to expected oxygenation results for the occlusion measurement. Additionally
the more general spectral image cubes provides full spectra and could be utilized for more complex analysis of
the skin in the future.
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Abstract: The emerging technology of spectral filter array (SFA) cameras has great potential for
clinical applications, due to its unique capability for real time spectral imaging, at a reasonable cost.
This makes such cameras particularly suitable for quantification of dynamic processes such as skin
oxygenation. Skin oxygenation measurements are useful for burn wound healing assessment and as
an indicator of patient complications in the operating room. Due to their unique design, in which all
pixels of the image sensor are equipped with different optical filters, SFA cameras require specific
image processing steps to obtain meaningful high quality spectral image data. These steps include
spatial rearrangement, SFA interpolations and spectral correction. In this paper the feasibility of
a commercially available SFA camera for clinical applications is tested. A suitable general image
processing pipeline is proposed. As a ’proof of concept’ a complete system for spatial dynamic
skin oxygenation measurements is developed and evaluated. In a study including 58 volunteers,
oxygenation changes during upper arm occlusion were measured with the proposed SFA system and
compared with a validated clinical device for localized oxygenation measurements. The comparison
of the clinical standard measurements and SFA results show a good correlation for the relative
oxygenation changes. This proposed processing pipeline for SFA cameras shows to be effective for
relative oxygenation change imaging. It can be implemented in real time and developed further for
absolute spatial oxygenation measurements.

Keywords: spectral filter array; multi-spectral imaging; skin; bio-medical optics; occlusion
measurement; reflectance spectroscopy; oxygenation; Xispec

1. Introduction

Visual inspection of skin can provide physicians with diagnostic information about the patient.
Inflammations, nutrition delivery, oxygenation, blood perfusion and other health indicators can affect
the skin tone. In the Operating Room (OR) this information and especially the oxygen delivery is used
by anesthesiologists as an early indicator. After light is reflected from the skin, it contains information
of physiologic processes within the skin. Cameras can be more sensitive and capable to transfer this
information into qualitative or even quantitative data. Analysing the relative changes in color or
spectral reflectance over time allows monitoring of physiological processes.

Wieringa et al. [1] demonstrated the feasibility of using RGB cameras for oxygenation
measurements analysing the ratio between the individual R, G and B color bands. Van Gastel et al. [2]

J. Imaging 2019, 5, 66; doi:10.3390/jimaging5080066 www.mdpi.com/journal/jimaging
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extended RGB sensors with high temporal resolution for a camera based pulse oximetry system
including a motion artifact resistant method. However, RGB camera sensors have a low spectral
resolution with only three wide spectral bands, therefore the applications of monitoring vital functions
is limited.

Multispectral imaging, on the other hand, is a technique to measure different narrow spectral
bands. This allows a more accurate acquisition of the color or spectral changes in the reflectance of
objects spatially. Spectral imaging has been applied in different areas and for different pathologies in
the medical field. Some examples are the determination of bruise age [3,4], pigment mapping [5,6],
melanoma screening [7] and burn wound analysis [8,9]. These imaging techniques are usually based
on a temporal decomposition of the spectral bands with, that is, liquid crystal tuneable filters,
filter wheels [10] or monochrome cameras with changing illumination. These techniques acquire
different spectral bands at different time instances, therefore they are less suitable for quantifications
of dynamic processes like oxygenation of skin. Nevertheless these techniques have been successfully
applied to provide a spatially resolved measure of oxygenation [11–13].

Due to recent technological progress in interference filter design, a new multispectral imaging
modality acquiring all spectral bands at the same instance has been developed. These spectral
filter array (SFA) cameras combine the speed of commonly used RGB imaging systems with spatial
and spectral images of the scene. A filter mosaic with multiple specifically selected spectral [14]
transmission bands on top of an imaging sensor is the basis for this technology. The filters can for
instance be based on Fabry-Pérot interference filters [15], which pass only specific wavelength bands
at a given subpixel [16]. The bands can be chosen to provide a good spectral sampling of the scene in
real time [17].

Additionally to the adaptation of these sensors in academia [18–24] some commercially available
products have been developed by PIXELTEQ [25], SILIOS Technologies [26] and IMEC [27]. Acquisition
speed, ease of use and versatile spectral range makes SFA cameras interesting for the medical sector,
especially for the quantification of dynamic processes [28]. Filter wheel cameras or LCTF cameras on
the one hand sample the spectral bands temporally SFA cameras, on the other hand sample the spectral
information spatially. These spatially arranged filter sensitivities often come with a cost regarding the
spectral sensitivities. Unlike the temporal spectral imaging systems, which have very narrowband filter
sensitivities, some commercially available SFA imagers have double lobes in the spectral sensitivities.
This unique architecture makes specific processing steps, like spatial decomposition, spectral calibration
and the careful choice of optimal exposure necessary [15,20,24,29,30]. These can cause practical hurdles
for clinical implementations of SFA imaging systems.

Oxygenation of tissue is a dynamic process and spatial oxygenation measurements in real time
are of clinical value [31]. Temporal and spatial color changes can be used to provide indication of the
micro-circulation of skin and oxygen distribution to tissue. The oxygenation of skin varies over its
surface area as shown in previous studies [32] and therefore, spatial analysis is advantageous.

In this study the processing steps needed to make an SFA camera setup suitable for medical
applications are developed and tested. A transferable basic processing pipeline for SFA cameras in the
context of skin imaging is proposed. The focus is to maintain the full spectral range, ease of use of the
imaging setup and the acquisition speed provided by this new technology. The proposed processing
maintains the temporal, spectral and spatial attributes of SFA imaging systems, while solving technical
hurdles introduced with this technology. A proof of concept on dynamic oxygenation distributions in
volunteers using the spectra obtained with the SFA camera is conducted. The results are compared to
a clinically validated device (gold standard) for oxygenation measurements and show relatively good
sensitivity for oxygenation measurements.

2. Theoretical Background

Key aspects to consider for the acquisition of multispectral images are presented in Figure 1.
Most important aspects include the unique power distribution of the light source, the camera

,
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parameters for acquisition, pre-processing steps and finally the processing of the sensor data or
the spectral image cube. The spectral image cube is the final output of most spectral imagers and
each slice of the cube is an image sensed with a particular wavelength. A pixel in the plane of the
spectral image cube represents the spectrum in that particular location. Table 1 shows advantages and
disadvantages of different spectral imaging approaches [20].

Multispectral  
Imaging Light source

Uniformity

Intensity

Spectral power
distribution
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Uniformity
correction

Reference
images black

and white

Exposure
settings

Camera

Connection 
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Frequency

Processing

Enhancements

Visualisation

Algorithms

Spectral
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Motion blur Noise
reduction

Demosaicking

Spatial spectral
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Pre-
processing

Figure 1. Overview of key aspects for generic spectral image acquisition including the camera,
light source, acquisition, pre-processing steps and processing steps for the spectral image. For SFA
imaging temporal aspects are of special importance: the flicker frequency of the light source and the
connection speed to the camera. All of the items shown in this diagram have to be addressed for
successful spectral image acquisition and meaningful data processing.

Table 1. Overview of spectral imaging techniques including RGB [33], filter wheel cameras (FW), liquid
crystal tunable filter (LCTF) cameras, spectroscopy [34] (Spec), spatial frequency domain imaging
(SFDI) [31,35–37], multispectral illumination (MI) [1,38], SFA spectral filter array [39].

Property RGB FW LCTF Spec SFDI MI SFA

spatial acquisition 2D 2D 2D point 2D 2D 2D
spectral bands 3 8–10 100 x > 100 x > 100 ∼20 8–16
spectral acquisition snapshot sequential sequential snapshot sequential sequential snapshot
frame rate ∼150 fps ∼60 fps ∼1 f\0.05 s ∼1 fps ∼60 fps ∼1 f\0.05 s ∼30 fps
cost low medium medium low medium medium medium
Processing complexity low low medium low medium medium medium
effort of use low medium medium low medium medium low

SFA implementations provide a good tradeoff between true simultaneous snapshot capture of
all wavelength, higher number of spectral bands, medium costs, ease of use and acquisition speed in
terms of frames per seconds (fps).

Several processing steps are needed to obtain the spectral cube from an SFA image,
while maintaining all of the benefits mentioned.

2.1. Light Skin Interactions

Skin color contains physiologically relevant information and optical or visual inspection of skin
is a commonly used method in the medical practice. The perceived color of skin is the resultant
of a complex combination of absorption and scattering events during the path of light traveling
through the skin. A longer path length increases the probability of absorption events and the path
length itself depends predominately on scattering properties of the tissue [40]. Besides absorbers
or chromophores which are spatially and temporally invariant, other chromophores can change
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dynamically influenced by physiological processes resulting in slight variations in the color of skin [41].
Melanin, hemoglobin [42] (p. 11) and its derivatives are the most common chromophores in the
skin. The perceived color of skin depends on the distribution, concentration and depth of these
chromophores. Figure 2 shows a simplified 3-layer model of light-interaction in the various layers
of skin. Various layers, like epidermis, dermis and subcutaneous tissue, have different properties
regarding scattering and absorption parameters.

Specular re�ectance
(normal di�use)

Incident light Mildly scattered
light

Heavily scattered 
light

Oil layer

Epidermis

Dermis

Subcutaneous 
tissue

Oxy
hemoglobin

Deoxy
hemoglobin

450 500 550 600 650

Wavelength in [nm]

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

re
la

ti
v
e
 a

b
s
o
rb

a
n
c
e

Chromophore Absorbance

Oxy-Hemoglobin

Deoxy-Hemoglobin

Melanin

Figure 2. Skin light interaction simplified model (left) [43]. Absorption of common chromophores in
the visual range of the light spectrum (right) (data compiled from [44], Figure recreated from [43].).

Melanin is expected to occur mainly in the epidermis, whereas hemoglobin is predominately
found in the dermis layer. The lowest layer subcutaneous tissue optically functions as a reflector
of the light that reaches these depths. The spectral absorption of hemoglobin, which is a dominant
chromophore in red blood cells, depends on the oxygen levels bound to the hemoglobin molecule [45]
(Figure 2). The color of skin is affected by the slight differences in absorption in oxy and deoxygenated
hemoglobin and could potentially be measured with optical techniques in non contact.

2.2. Characteristics of SFA Cameras

Digital color cameras utilize color filter arrays in broad red, green and blue ranges of the spectrum,
commonly referred to as RGB. A 2 × 2 pixel array mosaic covers a large megapixel sensor containing
small red, green and blue filters. Through image processing and demosaicking algorithms a full color
image is reconstructed. In case of spectral filter array (SFA) sensors this method is scaled up to larger
pixel arrays [15,29] with narrow band filters covering specific spectral bands in the visible (400–650 nm)
or the near infrared (650–900 nm range). An example of this is illustrated in Figure 3 showing the
peak wavelength and filter mosaic of the commercially available camera used in this study (IMEC [27],
XIMEA [46]).

Figure 3. Illustration of common Bayer pattern RGB mosaic and spectral filter array with 16 different
peak wavelengths [nm] equally distributed over the whole sensor. The indicated spectral sensitivity
peaks show the sensor implementation available for this study.
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In principle these spectrally sensitive filters can be arranged specifically and various different
patterns have been proposed. Demosaicking algorithms allow the reconstruction of a full spectral
image cube [15,29,30].

SFA spectral imaging unlike conventional spectral imaging allows to simultaneously acquire all
wavelengths at the same time in a snapshot fashion at typical video rates (20–50 fps) [16]. These spectral
images enable discrimination of physiological markers in high speed, which have potential for medical
diagnostics. However, the selected wavelengths of the SFA filters can be sub-optimal for wavelength
of interest in medical diagnostics. Also the filtering might ’leak’ an additional secondary wavelength,
complicating the analysis.

Fabry-Pérot filters have two highly reflective coatings on the surfaces of a substrate. The distance
between these reflective surfaces is ‘the cavity’. Depending on the thickness of this cavity the
transmission through the coatings changes and only a specific wavelength passes to the sensor.
SFA filter technology introduces crosstalk of adjacent channels, second order responses and spectral
leaking [20,24].

Spectral leaking describes the limitation of reflective surfaces that are only defined in an active
spectral region. It can be accounted for by limiting the active range using a band-pass filter mounted
on the spectral filter array.

Crosstalk describes the influence of one pixels signal onto a neighboring pixels signal.
This especially effects SFA sensors, due to their high spatial variation of filter sensitivities.

Second order harmonics are an inherent hardware limitation of Fabry-Pérot SFAs, due to the
spectral filter design. The thickness of the cavity defines the peak wavelength for transmission based
on constructive interference of the light trapped in the cavity. But the constructive interference occurs
for all light in phase and depends on the wavelength, the angle of light, the thickness of the cavity
and the refractive index of the material between the surfaces. Due to the nature of these filters second
order peaks also interfere constructively and are therefore transmitted, making the filters sensitive
to two wavelength peaks. Some of these additional peaks are filtered out through limiting the active
region with a bandpass filter but some of the second order peaks need to be corrected for.

Next to hardware solutions, crosstalk and second order responses can be corrected numerically as
a post processing step.

SFA imaging technology requires hardware-aware processing [24,30] both spatially and spectrally
to rearrange the pixels of particular spectral sensitivity into an ordered spectral image cube. There are
various processing techniques discussed in literature. According to Lapray et al. [20] the filter
arrangement should be interconnected with the optimal processing or demosaicking approach in
order to obtain the best signal from these kind of sensors. Sadeghipoor et al. [47] propose a spectral
demultiplexing of visible and near infrared overlapping spectral information by using spatial and
spectral correlation of the channels. This limitation could also be addressed by adding a specific
color restoration step into the processing chain as proposed by Park and Kung [48]. These examples
of spectral filter array processing discuss different approaches for using SFA data and illustrate the
necessity of hardware-aware processing.

2.3. Oxygenation Physiology

Oxygenation as a systematic parameter is measured with so called (pulse) oximetry
systems [34,49]. Two modes are used clinically, the transmission mode and the reflectance mode.
Both modes measure the detected light, which has been altered due to absorption in the tissue.
These absorptions depend on physiological properties of the tissue Pulse oximetry measures tissue
oxygen saturation as a systematic parameter in one particular spot Non pulsatile oximeters allow the
measurement of location based differences. But both are limited to a small measurement area and do
not indicate spatial differences of tissue oxygenation.

The well documented [28,31,33] occlusion test behaves as illustrated in Figure 4. A decrease of
oxygen concentration during occlusion can be expected followed by a sharp incline with an overshoot
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of oxygen concentration just after the moment of cuff deflation and followed by a slow return to
baseline after the overshoot of oxygen concentration.

Figure 4. Expected behavior of oxygenation during the occlusion experiment. As described by
Futier et al. [50] in the not occluded phase of the experiment a stable baseline with minor fluctuations
is expected. As soon as the blood flow is occluded during the vascular occlusion test (VOT),
the oxygenation decreases following a deoxygenation slope. As soon as the cuff is released the
reoxygenation with an overshoot of oxygenation occurs. The slope providing a way of quantification
of the reoxygenation. The time from cuff release to the reoxygenation overshoot peak is quantified
as dt. After this the oxygenation curve returns back to baseline.

For physicians, the characteristics of this oxygenation curve can be correlated to the health status
of vasculature of the patient. Influences of anesthesia on these key features of the occlusion test were
studied by Bernet et al. [51] and they report that anesthesia have an impact compared to a healthy
control group. Lipcsey et al. [52] report indications that NIRS measurements of these parameters can
provide information about fluid responsiveness of patients and predict surgical complication and
reactions to anesthesia. Abelmalak et al. [53] correlate preoperative values for the discussed parameters
with serious post operative complications.

3. Methods

3.1. Data Acquisition and Processing

The process to obtain a spectral image cube with conventional spectral imaging systems is obvious.
Multiple narrowband spectral captures are performed and concatenated to obtain a spectral image
cube. Black and white corrections are included in order to account for the scene illumination and
spatial differences of the illumination.

SFA cameras, however, need to be processed spatially and spectrally in order to obtain a spectral
image cube. For this study a commercially available SFA camera-based on the IMEC [27] snapshot
sensor, the XIMEA XiSpec SM4x4 VIS [46] operating in the visual range from 470 nm to 630 nm with
16 channels was used.

The acquisition of images was performed with the “XiCamtool” tool version 4.7 by XIMEA [46]
with settings for frame rate, exposure time (described in Table 2) and the raw (.tiff) file format in
sequences. All acquisitions were performed with a constant exposure time (50 ms) chosen to stay
within the 66% saturation, where linearity of the sensor is guaranteed by the manufacturer [27].
No further linearization or inverse camera response function was applied and this study does not
include a measurement of linearity of the camera. A dark reference IDn(x, y) image and a white
reference IWn(x, y) image were taken with the same optical setup. For the ’white’ reference a grey
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diffuse reflectance standard (Spectralon SRT-20-100 20%, 10 × 10 inches) was used. The reflectance
standard was chosen to be grey rather then white to avoid over saturation for any wavelength
compared to the measured skin and in order to stay within the dynamic range of the camera which
covers 16 wavelength bands with non-uniform sensitivities.

Table 2. Camera parameters chosen for the acquisition.

Camera Property Value

Acquisition speed 1 fps
Exposure time 50 ms

Aperture 2.8 f
Lense Edmund Optics 35 mm C Series VIS-NIR

An illumination corrected image In(x, y) can be obtained using this method. Each of the sample
images was therefore given by:

In(x, y) =
ISn(x, y)− IDn(x, y)
IWn(x, y)− IDn(x, y)

(1)

This process followed the recommendations by McCann [54] for using diffuse reflectance
standards to account for the spectral power distribution and inhomogeneities of the illumination.
Previous test measurements of a Gretag MacBeth color chart have shown that this flat field correction
combined with the spectral correction allows adequate reconstructions of spectral reflectances.
The acquisition speed of one fps was chosen in order to exceed the acquisition speed of the INVOS
system with one frame every three to four seconds, while at the same time ensuring the reliable
recording of the data via USB three connection. Disk space for the consecutive measurements was
limited. Reducing the amount of data created per measurement was therefore necessary. This relatively
slow acquisition speed (for an SFA camera) is fast enough for this type of oxygenation measurements
and three times faster then the reference measurements.

The 1088 × 2018 full frame images consisting of 4 × 4 repeated multispectral grids have to
be spatially separated into single spectral channels. This is reducing the spatial resolution to 1/4
resulting in 16 spectrally separated 272 × 512 pixel images in .tiff format that can be converted to
.ids video sequence files. These processing steps are incorporated in a custom made program called
“Multispec” [55,56] not part of the contribution of this research.

3.2. Spectral Correction

The sensitivities of the SFA camera used in this study have significant second order peaks and are
overlapping (cross talk) for which a mathematical spectral correction of the data is necessary.

A spectral correction matrix specific for the camera used in this study was supplied by the sensor
manufacturer (IMEC [27]). The correction is based on detailed spectral measurements of each specific
filter in front of the pixels as shown in Figure 5. These were measured in a monochromator setup by the
manufacturer [27] and provided as data together with the camera. They characterize the imperfections
of each specific filter.
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The spectral correction is intended to minimize the ‘imperfections’ but is not optimized for
a specific application. In this research the calibration matrix provided by the manufacturer was used.
A calibration matrix can be determined using defined spectral reflectances in form of Gretag MacBeth
color chart spanning a wide range of different spectral shapes. Essentially this spectral correction
is a linear transformation of the cameras imperfect broad sensitivities including second order peaks
to idealized virtual narrow band sensitivities. It can be described as a linear transformation and
the theory and assumptions were previously described by Connah et al. [57]. Generally the camera
response per channel Pi is described with reflectance R (of any object) under illuminant E and channel
specific sensitivities Qi and system specific noise n with the equation:

Pi =
∫

λ
Qi(λ)E(λ)R(λ)dλ + n (2)

The previously described illumination correction allows to simplify the equation. After correction
for illumination and assuming continuous functions of wavelength sampled at discrete intervals (i.e.,
31 measurements) this can be reformulated in matrix form to:

p = QT
e r + n (3)

The recovered reflectance is described as a spectrum through a given camera response p.
Qe describes the effective sensor sensitivities. Assuming smooth curves, reflectances r can be
approximated with the linear combination of a number of basis functions and weighting factors [57],

r ≈ Bw, (4)

where B is the matrix 31×m with m different basic functions or number of channels. w describes the
weights assigned to each of these basic functions in order to approximate r best. Then the response
p is:

p ≈ QT
e Bw + n, (5)

For given reflectances the weights w and the basis functions B can be determined and the error
between the known spectrum and the approximated spectrum minimized. These are calculated as
a preprocessing step for known color checker reflectances. This correction is not particularly tuned for
skin imaging and can be considered a preprocessing step necessary for this SFA implementation. A pair
of known reflectance and its corresponding camera responses are used to minimize the projection
from spectral to camera space. The correction matrix similar to the correction matrix provided by
the manufacturer [27] is obtained and can be used for correction via a matrix dot product with each
measured camera response in order to reconstruct a corrected spectrum. This preprocessing step
provides the estimated spectral data and is the final input for the oxygenation estimation.
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Figure 5. All filter sensitivity multiplied by the bandpass. Many filters show a second order peak
inside the sensitive area. Intended peak wavelength shown above of each filter sensitivity curve.

Figure 6 illustrates the effect of this correction, it was applied to one of the filter responses.
This illustrates how the spectral correction matrix corrects for the second order peaks and
spectral crosstalk.

uncalibrated filter sensitivity calibrated filter sensitivity

Figure 6. Filter sensitivity given by manufacturer [27] from the calibration file (left) filter band-passed
showing clear second order harmonics, corrected filter after applying the spectral correction (right).

The spectral correction transforms from the camera responses to a reflectance image cube and
reduces the number of channels from 16 to 10 effective virtual channels, which is similar to the basis
functions described by Connah et al. [57]. The correction matrix provided by the manufacturer [27]
indicates that the crosstalk in the 600+ nm channels is too severe to use them or reconstruct them
numerically. A custom reconstruction matrix could be calculated and estimate results for these bands
as described. The resulting spectral image cube with 10 specific bands can then be used for further
processing and analysis. This processing step is integrated into the proposed processing chain and
an overview is provided in Figure 7. All of these bands can be used depending on the medical
application and the specific bands of interest.
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Figure 7. Overview of the processing chain: Image acquisition of the full frame image with the
spatial spectral mosaic, full frame black and ’white’ correction, spatial rearrangement of the channels,
spectral correction resulting in the reflectance image cube.

3.3. Oxygenation Estimation from a Multispectral Image Cube

As described above the SFA camera enables spectral images in 10 narrow wavelength bands
of the scene after correction. To estimate oxygenation from these spectral images, the previously
proposed method called the ∆t method [58–60] was applied. This method has been chosen due to low
computational complexity and in order to enable real time estimation of oxygenation of the tissue in the
future. And furthermore since it is the most commonly used technique for fNIR spectroscopy, used for
oximetry systems. This allows to maintain a high degree of comparability between the INVOSTM

oximetry reference system and the SFA camera test system.
In its current implementation this method utilises only three key wavelength chosen based on their

descriptive nature of the absorption spectrum of oxy and deoxygenated hemoglobin. Other wavelength
imaged with the SFA setup are not utilized for the application of oxygen estimation in the current
implementation.

The ∆t method is based on the modified Beer-Lambert law and considers absorption and scattering
as the main reasons for the attenuation of light in tissue. The method assumes that the absorption
can be separated in two parts: (1) a time invariable constant absorption due to chromophores
present in the skin and (2) a time variant absorption due to changing oxy and deoxygenation in
the skin. These depend both on the oxygen concentration and the total blood volume present during
measurement. Optical density or absorption can be defined as,

OD = −log10(
I
I0
) = ∑

n
εn ∗ cn ∗ d; (6)

where OD stands for optical density, I0 is the emitted light intensity and I is the intensity of the received
light, ε describes the molar extinction coefficient for n different chromophores, c is the concentration
of the chromophore n and d the path length taken by the light. The modified Beer-Lambert law can
describe the longer path-length of light through the medium, due to scattering [61] as,

A(λ) = ε(λ) ∗ c(t) ∗ DPF(λ) ∗ d + G(λ) + H(t); (7)

where A(λ) is the absorbance, ε(λ) describes the molar extinction coefficient [mM−1 cm−1], c(t) is
the concentration of a specific chromophore [mM], DPF(λ) differential path length factor corrects
the geometrical source-detector distance to the mean optical path in the tissue, d the source detector
distance [cm] and G(λ) and H(t) are both oxygen independent loss factors accounting for scattering,
absorption and geometry losses where H(t) is time dependent and G(λ) is wavelength dependent.

This can be rewritten in matrix form and with three specific wavelengths to:




A(λ1, t)
A(λ2, t)
A(λ3, t)


 =




εO2 Hb(λ1)DPF(λ1) εHHb(λ1)DPF(λ1)

εO2 Hb(λ2)DPF(λ2) εHHb(λ2)DPF(λ2)

εO2 Hb(λ3)DPF(λ3) εHHb(λ3)DPF(λ3)


 ∗

[
cO2 Hb(t)
cHHb(t)

]
d +




G(λ1)

G(λ2)

G(λ3)


+




H(t)
H(t)
H(t)


 (8)
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The Factor G is accounting for geometry losses and due to the fact that the measurement geometry
is kept constant it can be assumed that G stays constant throughout the measurement. The H term
can be considered zero or constant in time, since no significant changes in the optical properties of
the skin are to be expected in the timespan of this experiment. εO2 Hb and εHHb describe the unique
absorbances of the oxygenated hemoglobin and deoxygenated hemoglobin.

The difference in oxygen concentration at a time point (∆t) relative to a stable starting point can
be calculated by simplifying the equation to:

∆tc =
εDPF−1∆t A

d
(9)

The equation contains DPF(λ) values from literature for the specific interrogated tissue. This formula
allows to relate changes in light intensity of particular wavelength to changes in oxy, deoxygenated
hemoglobin concentrations. The average of the first few frames of the measurement are used to
estimate the time invariant contributions to the measured skin reflectance spectrum. Changes of the
skin spectrum especially in the areas of highest absorption differences between oxy, deoxygenated
hemoglobin are calculated. This oxygen concentration estimation can be applied using three
wavelength (515 nm, 565 nm and 601 nm) from the reflectance image cubes previously obtained
with the SFA camera and the process is illustrated in Figure 8.

Figure 8. Oxygenation estimation from spectral reflectance cube.

These three wavelengths are specifically chosen, based on the spectral absorption peaks and
differences in absorption of oxygenated and deoxygenated hemoglobin. They contain descriptors
of the oxygenation with a small difference at 515 nm and large differences at 565 nm and 601 nm
in absorption between two oxygenation states of hemoglobin. The small difference point provides
a reference (isosbestic point in the visual range), while the points of large difference provide good
estimators [28]. Even though the estimation is performed for the entire image only an average of
the estimated oxygenation in the marked region of interest as shown in Figure 9 (green circle) was
collected. The resulting oxygenation and estimated oxygenation curves from the INVOS and the
multispectral system were marked by collaborating physicians for the moment of pressure release in
the curves of both measurement devices. Since the SFA based oxygenation estimates are of relative
unit of small scale a feature scaling normalization had to be applied to both curves:

X′ =
X− Xmin

Xmax − Xmin
; (10)

After normalization both curves are in the value range of [0, 1] allowing comparison between the curves.
This feature scaling affects the amplitude of the oxygenation signals and favors the comparability
between the two curves. Nevertheless this processing step is necessary to compare the shapes and
oxygenation behavior measure with both devices. As another processing step the curves are aligned
along the time axis using the markers for cuff release as the minimum point of both curves.
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Figure 9. Experimental setup. XIMEA [46] camera 1m above volunteers hands. 45◦ (following
the CIE recommendation [62] and ([45] p. 144)) between halogen lightsource and SFA camera.
Parallel measurement at the palm of the hand with the INVOS. SFA measures at the back of the
hand with green circle indicating region of interest for averaging. External processing on a computer
(adapted from Reference [39]).

The oximeter samples the oxygenation significantly slower, with only one measurement every
three to four seconds compared to the SFA setup with 1 frame per second. Therefore, a moving average
of three values for the SFA oxygenation estimates was taken in order to resemble the sample rate of the
INVOS oximeter better. These steps and the following data analysis and visualization was performed
using custom written python code.

3.4. Proof of Concept Oxygenation Study

For proof of concept an in vivo study was performed on human volunteers. Both the proposed
SFA setup and the clinical reference (gold standard) were used. The well documented upper arm
occlusion [28,31,33] test was chosen for comparison. The SFA camera XIMEATM [46] XiSpec SM4x4
VIS was used.

An inflatable cuff was used on one of the arms of a volunteer. The arm is clamped for
approximately three minutes decreasing the blood-flow significantly resulting in a decrease of
oxygenation by around 60%. The standard oxygenation measurement is performed with a sensor
taped on the skin emitting two wavelengths and sensing the ratio of the reflected light. An overview
of the experimental setup is provided in Figure 9.

The camera was placed in 1 m distance from the hands of the volunteers. Skin can be considered
a rough surface and contains an oily layer. The skin of the hands was illuminated under an angle
of 45◦ in order to minimize the specular reflection from the tissue surface. The camera sensor plane
was parallel (0◦) to the upper side of the hands. This way a 0/45◦experimental setup following the
CIE recommendation [62] for color measurements and the practice for white light spectroscopy in the
medical field [45] (p. 144) were followed.

The INVOS “Cerebral/Somatic Oximetry Adult Sensor” was positioned on the palm of the hand
out of view for the camera. By the region of interest (ROI) for the SFA oxygenation measurement was
chosen close to the position of the INVOS sensor.

All 58 volunteers had no reported previous condition or vascular diseases and were in the
age group of 18–65 years old. The experiment was approved by the Medical Ethics Committee of
the VU University Medical Center (METc-16.315). Written informed consent was obtained from all
58 volunteers prior to participation.
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The baseline blood pressure and temperature of the volunteers were measured prior to the
experiment. An inflatable cuff was placed around the left upper arm and inflated to 30 mmHg above
the previously measured systolic blood pressure. The cuff was kept inflated until the reading of the
INVOSTM NIRS system dropped to 40% of baseline oxygen saturation following the protocol described
by Meyer et al. [63]. As soon as this value was reached the cuff was immediately deflated and the
blood perfusion in the arm and hand were restored.

Both the moment when the occlusion started and the moment when the occlusion was stopped
were marked manually for both measuring systems in order to later align the time axis adequately.
The aligning and calculation of the parameters was based on numerically determined extreme points
of lowest detected oxygen saturation and highest detected saturation and the baseline labelled by
physicians involved in the study. The highest detected oxygen saturation was only determined in
a window where the curve was considered to return to the baseline, this window was also determined
by the physicians. For the SFA measurement a reflective marker was added to the scene and removed
at the moment the pressure cuff was released. During the occlusion protocol SFA images were
acquired continuously.

4. Results and Discussion

4.1. Spectral Correction and Spatial Down Sampling

An overview of the complete processing chain for SFA imaging is provided in Figure 7 including
processing steps for calibration, corrections and analysis. This processing allows to reconstruct the full
spectral cube from SFA images. They provide a selection of 10 narrow band wavelength regions that
can be used for clinical monitoring and diagnostics.

For validation the Gretag MacBeth color chart was imaged with a reference spectral camera
(SPECIM IQ) and the SFA imaging setup. Figure 10 shows the resulting reflectances of the color chart
before and after spectral correction. This illustrates the improved fit with the reference after correction
and emphasizes the usefulness of the spectral reconstruction. After correction ten spectral bands are
available, a selection can be used containing the relevant pathological or physiologic information.

The spectral correction could be optimized by including prior knowledge about the expected
spectra imaged by the SFA system. A dynamic spectral correction could be implemented to provide
a better spectral reconstruction. The careful selection of adequate training data more specialized to
the skin application might provide better spectral reconstructions of these skin spectra. This would
allow the matrix to emphasize subtle changes of skin reflectance. An optimal set of spectral bands for
a given application can be determined and implemented in the correction matrix. For oxygenation
measurements, a custom built spectral camera only sensitive in three narrow wavelengths bands could
improve the applicability. Optimizing the number and distribution of channels numerically could
further improve the results.

The straightforward spatial demosaicking reduces the spatial information significantly. In this
research the spatial resolution was not further utilized and was not a priority. For applications that
need better spatial resolution more advanced techniques to reconstruct missing spatial information
exist. These techniques utilize the spatial redundancy as shown in other studies [15,20,29,30].
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Figure 10. Spectral reflectance of Gretag MacBeth color patches measured by full spectral camera (blue),
uncorrected spectral estimates of SFA setup (red), spectral corrected estimates (green).

4.2. Proof of Concept Oxygenation Study

Figure 11 illustrates the color maps at three different stages of the occlusion protocol that are
generated using the SFA data collected. Spatial differences along the surface of the hand are visible,
blue indicating low oxygenation and red indicating higher oxygenation. The right hand is shown
as a reference for validation of the measurement and is not occluded. The clinical reference INVOS
5100C-PA provides a local measurements on the palm of the hand, opposite to the region of interest
for the SFA system (indicated with a green circle).

before occlusion during occlusion after occlusion Colorbar

Figure 11. Colormaps of the three different stages of the occlusion before the occlusion (left), during the
occlusion shortly before the deflation of the cuff (middle), reperfusion after the cuff is released (right).
Green circle indicating the averaged region of interest for oxygenation curves.

In order to compare the shapes of the oxygenation curves root mean square error (RMSE) and
goodness of fit coefficients (GFC) were calculated. These compare the general shape of the two
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curves and provide a metric for their agreement or similarity according to their shapes. In Figure 12
representative normalized oxygenation curves with lowest root mean square error and best goodness
of fit coefficients and the respectively lowest performing examples according to these two metrics.

Best GFC, Best RMSE worst RMSE worst GFC

0 100 200 300 400 500
timestamp

0.0

0.2

0.4

0.6

0.8

1.0

re
la
tiv

e 
ox

yg
en

at
io

n

VI56-1_WBC_SpecCal_final_interp

0 100 200 300 400 500
timestamp

0.0

0.2

0.4

0.6

0.8

1.0

re
la

tiv
e 

ox
yg

en
at

io
n

VI07-1_WBC_SpecCal_final_interp

0 50 100 150 200 250 300 350
timestamp

0.0

0.2

0.4

0.6

0.8

1.0

re
la

tiv
e 

ox
yg

en
at

io
n

VI39-1_WBC_SpecCal_final_interp

GFC = 0.996, RMSE = 0.053 GFC = 0.917, RMSE = 0.358 GFC = 0.801, RMSE = 0.349

Figure 12. Extreme curves with best GFC and best RMSE (left, #V56-1) worst RMSE (middle, #V07-1)
and worst GFC (right, #V39-1) metrics. INVOS measurement in black and SFA estimation in green.

Figure 13 contains three representative plots illustrating the impact of different aspects in the
proposed processing pipeline. The top row illustrates the impact of the spectral correction step for
two example volunteers. In both cases it can be observed that the agreement between ground truth
measurement (black) and estimated oxygenation improves with the spectral correction. For volunteer
one (left) RMSE improves by 0.73 and GFC by 0.28 for the second volunteer (right) the changes are
GFC = 0.14 and RMSE = 0.59.

Spectral corrected vs. uncorrected

0 50 100 150 200
timestamp

0.0

0.2

0.4

0.6

0.8

1.0

re
la

tiv
e 

ox
yg

en
at

io
n

VI003-2

0 100 200 300 400 500
timestamp

0.0

0.2

0.4

0.6

0.8

1.0

re
la

tiv
e 

ox
yg

en
at

io
n

VI003-2

Corrected: GFC = 0.982, RMSE = 0.119 Corrected: GFC = 0.988, RMSE = 0.128
Uncorrected: GFC = 0.954 , RMSE = 0.192 Uncorrected: GFC = 0.976, RMSE = 0.187

Figure 13. Two representative curves (left, #V03-1) (right, #V56-1) comparing spectral correction
(green) and spectral uncorrected (red) oxygenation estimations in comparison to the INVOS
measurement (black).

Figure 14 also provides examples showing the difference of using three chosen wavelength (left)
compared to all wavelength (right) for estimating the oxygenation curves. The metrics GFC and RMSE
both result in a smaller agreement with the gold standard INVOS measurement devices, when using
all wavelength.
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3 wavelength vs. 10 wavelength
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Figure 14. Oxygenation curves calculated with the three chosen wavelength (left, #V27-2) and using
all wavelength (right, #V27-2) in comparison with the INVOS measurements

Table 3 presents the statistical data for all measurements on the volunteers.
Considering the GFC and RMSE metrics there is an acceptable agreement with an average

GFC of 0.965 and 0.185 for RMSE, the SFA imaging technique shows to be promising for spatial
oxygenation measurements.

Table 3. Minimum, maximum, average, standard deviation and 95 percentile values for both root mean
square error and goodness of fit coefficient. Small root mean square error corresponds to desired value
and close to one corresponds to a desired goodness of fit coefficient value.

Min Max Avg Med Std 95%

RMSE 0.053 0.358 0.185 0.173 0.064 0.099
GFC 0.801 0.996 0.965 0.973 0.030 0.912

The de- and re-saturation slopes are parameters of interest for a preoperative or anesthesiological
context. These slopes were determined from the saturation curves using linear fitting, the de-saturation
slope in blue and re-saturation slope in red, this is illustrated in Figure 15 for both the INVOS system
and the SFA setup.

In Figure 16 the calculated de- and re-saturation slopes from the reference system compared to
the SFA setup are presented for all measurement showing a sample (Pearson) correlation coefficient of
0.750 for de-saturation and 0.276 for re-saturation.

The significantly lower correlation for the re-saturation slope might be ascribed to the method of
analysis. The begin and end point of the steep re-saturation slope were determined numerically as
the minimum and maximum in a manually defined area. A small shift in the position of these points
results in a larger variation between measurement devices.

The difference in measurement technique between the INVOS system and the proposed SFA
system need to be considered. The INVOS provides absolute oxygenation measurements in contrast
to the oxygenation related relative estimates from the SFA setup. These estimates are closely related
to oxygenation as shown in Figure 15 but may be influenced by other physiological effects in
addition. One of these effects could be blood volume, which might not be adequately accounted
for. As mentioned in Section 3.3 the SFA oxygenation estimation utilizes the first frames to account for
time invariant optical properties in order to estimate oxygenation changes. The total blood volume is
a time variant property and could be estimated incorrectly in those first key frames.

,

110



J. Imaging 2019, 5, 66 17 of 23

Resulting slope estimations
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Figure 15. Representative oxygenation curves from the INVOS system (black) and estimates from the
spectral filter array system (green). Linear desaturation (blue dots) between baseline (+) and low point
of oxygenation (x (SFA) and * (INVOS)). Linear resaturation (red dots) between low point (x (SFA) and
* (INVOS)) and high point (x (SFA) and * (INVOS)) of oxygenation. Representative curves with median
GFC (left, #V46-2) and median RMSE (right, #V01-1) metrics.

Desaturation correlation = 0.750 Resaturation correlation = 0.277

Figure 16. Correlation of de-saturation (left) and re-saturation (right) slope numbers between the
proposed SFA setup and the clinical standard NIRS system.

The INVOS and SFA setup use different wavelength regimes, which represents different sampling
volumes due to penetration depth depending on wavelength. Therefore, the SFA system measures more
superficially compared to the INVOS system. The occlusion certainly blocks the blood distribution
to both layers but the response in oxygen consumption might differ. For the upper arm occlusion
following the proposed protocol the expected difference mainly affects the amplitude of oxygenation
changes. Since the oxygen consumption is different in the two sampled volumes.

The normalization used for this work could positively affect the correlations between the visual
range camera and the near infrared INVOS system. The feature scaling reduces the differences in the
measured amplitude. The clinical gold standard has been used as a validation that the SFA system
senses oxygenation concentration changes. The sample (Pearson) correlation coefficient between
the reference measurement and the SFA system can be considered as an indication that the SFA
setup measures these changes. Further investigation into the difference of sampling depth has to be
carried out.

The oxygenation estimation with the SFA setup is based on three key wavelength. Results could
be improved by using the full spectral curve for oxygen estimation and finding a fit to previously
simulated spectra. Using all wavelength showed no improvement for the considered method in this
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research as shown in Figure 14. An optimization of the band selection could improve the oxygenation
estimation results. Bjorgen et al. [64] proposed a method for real time processing following this
principle. Vyas et al. [65] combine Kubelka Munk forward modeling with machine learning approaches
to estimate the chromophore concentrations from spectral signatures.

With further processing absolute oxygenation values could be determined. This study providing
a ‘proof of concept’ is not at the stage to derive absolute oxygenation values. It provides a starting
point by combining spectral correction and medically relevant processing of the measured spectra for
further investigation.

4.3. Practical Use of SFA in a Clinical Environment

SFA cameras hold the potential to be a practical devices for medical applications given their
acquisition speed, spatial and spectral acquisition properties, device size, potential ease of use and
application versatility as a non-contact measurement method.

The aim of this study was to propose solutions for the technical limitations of this new kind of
spectral imager while maintaining the full spectral, temporal and spatial capabilities. The current
clinical gold standard for measuring oxygenation is limited to slow point measurements in direct
contact to the patient impeding the applicability for burn-wound assessment, wound healing, neonatal
units, local control measurements or even large scale operating room oxygenation monitoring.
SFA cameras have the potential to improve upon the clinical gold standard for oxygenation
measurements by non contact measurements with a spatial resolution and fast acquisition speed.
In order to measure the oxygenation of burn-wounds a near infrared model of the camera might be
necessary. Previous work [39] has shown that the proposed method for oxygen estimation can be
applied to the near infrared version of the camera.

A step by step processing pipeline including black and white correction, spatial rearrangement
and spectral correction and oxygenation estimation has been implemented. It was tested with an in
vivo volunteer experiment using an existing commercially available SFA camera. The process can be
generalized and used for other SFA cameras if the spectral sensitivities are known. This pipeline has
been implemented in consideration of real time processing and requires little optimizations for a real
time implementation. The matrix operations for the spectral calibration could be performed on the fly
when implemented on a Field-programmable gate array (FPGA) added between the camera and the
computer for processing. White and dark correction could be added as a calibration procedure before
starting to use the camera. The oxygenation estimation in its simplified version can be implemented
for real time application if incorporated into the acquisition program.

In the future less crosstalk between the channels would be desirable. The wavelength range
is of importance depending on the application and a combination of both near infrared and visual
wavelengths regimes would extent the use cases. Lower prices and wider adoption of SFA technology
can be expected and should assist to mature this versatile and new technology for the medical field.

This study also shows the different aspects in which the processing of SFA cameras can be
improved including optimal band selection, spectral correction and spatial processing and highlights
the impact of specific steps on the final oxygenation estimation results.

4.4. Comparison to Related Work

Some studies [66] including Spigulis and Oshina [67] propose the estimation of absolute
oxygenation values from an RGB imaging setup. An area of the skin is illuminated with different
monochromatic laser light sources. Using an RGB sensor an image of the scene is acquired and
a multi band image cube generated from the differently illuminated areas. This is a low-cost way of
obtaining medically relevant narrow band channels but it requires a custom made illumination setup
in conjunction with optimally chosen RGB sensor sensitivities.

Saager et al. [68] provide a theoretical framework for evaluation of the capability of different
multispectral imaging techniques including spectral filter arrays to quantify chromophores in the
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context of burn wound healing. They consider the same XiSpec SFA camera implementation on
a theoretical level with an existing skin and phantom database. Simulated spectra were generated
using the spectral sensitivities of the XiSpec SFA camera. Saager and his colleagues conclude that the
camera provides reasonable accuracy for most common chromophores. Even-though, to the best of
our knowledge the discussed spectral correction see Section 3.2 to account for double peaks was not
applied to their theoretical data analysis. This stresses the indication of potential for SFA cameras
as quantification tool for oxygenation related health metrics, since it could improve the resulting
oxygen estimations.

Ewerløf et al. [28] propose the use of the same SFA camera for oxygenation estimation using
an inverse Monte Carlo modeling. A database of Monte Carlo simulated spectra with known optical
properties is prepared. The database of spectra is then multiplied by the sensor sensitivities and the
illumination. This new database can then be used to estimate optical properties from measurements
with the camera, by minimizing the difference between the pre simulated data and the measured
camera responses. All channels measured by the camera are used for the estimation. It is not applying
the spectral reconstruction and some of the additional channels might be introducing noise, due to their
overlapping nature. While this method does not require the proposed spectral calibration, it requires
prior Monte Carlo simulations adequately representing the patient population.

5. Conclusions

The feasibility of a commercially available SFA camera for clinical applications is tested. This study
proposes a basic processing pipeline to solve shortcomings and challenges of this new spectral imaging
technology. The pipeline maintains spectral, spatial and temporal capabilities of a commercially
available SFA camera and is directly transferable to other SFA cameras. Technical challenges
and indications by numerically correcting for double lobes in the spectral sensitivities have to be
managed with care and a hardware based solution is advisable. SFA cameras and their benefits in
a medical context have been studied by a proof of concept in vivo voluntary oxygenation experiment
including 58 volunteers and 116 measurements. Results obtained have been validated with the
clinical standard for oxygen measurements and promising agreement for the shapes of oxygenation
curves were shown. The medically relevant parameters for desaturation and resaturation slopes show
moderate correlations, which can be improved upon. This moderate correlation can be ascribed to
slight differences in measurement frequency, difference in sampling depth and the strong impact of
small differences for the calculated slopes. Aspects of the proposed processing need to be further
improved including the spectral correction, real time processing, oxygenation estimation and real
time visualizations.
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Abbreviations

The following abbreviations are used in this manuscript:

SFA Spectral filter array
NIRS near infrared reflectance spectroscopy
VOT vascular occlusion test
VIS visual range
ROI region of interest
GFC goodness of fit coefficient
RMSE root mean square error
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ABSTRACT

Non contact spatial resolved oxygenation measurements remain an open challenge in the biomedical field and
non contact patient monitoring. Although point measurements are the clinical standard till this day, regional
differences in the oxygenation will improve the quality and safety of care. Recent developments in spectral
imaging resulted in spectral filter array cameras (SFA). These provide the means to acquire spatial spectral
videos in real-time and allow a spatial approach to spectroscopy. In this study, the performance of a 25 channel
near infrared SFA camera was studied to obtain spatial oxygenation maps of hands during an occlusion of the
left upper arm in 7 healthy volunteers. For comparison a clinical oxygenation monitoring system, INVOS, was
used as a reference. In case of the NIRS SFA camera, oxygenation curves were derived from 2-3 wavelength
bands with a custom made fast analysis software using a basic algorithm. Dynamic oxygenation changes were
determined with the NIR SFA camera and INVOS system at different regional locations of the occluded versus
non-occluded hands and showed to be in good agreement. To increase the signal to noise ratio, algorithm and
image acquisition were optimised. The measurement were robust to different illumination conditions with NIR
light sources. This study shows that imaging of relative oxygenation changes over larger body areas is potentially
possible in real time.

Keywords: spectral filter array camera, non- contact monitoring, near infrared, oxygenation, skin assessment,
optical diagnosis,

1. INTRODUCTION

Light reflected from skin undergoes interactions within the tissue and the resulting reflected spectrum carries
useful information, like chromophore concentrations,1 blood perfusion2 and information about the oxygenation
of skin tissue.3 Oxygenation is a useful health metric indicating nutrition supply and homeostasis of tissue. The
oxygenation information can be used to indicate cancerous regions,4 give insides into wound healing processes
of chronic wounds, and can be utilized as a first care measurement indicating the severity of burn-wounds.5

Next to visual assessment of the skin, so called diffuse reflectance spectroscopy is utilized in the clinics. These
are spectral point measurements and are used for measuring oxygen concentration or the concentration of other
chromophores present in superficial skin tissue. Diffuse reflectance spectroscopy is often based on optical fibers
and a defined optical setup. Most commonly one fiber is used to deliver the light to the tissue surface and
one or more fibers are used to sense the diffuse reflectance from the tissue and measures spectra through a
diffraction grating. Through Monte Carlo modeling or diffusion theory chromophore concentrations in the skin
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Figure 1. experimental setup, parallel measurement of spectral reflectance with the NIR SFA camera and the clinically
approved INVOS system

can be derived. Diffuse reflectance spectroscopy is limited to point measurements and therefore measure the
oxygen saturation in a small area. Since the oxygenation or oxygen concentration differs greatly throughout
the tissue a spatially resolved measurement could be beneficial. It has been shown that spectral imaging using
various different techniques could be applied.6–8 Most commonly spectral imaging techniques, like spectral filter
wheels, liquid crystal filter cameras resolve the spectral dimension through time variant sampling. Spectral
filter array cameras on the other hand are a new type of spectral imaging devices with the ability to acquire
a spectral cube in a single shot within milliseconds preventing motion artifacts due to time difference between
spectral channels as with common spectral imaging techniques. Since blood perfusion and oxygen distribution is
a dynamic process, information is lost if the spectral sampling is performed over time. In this study, capabilities
of a commercially available spectral filter array (SFA) near infrared (NIR) camera manufactured by XIMEA
(XiSpec MQ022HG-IM-SM5X5-NIR) with an IMEC sensor as a spatially resolved oxygenation measurement
were studied. We hereby focus on the postprocessing steps necessary in order to derive oxygenation readings and
compare with a clinical system (INVOS Somanetics 5100 C of Covidien) as local point oxygenation measurement
tool.

2. METHODS

As proof of concept measurements were conducted in 11 healthy volunteers. The volunteers placed their hands
on the measurement table with a distance of around 1cm between their hands. The experimental setup is shown
in Figure 1. The so called upper arm occlusion protocol was used, where pressure was applied to the left upper
arm using an inflatable cuff. Through the cuff the blood flow into the left hand was occluded, while the right
hand blood circulation is unaltered. The hands of the volunteer were measured continuously both with the
multispectral SFA camera and the INVOS spectroscopy device. First a baseline measurement was performed for
2 minutes without applying any pressure. Followed by 3 minutes of measuring the hands with the cuff inflated
and occlusion applied for 3 minutes. The pressure applied was around 160mmHg and a marker was added to the
imaged scene as soon as the occlusion was applied. After the occlusion phase, another 5 minutes was acquired
of the re-perfusion phase. All volunteers were measured twice with 1 day in-between in order to allow inter
measurement comparison.
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Table 1. Settings for the XIMEA camera for the measurements

Halogen light source
Filter range 600 875 nm

Aperture 1.65
RAW 16

Exposure 19 ms
Gain 0.00 dB
FPs 1.00

Limit bandwidth 2843 Mbit/s
Manual WB (R : G : B) 1.00 : 1.00 : 1.00

Figure 2. Overview of the dataprocessing for the NIR SFA data

2.1 Multispectral Imaging

The multispectral measurements included in this research are performed using the XIMEA (MQ022HG-IM-
SM5X5-NIR camera) and the Xicam (acquisition) tool by XIMEA. In addition, a custom build software program
’Multispec’ (developed by Herke Jan Noordmans from the UMC Utrecht, The Netherlands) was used for the
data processing of the 25 narrow band snap shot spectral images. The spectral sensitivity is in the NIR range
between 600nm-875nm. A ’dark’ image was obtained for background noise correction.

In addition, a flat field correction was performed using a uniform grey surface to account for an in-homogenous
illumination of the scene and to account for the unique spectral power distribution of the light source.

A grey correction target was used in order to allow for the same exposure time, aperture and frames per
second seconds compared to the test measurements of the hand. Therefore the final image was given as:

In(x, y) =
ISn(x, y) − IDn(x, y)

IWn(x, y − IDn(x, y)
(1)

The final image was given by dividing the sample image minus the dark current image divided by the grey sheet
image minus the dark image. Due to considerable overlap of the different spectral channels, a spectral correction
was necessary and reduced the number of effective channels to 10. The correction is performed via a matrix
operation with correction values reported by the camera manufacturer, which are based on the specific spectral
sensitivities of the camera. Figure 2 shows the final data processing steps in order to arrive at the oxygenation
estimations based on the NIR SFA camera. The selected camera parameters for acquisition can be found in
Table 1. A sequence of 1 frame per second during 15 minutes was acquired.

2.1.1 Light source

The Measurements were performed with a halogen light source which spectra is shown in Figure 3. It is a
continuous lightsource, which is commercially available. This was important to ensure a save use in the clinic
and at the same time guarantee enough light intensity in the near infrared. For the setup in order to avoid
specular reflections the lightsource was used in a 45◦ angle towards the imaging equipment.

2.2 Reference measurements

As references for the oxygenation, the INVOS Semantics 5100 C was used with a contact sensor attached to the
palms of both hands. The sensors were attached tightly to the palm of the hand to ensure consistent readings
with the INVOS system. Both measurements were performed at the same time and continuous oxygenation
measurements were acquired. In contrast to the multispectral measurements, the INVOS system performed a
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Figure 3. Halogen light source spectral power distribution measurement with Thorlabs

measurement every 5-6 seconds. In order to align both measurements the moment of occlusion was marked in the
the INVOS system, simultaneously a marker was added to the imaged scene. This allows to mark the timepoint
of occlusion and that of the release of the pressure inflatable cuff up to the reaction times of the researcher
conducting the measurements.

2.3 Data analysis for Oxygenation estimation

The SFA camera used in this research provides a spatially resolved measure of 25 different wavelengths reflected
from the image scene. This information has to be utilized in order to estimate the oxygenation of the tissue
in different regions or spatially resolved per pixel. For this research, oxygenation estimation algorithms where
applied, which can potentially be performed in real time. The modified Beer-Lambert method was used which
has been previously reported as the ∆t method in some publications9–11 The basis for this method lies in the
modified Beer-Lambert and considers absorption and scattering the main reasons for the attenuation of light in
skin. This method assumes a change of absorption over time due to the concentration of chromophores present in
the skin: in particular, the differences in oxy-, and deoxy- hemoglobin concentration present in the skin. Part of
the total absorption of skin is hereby considered to be constant, due to other unchanged chromophores present in
the skin. oxy- and deoxy- hemoglobin concentration are considered to change over time during the measurement
and are the property of investigation. The Optical density or absorption can be defined as:

OD = −log10(
I

I0
) =

∑
n

εn ∗ cn ∗ d, (2)

where OD stands for optical density I0 is the emitted light intensity, and I is the intensity of the received light,
ε describes the molar extinction coefficient for n different chromophores, c describes the concentration of the
chromophore n and d describes the path-length for the light. Since scattering increases the path-length of light
travelling through the tissue the modified Beer-Lambert law12 can be used to describe this with:

A(λ) = ε(λ) ∗ c(t) ∗DPF (λ) ∗ d+G(λ) +H(t), (3)

where A(λ) is the absorbance [-], ε(λ) describes the molar extinction coefficient [mM−1cm−1], c(t) is the concen-
tration of a specific chromophore[mM ], DPF (λ) differential path length factor corrects the geometrical source-
detector distance to the mean optical path in the tissue, d the source detector distance [cm], and G(λ) and H(t)
are both oxygen independant loss factors accounting for scattering, absorption and geometry losses where H(t)
is time dependant and G(λ) is wavelength dependant.
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( 1 '

This can be rewritten in matrix form and with i.e. 3 specific wavelength to:A(λ1, t)
A(λ2, t)
A(λ3, t)

 =

εO2Hb(λ1)DPF (λ1) εHHb(λ1)DPF (λ1)
εO2Hb(λ2)DPF (λ2) εHHb(λ2)DPF (λ2)
εO2Hb(λ3)DPF (λ3) εHHb(λ3)DPF (λ3)

 ∗
[
cO2Hb(t)
cHHb(t)

]
d+

G(λ1)
G(λ2)
G(λ3)

+

H(t)
H(t)
H(t)


Under the assumption that the H term is zero or constant in time and the G term also stays constant during the
measurement. Then the differences in concentration in a time interval ∆t relative to a stable starting point can
be calculated. A known DPF (λ) values from literature for the interrogated tissue have been used to simplify
the equation to determine the concentration of a chromophore to:

∆tc =
εDPF

−1
∆tA

d
(4)

For this setup, the use of two different wavelengths (826 and 859nm) proved to be best for the calculation of
the oxy-,deoxy- concentration present in the tissue. It allowed to relate changes in reflected light intensity to
changes in oxy and deoxy hemoglobin concentration. Consequently, this technique was used to estimate oxygen
concentration from our spectral image cubes. This was done in specifically chosen regions of interest which will
be described further in the next section.

Figure 4. Circles indicate areas of interrogation an average was taken from these pixel areas and the average oxygenation
of these areas was plotted over time

3. RESULTS

From the images, a region of interest was defined for the estimation of oxygenation in the hands. Figure 4
illustrates these different regions of interest. An average oxygenation concentration was calculated for each
region. These areas have been chosen as close to the measurement location of the INVOS system, far away from
the measurement location of the INVOS system and it has also been reported that the finger tips show stronger
desaturations and lastly one of the regions of interest in the hand without any occlusion was chosen in order to
verify the oxygenation behaviour in the unaltered hand.

Figure 5 shows a representative result of one volunteer of estimated oxygen concentration using the halogen
light source. In grey is the relative reflected intensity of our marker plotted, which was included into the scene
to indicate the occlusion and cuff release. Oxygenation is represented by the blue line and deoxygenation with
the orange line. Both follow the expected curves and show good agreement with previously reported occlusion
behaviour.13

Figure 6 shows that the agreement between INVOS system and estimated oxygenations from the NIR system
are close during deoxygenation, reperfusion and ”back to baseline”. This measurement was chosen as representa-
tive for the entire dataset of 11 healthy volunteers. Among all measurements the same trend when compared to
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Figure 5. The first graph is a plot of the average estimated oxygen concentration from the finger marked with the red circle
in Figure 4. Secondly is the averaged estimated oxygen concentration from the yellow circle back side of the palm and
closest to the INVOS measurements. Third plot indicates the reference measurement on the un-occluded hand average
area is the cyan circle.
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Figure 6. Plot of INVOS oxygenation results (orange solid line) compared to NIR SFA imaging system results (blue line).
The results from the NIR SFA imaging system are plotted with a moving average of 4 values represented by the solid line.

the INVOS system was observed with some measurement showing better agreement between the two measure-
ment system then others. A second lightsource was also tested and showed the same trends, but in some patient
that second halogen lamp interfered with the ground truth measurements of the INVOS system and therefore is
not reported here. In the next section the obtained results and limitations will be discussed.

4. DISCUSSION

The goal of this study was to show the potential of the NIR SFA camera as a real time spatial oxygenation
measurement tool. Results obtained are promising in regards to the expected oxygenation behaviour in healthy
volunteers. In order to apply these techniques in a less controlled clinical setup with unwell patients the method
of measurement has to be further improved.

Even though the relative oxygenation curve during the occlusion followed the trends as measured with our
reference, the estimation does not provide absolute measurements. Therefore, the curves were aligned regarding
the maximum oxygenation present in both signals, since the value range of the oxygen estimations is an arbitrary
scale and only shows dynamic and relative changes over time. The oxygenation estimation should be calibrated
in order to provide full absolute oxygenation values in a spatially resolved manner. Agreement between these
two curves, especially in the regions of ”reperfusion” and ”back to baseline” is of clinical importance, since they
contain information about the arterial health of a patient. The alignment of the curves is arbitrary and could
have also be done at the baseline level in the beginning of the measurement. But especially the regions at
the start of occlusion and during occlusion and after occlusion are important for clinical use of this data. The
general trends especially in these areas can be considered similar. Figure 7 shows the areas which are especially
interesting for clinical readings of these occlusion measurements. This indicates that both measurement systems
sensed a similar underlying change in oxygenation of the blood present over time. Another factor which has to
be taken into account for differences measured between the INVOS system and the NIR SFA camera system
is the location of measurement. The increased amount of melanin on the back of the hand can negatively
influence the measurements. Due to the fact that we were measuring with the NIR SFA camera the higher
absorption of superficial melanin should be minimal. The underlying vessel structures on the other hand can
also influence the measurement results. Different locations have shown to be perfused differently, which makes
the direct comparison challenging. In the future a direct comparison between the NIR SFA camera and the VIS
SFA camera (also distributed by XIMEA) could be done in order to further investigate the difference of sensing
superficial oxygenation and deeper blood delivery.
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Figure 7. especially the area under the curve, the desaturatuion slope and the resaturation slope (in this figure linear
interpolations in specific areas of the oxygenation curve) are of clinical value. In a planned publication we will discuss
these further and show the results obtained with the visual range camera

Furthermore, special attention should be taken for the spectral correction and the influence of the method
chosen should be further studied this will be part of a future publication focussing on the effect of the spectral
correction on the final results. A more robust oxygenation estimation could be performed and the final imple-
mentation in real time should be evaluated. Adjustment to guarantee full real time processing should be straight
forward with the chosen approach. Furthermore, as shown in Figure 7 a numerical comparison between these
marked key features of the two oxygenation results is planned in another publication. These key features of the
oxygenation curves provide useful information about the arterial health. This study has limitations including
among others the selection of volunteers. The sample size and diversity among the volunteers measured should
be improved in order to show robustness against different skin types and other intra volunteer differences. Fur-
thermore, all the volunteers were healthy and patients in care could affect the measurements outcome, due to
lower blood pressure. Robustness to these special conditions has to be shown for a clinical application of these
methods. Oxygenation estimation could be further improved with additional wavelength to reduce noise and a
real time implementation should be feasible. Regardless of the shortcomings mentioned using NIR SFA imaging
for spatially resolved oxygenation measurement shows potential for clinical applications.

5. CONCLUSION

This research focussed on a method to estimate oxygenation of in vivo tissue using a near infrared spatial filter
array camera with low computationally demands. The proposed method shows good agreement with expectations
according to the occlusion protocols and agreement with our reference INVOS measurement system especially in
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clinically relavent aspects of the oxygenation curves. It can be easily adapted to be performed in real time and
provides a relative spatial oxygenation map. In order to ensure feasibility for a clinical setup several improvements
for the approach are discussed in the previous section.
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Abstract: Comparing and selecting an adequate spectral filter array (SFA) camera is application-specific
and usually requires extensive prior measurements. An evaluation framework for SFA cameras is
proposed and three cameras are tested in the context of skin analysis. The proposed framework does
not require application-specific measurements and spectral sensitivities together with the number
of bands are the main focus. An optical model of skin is used to generate a specialized training
set to improve spectral reconstruction. The quantitative comparison of the cameras is based on
reconstruction of measured skin spectra, colorimetric accuracy, and oxygenation level estimation
differences. Specific spectral sensitivity shapes influence the results directly and a 9-channel camera
performed best regarding the spectral reconstruction metrics. Sensitivities at key wavelengths influence
the performance of oxygenation level estimation the strongest. The proposed framework allows to
compare spectral filter array cameras and can guide their application-specific development.

Keywords: spectral filter array; multispectral imaging; biomedical optics; image quality; reflectance
spectroscopy; oxygenation; tissue optics

1. Introduction

Spectral filter array (SFA) cameras are a new single-shot spectral imaging technology [1], which is
gaining popularity in different fields of research [2]. The light entering the camera is filtered with
narrow spectral bandpass filters on each pixel or subpixel. Spatial decomposition of the spectral signal
allows capturing of all spectral bands at the same instance.

Prototypes have been proposed in academia [3] and commercial models are now available
including the XIMEA xiSpec camera [4,5] and Silios technologies SFA camera [6]. With increased
adoption and commercial availability of SFA cameras, it is important to analyze parameters
contributing to image quality parameters of these cameras and provide tools to guide further
development for specific applications.

Image quality performance of cameras for close range imaging is a broad field of
research [7–9] covering many different aspects including: spatial resolution [10–12], spectral or color
accuracy [3,13,14], reproducibility, noise behavior [15], optical distortions and post-processing steps.
The required accuracy of spectral reconstructions, number of channels and wavelength of interest
are application dependent and should be evaluated in the context of specific applications. If SFAs
combine accurate spectral reconstruction with real-time acquisition speed and ease of use, they could
potentially be a powerful new imaging modality for the medical field. Digital imaging is already
widely adopted for skin imaging, which could benefit from additional spectral information [16–20].
Small color variations in the skin can carry relevant information for physicians. There is a need for
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more reliable and quantitative methods to measure physiologic parameters of patients in non-contact.
SFA cameras could combine non-contact monitoring of vital functions and diagnosis of diseased skin
tissue in real time [21–28]. In particular, dynamic processes such as oxygenation would highly benefit
from spectral and spatially resolved images in real time [27,29–32].

Previous work by Preece and Claridge [33] has investigated optimal filter sensitivities for a
three-channel system for skin diagnosis. An extensive hardware focused analysis of spectral imagers
for biomedical applications is provided by Gutiérrez-Gutiérez et al. [34]. The main focus of their
work was the technical limitations including acquisition speed, efficiency, object plane curvature,
spatial resolution, distortions, and noise. They emphasized an imaging system for biomedical
applications should be selected after thorough testing of these parameters. A comprehensive emulation
framework has been proposed by Saager et al. [35] giving an overview of the performance of different
spectral imagers including a Xispec SFA camera and an RGB sensor a burn wound mouse model
and photoaging experiment. High-resolution spectral measurements were performed using a spatial
frequency domain spectroscopy (SFDS) system. In the computer graphic domain with Jimenez et al. [36]
and Iglesias-Guitian et al. [37] described physically based skin appearance models to show color
changes due to emotions or ageing. The same models can be used as to generate skin reflectance
training sets.

The aim of this study is the development and testing of a framework for comparison of SFA
cameras for spectral reconstruction, skin imaging, and oxygenation level estimation without prior
patient measurements. A generated specialized training set is quantified for spectral reconstruction.

This framework could be considered prior to the hardware focused selection by
Gutiérrez-Gutiérez et al. [34] and provides a simplified measurement free alternative to the method
proposed by Saager et al. [35]. The framework could also be applied as a guide for the development of
application-specific SFA cameras.

Three aims of study can be formulated as:

• comparison framework of spectral filter array cameras for skin imaging and medical diagnosis
• illustrate the impact of spectral reflectance reconstruction using a specialized training set for SFA

camera applications in skin imaging.
• recommendation of commercially available SFA cameras for monitoring of vital functions

and diagnosis.

2. The Proposed Framework

The proposed framework has three main elements: (1) calculation of a spectral reconstruction
matrix, (2) simulated sensor responses and (3) an evaluation block. It is shown in Figure 1 and follows
the concepts of a spectral filter array processing pipeline proposed by Lapray et al. [38].

As a first part, a spectral reconstruction is performed to estimate the full spectra using the
limited number of SFA bands providing a measure of the performance of the different cameras
independent of applications. In addition, the estimated spectra are then analyzed regarding their
accuracy for oxygenation level estimation being an example for a specific application. Three SFA
cameras, one prototypical, two commercially available and an RGB camera are evaluated. The impact
of gaussian spectral bands (GSB) is tested by simulating sensor sensitivities with gaussian shapes for
each of the SFA cameras channels.

A set of (10,000) [39] skin reflectances is generated using a Monte Carlo skin model and compared
to a Munsell reflectance patch database [40,41] for training the spectral reconstruction. A database of
spectral measurements of skin reflectances (100 measurements) [42] is used for testing the spectral
reflectance reconstruction. The spectral reconstruction accuracy is compared numerically using Root
Mean Square Error (RMSE) and ∆E00 color differences [43]. Differences in estimated oxygenation
levels are numerically compared using a proposed metric. Spatial aspects are not considered in this
study since the standard clinical measurement of oxygenation levels are usually averaged over a small
area and the skin simulation is only considering homogeneous tissue over the simulated surface.
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Figure 1. Framework, including training set, testing set, sensor sensitivities, reconstructed spectra and
the evaluation according to RMSE, ∆E00, ∆Oxy.

3. Prerequisites

For full spectral reconstruction simulated sensor responses are needed. The spectral reconstruction
accuracy needs to be evaluated regarding spectral accuracy and in relation to specific applications.
The framework could be applied to any channel-based spectral imager with known spectral sensitivities.
For comparing specific spectral imagers, sensor sensitivities, training and test data and evaluation
metrics must be chosen.

3.1. Spectral Imaging Model and Spectral Reconstruction

Spectral reconstruction is a useful estimation technique to estimate full spectra from a limited
number of bands. The wavelengths of interest might also be unknown prior to the practical applications.
It allows comparison of spectral cameras with different sensitivity peaks in a common space.

The spectral reconstruction is based on the inversion of a commonly known imaging model,
which can be described with the equation:

Pi =
∫

λ
E(λ)Rj(λ)Qi(λ)dλ (1)

where Pi is the channel response of the ith channel of the sensor. E(λ) is the illumination spectral power
distribution (SPD) per wavelength, Rj(λ) is the spectral reflectance of sample j and Qi(λ) describes
the spectral sensitivity of the ith channel of the sensor. Noise can be described as an additive constant
to each channel.

Two simplification have been applied to the imaging model for this study. Noise per channel has
not been considered and illumination has been assumed to be of equi-energy. Both variables influence
the performance of the cameras in a real setup. Specific light-source power distributions might favor a
particular camera hindering the comparability. A mathematical description of noise might not be an
adequate descriptions of practical noise behavior of a physical camera. A chosen noise model could
also favor one camera for the comparison.

,
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This model can be inverted for spectral reconstruction, by estimating Rj(λ). Several different
techniques have been proposed including the pseudo-inverse method [44] (linear least-square fitting)
or linear least-square fitting in lower-dimensional space (Imai–Berns method) [45]. For this study,
a commonly used spectral reconstruction technique known as Wiener estimation [45–50] is applied.
Before inverting Equation (1) it is rewritten into discrete formulation:

Pi =
N

∑
k=0

E(λk)Rj(λk)Qi(λk) (2)

N is the number of spectral bands depending on the wavelength range and spectral resolution,
in this case, λ ∈ [400, 700] with a sampling rate of 2 nm steps and N = 151. For all j reflectances of the
training set, the channels i of the sensor and k distinct spectral bands, we can write in matrix form:

p = REQ (3)

p is of J × I dimensionality with J spectral samples and I channels, R of J × N, E of N × N
(diagonal matrix) and Q of N × I where N is 151 different wavelengths for this research. This is
inverted according to the Wiener estimation method [45–47], in this study the implementation by
Nishidate et al. [49] is followed and describes a reconstructed reflectance with:

r̃ = Wp, (4)

where W describes the Wiener estimation matrix, r̃ the resulting vector of reflectance estimation or
reconstruction and p the vector of sensor responses for each channel. The Wiener matrix is calculated
by minimizing the square error of reconstructed and given reflectance for a training set of reflectances.

This matrix needs to be calculated for each camera and training set combination. Sensor responses
can be simulated by multiplying the sensor sensitivities and the reflectance spectrum of an object.
Spectral reconstructions can then be performed given this sensor response and the pre-trained Wiener
estimation matrix W.

3.2. Sensors

Most SFA sensors are based on micro interference filters (often Fabry–Pérot interference) that can
be simulated with GSB as shown by Lapray et al. [51] with width and shape as main parameters [52,53].

The framework enables the comparison of any multi-band sensors with known spectral
sensitivities or optimize the design of ’virtual’ SFA cameras for specific applications. SFA cameras
have a limited number of wavelength bands divided over the sensor. The design of SFA sensors will
be a trade-off between spectral resolution and spectral range covered. A narrower spectral band per
filter will improve the spectral resolution, but would require more spectral bands to cover the whole
sensitivity. Broader sensitivities on the other hand, reduce the spectral resolution, but require less
filters and avoid (“holes”) in the covered spectrum. However, for specific applications only a few
primary wavelengths are needed as in case of oxygenation estimation.

In this study, we included simulated GSB they were chosen with a full width half max that make
them comparable with them real sensor sensitivities of the cameras tested.

3.3. Training and Test Set

The training set will contribute to the accuracy of spectral reconstruction using Wiener
estimation which calculates a transformation matrix that translates SFA responses to a full spectrum.
This transformation matrix should minimize the difference between the reference spectrum and a
reconstructed spectrum. The reference spectrum used to determine this matrix is called the training set.

For training two sets were compared to see the impact on the reconstruction accuracy for the
different cameras: The Munsell database is used as a standard for color testing and the second training
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set was a generated for skin color simulation using a wide array of skin optical properties. The skin
simulation (training set) assumes an equi-energy illumination and therefore represents illumination
corrected skin spectra. Both sets are normalized using a feature scaling so that all values cover a range
from 0 to 1. A more detailed description of this skin database follows in the experimental setup. For the
validation if the spectral reconstruction another set based on skin reflectances was used. These skin
reflectances (test set) are measured using a spectrophotometer and illumination corrected as described
in [42].

The three sets are illustrated in Figure 2. This Figure allows comparison of the area covered by
all sets and highlights three reflectances for each dataset. It includes the database of 100 measured
skin reflectances [42], 10000 Monte Carlo simulated reflectances and the Munsell reflectances color
patches [40,41].
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Figure 2. Measured Munsell relfectances [40] (munsell), measured skin reflectances [42] (SkinRef),
simulated skin reflectances (SkinSim). Three reflectances highlighted for visibility in each set.

3.4. Evaluation Metrics

The validation of the proposed framework can be tested by applying it to a specific clinical
application, oxygen level estimation. This should show which spectral filter array camera is most
suitable for this specific application. Three different evaluation metrics are considered. Two of
the metrics focus on spectral reconstruction quality regarding shape and color. The third metric is
application-specific and in this case quantifies the ability of each camera to estimate oxygen levels,
it will be discussed in detail in the next section.

The first metric calculates the color difference ∆E00 [43] of two spectra which is the distance
between two colors in the human perceptual colorspace. Each spectrum is converted into color
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coordinates using the, D65 illumination for the calculations, and CIE 1931 2 Degree Standard Observer
color-matching functions. A ∆E00 of around 2 is a just noticeable color difference for a human observer.

The second spectral reconstruction metric is the root mean square error (RMSE) between the
reference spectrum and a reconstructed spectrum. There is no need to include the Goodness of fit
coefficient (GFC) or the angular error, since previous studies [54] have shown that these correlate
strongly with the RMSE.

3.5. Application-Specific Metric and Oxygenation Level Estimation

The third metric is a validation of the oxygenation level estimations. This parameter can be
approximated through calculations using the reflectance spectrum of skin. The reflectance spectrum of
skin is the result of concentrations of particular chromophores present in the skin. The ratio between
oxygenated and deoxygenated hemoglobin reflects the relative oxygenation level in the skin and is an
important parameter for diagnostics. Hemoglobin occurs in different forms but only these two are
relevant for oxygenation. Different methods have been proposed to estimate oxygenation levels from
particular wavelengths [27,29,49,55].

For this study, the estimation uses a multiple regression method described by Nishidate et al. [49].
A fast way of estimating absorbance A(λ) from reflectance assumes the Lambert-Beer law:

A(λ) = −log10R(λ) (5)

According to the simplified Lambert-Beer law the total absorbance of skin tissue can be
described with:

A(λ) = Cmle(λ, Cm)εm(λ) + Cbild(λ, Cbi)εbi(λ) + Cobld(λ, Cob, Cdb)εob(λ)+

Cdbld(λ, Cob, Cdb)εdb(λ),
(6)

where εm, εb, εob, εdb describe the molar extinction coefficients of melanin, bilirubin, oxygenated and
deoxygenated hemoglobin and Cm, Cb, Cob, Cdb describe the concentration of each specific chromophore.
le describes the mean optical path length for epidermis, ld for dermis and D(λ) describes the attenuation
due to scattering these values are taken from literature. This equation can be solved by multiple
regression analysis and is therefore reformulated to:

A(λ1) = cmεm(λ1) + cbiεbi(λ1) + cobεob(λ1) + cdbεdb(λ1)

A(λ2) = cmεm(λ2) + cbiεbi(λ2) + cobεob(λ2) + cdbεdb(λ2)

A(λ3) = cmεm(λ3) + cbiεbi(λ3) + cobεob(λ3) + cdbεdb(λ3)

.

.

A(λn) = cmεm(λn) + cbiεbi(λn) + cobεob(λn) + cdbεdb(λn),

(7)

where cm, cbi, cob, cdb are closely related to the concentrations of melanin, bilirubin, oxygenated and
deoxygenated blood and represent the unit-less contribution of each extinction coefficient to
the total absorbance A. Any number of wavelengths can be used to calculate the absorbances.
Reflectance spectra can be converted to absorbance spectra according to Equation (5) and then used
with the following equation. The calculation of the concentration of any chromophore can then be
formulated in matrix notation as:

a = εc

c = ε−1a
(8)
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Finally, oxygen saturation can be calculated with:

Soxy =
Cob

Cob + Cdb
(9)

Even though a simplification of the physical light skin interactions, methods based on these
principles have been used for oxygenation level estimation [49,56–58]. This approach allows rapid
calculation of tissue parameters with low computational complexity. It is assumed that most other
chromophores are constant over time. The oxygenation of blood is not constant, due to oxygen
consumption by tissue. According to Equation (9) oxygenation level estimation is calculated using
both the reflectance spectra and reconstructed spectra. The Euclidean distance between the two
resulting oxygenation level estimation values is then calculated and used as a quality metric to judge
the reconstruction accuracy with:

∆Oxy =| Soxy1 − Soxy2 | (10)

4. Experimental Setup

This section will be discussing the concrete choices of sensors, training and test data, and finally,
summarize the approach. A new database of simulated skin spectra is also created and described in
detail in this section.

4.1. Sensors

Five cameras are investigated the Sinarback 54 RGB camera (RGB) as representative for
common three-channel imaging, three spectral filter array cameras are considered, XIMEA xiSpec
MQ022HG-IM-SM4X4-VIS [4,5], Silios technologies CMC-C [6] (Silios) and a prototypical device by
Thomas et al. [3] (France1). Table 1 provides an overview of their key features and is sorted by the
number of bands. The CorXim ’virtual cameras is added, which is the corrected version of the Ximea
xispec [4] camera by applying a linear transformation matrix provided by the manufacturer which
reduces the effect of secondary transmission peaks in some filter bands [59]. It is considered to be an
independent camera to test the impact of such a correction.

Table 1. Features of the included cameras. RGB camera [60], commercially available XIMEA Xispec
SFA camera [4,5] (Ximea and CorXim), Silios technologies SFA camera [6] (Silios), and a prototypical
device from academia [3] (France1).

Property RGB France1 Silios CorXim Ximea

spectral bands 3 8 9 10 16
spectral peak range [nm] 480–610 440–850 445–710 465–630 465–630

frame rate [Hz] 60 60 60 170 170
resolution per band 4080× 5440 160× 128 426× 339 512× 272 512× 272

size [mm] 38.8× 50.0 NA 56× 56× 22 26× 26× 26 26× 26× 26

Figures 3 and 4 show the spectral sensitivities of all cameras in the spectral range of (400–700 nm)
with a measurement interval of 2 nm steps. All sensitivities are measured and provided by the camera
manufacturers and interpolated to this range and measurement interval. Additionally, for each camera
a virtual GSB sensor is generated and included in the study. The GSB are generated according to
Thomas [52] at each of the sensitivity peaks of each camera(GRGB, GFrance1, GSilios, GCorXim,
GXimea). All GSB have a σ = 15 nm and provide a virtual version of each camera with perfectly shaped
narrow band sensitivities.
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Figure 3. Sensor sensitivities, one RGB camera [60], a prototypical implementation by Thomas et al. [3]
(France1) and commercially available Silios [6] (Silios) (all left) and simulated GSB (GRGB, GFrance1
and GSilios) versions (all right).
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Figure 4. Sensor sensitivities, Ximea xispec [4] (Ximea and CorXimea) (all left) and simulated GSB
(GCorXim and GXimea) versions (all right).

4.2. Generating a Training Set

The skin simulations are generated using a modification of the multi-layered Monte Carlo tissue
model (MCML) published by Atencio et al. [39]. This code was modified to vary and simulate
combinations chromophore concentrations and blood volume fractions [61]. Changing Bilirubin
concentration Cbi, oxygen saturation Soxy, blood and melanin volume fractions fbl and fmel were
changed and 10,000 skin reflectances were calculated.

This simulation environment is based on a three-layer skin model and initially proposed to
simulate bilirubin concentration in the skin of the forehead of newborns. The three layers are epidermis,
dermis and a bone layer. This model assumes each of the layers as infinite homogenous media with a
defined absorption per layer. Scattering is assigned uniformly to both layers. Each layer has different
chromophores contributing to its absorption based on the volume fractions of melanin ( fmel) blood,
( fbl) and bilirubin ( fbi). Epidermis contains melanin, dermis contains bilirubin and oxy- deoxygenated
hemoglobin. The total absorbance of each of the layers is the sum of the absorbance fractions of
chromophores present in that particular layer and defined as µa. The chromophore parameters for
the Monte Carlo simulation, were chosen to cover the entire range defined by Atencio et al. [39]
(see Table 2). For melanin volume fractions of approximately 1% to 6.3% equivalent to fair skin
according to Jacques [62].
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Table 2. Parameter range for MCML (Monte Carlo modelling of light transport in multi-layered tissues)
skin simulation [39,61] resulting in 10,000 different parameter combinations. Soxy is the saturation of
oxygenation, fbl and fmel the volume fraction of blood and bilirubin, and Cbi describes the bilirubin
concentration. Green and red Shadings indicate extreme values of simulation range.

Parameter Level: 1 2 3 4 5 6 7 8 9 10
Soxy 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
fbl 0.1% 0.2% 0.3% 0.4% 0.5% 0.6% 0.7% 0.8% 0.9% 1%
Cbi 0.0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225
fmel 0 2% 3% 4 % 5% 6% 7% 8% 9% 10%

Each of the chromophore absorption coefficients is modelled from the data provided by
Jacques et al. [63]. This µa can be seen as analogous to the Absorption A in previous equations,
but in the context of defining optical properties of skin it is referred to as µa. For the epidermis,
the absorption µae only depends on melanin the only chromophore present in this layer with:

µaepi = fmelµamel (λ) (11)

The Monte Carlo simulation framework by Atencio et al. mentions specifically that the model
needs further testing and verification to simulate darker skin types, therefore even higher melanin
volume fractions were not included as parameters for the simulation. To calculate the final absorption
of the dermis layer both bilirubin and blood are the main contributors:

µaderm = fblµabl (λ) + fbiµabi (λ) (12)

fbi is considered to be constant and the parameter is the concentration of bilirubin as:

µabil (λ) = ln(10)
Cbi

PMbi
εbi(λ), (13)

where PMbi is a constant and εbi(λ) are the literature values for the extinction coefficients for
bilirubin [63]. fbl describes the volume fraction of total blood in the dermis layer. The volume
fraction parameters for this simulation cover typical values homogeneously distributed blood in the
dermis layer [63]. Due to differences in absorbance for oxygenated hemoglobin and deoxygenated
hemoglobin µablo (λ) is calculated as:

µablo = Sµaob(λ) + (1− S)µadb(λ) (14)

S describes the oxygen saturation in the blood and is to be estimated. The dataset will be verified
in the Results Section 5 using a principle component analysis.

5. Results and Discussion

5.1. Training Set Validation

The first results presented in this study address the skin simulation database and can be seen as
an additional verification for using this simulated training set. It is based on principle component
analysis (PCA) of the sets included in this research.

The principle components allow representation of the multidimensional set in a lower-dimensional
space. If the principle components are calculated for a combined set they represent the orthogonal axes
of a space describing the sets. The area covered by the sets plot into this orthogonal space describes
the diversity of the particular set. If multiple sets are plot into the same principle component space the
difference in diversity and area covered within that PCA space can be analyzed.

The sets are shown along the first two principal components of the combined set in Figure 5.
Table 3 shows the resulting principle components of each of the sets and the combined set. The Munsell
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set is the most diverse considering its low first principle component. The skin simulation set covers a
wider range of reflectances compared to measured skin reflectances. This is represented in a lower first
principle component. Physiological parameters cover a wider range than living tissue see Table 2.

0 2 4 6 8 10

PCA 1

-3

-2

-1

0

1

2

3

P
C
A
 
2

Principle components Combined

Munsell
SkinSim
SkinRefl

400 450 500 550 600 650 700

Wavelength in [nm]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

re
l.

 r
efl

ec
ta

n
ce

Max PCA1 and PCA2
Min PCA1
Max PCA1 and PCA2
Min PCA2

400 450 500 550 600 650 700

Wavelength in [nm]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

re
l.

 r
efl

ec
ta

n
ce

Max PCA1 and PCA2
Min PCA1
Max PCA1 and PCA2
Min PCA2

400 450 500 550 600 650 700

SkinRefl

Munsell
SkinSim

Principle components CombinedPrinciple components Combined

0 2 4 6 80 2 4 6 8

A)

B)

C)

D) E)

SkinSim Min 

PCA1

400 450 500 550 600 650 700

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

SkinRefl  Min 

PCA1

400 450 500 550 600 650 700

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

SkinSim Max 

PCA2

SkinSim Min 

PCA2

400 450 500 550 600 650 700

SkinRefl  Min 

PCA2

400 450 500 550 600 650 700

SkinRefl  Max 

PCA2

SkinRefl  Max 

PCA1

400 450 500 550 600 650 700

Figure 5. Dimensionality analysis of all sets combined (B) skin simulation (blue), skin reflectance (green)
and Munsell reflectances (red). Colored markings for maximum PCA1, minimum PCA1, maximum
PCA2, minimum PCA2, for skin simulation and skin reflectance, respectively. Color patch recreation
(under D65 light source) of the extreme spectra for the skin simulation (A) and skin reflectance database
(C) with minimum PCA 1 and PCA 2 and maximum PCA 1 and PCA 2. Plot of the maximum and
minimum spectra for the skin reflectance database (D) and skin simulation database (E) according to
PCA analysis.
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Table 3. Resulting PCAs for all sets. Variance of each of the sets along the first 4 principle components.

PCA Munsell SkinSim SkinRefl Combined

1 76.8 87.1 96.0 74.7
2 15.8 7.7 2.1 17.0
3 6.0 4.3 1.5 4.8
4 0.8 0.5 0.2 2.1

In Figure 5 it can be observed that the skin simulation covers all the measured skin reflectances
except for a few measurements. This can be ascribed to the limited number of parameters for the
simulation, resulting in some measured skin reflectances not being represented within the skin
simulation. The skin model is limited to Caucasian fair skin and initially designed for neonatal
babies. To further analyze the parameter of the skin simulation, which falls far out of the measured
skin reflectance, the extreme curves where plotted.

Figure 5D,E shows these extreme curves of both the skin reflectance and the skin simulation set
as marked in Figure 5A. In Table 4 it becomes apparent that the main factor for the simulations is the
blood volume parameter. All extreme results according to the PCA analysis have an extreme value
for the blood volume. The melanin parameter also contributes to extreme values within the principle
component space indicating the strong influence of melanin on the resulting skin spectra. In this
principle component space, the bilirubin concentration parameter spreads the distribution of points.

Table 4. Monte Carlo Simulation parameters for the extreme points according to the principle
components. Red background items indicate the maximum of their particular parameter, while green
background indicate minima for the range of input parameters.

Parameter Max PCA1 and PCA2 Min PCA1 Min PCA2
StO2Saturation 10% 100 % 10%

fBlood 0.1% 1% 1%
CBilirubin 0.225 0.0 0.225
fMelanin 0.0 % 10% 10%

Figure 5 also contains sRGB [64] color swatches reproduced under a virtual D65 illumination.
These provide a visual impression of the color of the extreme points in the principle component space.
They show that the extreme value curves, not included within the skin simulation represent darker skin
types and that extreme values of the skin simulation can include physiologically unlikely scenarios of
grey skin.

5.2. Spectral Reconstruction

Results for the two spectral reconstruction metrics calculated for each of the four sensors and
their simulated GSB versions are shown in Figure 6. Each of the graphs shows mean results and
standard deviation of the actual sensor as a circle and the GSB sensor results as a cross. All metrics are
calculated with the different training sets (Munsell and skin simulation) for the spectral reconstruction
and plotted. The cartesian coordinate system consists of the number of channels on the x-axes and the
value for each of the metrics on the y-axes.
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Figure 6. Resulting metrics of ∆E00 (D65, CIE 2◦ 1931) (top) and RMSE calculated between
reconstruction and training (bottom). All Sensors, Munsell set (left) and Skin Simulation set (right) as
training including standard deviation of the resulting data. For all graphs, the filled “o” represents the
original sensor and the “x” represents the GSB.

These plots allow the comparison between the sensors according to the different metrics in two
scenarios. It can be observed that the performance in RMSE and ∆E00 correspond to each other.

Figure 6 provides a plot of the ∆E00 difference between the test reflectances and their
reconstruction. Surprisingly, the plots show that the corrected Ximea performs the worst in the
case of Munsell patches for training and according to ∆E00. This can be ascribed to the cut of spectral
sensitivity imposed by the linear correction transformation. Figure 4 shows the low sensitivity of this
sensor at the edges of the chosen spectral range (400 nm to 700 nm).

Figure 7 contains plots of the spectral reflectances ground-truth and reconstructed that are
responsible for the highest ∆E00 results for the corrected and uncorrected Ximea camera. The plot
allows appreciation of the areas of the spectra that cause high ∆E00 results. In the case of the corrected
Ximea camera spectral regions that have low or zero sensitivity are wrongly reconstructed. This is not
surprising but confirms the poorer performance of the corrected Ximea camera in comparison with the
uncorrected Ximea camera in the ∆E00 and RMSE metric. The more limited spectral coverage of the
corrected spectral imager negatively influences the spectral reconstruction ability of this camera.
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Figure 7. Visualization of worst and best ∆E00 results for the uncorrected Ximea (Ximea top) and
corrected Ximea (CorXim bottom), Munsell set (left) and Skin simulation (SkinSim) set (right) as
training. Each graph includes GSB sensor results, ground-truth in solid lines and estimation with
dashed lines.

The second worst performer regarding color differences (Mean ∆E00 = ~14 and Mean ∆E00 = ~12)
is the RGB camera. Both the low number of channels and their specific overlap in the spectral region
seems to influence the estimation accuracy negatively. The lower performance of the GSB version can
be ascribed to the low sigma (σ = 15) of the gaussian filters. In the case of the RGB sensor, the coverage
of the spectral range of interested is as seen in Figure 3 not optimal. The spectral distribution shows
significant areas of very low spectral sensitivity and negatively influences the spectral reconstructions.

Both corrected (CorXim) and uncorrected Ximea benefit greatly from GSB improving the
performance according to the ∆E00 metric. For the Silios camera, the GSB only improve the ∆E00

performance when using the expert training set as the skin simulation set. One explanation could be
the sharp cut off for the GSB resulting from the bands that exceed the spectral range of this analysis.
The prototypical sensor France1 has initially already close to gaussian sensitivities and does not benefit
from the GSB.

The RMSE metric shows a similar trend compared to ∆E00. The Ximea camera scores better results
regarding the RMSE in comparison with ∆E00. Differences between original sensors and GSB sensors
are smaller considering this metric.

Training the Wiener estimation matrix with the proposed specialized skin simulation set results
in a more robust reconstruction according to ∆E00 and RMSE for all tested cameras. The more general
Munsell set lacks skin spectral shapes and is contains two dissimilar spectra in comparison with the
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skin test set. The similar shapes and increased number of spectra in the generated specialized database
improve the spectral reconstructions.

5.3. Oxygenation Level Estimation

The oxygenation estimations were performed using six wavelengths as proposed by
Nishidate et al. (500 nm, 520 nm, 540 nm, 560 nm, 580 nm, 600 nm) and three wavelengths (480 nm,
560 nm, 600 nm) the results are shown in Figure 8.

These two oxygenation metrics show different behavior for all cameras compared to the spectral
accuracy metrics. The eight and nine channel cameras (France1 and Silios) perform the worst for the
Munsell training case and six wavelengths. This is surprising since these two cameras perform the
best according to the spectral reconstruction metrics ∆E00 and RMSE. For this case, the performance
differences between the GSB sensor and the original sensor are very small. One explanation can
be that these key wavelengths all fall into valleys between the sensitivity peaks for the Silios and
France1 sensor. The GSB sensors could be affected equally or stronger, due to the relatively small sigma
(σ = 15).

The wavelengths proposed by Nishidate et al. are optimized for an RGB sensor. For the specialized
training set, the RGB camera performs the worst. Illustrating that the spectral reconstruction using a
specialized training set benefits from narrow spectral channels.

Figure 8 also contains results for the oxygenation metric using three wavelengths (480 nm, 560 nm,
600 nm). It can be observed that the choice of the training set for this configuration influences the
different cameras independently. For Munsell patch training, the RGB camera performs the worst and
both versions of the Ximea camera the best. Using the specialized training set the differences between
all cameras are smaller and the RGB camera still performs worst. The other sensors are less affected
by the change of training sets only slightly lowering their oxygenation metric differences when using
the specialized training set. For the idealized GSB RGB sensor lower oxygenation metric differences
can be observed compared to some of the SFA sensors. This could be ascribed to the wavelength
chosen for oxygenation level estimation which all fall well within high sensitivity of the gaussian RGB
(GRGB) sensor.

A camera with sensitivity peaks at the wavelength of interest should perform optimally. This can
be used if the wavelength of interest are known. None of the investigated cameras has optimal filter
sensitivity peaks for oxygenation estimation. Table 5 provides an overview of the statistical results for
all sensors, considering the better performing skin simulation training data set.

The proposed specialized training set improved the final oxygenation parameters (estimated
with three wavelengths). In the case of six wavelengths the skin training set performs worse than the
Munsell set. One explanation is that using six wavelengths includes wavelengths at the outer edges of
the considered spectral range. The specialized set provides too little variety for these areas and the
diverse Munsell set trains these regions better.

For future work noise should be incorporated into the framework. The chosen wiener estimation
method has room to incorporate a noise term into the spectral estimation and the impact of different
kind of noise should be studied. The framework also allows simulation and comparison of spectral
filter array cameras in different spectral ranges. Near infrared should be considered for future work
as it is used in traditional oximetry systems. Furthermore, oxygenation estimation methods that use
the full spectra based on inverse Monte Carlo methods should be tested in conjunction with spectral
reflectance reconstruction.
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Figure 8. Resulting values for ∆Oxy metric calculated using six wavelength (500 nm, 520 nm, 540 nm,
560 nm, 580 nm, 600 nm) (top) and three wavelengths (480 nm, 560 nm, 600 nm) (bottom) for all
Sensors. Munsell set (left) as training and Skin Simulation set (right) including standard deviation of
the data.
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Table 5. Statistical results (minimum, maximum, mean, standard deviation, 98%) for all sensors for ∆E00 (top), RMSE (2nd from top), ∆Oxy 6wvl (3rd from top) and
∆Oxy 3wvl (bottom). All values are based on skin simulation set as training and skin reflectance set as testing.

∆E00
Sensor Min Max Mean Std 98% Min Max Mean Std 98%

RGB 5.04 11.03 7.27 1.08 9.20 GRGB 8.89 16.76 12.01 1.52 14.87
France1 0.02 0.93 0.22 0.15 0.68 GFrance1 0.40 1.50 0.86 0.23 1.35
Silios 0.04 0.66 0.28 0.11 0.49 GSilios 0.03 0.75 0.25 0.12 0.51

CorXim 5.82 11.99 8.74 1.24 11.50 GCorXim 0.02 2.27 0.51 0.44 2.18
Ximea 0.89 6.81 4.40 1.16 6.38 GXimea 0.00 0.30 0.09 0.07 0.25

RMSE
Sensor Min Max Mean Std 98% Min Max Mean Std 98%
RGB 0.000647 0.002112 0.001099 0.000263 0.001717 GRGB 0.00067 0.00194 0.00108 0.00024 0.00180

France1 0.00001 0.00009 0.00004 0.00001 0.00007 GFrance1 0.00003 0.00037 0.00010 0.00005 0.00022
Silios 0.000003 0.00006 0.00003 0.00001 0.00005 GSilios 0.000003 0.00006 0.00003 0.00001 0.00006

CorrXim 0.000184 0.00099 0.00040 0.00014 0.00081 GCorXim 0.000004 0.00028 0.00004 0.00005 0.00026
Ximea 0.000007 0.00028 0.00010 0.00004 0.00020 GXimea 0.000002 0.00003 0.00001 0.00001 0.00003

Oxyg. Metric 6wvl
Sensor Min Max Mean Std 98% Min Max Mean Std 98%
RGB 0.070 0.169 0.114 0.020 0.155 GRGB 0.051 0.125 0.084 0.018 0.119

France1 0.001 0.150 0.040 0.031 0.109 GFrance1 0.0001 0.145 0.033 0.030 0.102
Silios 0.002 0.140 0.073 0.031 0.131 GSilios 0.006 0.151 0.075 0.032 0.134

CorXim 0.001 0.028 0.018 0.005 0.027 GCorXim 0.0002 0.017 0.007 0.004 0.016
Ximea 0.000 0.019 0.009 0.004 0.018 GXimea 00.002 0.017 0.009 0.003 0.016

Oxyg. Metric 3wvl
Sensor Min Max Mean Std 98% Min Max Mean Std 98%
RGB 0.010 0.132 0.051 0.022 0.090 GRGB 0.0001 0.051 0.014 0.010 0.044

France1 0.001 0.041 0.025 0.008 0.038 GFrance1 0.002 0.048 0.025 0.010 0.043
Silios 0.001 0.043 0.019 0.008 0.035 GSilios 0.001 0.048 0.019 0.009 0.036

CorXim 0.00004 0.011 0.006 0.002 0.010 GCorXim 0.0001 0.008 0.003 0.002 0.007
Ximea 0.001 0.041 0.025 0.008 0.038 GXimea 0.00001 0.007 0.004 0.001 0.006
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5.4. Summary and Conclusions

A straightforward framework to evaluate spectral filter array cameras based on spectral
sensitivities and publicly available skin and reflectance databases was proposed. It allows to compare
and quantify the performance of SFA cameras for medical applications and skin imaging in particular.
The framework does not require prior measurements and is based on a readily available skin
databases for testing, a proposed generated skin simulation database and sensor sensitivities of
the cameras included.

Reconstructing full reflectances from sensor responses allows to comparison and is useful when
the application-specific bands of interest are unknown. It can be useful to recreate color images
and benefits from a specialized training set. If the bands of interest are known a camera with high
sensitivity for those exact bands is advisable. Several observations particular to spectral filter array
cameras were made:

• Spectral shapes of the filters should be adapted application-specific
• Careful choice of the spectral bands should be adapted application-specific
• Selecting an optimal training set for spectral reflectances reconstruction improves the results for

SFAs with narrow spectral sensitivities
• GSB improve spectral reconstruction considering ∆E00 color differences and RMSE
• GSB have a small impact on oxygenation level estimation if the bands are not close to the ideal

wavelength for oxygen estimation

The framework has been applied to compare commercially available SFA cameras for skin
diagnosis and skin oxygenation level estimation.

The corrected Ximea camera performed the best in terms of oxygenation level estimations.
Regarding the spectral reconstruction and ∆E00 color difference metrics the Silios camera shows
the best results. Recommending it for applications where the specific bands of interest are not known.

SFA cameras hold great potential for monitoring vital functions and medical diagnosis as a
non-contact, real-time spectral imaging modality. This framework provides a basis for using spectral
filter array cameras effectively for medical applications. It can be used to design spectral filter
sensitivities for specific applications by optimizing the wavelength bands and transmission shapes
of the filters. It is, however, necessary to verify the findings with experimental data and extend the
framework to include spatial aspects.
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