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SHUNNING ALGEBRAIC FORMALISM: STUDENT TEACHERS 
AND THE INTRICACY OF PERCENTS 

Heidi Strømskag* 

SANS FORMALISME ALGÉBRIQUE AUCUN : DES ÉLÈVES 
PROFESSEURS FACE AUX PIÈGES DES POURCENTAGES 

Résumé – Cette étude porte sur l’emploi et la maîtrise, par de futurs professeurs 
du primaire et du début du collège, du formalisme algébrique dans la 
détermination du taux de croissance de l’aire d’un carré dont le côté croît de 
p %. Les données empiriques consistent en l’enregistrement vidéo d’une séance 
de travail d’une triade d’élèves professeurs s’efforçant de résoudre ce problème 
(en interaction avec leur professeur). Les outils d’analyse utilisés relèvent de la 
théorie des situations didactiques en mathématiques et de la théorie sémiotique. 
L’analyse montre comment la notation en termes de pourcentages complique la 
tâche visée et comment se trouve évité tout calcul algébrique. On montre en 
outre comment une évolution du milieu engendre la création d’un matériel 
fournissant aux élèves professeurs une représentation du problème relevant 
d’un autre registre sémiotique, celui des figures géométriques, dont la 
traduction en pourcentages permet d’arriver à une solution au problème étudié. 
La discussion des implications didactiques de cette étude porte sur la 
conception de la tâche considérée, d’une part, et sur l’apport possible en termes 
de formation des enseignants, d’autre part. 
 
Mots clés: algèbre, pourcentages, milieu matériel, systèmes de représentation, 
formation des enseignants. 

REHUYENDO EL FORMALISMO ALGEBRAICO: LOS PROFESORES EN 
FORMACIÓN Y EL LABERINTO DE LOS PORCENTAJES 

Resumen – Este artículo investiga cómo los estudiantes en formación inicial 
para profesores de educación primaria y secundaria obligatoria utilizan y 
dominan el formalismo algebraico al resolver la tarea de determinar la tasa de 
crecimiento del área de un cuadrado cuando el lado de éste se incrementa un 
p%. El material empírico consiste en una grabación en vídeo de una sesión de 
trabajo en pequeño grupo en la que un grupo de tres estudiantes resuelve la tarea 
(interactuando con la formadora). Se utilizan como herramientas de análisis 
nociones de la teoría de las situaciones didácticas en matemáticas y de la teoría 

 
* Department of Mathematical Sciences, Norwegian University of Science and 
Technology, 7491 Trondheim, Norway; heidi.stromskag@ntnu.no 

 



2 Recherches en Didactique des Mathématiques 

 

semiótica. El análisis muestra cómo la notación de los porcentajes complica la 
tarea y cómo se evitan los cálculos algebraicos. Se muestra también cómo una 
evolución del medio da lugar a la creación de manipulativos que proporcionan 
a los estudiantes representaciones en distintos registros semióticos, el de las 
figuras geométricas planas, que se transforman en notación porcentual con el 
fin de resolver la tarea. Se discuten finalmente las implicaciones didácticas 
tanto en el diseño de tareas de este tipo como en la formación del profesorado. 
 
Palabras-claves: algebra, porcentajes, medio material, sistemas de 
representación, formación del profesorado. 

ABSTRACT 

This paper investigates primary and lower secondary school student teachers’ 
use and mastery of algebraic formalism in solving the task of determining the 
rate of increase of a square’s area when the square’s side increases by p%. The 
empirical material consists of a video-recorded small-group session where a 
triad of student teachers was solving this task (with teacher interaction). Notions 
from the theory of didactical situations in mathematics and semiotic theory are 
used as analytic tools. The analysis shows how percentage notation complicated 
the task, and how algebraic calculations were avoided. It is further shown how 
an evolution of the milieu gave rise to creation of manipulatives that provided 
the student teachers with representations from a different semiotic register, that 
of plane geometric figures, which were transformed into percentage notation 
that enabled them to produce a solution to the task. Didactical implications are 
discussed regarding design of such a task on the one hand, and teacher 
education on the other hand. 
 
Key words: algebra, material milieu, percentage, representation systems, 
teacher education. 

INTRODUCTION 

Algebra is by many considered to be the language through which 
generalization of quantities and relationships between quantities can be 
expressed and manipulated (e.g., Whitehead, 1947; Kieran, 2004). A 
more recent view is that elementary algebra is a modelling tool for 
arithmetic phenomena which goes well beyond mere generalization 
(Bosch, 2015; Ruiz-Munzón, Bosch & Gascón, 2013). Algebraic 
knowledge is relevant in everyday life and working life, either directly, 
or as a tool (Katz, 2007; Kendal & Stacey, 2004). However, students 
find algebra difficult to learn, a situation that is well documented in the 
research literature (e.g., Herscovics & Linchevski, 1994; Kieran, 1992, 
2007; Küchemann, 1981; MacGregor & Stacey, 1997; Strømskag, 
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2015). Studies also show that algebra is difficult to teach (e.g., Stacey, 
Chick & Kendal, 2004; Strømskag Måsøval, 2011; Watson, 2009).  

In the prevailing mathematics subject curriculum in Norway 
(Directorate for Education and Training, 2013), Numbers and algebra 
is one of four main subject areas in Grades 5–7 (age 10–13), and one of 
five main subject areas in Grades 8–10 (age 13–16).1 Results from 
international comparative studies show that Norwegian pupils struggle 
with algebra: In Trends in International Mathematics and Science Study 
(TIMSS 1995, 2003, 2007, 2011), which measures pupils’ competency 
in mathematics and science in Grades 4/5 and 8/9 in about 60 countries, 
Norwegian pupils have scored considerably lower than average in 
algebra (Grønmo et al., 2012). TIMSS 2015 shows that Norwegian 
pupils score very low in algebra compared to how they score in 
numbers, geometry and statistics, subjects in which there has been a 
positive development from TIMSS 2011 (Bergem, 2016).  

Moreover, The Programme for International Student Assessment 
(PISA) measures to what extent pupils of age 15 have achieved 
competencies in mathematics, reading, and science. In PISA 2015, 
which focused on science, 72 countries participated, including 35 
OECD countries (OECD, 2016). The Norwegian achievements in 
mathematics have been relatively stable in the five PISA-tests from 
2003 to 2015, even if there was an improvement from 2012 to 2015, 
and for the first time, Norway was (in 2015) above the OECD average 
in mathematics (Nortvedt & Pettersen, 2016). However, PISA 2012, 
which focused on mathematics, showed that Norwegian pupils are 
particularly weak in solving tasks related to the use of mathematical 
formal competency (Kjærnsli & Olsen, 2013), an area where algebra is 
an important domain.   

In light of the situation described above, it is relevant to study how 
algebra is taught to student teachers—that is, how prospective teachers 
are provided with material and non-material tools that enable their 
facilitation of students’ problem solving. This paper reports from a 
study where I observed and analyzed what was going on in a teacher 
education program for primary and lower secondary education in 
Norway on the question of use and mastery of algebraic formalism in 
solving generalization problems. Furthermore, I was interested in the 
particular case of student teachers’ determining the rate of increase of 
the square of a quantity, q2, when the increase of q is known, and how 
they were handling percents in this case.  

Percent is a treasured concept, due to its essential place in the 
secondary school curriculum, and its frequent use in the popular press 
and in news broadcasts. However, it is difficult to learn. In a review 
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article on percent, Parker and Leinhardt (1995) provide rich evidence 
from nearly seven decades of research efforts, which shows that percent 
is one of the most difficult topics of elementary mathematics. Percent 
is hard to teach and to learn because it is ambiguous and subtle. Also 
for Norwegian students, percent is highly problematic. This is 
substantiated by a prior-knowledge test of beginner university students’ 
level of mathematical knowledge from compulsory school. The test is 
administered by the Norwegian Mathematical Council every second 
year since 1984 to students enrolled on programs containing at least 60 
ECTS credit points in mathematics. A percent task on the test asks the 
students to calculate (without using a calculator) the percent of girls at 
a school, given the number of girls and the number of boys at this 
school. In 2017, less than half of the students solved this task correctly 
(Nortvedt & Bulien, 2018). For example, (in 2017) master students in 
teacher education for Grades 1–7 had the lowest score, 24.5%; master 
students in teacher education for Grades 5–10 had score 38.8%; and 
master students in technology (engineering) had the highest score, 
68.3%. 

In a review of CERME papers on algebraic thinking from 1998 to 
2017, Hodgen, Oldenburg and Strømskag (2018) point at the need for a 
more systematic analysis of mathematical tasks used as instruments in 
classroom research on algebra. I aim to address this in this paper, where 
an important part of the study is the a priori analysis of the teaching 
situation, in which the mathematical task plays a crucial role. The 
research question I have sought to answer is: “What conditions enable 
or hinder the students to solve the mathematical problem they are 
confronted with?” In particular, what material and non-material tools 
prove relevant or missing in the milieu that they resort to?” 

Following this introduction, I present the theoretical framework for 
the study, followed by an outline of the methodical approach. Next, I 
turn to a priori and a posteriori analyses of the teaching situation, 
followed by a discussion and conclusion. 

A THEORETICAL ORIENTATION TOWARDS ALGEBRA 

Algebra and algebraic thinking 
The American heritage dictionary of the English language defines 
algebra as: “A branch of mathematics in which symbols, usually letters 
of the alphabet, represent numbers or members of a specified set and 
are used to represent quantities and to express general relationships that 
hold for all members of the set” (Algebra, 2019). This, I believe, is a 
recognizable definition of algebra as a body of knowledge characterized 
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by the use of symbols. In this section, I develop a conceptual framework 
for algebra and algebraic thinking—essential for the study reported 
here—where I address the issue of what the use of symbols involve. 

The framework for algebra and algebraic thinking I have adopted 
for this study is a combination of three theoretical elements: 1) a 
description of the mental activity associated with algebra (based on 
Gattegno, 1988/2010), 2) a characterization of algebraic thinking in 
terms of two core activities (based on Kaput, 2008), and 3) a 
characterization of the objects involved in algebraic thinking (based on 
Radford, 2018). These elements are what I explain next. 

The first element of the framework is Gattegno’s (1988/2010) 
description of algebra as being what we do when we operate on 
operations on objects such as for instance equations, polynomials, and 
mappings. By operating on operations he means combination, or 
merging, of two operations by replacing the two by one. For example, 

when evaluating the expression 4 × (1 + p
100), multiplication and 

addition are combined to coalesce into the operation of addition, 4 + 
4 × p
100  (or, 4 + 0.25 × p). Here, the combination of the two operations 

illustrates the distributive property of multiplication over addition, a 
quality stated by one of the field axioms (applied here to the field of 
rational numbers). Following Gattegno (1988/2010), “algebra is 
another way of speaking of the mental dynamics necessary to transform 
a mental given into another mental form, which is kept related to the 
first” (p. 78, emphasis added). The above example illustrates the mental 
dynamics necessary to transform the given polynomial into an 
equivalent one. Although Gattegno (1988/2010) does not refer to 
“algebraic thinking”, his account of algebra is all about reasoning and 
can thus be seen to equate algebra and algebraic thinking. I find his 
explication useful because it distinguishes algebraic thinking from 
arithmetic thinking.  

The second element of the framework is Kaput’s (2008) 
characterization of algebraic thinking in terms of two core activities: a) 
generalization and expression of generalities in increasingly formal and 
conventional symbol systems; and b) reasoning with symbolic forms, 
including the syntactically guided manipulations of those symbolic 
forms. These activities are understood as being embodied in three 
strands of school algebra: algebra as the study of structures and systems 
abstracted from computations and relations; algebra as the study of 
functions, relations, and joint variation; and algebra as the application 
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of a cluster of modelling languages to reason about and express 
properties of situations being modelled (Kaput, 2008).  

Two remarks are in order here. The first remark is that I view the 
logical bases underlying the two types of algebraic thinking 
(generalization, and reasoning with symbolic forms) as being different. 
The logical base underlying generalization is that of justification of the 
conclusion—it is a proof process, which moves from empirical 
knowledge to abstract knowledge that is beyond the empirical scope. 
The logical base of reasoning with symbolic forms, on the other hand, 
is found in its analytic nature-for example, when solving an equation 
with one unknown, it is assumed that the number sought is known, so 
it can be manipulated and its identity can be revealed in the end.2 The 
second remark is that I conceive of algebraic thinking in terms of 
generalization as consisting of two phases: the first phase involves 
generalization and symbolization of the produced generality; the second 
phase involves justification of that generality. 

The third element of the framework is Radford’s (2018) 
characterization of the objects involved in algebraic thinking: 1) the 
nature of the objects: indeterminacy-i.e., the objects are not-known 
quantities such as unknowns, variables, parameters, generalized 
numbers; 2) notations to signify the objects: denotation of 
indeterminate quantities-i.e., using alphanumeric symbols or other 
semiotic systems like natural language, gestures, rhythms, or a mixture 
of these; and 3) the way to treat the objects: dealing with indeterminate 
quantities in an analytic manner-i.e., although these quantities are not 
known, they are treated arithmetically as if they were known numbers. 

When dealing with symbolic forms, the attention is on the symbols 
and syntactical rules for changing their form. However, it is possible to 
act on symbolic forms semantically, where one’s action is guided by 
what one believes the symbols stand for. For example, the expression 
x2 + x can semantically be interpreted as the sum of a number and its 
square (arithmetic interpretation), or it can be interpreted as the sum of 
two areas being a square of side x and a rectangle of sides x and 1 
(geometric interpretation). Furthermore, x2 + x can syntactically be 
converted into x(x + 1) that semantically can be interpreted as the 
product of two numbers-one of which exceeds the other by 1-, or x(x + 
1) can be interpreted as the area of a rectangle with side lengths x and x 
+ 1. 

The role of alphanumeric symbolism in algebraic thinking  
When the term algebra is used it involves algebraic thinking and 
algebraic symbolism. There are however different conceptions among 
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scholars about the relationship between the two concepts. In Gattegno’s 
conceptualization of algebra, alphanumeric symbolism is indirectly 
required through the objects dealt with (polynomials, equations, 
mappings). Also Kaput, Blanton and Moreno (2008) require 
alphanumeric symbolism for a symbolic activity to be considered 
algebraic thinking: “a symbolization activity [is] algebraic if it involves 
symbolization in the service of expressing generalizations or in the 
systematic reasoning with symbolized generalizations using 
conventional algebraic symbol systems” (p. 49). In a recent publication, 
Blanton and her colleagues claim that “algebraic reasoning ultimately 
involves reasoning with perhaps the most ubiquitous cultural artifact of 
algebra—the conventional symbol system based on variable notation 
[letters used to represent variable quantities]” (Blanton, Brizuela, 
Gardiner, Sawrey & Newman-Owens, 2017, p. 182).  

Radford (2018), on the other hand, does not require alphanumeric 
symbolism for a symbolic activity to be considered algebraic thinking, 
a stance evident in his characterization of the objects involved presented 
above. A background for his view is given in (Radford, 2014), where 
he argues that notations are neither a necessary nor a sufficient 
condition for algebraic thinking. In the same vein, Squalli (2015) does 
not require alphanumeric symbolism for a symbolic activity to be 
considered algebraic thinking. He characterizes a generalization 
activity as algebraic when the produced generality can be represented 
in the algebraic register, which means that it involves a finite number 
of binary or n-ary operations (determined by internal or external 
composition laws), numbers, letters, words, symbols—in which the 
presence of letters is not essential. 

A THEORETICAL ZOOM ON PERCENTS 

The mathematical task solved by the observed students is a 
generalization task in which the variable quantity is given in percent 
notation. In order to analyze and understand the observed classroom 
situation, it is necessary to establish some background on the concept 
of percent. In this section, I therefore explain briefly what percent is and 
give some reasons why it is so hard to learn. First, a clarification on 
terminology: I use the words base, percent (or rate), and percentage to 
refer to the three elements of a percent equation: the base is the 
reference quantity, the percent is the rate, and the percentage is the 
proportional quantity determined by the rate.3 In the expression p%, p 
is the percent numeral. When I use the noun percent in indefinite 
singular form, I refer to the concept of percent. 
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What is percent? 
Percent connects real-world situations and mathematical concepts. On 
the one hand, percent is a universal, practical topic that has deep roots 
in the marketplace—it is present in the media, in everyday trade, and in 
secondary school textbooks; on the other hand, it is part of the 
mathematical ideas involved in multiplicative structures that go back to 
Greek proportional geometry. Parker and Leinhardt (1995) have 
described the evolution of percent from its early commercial roots to its 
present role as an expression of comparison:  

Percent has changed from a simple monetary amount of tax or interest 
per hundred to a function used in conjunction with the Rule of Three, 
to a non-monetary use as a fraction comparing parts to wholes, to a ratio 
comparison between different objects and sets, and finally, to a number 
used for comparison of data expressed in relative form. (p. 434)   

According to Usiskin and Bell (1983), there are six numeral types that 
have status as number: counts, measures, locations, ratio comparisons, 
codes, and derived formula constants. They classify percent as a ratio 
comparison number, of which they give a concise and productive 
description: “A ratio comparison is a number which can be thought of 
as a result of dividing two measures or counts with the same unit (but 
may not have actually been calculated this way)” (Usiskin & Bell, 1983, 
p. 25). So, a percent is a ratio, a proportional relationship which relates 
two quantities of the same kind (e.g., Euros per Euros; students per 
students)—it has no label due to cancelling in the division process 
(Parker & Leinhardt, 1995). There are different types of comparative 
situations in which percent is used. In the following I give a short 
description of three types—it is based on the explication given by 
Parker and Leinhardt (1995).  

Percent as fraction: subsets of sets 
This type of situation is where percent is used to compare the size of a 
subset to the size of the set of which it is a part. The part-whole model 
of percent belongs here, and percent numerals greater than 100 do not 
occur within this context. An example is a situation where 9% of the 
class received an A on the test; here 9% is a relational quantity which 
relates the number of students who received an A to the total number of 
students in the class (students per students). 

Percent as ratio: separate sets 
This type of situation is where we have separate sets, and the percent is 
used to describe a comparison involving either different sets, different 
attributes of the same set, or the change in a set from one time to 
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another. Examples of the three situations are: comparison of the number 
of citizens in one country to the number of citizens in another country, 
comparison of the number of females to the number of males at a 
university department, and comparison of the new price to the former 
price. It is within this context that the nature of percent changes from a 
part of a whole to a descriptor of the relationship of one set to another, 
or of the relative amount by which one set differs from another. Percent 
numerals greater than 100 do occur in these contexts whenever a set of 
greater size is compared to one of lesser size. The relationship of the 
sets to one another determines whether the situation is one of change or 
comparison. Change is where the size of a set changes over time; 
comparison is where we have a relationship between two different sets 
at one point in time.  

Percent as a statistic or function 
Data reported in media often involve comparisons such as: a single 
percent statistic to describe a particular proportion (e.g., global 
vaccination coverage remains at 85%, with no significant changes 
during the past few years); or, the comparison of two percent statistics 
(e.g., the unemployment rate in January 2019 was 3.9% for Norway 
compared to 5.1% for Denmark). In both cases the original data are 
reduced and made easier to interpret due to the statistical use of percent. 
Besides this statistical usage, there exists a functional usage: Percent 
can be used to establish a uniform rate to determine for example final 
tax amounts, discounts, budget cuts, etc. Percent is here used to quantify 
the magnitude of a functional operator. Functional use is also what 
describes operations such as: find 16% of 60.   

Some difficulties with percent 
The part-whole model of percent is the first students are taught and they 
must later extend their procedures to situations that are not part-whole 
in structure. A strong part-whole notion of percent can lead to a serious 
misconception that makes percent numerals greater than 100 
counterintuitive, since a part cannot be greater than the whole. Another 
problem is transformations between fractions, decimal and percents that 
share a common numerical value (Parker & Leinhardt, 1995).  

Addition and subtraction are opposite and symmetric operations 
when quantities such as counts and measures are operands. If a price is 
increased by 4 € and then decreased by 4 €, it will again become the 
original price. However, when a price is increased by 4% and then 
decreased by 4%, the symmetry is lost. The amounts of increase and 
decrease are not the same, because the latter statement is about a 
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multiplicative relationship. An increase by 4% means that the original 
price is multiplied by the factor (1 + 4%). One way of finding the 
percent decrease that will make the price get back to the original 
amount, is to find the multiplying factor (1 – p%) that satisfies the 
equation (1 + 4%) ⋅ (1 – p%) = 1. Expanding the parentheses results in 
the equation 1 + 4% – p% – 4%p% = 1, on which we do some algebraic 
manipulations and arrive at p% + 4%p% = 4%, which leads to (1 + 
4%)p = 4 and therefore, the percent numeral of the decrease is given 
by: p = 4/(1 + 4%) ≈ 3.85. This means that if a price is increased by 4% 
and then decreased by 3.85%, it will again become the original price. 
What I have demonstrated here provides a link between algebra and 
percents: percents are treated in calculations as true numbers, and 
further, the indeterminate quantity p% is treated in an analytic manner, 
as explained in the previous section.  

The fact that increase and decrease in percent are non-symmetric 
operations makes percent counterintuitive. Even if the wording in the 
above statements about increase and decrease is analogous, the meaning 
in the additive and multiplicative situations is not the same, a fact that 
is quite surprising to most people.4 Another example is evaluation of 
the better offer when there is a discount of 20% or two successive 
discounts of 10% each. The latter offer is likely to be misinterpreted as 
an additive situation, which makes one believe that the offers are the 
same.  

Percent has undergone a shift from a part-whole meaning, to a 
proportional meaning, to a concise notational system that has different 
meanings in different situations (Parker & Leinhardt, 1995). These 
different meanings are far from easy to express in the natural language 
system. The mathematical language is so concise that it usually does 
not include the referent quantities, a convention that makes percent 
ambiguous. Moreover, the preposition of does not always have the same 
meanings in percent situations as it has in situations with fractions and 
multiplication. Last, the additive language of more than, less than, 
increased by and decreased by hides the multiplicative meanings of 
percent and hints to a symmetry that does not exist for percent. 

SOME MORE THEORETICAL TOOLS 

In order to explain the impact of the wide variety of representations 
used in the analyzed session, and the complexity of going from one 
representation to another, I have used elements from Duval’s theory of 
semiotics. Further, in order to conceptualize the knowledge progress 
and explain the role of the system of resources used by the students, I 
have used elements from Brousseau’s theory of didactical situations in 
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mathematics. Here, the knowledge progress refers to the change in 
status of the solution to the task during the observed session, from an 
informal, implicit model to a formal, mathematical model. 

Semiotic representations 
Duval’s theory of semiotics is applicable as a framework to make sense 
of problems of representation in mathematics. Duval (2002) classifies 
four registers (systems) of semiotic representations that are mobilized 
in mathematical activity: natural language (verbal associations, 
reasoning), notation systems (numeric, algebraic, symbolic), plane or 
perspective geometric figures (configurations of 0-, 1-, 2- and 3-
dimensional forms; ruler and compass construction), and Cartesian 
graphs (changes of coordinate systems, interpolation, extrapolation). 
Duval (2006) distinguishes between two types of transformation of 
semiotic representations: treatments and conversions. Treatments are 
transformations that happen within the same register (e.g., carrying out 
a calculation while remaining in the same notation system for 
representing the numbers). Conversions are transformations that consist 
of changing a register without changing the objects being denoted (e.g., 
passing from the natural language statement of a relationship to its 
algebraic representation). 

According to Duval (2006), mathematical activity involved in 
problem solving situations requires the ability to convert 
representations from one register into another register, either because it 
is necessary to change to a more suitable presentation of the data, or 
because two registers must be brought together into play. He argues 
(Duval, 2006, p. 128): “Changing representation register is the 
threshold of mathematical comprehension for learners at each stage of 
the curriculum.” 

The theory of didactical situations in mathematics (TDS) 
Elements from the TDS are used in this paper to analyze a classroom 
session from the perspective of the environment that is meant to 
provoke and justify the learning of a particular piece of mathematical 
knowledge. The TDS’ methodology is concerned with two issues: the 
necessary conditions for a situation to implement the knowledge aimed 
at; and how a situation can be designed and its evolution managed, in a 
given educational institution (Bosch, Chevallard & Gascón, 2005). The 
following presentation of the TDS is based on (Brousseau, 1997, 2006).  

An important element in the TDS is the concept of milieu that 
models the system with which the students interact when solving a 
problem. The milieu for a situation aiming at a piece of mathematical 
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knowledge may comprise: material or symbolic tools (artefacts, 
informative texts, data, etc.), students’ prior knowledge (relevant for the 
knowledge at stake), other students, and an arrangement of the 
classroom and rules for operating in the situation (determining who is 
supposed to interact with whom, and further, what shall happen if the 
expected result is not achieved). 

An adidactical situation is a situation in which the students as a 
group are capable of reaching an optimal solution to a problem through 
interaction with the milieu, without significant help from the teacher. 
An appropriate milieu for a problem has an adidactical potential, which 
means that the milieu gives feedback to the students whether their 
responses are adequate or not with respect to the target knowledge (i.e., 
the solution to the problem). In the TDS, the teacher has two dual roles, 
in addition to having responsibility for the evolution of adidactical 
situations, referred to as regulation (Mangiante-Orsola, Perrin-Glorian 
& Strømskag, 2018). The dual roles have to do with the relationships 
between the adidactical and didactical dimensions of situations: One is 
devolution, where the teacher transfers to the students the responsibility 
for solving the problem in an adidactical situation. The other role is 
institutionalization, where the teacher attempts to transform the 
contextualized knowledge (in French, connaissances) that the students 
have developed as a response to the problem given to them, into cultural 
knowledge (in French, savoir) that can be used outside the context in 
which it is developed. 

In the TDS, after devolution, three (intentionally) adidactical 
situations follow, where the teacher’s role and the status of knowledge 
change: The situation of action is where the students construct an 
implicit solution on the basis of experimentations of successes and 
failures on a material milieu. In action, the teacher intervenes only if 
necessary to guide the students so they fully understand the task; the 
teacher does not give them mathematical tools for the solution, except 
if students encounter too many difficulties (in which case the 
adidactical situation collapses). The situation of formulation is where 
the students operate indirectly on the milieu by formulating an explicit 
solution enabling somebody else to operate on the milieu. In 
formulation, the teacher’s role is to make different formulations 
“visible” in the classroom. The situation of validation is where the 
students try to make their solution valid or try to verify a conjecture. In 
validation, the teacher’s role is to act as a chair of a scientific debate, 
and (ideally) intervenes only to structure the debate and make the 
students express themselves more mathematically precise. The 
adidactical situations are succeeded by the situation of 
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institutionalization, where the teacher (as described above) transforms 
students’ solutions into scholarly and decontextualised forms of 
knowledge. The four situations described involve phases in the 
evolution of mathematical knowledge in a classroom setting, from 
informal knowledge to formal, mathematical knowledge. The progress 
of knowledge in adidactical situations is governed by the adidactical 
potential of the milieu.  

METHODICAL APPROACH 

The aim of the research reported here was to study the phenomenon of 
student teachers’ use and mastery of algebraic formalism, using percent 
notation. I studied this phenomenon in its naturalistic setting—that is, I 
had little or no control over the studied events. Further, the study was 
conducted within a localized boundary of space and time. These 
features are consistent with a case study design, as described by Yin 
(2009) and Bassey (1999). The didactical situation has been 
instrumental to my understanding of the phenomenon studied. Hence, 
it is an instrumental case study (Stake, 2005).  

The research participants were three female student teachers 
(henceforth, ‘students’), and two male teacher educators of 
mathematics who taught them mathematics. The triad of students—
Alice, Ida and Sophie (names are pseudonyms)—were in the first 
academic year of a four-year teacher education program for primary and 
lower secondary education. They were members of a class with 66 
students. Based on the mathematics courses they had taken in upper 
secondary school, and their achieved marks, Alice, Ida and Sophie can 
be considered middle-average strong in mathematics.  

One of the teacher educators was a professor of mathematics with 
more than ten years of practice as a mathematics teacher educator, the 
other was a senior lecturer with more than thirty years of the same 
practice. They played slightly different roles: the professor was 
responsible for the lessons on algebra, including the design of tasks—
he will be referred to as ‘designer’; the senior lecturer had the role of a 
“teacher assistant” in the orchestration of the students’ work and shared 
with the designer the task of helping students—he will be referred to as 
‘teacher’. 

It is relevant to inform about the structure of the teacher education 
program on which the observed students were enrolled: Mathematics 
and didactics of mathematics were taught as integrated elements in this 
program (where also school-based practice is included). That is, 
students do not finish with mathematics before they start with didactics 
of mathematics (this applies for teacher education programs for primary 
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and secondary education throughout Norway). The mathematics course 
(Mathematics 1), from which the data were collected, was a compulsory 
course within the teacher education program. I taught a minor part of 
the course, which did not involve the observed session or any other class 
dealing with algebra. In order for the observed session to be as 
naturalistic as possible, I had the role of non-participant observer while 
video-recording the session. An a priori analysis of the teaching 
situation and its organization is presented in the next section. 

As presented in the introduction, the particular research question I 
set out to answer was: What material and non-material tools prove 
relevant or missing in the milieu that the students resort to? The data 
consist of the transcript of a video-recorded observation of a session 
(lasting 90 minutes) in which the triad of students work collaboratively 
to solve the task presented in Figure 1. The transcript is partitioned into 
numbered turns, where a turn is defined as a set of utterances made by 
a person until another person takes a turn. Excerpts from the transcript 
used in the paper have kept the original numbering of turns. The 
transcript has been analyzed by a thematic coding process (Robson, 
2011). This means that the transcript has been divided into segments, 
where each segment constitutes a unit of meaning with respect to 
conditions that enabled or hindered the students to solve the 
mathematical problem they were confronted with. The analysis of the 
transcript has been substantiated by the a priori analysis of the teaching 
situation, which is presented next.  

The analyzed session shows 1) how percent notation complicated 
the task and how algebraic calculations were avoided, and 2) how an 
evolution of the milieu (in terms of geometric figures) enabled the 
students to solve the task.  

A PRIORI ANALYSIS OF THE TEACHING SITUATION 

The observed session and its organization 
The situation analyzed in this paper is part of an ordinary teaching 
situation in the sense that TDS principles and concepts have neither 
influenced the design of the task nor the classroom activity. It is a small-
group session in mathematics at the university, where students 
collaborated in groups of three or four to solve mathematical tasks, and 
two teacher educators were (intermittently) present to observe and 
interact with them. The session was part of an ‘Algebra module’ that 
spanned 24 classes (each of 45-minute duration) over a two-month 
period. In addition to small-group sessions, the algebra module 
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consisted of lectures, short introductions, and whole-class discussions 
including reviews of previous tasks solved by the students. 

There were several topics included in the algebra module: figurate 
numbers and shape pattern sequences; different categories of algebraic 
expressions (formulae—functions—identities); area; polyhedra; 
investigations, conjectures and proofs; the concept of variable and the 
role of the equal sign; systems of linear equations; word problems and 
equations; and mathematical models. The designer of the tasks claimed 
that one of the aims with the algebra module was to let the students 
engage with generalization in different contexts, where the achieved 
generalities should be represented in algebraic notation. An important 
part of this involved transformation of representations in different 
semiotic systems (natural language, algebra, geometric figures).  

The mathematical task solved by the observed students was part of 
a collection of six worksheets (each with two tasks) under the headline 
‘Algebra’. Groups were connected in pairs, where each group chose a 
worksheet (different from the one chosen by its peer group) for solution 
followed by presentation to its peer group. The observed students 
worked only on the second task on the chosen worksheet (possibly for 
lack of time), the solution to which they presented to the peer group 
afterwards. To reduce the background noise on the video-recordings, 
the observed students were placed in a small room adjacent to the 
classroom where the rest of the students were working. They were 
informed that, at any time, they could go and ask for help from the 
teachers or discuss with peer students. Occasionally, the teacher 
educators, on their own initiative, went to the room in which the 
observed students worked. 

The material milieu available to the students from the start of the 
session consisted of some writing material, sheets of paper, scissors, 
calculators, and a mathematics textbook for teacher education, on 
algebra and functions (Selvik, Rinvold & Høines, 2007). This textbook 
has nothing on percentages. However, it has two sections entitled, 
respectively, “Symbols denoting numbers and magnitudes” and 
“Symbols with which we can calculate and think”: they both 
(unintentionally) point to an essential aspect of the initial deficiencies 
of the milieu which the students observed had to rely upon. As we will 
see in the a posteriori analysis, the milieu did evolve during the 
observed session. 

The task and its anticipated involved actions  
The task with which the observed students engaged is presented in 
Figure 1.5  
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Imagine that you have a square. Make a new square where the side length 
has increased by 50%. How many percent has then the area increased? 
 
Imagine now that the side length increases by p%. How many percent will 
the area consequently increase? 

Figure 1. - The task chosen by the students 

The mathematical (adidactical) objective of the task is twofold: First, it 
is to solve the problem of finding the rate of increase of a square’s area 
when the square’s side increases by a given percent. Second, it is to 
generalize this relationship, using algebraic notation, p%, where the 
percent numeral is a parameter. Further, the (designer’s) didactical 
objective of the task is the students’ ability to transform representations 
into different semiotic registers—here, natural language, numeric 
notation systems (with particular focus on percents), the algebraic 
notation system, and plane geometric figures.  

An underlying concept in the task is similarity of figures. Two 
figures are said to be similar when all corresponding angles are equal 
and all distances are increased (or decreased) in the same ratio, called 
the ratio of magnification or scale factor. A transformation that takes 
figures to similar figures is called a similarity. Essential relationships 
(scaling laws) between length, area and volume of similar figures can 
be expressed in terms of these equalities: 

(ratio of areas) = (ratio of lengths)2 
(ratio of volumes) = (ratio of lengths)3. 

Instead of presenting the problem as a similarity problem, the task 
proceeds straight away to percent, which perhaps is a bit 
unconventional. However, the use of percent is comprehensible with 
regard to the designer’s aim that the students would have to make 
transformations of different semiotic representations. The mathematical 
object aimed at in the task is the percent (or rate) of increase of a 
square’s area when the square’s side increases by an arbitrary percent, 
p%.  

One obstacle to be considered consists in the fact that the 
nonmathematical, ordinary linguistic handling of percent, which leads 
to speak of, say, “the current selling price minus 20 percent”, is very 
likely to be resorted to by the students (due to lack of mathematically 
correct formulation), which may induce them to write expressions like 
100 € – 20% (instead of 100 € – 20% × 100 €, etc.). To overcome this 
cultural obstacle, didactical means might be provided in order to arrive 
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at the conclusion that, if a quantity q increases by p%, then the new 
value q′ is expressed by:6  

q′ = q + p
100 × q.   

In the teaching situation, it can be supposed that the teacher 

considers the basic equality q′ = q + p
100 · q prior knowledge on the 

part of the students. More realistically, one can think that 1) the students 
have encountered this equality in their secondary education, and 2) they 
have forgotten about it (or even “suppressed” it), as most nonmath 
people seem to do, provided they did not have any need to use it since 
they left upper secondary school. If this is so, it could be expected that 
the teacher would provide a gentle reminder about the basic equality. 
Such a reminder would be part of the institutionalization of the 
knowledge used or produced during the classroom session. 

A crucial aspect of the task assigned to the students is the semiotic 
registers that the students can afford to use. One can suppose that the 
students involved have studied, not that long ago, the representation 
system of elementary algebra, which allows one to write, in full 
generality:  

q′ = q + p% × q = q + p
100 × q = q(1 + p

100), which leads to q′ 2 = q2(1 + 

p
100)2 and therefore, the rate of increase is given by: 

q′ 2 – q2

q2  = q′ 2
q2  – 1 = (1 + p

100)2 – 1 = p
100 × (2 + p

100) = 2p
100 + p2

1002

= (2p + p2

100)%. If p = 50, then q′ 2 – q2

q2  = (100 + 25)% = 125%. 

It can be noted that, if the general problem of the rate of increase of 
the square q2 of a quantity q was considered, this problem could be 
modelled geometrically, using a model as shown in Figure 2. The 
problem raised in the classroom session is therefore that of the 
geometric solution to the general problem, which to some extent allows 
the students to shun algebraic calculations. Figure 2 illustrates that the 
increase of the area is equal to  
(p% × q) × q + (p% × q) × q + (p% × q)2 = p%(2 + p%)q2. Accordingly, the 

rate of increase is p%(2 + p%) = (2p + p2

100)%. 
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Figure 2. - A geometric model of the solution to the general problem  

The task can be interpreted to involve a comparison between the 
enlargement of a square’s side and the enlargement of its area, where 
the percent has a functional usage. It is used to quantify the magnitude 
of the functional operator denoted by for example the expression f(p%) 

= (2p + p2

100)%, which gives the rate of increase of a square’s area as a 

function of the rate of increase of its side. 
Two more remarks are in order now. The first remark is that the 

study of the rate of increase of a square’s area can entirely dispense with 
the use of percents. Given a percent p%, let r = 1 + p%. A square of 
side q is enlarged into a square of side q′ = rq. The area of the enlarged 

square is q′ 2 = (rq)2 = r2q2 and therefore one gets: q′ 2 – q2

q2  = r2q2 – q2

q2  

= r2 – 1. If we take r to be 1 + p%, we arrive at 

 q′ 2 – q2

q2  = (1 + p%)2 – 1 = p%(2 + p%) = (2p + p2

100)%. Contrary 

to other authors, who completely avoid using percents in this case (see 
e.g. Lang & Murrow, 1983, chap. 8), the designer’s scenario expresses 
the “multiplying factor” r as a percent, or rather ignores the idea of a 
multiplying factor completely, which generates specific calculation 
difficulties that can hardly be overcome during the classroom session. 

The second remark is that the use of the multiplying factor conceals 
the difficulties appended to the use of percents in calculations. For 
example, in calculating the expression p%(2 + p%), few persons would 
write p%(2 + p%) = 2p% + (p%)2 and fewer still would dare to write 
(p%)2 = p2%2, so that we would arrive at: p%(2 + p%) = 2p% + (p%)2 
= 2p% + p2%2 = p(2 + p%)%. The crux of the problem here is that the 
“entity” p% is not definitely regarded as a number, to be treated 
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accordingly, so that we have p% = p
100 and (even) 1% = % = 1

100 = 

0.01. This means that, at least at the lowest levels of mathematical 
practice, at school and outside of school, percents remain ontologically 
ambiguous entities, which generates difficulties in using them in 
calculations.7  

A POSTERIORI ANALYSIS OF THE TEACHING SITUATION 

The session was introduced for the whole class by the designer of the 
tasks, where he informed about the six worksheets planned for work in 
groups followed by presentation in pairs of groups. There was no 
introduction to, or institutionalization of, mathematical knowledge 
(intended for use or developed during the classroom session) before the 
group-work started. Expected (by the teachers) prior knowledge on the 
part of the students was that an increase of p percent of a quantity 

corresponds to a multiplying factor of 1+ p
100.  

Conversion made unattainable due to an additive model  
Alice, Ida and Sophie had drawn a 2 × 2 cm2 square, increased its sides 
by 50%, drawn the resulting 3 × 3 cm2 square, and then found that the 
square’s area had increased by 9 cm2 – 4 cm2 = 5 cm2. Alice then led 
them to (incorrectly) take as the rate of increase the ratio 5 / 9, which 
made Ida wonder:8  

33 Ida:   Why do you divide by the largest one then, nine?  
34 Alice: Part divided by whole. It’s just a rule I have learnt. 

The misconception caused by Alice’s part-whole notion of percent—
which makes percents greater than 100 counterintuitive—was not 
recognized by Ida and Sophie. They accepted Alice’s explanation, and 
the triad concluded that the percent sought was equal to 5 / 9 = 0.555... 
≈ 56%.  

Next, they tried to find a general formula for the rate of increase of 
the square’s area by taking the parameter p into account. 

68 Sophie:  Imagine now that the side length increases by p percent. 
〈Reads the task〉. 
69 Alice:  Well, but what will happen when we increase this [the 
side length] by fifty percent? Then we’ll get fifty six percent increase 
of the area, thus, six percent more than what is here [the rate of increase 
of the side]. So, then it will be p percent plus six. But I don’t know 
whether it will be like this, always.  
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The object Alice dealt with in turn 69 is an indeterminate quantity: a 
parameter denoted by the letter p. But because she did not treat the 
parameter in an analytic manner, I interpret the generalization process 
not to be genuinely algebraic thinking. The students had concluded that 
when the square’s side increased by 50%, the square’s area would 
increase by 56%. For Alice, this seemed to evoke an additive mental 
model, where she focused on the fact that 56% is 6% “more than” 50%. 
The additive model hindered the generalization process that relied on a 
multiplicative relationship. It resulted in a hypothetical formula for the 
rate of increase of the square’s area: p% + 6. This expression was 
apparently based on the case already calculated (the inaccuracy of 
which the students were not aware of): 50% increase of the square’s 
side implied 56% increase of the square’s area, so that Alice replaced 
50% by p% and added 6.  

Syntactically, the expression p% + 6 does not correspond to the 
observation made by Alice (“6 percent more than p%” would 
correspond to (p + 6)%), which is an indication of the complexity of 
converting statements of percents in the natural language register into 
the algebraic register of concise mathematical expressions. 

Replacing a “part-whole” notion of percent 
The students continued on the path opened by Alice and explored a new 
example, a square of side 5 cm: the new side was therefore 7.5 cm and 
the new area was 56.25 cm2. At this point the designer entered the room, 
while they were arriving once again at (56.25 – 25) / 56.25 = 0.555... ≈ 
56%. Through a rather long dialogue (spanning 61 turns), the designer 
corrected the trajectory of the students. During this exchange he drew 
the students’ attention to the distinction between increasing a quantity 
from 4 to 9 and reducing a quantity from 9 to 4:  

127  Alice:   But do I have to, when we do like this, divide it by 
four then, because that was our starting point? 
128  Designer:  That is the question… because what you’re saying… 
129  Ida:     Yes, it will be hundred and twenty five [percent]. 
〈Uses the calculator〉. 
[⋮] 
134  Designer:  And then it, in a way, goes the other way (Alice: yes). 
Such that… going from… this will be an expression of… well what will 
this be an expression of? The fifty six percent is pertinent in this respect. 
135  Sofie:   The increase… 
136  Designer:  What might a problem look like… so that this number 
[56%] were pertinent… to consider?  
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137  Sophie:   How much it had been reduced? 
138  Designer:  Yes, for instance 〈Ida nods〉. We go from nine down 
to four, then we have had a reduction of more than the half, indeed a 
fifty six percent reduction (Alice and Sophie: yes). But now we go 
upwards [from 4 to 9]. 

Their exchange confirmed that the students had first and foremost to 
accept that a percent can be greater than 100%. This was used by Ida 
(turn 129) to establish that the rate of increase of the square’s area is 
125% when its side increases by 50%.  

A formula derived by didactical reasoning 
After the designer left the room, the triad of students went on to find a 
general formula for the rate of increase of the square’s side by taking 
the parameter p into account. Ida was hinting at the concept of 
multiplying factor when she said “I was thinking that it was one plus or 
minus p hundredths”. This was, however, not taken further by any of 
the others. Alice struggled to represent in alphanumeric notation the 
increased side length, where she tried to mimic the only calculation they 
knew to be correct, i.e., (9 – 4) / 4 = 1,25 = 125%. 

174  Alice:  Two multiplied by p… because what we did now, fifty 
percent of this was one centimetre (Sophie: mm), then we added one 
centimetre (Ida: yes). So this will be two plus one (Ida: yes)… in order 
to get that [the square of side 3 cm] (Ida: yes). So therefore you must 
have two plus p… percent… 〈Alice writes 2 + p % in her notepad〉. 

Alice’s representation of the increased side length by the expression 
2 + p % is a manifestation of the cultural obstacle constituted by the 
nonmathematical, ordinary linguistic handling of percents described in 
the a priori analysis of the teaching situation. Turn 174 is yet another 
manifestation of the complexity of converting a natural language 
statement of percents into the algebraic register. 

After this, Alice proposed 2.5 ⋅ p% as a formula for the rate of 
increase of a square’s area when its side increases by p percent. The 
factor 2.5 is the ratio 125 / 50, i.e., the rate of increase of the area to the 
rate of increase of the side (for the case they had calculated). Ida was 
doubtful whether this was sensible:  

204  Ida:   I was just wondering why you took hundred and twenty 
five over fifty? 
205  Alice: Because it was these [numbers] that were present in the 
example.  
206  Ida:   But are you sure we should continue with these [numbers] 
in the rest of the task? 
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Alice’s model, which involved a kind of (invalid) proportional 
reasoning, can be seen as a result of didactical reasoning, demonstrated 
in turn 205: the ratio 125 / 50 was just a result of using the numbers 
from the first part of the task together with p% (without any apparent 
mathematical rationale). Sophie and Ida wanted to check Alice’s 
formula for p = 25, by first, calculating manually what a 25% increase 
involved; next evaluating the formula for p = 25, and then comparing 
the values. So, Sophie drew a 2 × 2 cm2 square, increased its sides by 
25%, drew the resulting 2.5 × 2.5 cm2 square, and found that the 
square’s area had increased by 6.25 cm2 – 4 cm2 = 2.25 cm2. Ida found 
that the increase was 56.25% (in the manual case), whereas Alice found 
that the increase was 62.5% (in the case of the formula). Because the 
values were different, the triad rejected Alice’s model and decided on 
getting help from one of the teachers.  

It was expected by the teachers that the students had in their 
repertoire a technique to represent the new value obtained when a 
quantity q increases by p%. However, the students lacked such a 
technique. The case of the square where the side was increased by 25% 
became part of the milieu, and enabled the students to conclude that the 
proposed model was wrong. But the milieu they resorted to did not give 
further feedback that could help them to solve the task. 

In the following, I present how the milieu was changed and how this 
affected the students’ solution to the task. 

Evolution of the milieu  

Seeing structure leads to invention of manipulatives 
The teacher changed the milieu by encouraging the students to draw 
several figures and then increase their side lengths by 50%. They drew 
4 × 4-, 6 × 6- and 8 × 8-squares with corresponding enlargements and 
discussed how the enlarged squares appeared. From the discussion of 
the common structure of the three examples, they realized that the 
square’s size was in fact irrelevant and saw the utility of a 1 × 1 square 
(independent of denomination). The insight that side lengths of 1 unit 
represented no loss of generality was made possible by the teacher’s 
change of the milieu. This, in turn, was instrumental for a further 
evolution of the milieu: the students made paper manipulatives to 
illustrate what an enlarged square looked like for enlargements by 
different percents. From sheets of A3 paper they made congruent 
squares, with which they did the following for a 50% increase of the 
side: one square was used as the original square, a second square was 
folded once and torn along the fold (to give two segments of size 0.5 × 
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1), and a third square was folded twice and torn along the folds (to give 
four segments of size 0.5 × 0.5, one of which was used as illustration). 
The same principle was used in cases of 25% and 10% increase of the 
side (though the foldings were different). Note that, in so doing, the 
triad of students considered implicitly that the unit of length they use is 
the length of the square’s side, whatever the size of the square they 
consider. 

Iconic illustrations of the three cases are presented in Figure 3.  
 

 
(S1) Result of 50% 
increase 

 (S2) Result of 
25% increase 

 (S3) Result of 10% 
increase 

Figure 3. - Iconic illustrations of the paper manipulatives  

In Figure 3, the black segments represent the original squares, and the 
grey segments represent the enlargements in each case. The students 
calculated the enlargement of the area of a unit square in the three cases 
and wrote the results in their notepads, similar to what is shown in Table 
2. 

 
Enlargement of side Enlargement of area 

50% 125% 
25% 56.25% 
10% 21% 

Table 2. - Values calculated by the students  

Operating within different semiotic registers: geometric figures and 
three notation systems 
The task for the students was to find (in percent notation) the total area 
of the grey segments as a function of the increase of the square’s side. 
When considering a 50% increase of the side, they observed that each 
of the rectangular segments covered half the area of the original square. 
Hence, the issue for them was the area of the remaining segment that 
was needed to cover the enlarged square. The teacher’s focus in the 
transcript below is the relationship between the enlargement of the 
original square’s side and the area of the quadratic segment up in the 
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right corner of the illustrations (S1, S2, and S3) in Figure 3. These upper 
corner segments will henceforth be referred to as “small squares”. The 
transcript below shows how operating within different semiotic 
registers complicated the communication. 

783  Teacher: When the side got one half longer, it consequently 
increased by fifty percent. How large did the segment up there get then? 
〈Refers to the small square of S1 in Figure 3〉. 
784  Ida:    One fourth. 
785  Alice:  One fourth. 
786  Teacher: When you increased by one fourth, how large did the 
segment up there get then? 
787  Sophie:  Wait a little. 〈Starts to write in her notepad〉. 
788  Teacher: [] 
789  Alice:  One sixteenth. 
790  Teacher: And when you have now increased by one tenth? 
791  Alice:  One hundredth. 
792  Ida:    yes 
793  Alice:  Do we have some…? 〈Alice looks at Sophie’s notepad; 
Ida uses her calculator〉. 
794  Sophie:  Five times five is twenty-five. Sixteen… how much is 
one sixteenth? 
795  Ida:    One sixteenth, that is zero point zero six two five. 
796  Sophie:  And if you multiply that by…? 
797  Ida:    You can write [] zero point zero six two five. 〈Points at 
the fraction 1

16 in Sophie’s notepad〉. And that one is zero point twenty-

five and that one is zero point zero one. 〈Points at the fractions 1
4 and 

1
10 in Sophie’s notepad〉. 

798  Sophie:  Zero point zero one? 
799  Ida:    Connection? 
800  Teacher: What if you were just thinking in terms of fractions here 
now? (Ida: yes) One half, what was the segment up there then? 〈Points 
at the small square of S1 in Figure 3〉. 

Ida and Alice (turns 784-792) gave correct answers when asked for the 
area of the small squares when the sides of the original squares were 
enlarged by fractions (one half, one fourth and one tenth). The teacher’s 
intention (turn 815) was possibly to make the students observe concrete 
cases that would enable them to generalize the relationship between the 
enlargement of the side and the area of the small square. He had 
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changed the notation system from percents to fractional notation, 
without any explanation to the students. This was a treatment, and his 
reason for doing so may have been that it is easier (by mental 

calculation) to square the fractions involved, {1
2, 1

4, 1
10}, than it is to 

square the corresponding decimal numbers, {0.5, 0.25, 0.1}. However, 
Sophie and Ida were concerned with decimal notation. They 

transformed the involved fractions into decimal numbers: 1
4 = 0.25, 

1
16 = 0.0625, and 1

100 = 0.01 (turns 794–798). The decimals, 0.25 and 

0.0625, are “closer” to the numbers represented by percents, which the 
students had already calculated (see Table 2). After this, Ida (turn 799) 
posed an important question about connection. But the teacher (turn 
800) kept to fractional notation, and apparently missed an opportunity 
to initiate a treatment of decimals into percents, which was the semiotic 
register used (and asked for) in the task.  

The next excerpt from the transcript shows that Alice and Ida were 
able to use (on examples) the quadratic relationship aimed at by the 
teacher and, further, that this relationship eluded Sophie, who followed 
a false lead. 

812  Teacher: When the increase was one half, what was the segment 
itself? 〈Refers to the small square of S1 in Figure 3〉. 
813  Ida:    One fourth. 
814  Alice:  One fourth. 
815  Teacher: What connection is there between one half and one 
fourth then? 
816  Alice:  It is half as large. 
817  Teacher: What if the increase was one fourth? Then it was? 
818  Alice:  One sixteenth.  
819  Sophie:  It should be one eighth here. 
820  Alice:  No, because it is twenty-five percent, that is what one 
fourth is.  
821  Ida:    Yes. 
822  Sophie:  Yes, but not… We have to take one eighth there, that 
makes one half. 
828  Teacher: When it was one tenth increase, how large was the small 
segment then? 
829  Alice:  One hundredth.  
830  Ida:    One hundredth.  
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831  Teacher: What if I increased the side length by one fifth, what 
would the segment up there look like then? 〈Pause 4 seconds〉. 
832  Sophie:  With this as a starting point? 〈Points at something in 
Alice’s notepad〉. 
833  Teacher: If I were to take one fifth of the side and increase further 
here? 〈Demonstrates on an original square by pointing〉. How large 
would the one up here be then?  
834  Alice:  One twenty-f…One twenty-fifth.  
835  Teacher: Yes… that is actually what it is [] 
836  Sophie:  So, the square, the side of it, it is… Is it half of… p? 
〈Looks at the teacher〉. 
837  Teacher: [] when you increased by one half? 
838  Alice:  What did I say? One twenty-fifth? When you multiply 
by, or when you had five percent increase, then it was, it was… No, 
what did I say?  
839  Sophie:  No, I don’t remember. 〈Laughs〉. But it will be one 
fourth… of p. No of… 

When the teacher (turn 815) asked for a connection between one half 
and one fourth, he aimed at formalising the relationship between the 
enlargement of the side and the area of the small square of S1 in Figure 
3—that it was a quadratic relationship. Alice (turn 816) responded by 
saying that it was half as large, which in isolation was appropriate, but 
the teacher was after the model of squaring. So, didactically, one half 
was an ambiguous example. In the following, the relationship between 
enlargement of a side (a) and the area of the resulting small square (b) 
will be denoted (a → b). The teacher (turn 817) then provided an 

unambiguous example (14 → ?), to which Alice (turn 818) suggested 

the relationship (14 → 1
16). This indicated that she had discovered the 

quadratic relationship aimed at by the teacher, which (in turns 829 and 
834) was further supported by appropriate answers for two more cases, 

( 1
10 → 1

100) and (15 → 1
25). The initial, incorrect model of halving had 

been replaced by Alice by a correct model of squaring. The change of 
model was however not explained in plain words, neither was the 
property ‘quadratic’. This presumably made it more difficult for Sophie 
to replace the model of halving (turns 819 and 822).  

In turn 838, Alice confused an increase by one fifth (mentioned by 
the teacher in turn 833) with an increase by five percent. This was 
probably due to the variety of notation systems employed and the 
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“appearance” of the numbers (five is involved in both 1
5 and 5%). In 

turns 836 and 839, Sophie tried to figure out the area of the small square 
in the general case, using the letter p. But both models (of halving and 
of quartering) were wrong, and she operated on the wrong value, p 
instead of p%.  

The students were supposed to present their work to another group. 
For this reason, they began to worry whether they had anything of value 
to share. During a break, it was decided that there should be a phase of 
gathering the threads and trying to find out how the geometric figures 
could be used to find an expression for the general case with p%. This 
is presented next.  

Transformation of geometric figures into percent notation making 
possible algebraic notation 
The students collaborated on the three exemplars of the manipulatives 
(S1, S2 and S3, shown in Figure 3), and decided that it was necessary 
to write the area of the grey segments in percent notation (p% written 

as p
100). With some input from the teacher on writing it systematically, 

they expressed the area of each grey segment as a product of side 
lengths in percent notation. This resulted in the following arithmetic 
expressions for the enlargements of the original square: 

2 ⋅ ( 50
100 ⋅ 100

100) + 50
100 ⋅ 50

100 (for a 50% increase); 

2 ⋅ ( 25
100 ⋅ 100

100) + 25
100 ⋅ 25

100 (for a 25% increase); 

2 ⋅ ( 10
100 ⋅ 100

100) + 10
100 ⋅ 10

100 (for a 10% increase). 

Through inductive reasoning, relying on the form of an expression, the 

students arrived at the hypothetical general form: 2 ⋅ ( p
100 ⋅ 100

100) + p
100 

⋅ p
100. This was simplified to 2p

100 + p2

1002. 

When the students presented their work to the other group, they used 
the geometric figures (S1 and S2) to illustrate the cases when the side 
was increased by 50% and 25%. Then they presented the expression 
2p
100 + p2

1002		as the solution to the general problem when the side was 

increased by p%, and drew a model with no measures as shown in 
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Figure 4. They commented that 2p
100 + p2

1002 was derived from the 

expression 2 ⋅ ( p
100 ⋅ 100

100) + p
100 ⋅ p

100 that had the same structure as 

the concrete cases presented. Further, the students explained that 2 ⋅ 

( p
100 ⋅ 100

100) represented the area of the two rectangles and p
100 ⋅ p

100 

represented the area of the small square in Figure 4. 
 

 
Figure 4. - Model used by the students to explain the general case 

It must be emphasized that the route taken by the students—which led 

them to the expression 2p
100 + p2

1002—avoided the basic equality (q′ = 

q + p
100 × q, where q′ is the new value obtained when a quantity q 

increases by p%), since the expression arrived at was not obtained by a 
calculation using the letter p, but by an inductive reasoning process (for 
which the supporting evidence consisted of three cases: p = 10, p = 25, 
and p = 50). To arrive at this conclusion, one must, however, know that 

the rate of increase of the square’s area is given by the formula q′ 2 – q2

q2  

(where q is the length of the square’s side), maybe under a different 
guise (e.g., “the increase of the area over the initial value of the area”). 
The new value of the square’s side, q′, was implicitly taken by the 
students to be equal to q + p% × q, since they lacked a technique to 
represent the new value obtained when a quantity q increases by p%.  

The inductive process undertaken by the triad of students can be 
seen as a first phase of algebraic thinking, where they identified the 
common structure of the three arithmetic expressions. The letter p in 
the proposed algebraic expression can be understood as a placeholder 
(Ely & Adams, 2012) that stands for an indeterminate number that is to 
be provided whenever the expression is used to solve a particular 
problem. This interpretation is consistent with the way the algebraic 
expression was established in the observed session—it emerged just 
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from the concrete cases, where p was “exchanged with”, or “held the 
place of”, the particular numbers 10, 25, and 50.  

However, a necessary second phase of algebraic thinking would be 
to carry out a mathematical proof of the hypothesized generality, as 
explained in the theoretical section on algebra. Although there were 
fragments of Figure 4 being used by the students as a generic example 
(Balacheff, 1988), in the form of explaining which segment on the 
model corresponded to which term of the proposed algebraic expression 
(as explained above), their reasoning lacked rigor in that they did not 
explain why the terms of the algebraic expression did have the form 
they had. This concerns the same phenomenon as described above—
avoiding the basic equality and implicitly taking the new value of the 
square’s side to be equal to q + p% × q.  

DISCUSSION 

Algebra and percents 
In the classroom session I observed, the students were confronted with 
a clear-cut problem, that of enlarging a square. In the formulation 
adopted, percents were used, which complicated much the problem. 
The students were involved in generalization and expression of 
generalities in symbolic form, but their reasoning with and 
manipulation of these symbolic forms were inadequate—in fact, 
algebraic calculation remained almost absent from the activity of the 
students. According to the framework adopted for algebra (drawing on 
Gattegno, 1988/2010; Kaput, 2008; and Radford, 2018), their activity 
is therefore not considered full-fledged algebraic thinking. However, 
algebraic thinking was not completely absent, since the triad of students 
resorted to some sort of inductive reasoning. 

The fact that they did not have a technique to represent the new 
value q′ obtained when a quantity q increases by p% was a condition 
that hindered their use of algebraic calculations. Further, I want to 
highlight that what I have labelled “expected prior knowledge”—the 
fact that an increase of p percent of a quantity corresponds to a 

multiplying factor of 1+ p
100—was not activated during the session, 

although it was mentioned by one of the students (before the teacher 
arrived). It seems that the multiplicative expression of the increase of a 
quantity (q′ = q(1 + p%)), which is the key to most percent problems, 
was ignored or even thoroughly sidelined (by the teacher), to the 
advantage of its more common additive expression (q′ = q + p% × q), 
which is the ordinary but little effective way of handling percents. From 
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the point of view of mathematics education, this is a serious problem 
raised by the scenario I have tried to account for in this study. It should 
be noted though that the preference for an additive expression of 
percents in the analyzed session was likely influenced by the material 
milieu (the paper cut-outs) used to solve the task.  

When the students couldn’t solve the task devolved to them, the 
adidactical situation was turned into a didactical one, where the teacher 
employed a kind of Socratic method where he elicited the solution from 
the students, based on a series of questions and answers. An important 
moment was when the students realized the utility of a unit square, 
because this enabled them to develop manipulatives in the form of paper 
cut-outs. This material milieu made it possible for the students—in the 
situation of action—to construct a representation of the situation that 
served as an implicit “model” that guided them in their decisions. 
Furthermore, the new milieu provided the students with representations 
from a different semiotic register (geometric figures), and—in the 
situation of formulation (where the implicit model was made 
explicit)—they succeeded in converting the geometric figures in each 
case (p = 10, p = 25, and p = 50) into percent notation.  

Through a process of inductive reasoning—based on the structure 
of the arithmetic expressions written down—they arrived at a 
hypothetical general form for the rate of increase of a square’s area, 
where the parameter p (the percent numeral of the rate of increase of 
the square’s side) was used as a placeholder. Because the hypothesis 
was not mathematically justified, the situation of validation was 
incomplete. The session did not contain a situation of 
institutionalization. There was no time left after the presentation to 
institutionalize the knowledge reached concerning the square’s 
increase, and there was no whole-class session scheduled to 
institutionalize the solutions to the six worksheets.9 This means that the 
status of the knowledge reached remained unsettled—that is, its 
validity, importance and future were not discussed. From the point of 
view of mathematics education, this is a clear limitation of the observed 
session. 

Transformations of semiotic representations 
The mathematical task dealt with by the observed students is a 
generalization task in which the variable quantity is given in percent 
notation. Two aspects complicated the task: the use of percents in the 
context of change, and the use of an arbitrary percent numeral (a 
parameter) in generalization of that change. The situation in the task 
involves a comparison between the enlargement of a square’s side and 
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the enlargement of its area, where the percent has a functional usage. It 
is used to quantify the magnitude of the functional operator denoted by 

e.g. the expression f(p%) = (2p + p2

100)%, which gives the rate of 

increase of a square’s area as a function of the rate of increase of its 
side. This functional operator is an algebraic model; it is a compressed 
expression which conceals the relational features of the quantities at 
stake.  

Percent is a complex concept because it is ambiguous and often 
appears to have several meanings at once. Percent uses an extremely 
concise linguistic form and compact notations in which proportional 
comparisons are hidden. The language used in comparative statements 
involving percents is additive in form, requires attention to unstated 
relationships and is often in direct conflict with common everyday 
language use (Parker & Leinhardt, 1995). These features of percents 
complicate transformations of representations involving percents, both 
in terms of treatments and conversions: this is what my analysis bears 
witness to.     

There exists a network of transformation rules for changing between 
these notation systems: percents, fractions, and decimals. These 
transformations are referred to as treatments in Duval’s (2006) theory, 
since they happen within the same register. In the analyzed session, 
these registers were at play: notation systems (percents, fractions, 
decimals, algebraic symbols), natural language, and geometric figures. 
The wide variety of notation systems used complicated the students’ 
work. This complication was sharpened by the fact that the 
communication of the mathematics was, until the very end, mostly done 
verbally, in natural language. Except for the values calculated for the 
particular cases, little was written down that could enable the students 
to confront the handling of numbers and expressions. There are three 
reasons why natural language does not support percent (Parker & 
Leinhardt, 1995). First, the referents are often hidden due to the 
conciseness of the percent language. Second, the preposition of has 
different meanings: in natural language it means is a part of; in 
arithmetic, it indicates a call for multiplication; and with percent, it is 
an indicator of the direction of a multiplicative comparison. Third, 
percent uses additive language in a multiplicative world. These 
language problems tend to suppress an intuitive understanding of 
percent, and help explain the problems encountered by the students and 
teacher in the session analyzed in this paper.  

Crucial for the students’ progress towards percent notation was the 
development of manipulatives, where geometric figures (paper cut-
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outs) were used to represent the enlarged squares in the cases of 10%, 
25% and 50% increase of the squares’ side. Conversions took place 
from the register of notation systems (numeric notation with decimals, 
where the students had calculated the particular cases), to the register 
of geometric figures, where the quantities involved were 
conceptualized as areas. Next, the geometric figures were transformed 
into arithmetic expressions in percent notation. In each of the three 
cases, the arithmetic expression was a sum, written systematically so as 
to represent the area of each of the geometric figures that represented 
the enlarged square. This was a conversion of representations in the 
register of geometric figures into the register of notation systems 
(numeric notation with percents). For the sake of efficiency in 
calculations, as commented on above, a further transformation—a 
treatment—would have been necessary in order to change the additive 
expression into a multiplicative one. A transformation like that would 
belong to a situation of institutionalization, which however was not part 
of the observed session.  

The arithmetic expressions in percent notation were then 
transformed in terms of a treatment into algebraic notation by an 
inductive process, as explained above. The algebraic expression in 
percent arrived at was the solution to the task. There were yet two 
additional transformations (in terms of conversions) during the 
students’ presentation of their solution to a peer group: the 
generalization achieved (an algebraic expression using percents and 
letters) was during the explanation transformed into natural language 
which in turn was transformed into geometric figures. This last phase is 
important from the perspective of teacher education—the impact of 
explaining to others: this requires the activation of several semiotic 
registers and transformations of representations in and between them. 
According to Duval (2006), conversions are of particular importance 
for the learning of mathematics.  

Summary of results 
I wanted to find out what conditions that enabled or hindered the 
students to solve the mathematical problem they were confronted with. 
The particular research question was: What material and non-material 
tools prove relevant or missing in the milieu that they resort to?  

Tools that proved missing (or not used) in the milieu were: text(s) 

that could be studied; the basic equality q′ = q + p
100 × q, where q′ is the 

new value obtained when a quantity q increases by p% (or a technique 
to arrive at this equality); a technique for transforming representations 
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from one notation system into another (fractions, decimals, percents); 
and elementary algebraic manipulations. 

Tools that proved relevant in the milieu were: calculating and 
writing down several examples (enabling specializing, conjecturing, 
generalizing); realization of the utility of a 1 × 1 square (detecting 
invariance); use of manipulatives (enabling conversions); looking at 
arithmetic expressions as pre-algebraic forms; looking at the percent 
numeral as a placeholder; calculators. 

Didactical implications of the study 
The observation and analysis reported here show that, as seems to be 
often the case, the activity devolved to the students appears to be too 
rich, too complex by combining aspects that would aptly be separated, 
essentially the enlargement problem, which is a geometric model of the 
rate of increase of a quantity, and percents, which seems to be a topic 
that could have been avoided, or at least cautiously handled.  

One particular aspect of percents is that they still seem to be 
ontologically ambiguous, so that they are too often not handled in 
calculations as true mathematical entities, similar to any number or 
letter that can enter into an expression to be calculated. It thus becomes 
slippery to develop algebraic calculations in such a context. In 
conclusion, as far as the learning of algebraic calculations is concerned, 
the scenario implemented with the students I observed seems to be far 
from perfect, and in this respect, significant changes (for teacher 
education) can be advocated. 

As a prelude, the basic equality q′ = q + p
100  × q should be 

institutionalized and its relationship with the multiplying factor 1 + p
100 

emphasized. Then, in a first stage, the enlargement problem could be 
stated as a similarity problem, with focus on studying relationships 
between length, area and volume of similar figures. In this stage, the 
problem should be stated without reference to percents. In a second 
stage, percents could be introduced and their meaning examined in 
order to genuinely integrate them in calculations. Here, students should 
become familiar with percent notation and be able to handle percents in 
calculations as true mathematical entities, similar to what I have 
demonstrated in this paper. It should be emphasized that percent is a 
ratio comparison number, and students should (in each situation with 
percents) identify which two quantities are compared. Furthermore, this 
second stage should include tasks on the counterintuitive situations 
described above: 1) calculating with percent numerals greater than 100; 
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2) considering an increase by n% followed by a decrease by n%—do 
we get back to the original quantity?; and 3) comparing a discount of 
2n% to two successive discounts of n% each—do they give the same 
price?  

Another point is about justification of conjectures in the classroom: 
it is critical to provide student teachers with tools that enable them to 
lead “scientific debates” in the (school) classroom, where different 
kinds of justification should be discussed and institutionalized. Such 
tools may include experiences from mathematics sessions involving 
argumentation and proof at the university, accompanied by a 
framework for proving that could be used in school, such as the ones 
proposed by Stylianides (2007) and Balacheff (1988). 

Concluding remarks 
The observed session highlights the fact that elementary algebra is a 
modelling tool which historically replaces geometric models which 
have less flexibility and which appear in the observed session as a 
surrogate modelling tool. The conclusion we may draw from this 
analysis is that the students involved have gone almost all the way from 
the simple use of words and figures to algebraic means, but in fact failed 
to reach this goal, clinging at the old geometric models which in some 
way hinders the straight forward use of algebra.  

My conclusive statements should certainly be seen in a broader 
context, namely that of the continuing uncertain relationship between 
most present-day societies and elementary algebra. Although almost 
universally taught from an early level, algebra remains a territory 
unfamiliar to many nonmath people, who sometimes seem to shun it as 
best they can: this is what my observations bear witness to. One can 
doubt whether such a long-established constraint is likely to be lifted 
thanks to classroom activities only.10 

NOTES 

1 In Grades 5–7 in Norway, algebra involves: finding symbolic formulae for 
structure and change in geometric and numeric patterns; and writing and 
solving simple equations. In Grades 8–10, algebra involves: manipulating 
algebraic expressions and using identities of quadratic algebraic expressions; 
solving linear equations and inequalities, and systems of equations in two 
unknowns; and using variables in investigations related to theoretical and 
practical problem solving. In comparison, in France, algebra or, more precisely, 
algebraic equations (in their simplest form) are traditionally introduced in 
“cinquième” (i.e., Grade 7, age 12–13), at the college. 
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2 I am using the adjective analytic here in the context of equation solving. It is 
derived from the noun analysis which is explained by the ancient 
mathematician Pappus of Alexandria this way: “in analysis we assume what is 
sought as if it has been achieved […]” (Pappus, Collection 7.1:13–18, translated 
by Jones, 1986, as cited in Rideout, 2008, p. 63). 
 
3 This is inspired by Parker and Leinhardt (1995), who use the mathematical 
definitions of the terms base, percent, and percentage. In actual use, the words 
percent and percentage are frequently interchanged. 

 
4 An episode described by Heather Krause illustrates this phenomenon: “Last 
month, I bought a pair of socks for $5.00. Last week, the store had a sale and 
dropped the price of the socks by 25%. This week, they raised the price by 25%, 
so now the same socks I bought last month are selling for $4.69. Wait, what?!” 
Retrieved from https://idatassist.com/why-percent-change-is-actually-
misleading-most-of-the-time/ 
 
5 The task contained an additional question: “What is the effect on the volume 
of a cube when its side length increases by p percent?” This question was 
neglected by the observed student, possibly due to lack of time.  
 
6 For an example, see http://mathforum.org/library/drmath/view/67764.html. 
 
7 A video at https://www.youtube.com/watch?v=Vk8u1Gk28G8 gives an 
excellent illustration of this sociomathematical phenomenon. The instructor 
explains the notion of “multiplying factor”. If the number 40 increases by 20%, 
what will be its new value? 
 

 
 
As can be seen on the screenshot above, the instructor first expresses the 
“increased value” as “40 + 20% of 40”: he dares not write “40 + 20% × 40” 
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(read “40 plus 20% times 40”). On the second line, instead of writing “40 + 20
100 

× 40”, he first writes “40 + 20 × 40
100”, probably because he dares not imply that 

20% is the same as 20
100, and then, in a second attempt, he awkwardly extends 

the line of the fraction 40
100 to arrive at the unexpected (but correct) fraction 

20 × 40
100 . 

 
8 The transcript has been translated from Norwegian by the author. 
Transcription codes: 
…         Pause up to 3 seconds. 
[text]        Clarification of wording. 
〈Text〉	       Account of nonverbal action. 
[]          Inarticulate or inaudible utterance. 
[⋮]         Omitted turns. 
(NN: interjection) Interjection by NN during another person’s turn. 
 
9 Based on, among other things, experiences with the session analyzed here, the 
teachers of the class started to schedule regular whole-class sessions succeeding 
small-group work, with the aim of institutionalizing the knowledge at stake. 
 
10 In his famous satire Candide (1759), although he was not an ignoramus in 
mathematics, Voltaire (1694–1778) made fun of algebra, writing in chapter 22 
about Candide’s red sheep that the Academy of Sciences at Bordeaux 
“proposed, as a prize subject for the year, to prove why the wool of this sheep 
was red; and the prize was adjudged to a northern sage, who demonstrated by 
A plus B, minus C, divided by Z, that the sheep must necessarily be red…” 
(Voltaire, 1759, p. 63). Maybe “Northern sages” are no longer what they used 
to be! 
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