Øyvind Støren

Running and cycling economy in athletes; determining factors, training interventions and testing

Thesis for the degree of Doctor Philosophiae

Trondheim, October 2009

Norwegian University of Science and Technology
Faculty of Medicine
Department of Circulation and Medical Imaging

- NTNU

Norwegian University of Science and Technology

NTNU

Norwegian University of Science and Technology
Thesis for the degree of Doctor Philosophiae

Faculty of Medicine
Department of Circulation and Medical Imaging
© Øyvind Støren

ISBN 978-82-471-1849-8 (printed ver.)
ISBN 978-82-471-1850-4 (electronic ver.)
ISSN 1503-8181

Doctoral theses at NTNU, 2009:223

Printed by NTNU-trykk

Løps- og sykkeløkonomi hos idrettsutøvere; bestemmende faktorer, treningsintervensjoner og testing

Arbeidet som denne doktorgradsavhandlingen er basert på ble utført ved Norges teknisk-naturvitenskapelige universitet og Høgskolen i Telemark. Det består av en rekke på fem eksperimentelle studier som har undersøkt bestemmende faktorer for løps- og sykkeløkonomi, treningsintervensjoner og testmetoder.
De viktigste målemetodene i dette doktorgradsarbeidet var målinger av oksygenopptak under submaksimale og maksimale arbeidsbelastninger, under løp på tredemølle og sykling på testergometersykkel. Videre er det blant annet gjennomført laktatmålinger, målinger av maksimalstyrke og effekt i strekkapparat i underekstremitetene, kraftmålinger under løp og antropometriske målinger av idrettsutøverne.

Det først studiet undersøkte effekten av melkesyre på oksygenkostnaden $\left(\mathrm{C}_{\mathrm{R}}\right)$ ved løp på laktatterskel. C_{R} ble signifikant forverret når blodlaktatkonsentrasjonen ble økt fra 3 til $5 \mathrm{~mm} \cdot \mathrm{~L}^{-1}$.

Studie to undersøkte i hvilken grad en vanlig benyttet inkrementell protokoll for måling av oksygenopptak og C_{R} påvirker reliabiliteten på disse målingene. Hastighet og relativ intensitet ble funnet å ikke påvirke C_{R} på intensiteter mellom 60 og 90% av maksimalt oksygenopptak.

I studie tre og fem ble det undersøkt om maksimal styrketrening (knebøy) bedrer løpsog sykkeløkonomi og tid til umattelse ved maksimal aerob hastighet. Både løps- og sykkeløkonomi ble signifikant forbedret etter 8 ukers maksimal styrketrening som et supplement til den vanlige utholdenhetstreningen. Disse forbedringene førte til signifikant lenger tid til utmattelse på maksimal aerob hastighet. Verken maksimalt oksygenopptak eller kroppsvekt ble forandret.

Studie fire undersøkte sammenhenger mellom løps-karakteristika, maksimal styrke, antropometri og C_{R}. Det ble funnet en signifikant negativ korrelasjon mellom summen av peak kraft, eksentrisk og konsentrisk, i hvert løpesteg og C_{R}.

Øyvind Støren
Institutt for sirkulasjon og Bildediagnostikk
Veiledere: Jan Helgerud og Jan Hoff
Finansieringskilde: Høgskolen i Telemark

Ovennevnte avhandling er funnet verdig til å forsvares offentlig
for graden Doctor Philosophiae
Disputas finner sted i Auditoriet, Medisinsk-tekninsk forskningssenter. Onsdag 4. november, kl. 13.15.

Acknowledgements

This thesis is submitted for the Dr. Philos. degree at the Norwegian University of Science and Technology. The work which this doctorial thesis is based upon was carried out at Telemark University College and the Norwegian University of Science and Technology. It consists of a line of experiments investigating the determining factors for running and cycling economy among athletes, further assessed by training intervention studies and investigation of test methods.

I would like to thank the following:

- Professors Jan Helgerud and Jan Hoff for their advices, guidance, discussions and instructions from initiation to completion of this work.
- My colleagues at Telemark University College.
- The athletes who participated in the various studies.
- My co writers of the articles; Jan Helgerud, Jan Hoff, Eva Maria Støa, Arnstein Sunde, Arnstein Finstad, Eivind Wang, Marius Bjerkaas and Morten Herum Larsen
- Terje, Bent and Atle for constructive discussions.

Contents

Acknowledgements
Contents 3
Abbreviations used in this thesis 4
List of included papers 6
Summary 7
Introduction 10
The energetics of long distance running and cycling 10
Endurance Performance 10
Physiological determinants of cardio vascular endurance 10
Maximal oxygen uptake 11
Lactate threshold 11
Work economy and work efficiency 12
Factors influencing running and cycling economy 13
Muscular efficiency 14
Braking forces 17
Elastic storage of energy 17
Frequency of movement cycle 18
Other factors interacting as determinants for running and cycling economy 20
Variations in Cost of running, Cost of cycling and efficiency 21
Training induced changes in Cost of running and Cost of cycling 22
Adaptations to endurance training 22
Adaptations to strength training 23
Rationale and aims of the experiments 26
Paper I: 26
Paper II: 26
Paper III: 27
Paper IV: 27
Paper V 27
Methods 29
Subjects 29
Testing procedures 29
Training procedures 34
Statistical analysis 35
General summary of experiments 36
Discussion across the experiments 38
General discussion 38
Cost of running and cycling 39
Maximal strength. 41
Rate of force development 42
Running and cycling characteristics and force measures 43
Maximal oxygen uptake 45
Lactate threshold 46
The relative importance of cost of running on distance running performance 47
The relative importance of Cost of cycling on cycling performance 48
Limitations of the studies in this thesis and future research 48
Conclusions 49
Practical applications. 50
References 51

Abbreviations used in this thesis

APF	average peak force
$\mathrm{APF}_{\text {total }}$	sum of more than one average peak force
A-V O O_{2}-difference	arteriovenous oxygen difference
BW	body weight
C	oxygen cost of work (work economy)
C_{C}	oxygen cost of cycling
CE	cycling economy
C_{R}	oxygen cost of running (running economy)
CT	contact time
CV	coefficient of variance
DLO_{2}	pulmonary diffusion capacity
DLO_{2}	muscle diffusion capacity
E	potentional kinetic and gravitational energy
equ	equation
F	force
f	cyclus frequency in running or cycling
FEO_{2}	fraction of expired oxygen
FIO_{2}	fraction of inspired oxygen
h	hour
[Hb]	hemoglobin concentration
Hf	heart frequency
$\mathrm{Hf}_{\text {max }}$	maximum heart frequency
$\mathrm{Hf}_{\text {peak }}$	peak heart frequency
kg	kilogram
km	kilometer
L	liter
$\left[\mathrm{La}^{-}\right]_{\mathrm{b}}$	lactate concentration in blood
LT	lactate threshold
m	meter
MAP	maximum aerobic power
MAS	maximum aerobic speed
min	minute

$\mathrm{mmol} \cdot \mathrm{L}^{-1}$	millimole per liter
MST	maximal strength training
N	Newton
$\mathrm{N} \cdot \mathrm{s}^{-1}$	Newton per second
$\mathrm{N} \cdot \mathrm{m} \cdot \mathrm{s}^{-1}$	Newton meter per second
η	muscular efficiency
O_{2}	oxygen
p	p-value
P_{R}	pedaling resistance
Q	cardiac output
r	correlation coefficient
R	respiratory quotient
RFD	rate of force development
RM	repetition maximum
RPM	rounds per minute
s	seconds
SF	stride frequency
SL	stride length
SD	standard deviation
SV	stroke volume
TPF	time to peak force
VE	minute ventilation
VO	oxygen uptake (per minute)
VO	maximum oxygen uptake (per minute)
VO	weat
W	work efficiency
WE	

List of included papers

This thesis is based upon an introduction to the field, a summary of the thesis and the following papers:

Paper I: Hoff J, Støren Ø, Finstad A, Wang E, Helgerud J
High blood lactate levels deteriorates running economy in elite endurance athletes
Paper II: Helgerud J, Støren Ø, Hoff J
Are there differences in running economy at different velocities?
Paper III: Støren Ø, Hoff J, Støa EM, Helgerud J
Maximal strength training improves running economy in distance runners
Paper IV: Støren Ø, Helgerud J, Hoff J
Running stride peak forces inversely determines running economy in elite runners
Paper V: Sunde A, Støren Ø, Bjerkaas M, Larsen MH, Hoff J, Helgerud J
Strength training improves cycling economy

Summary

Paper I investigated the effect of lactic acid on oxygen cost of running $\left(\mathrm{C}_{\mathrm{R}}\right)$ in elite athletes. 7 elite endurance athletes (4 orienteers and 3 cross country skiers) participated in this study. The athletes were first tested for C_{R} at $10 \mathrm{~km} \cdot \mathrm{~h}^{-1}$ and for lactate threshold (LT) on a treadmill with 1.5% inclination, and for maximum oxygen uptake $\left(\mathrm{VO}_{2 \max }\right)$ at 5.0% inclination. They were then tested for C_{R} at their LT velocity with a pre concentration of blood lactate $\left[\mathrm{La}^{-}\right]_{\mathrm{b}}$ of either $3 \mathrm{mmol} \cdot \mathrm{L}^{-1}$ or $5 \mathrm{mmol} \cdot \mathrm{L}^{-1}$ followed by a crossover. C_{R} deteriorated significantly (5.5 $\%$) when pre $\left[\mathrm{La}^{-}\right]_{\mathrm{b}}$ was raised from $3 \mathrm{mmol} \cdot \mathrm{L}^{-1}$ to $5 \mathrm{mmol} \cdot \mathrm{L}^{-1}$.

Paper II investigated to what extent a commonly used incremental protocol for measuring oxygen uptake $\left(\mathrm{VO}_{2}\right)$ at different velocities affects the reliability of these measurements. 15 moderately to well trained (9 male and 6 female) endurance athletes participated in this study. C_{R}, heart rate (Hf) and $\left[\mathrm{La}^{-}\right]_{\mathrm{b}}$ during 5 minute runs at velocities ranging from 8.0 to $17 \mathrm{~km} \cdot \mathrm{~h}^{-1}$, representing intensities ranging from 60% to 90% of $\mathrm{VO}_{2 \max }$ was measured on two different days in random order. The athletes were also tested for $\mathrm{LT}, \mathrm{VO}_{2 \max }$, maximum aerobic speed (MAS) and time to exhaustion at MAS (tMAS). No significant differences in C_{R} between the different relative velocities or the different set velocities were found for neither the male or for the female athletes, up to 90% of $\mathrm{VO}_{2 \max }$. The incremental protocol for measuring VO_{2} at different velocities was found not to affect the reliability of these measurements. All athletes reached their $\mathrm{VO}_{2 \max }$ while running to exhaustion at MAS. The females showed significantly lower $\mathrm{VO}_{2 \text { max }}$ but significantly better C_{R} than the males. At velocities representing intensities between 60% and 90% of $\mathrm{VO}_{2 \text { max }}$, no differences in C_{R} were found. This means that C_{R} measured at sub maximal velocities are representative for C_{R} at race velocity for distances above 10000 metres for most runners.

Paper III investigated if maximal strength training (MST) improves C_{R} and ${ }_{\mathrm{t}} \mathrm{MAS}$ among well trained long distance runners on a level treadmill. 17 well trained (9 male and 8 female) runners were randomly assigned into either a maximal strength intervention or a control group. The intervention group (4 males and 4 females) performed half-squats, 4 sets of 4 repetitions maximum (RM), three times per week for 8 weeks, as a supplement to their normal endurance training. The control group continued their normal endurance training during the same period. The intervention manifested significant improvements in 1RM (33.2 \%), rate of force development (RFD) (26.0 \%), C_{R} (5.0 \%), and ${ }_{\mathrm{t}}$ MAS (21.3 \%). The control
group showed no changes from pre to post values in any of the parameters. Neither the intervention group nor the control group changed $\mathrm{VO}_{2 \text { max }}$ or body weight (BW).

The relationship between running characteristics and force measures and C_{R}, as well as the relationship between anthropometric factors, maximal strength in lower extremities and C_{R} was investigated in paper IV. 11 elite endurance athletes participated in this study. 1RM in half-squat leg press, $\mathrm{VO}_{2 \max }, \mathrm{C}_{\mathrm{R}}$, vertical and horizontal external forces while running, BW , height, leg length, calf circumference, hip width, and body fat, were examined. 3000 m best performance times obtained during the last season were recorded. The athletes wore contact soles, and the treadmill was placed with the front on a force platform while the rear end was hanging in a special device constructed for this purpose. Ergospirometric variables were measured while the athletes were running at the same treadmill at the same speed as for the force measurements. The sum of eccentric and concentric peak forces (APFtotal) revealed a significant inverse correlation ($\mathrm{p}<0.05$) both with 3000 m performance $(\mathrm{R}=0.71)$ and C_{R} ($\mathrm{R}=0.66$). Moderate inverse correlations were found ($\mathrm{p}<0.05$) between C_{R} and body height $(\mathrm{R}=0.61)$ and between C_{R} and body fat percentage $(\mathrm{R}=0.62)$.

Paper V investigated if MST improves cost of cycling $\left(\mathrm{C}_{\mathrm{C}}\right)$, work efficiency (WE) and time to exhaustion at maximal aerobic power (${ }_{\mathrm{t}} \mathrm{MAP}$) among competitive road cyclist in line with the running improvements in paper III. 16 competitive road cyclists (12 male and 4 female) were randomly assigned into either an intervention or a control group. The intervention group (7 males and 1 female) performed half-squats, 4 sets of 4 RM, three times per week for 8 weeks, as a supplement to their regular endurance training. The control group continued their normal endurance training during the same period. The intervention resulted in significant improvements in 1RM (14.2\%), RFD (16.7\%), C ${ }_{C}$ (4.8\%), WE (4.7\%) and ${ }_{\text {t MAP }}$ (16.1\%). No changes were observed in $\mathrm{VO}_{2 \max }$, BW or cadence. The control group improved WE by 1.4%, but this improvement was significantly lower than in the intervention group.

Running performance times were recorded from the subjects in two of the studies (study III, and study IV). In study III, seasonal best times in 5 km running were collected from each athlete. C_{R} accounted for 5% of the difference in 5 km performance between these subjects. In study IV, seasonal best times in 3 km running were collected from each athlete. C_{R} accounted for 13% of the difference in 3 km performance between these subjects. The athletes in study IV were more homogenous regarding $\mathrm{VO}_{2 \max }$ than the athletes in study III.

Since some of the variables measured in two or more of the studies on C_{R} were tested in identical protocols, results from different studies could be combined in this thesis to gain a stronger statistical power. Such a combination was used to further investigate possible gender differences in C_{R} as observed in study II. When combining C_{R} results from study II and study III, and dividing into gender, there is a significantly $(\mathrm{p}<0.01)$ better C_{R} for the female subjects $\left(0.663 \pm 0.039 \mathrm{ml} \cdot \mathrm{kg}^{-0.75} \cdot \mathrm{~m}^{-1}\right)$ compared to the male subjects $\left(0.724 \pm 0.057 \mathrm{ml} \cdot \mathrm{kg}^{-0.75} \cdot \mathrm{~m}^{-1}\right)$. When C_{R} results from all the four studies on running are combined independent of gender, mean C_{R} was $0.701 \pm 0.051 \mathrm{ml} \cdot \mathrm{kg}^{-0.75} \cdot \mathrm{~m}^{-1}$, showing an inter-individual variation of 7.3%.

Introduction

The energetics of long distance running and cycling

Endurance Performance

Endurance performance, as in long distance running and cycling imposes great demands on both the cardiovascular system and the muscle system. Although Coyle (1999) defines performance in endurance events as: The power or velocity that can be maintained for durations of 30 minutes to four hours, long distance running races are commonly regarded as races over distances from 3000 m to 42.2 km , while road cycling distances typically range from approximately 5 km (short prologues) to approximately 250 km (long road races). This gives racing times ranging from approximately 7.30 minutes to approximately 2.30 hours at high performance running, and racing times ranging from approximately 10 minutes to approximately 6 hours in high performance cycling. Medbø and Tabata (1989) have demonstrated a $50-50 \%$ aerobic / anaerobic energy release already after one minute of maximal bicycle ergometer work. As the duration of a work increases, the higher the energy release from aerobic processes, reaching approximately 99% for a marathon race (42.2 km) (Åstrand and Rodahl 1986). In short time trials, professional road cyclists work at mean heart rates between 80% and 90% of maximum heart rate $\left(\mathrm{Hf}_{\max }\right)$ (Padilla et al 2000), which is slightly above the cyclists lactate thresholds (LT). In longer road races, the mean intensity seems to be slightly below LT (Vogt et al 2006).

In distance running and cycling, anaerobic capacity is thus of minor importance compared to the aerobic energy production. An efficient oxygen transport system is thus vital. Endurance sports are apparently demanding in terms of aerobic capacity, but performance over more than a few minutes is also influenced by somatic factors (e.g. gender, age and body dimensions), psychological factors (e.g. attitude, motivation), environment (altitude, heat) and probably most of all training adaptations (Maughan et al. 1969, Åstrand and Rodahl 1986).

Physiological determinants of cardio vascular endurance

Pate and Kriska (1984) have described a model that incorporates the three major factors accounting for inter-individual variance in aerobic endurance performance, namely $\mathrm{VO}_{2 \max }$, LT and work economy (C). Numerous published studies support this model (Pollock 1977, Farrell et al. 1979, Conley and Krahenbuhl 1980, Di Prampero et al. 1986, Bunc and Heller

1989, Hoff et al 2002). Thus, the model should serve as a useful framework for comprehensive examination of C and the relevance on endurance performance.

Maximal oxygen uptake

$\mathrm{VO}_{2 \text { max }}$ is probably the single most important factor determining success in an aerobic endurance sport (\AA strand and Rodal 1986, Saltin 1990). However, within the same person $\mathrm{VO}_{2 \text { max }}$ is specific to a given type of activity. Therefore, in order to obtain relevant values, emphasis is placed on testing in sport-specific or working specific activities (Strømme et al. 1977). Wagner $(1993,1996)$ has devised a numerical analysis interactively linking the lungs, circulation and muscles designed to compare the influences of each conductance component on $\mathrm{VO}_{2 \text { max }}$. The four conductances in question are alveolar ventilation (VE), cardiac output (Q), pulmonary diffusion capacity $\left(\mathrm{DLO}_{2}\right)$ and muscle diffusing capacity $\left(\mathrm{DMO}_{2}\right)$. Two other independent transport variables considered are haemoglobin concentration $([\mathrm{Hb}])$ and the fraction of inspired $\mathrm{O}_{2}\left(\mathrm{FIO}_{2}\right)$. At maximal exercise, the majority of evidence points to a $\mathrm{VO}_{2 \text { max }}$ that is limited by O_{2} supply, and Q is just as influential as [Hb], DLO_{2} and DMO_{2} together (Powers et al. 1989, Wagner 1991, Roca et al. 1992, Knight et al. 1993, Wagner 1996, Richardson et al. 1999). Andersen and Saltin (1985) have shown that skeletal muscle has an ability to consume O_{2} that vastly exceeds the circulatory systems ability to supply O_{2}. This is supported by training interventions aiming to increase Q. Helgerud et al. (2007) have shown that aerobic high-intensity intervals improve $\mathrm{VO}_{2 \max }$ and Q more than moderate training. For several groups of patients however, mainly where the disease affects work capacity, a demand limitation is proposed (Wang et al 2008).

Lactate threshold

The LT was defined by Davis (1985) as the intensity of work or VO_{2} where the blood lactate concentration gradually starts to increase during continuous exercise. The $\left[1 a^{-}\right]_{\mathrm{b}}$ represents a balance between lactate production and removal, and there are individual patterns in this kinetics (Brooks 1986). Lactate is not wasted. Without any loss of energy, the process of pyruvate transformation to lactate can be reversed. Pyruvate can thus be oxidized or to a lesser extent be a substrate for synthesis of glucose and glycogen. Both the resting and sub maximally working skeletal muscle, as well as heart muscle and kidney cortex can use lactate as a substrate (Åstrand and Rodal 1986). The relationship between LT expressed as percentage of $\mathrm{VO}_{2 \max }$ and aerobic performance capacity is, however debated. It is argued that for durations of work up to approximately 30 minutes a person's ability to utilize a high percentage of $\mathrm{VO}_{2 \text { max }}$ over an extended period of time is first and foremost a function of time
(Leger 1986, Coetzer et al. 1993). If one person shows better fractional utilization than another person, it is because he covers a given distance in a shorter time, and can therefore work at a higher relative intensity. When some authors try to express LT as work load (Yoshida et al. 1987, Nicholson and Sleivert 2001), it correlates well with performance. Performance at LT depends on both $\mathrm{VO}_{2 \max }$ and C. A correct expression of LT is a $\%$ of $\mathrm{VO}_{2 \max }$, and then the adaptability seems to be minor (Bangsbo 1994, Helgerud et al 2001, Helgerud et al 2007).

Work economy and work efficiency

C is referred to as the oxygen cost of a standardised aerobic workload. C_{R} or C_{C} is commonly defined as the steady state VO_{2} in $\mathrm{ml} \cdot \mathrm{kg}^{-1} \cdot \mathrm{~min}^{-1}$ at a standard velocity or brake power (Conley and Krahenbuhl 1980, Costill et al. 1973, Foss and Hallen 2004). C_{R} is also commonly defined as energy cost of running per metre ($\mathrm{ml} \cdot \mathrm{kg}^{-1} \cdot \mathrm{~m}^{-1}$), (Di Prampero et al. 1986, Helgerud 1994, Helgerud et al. 2001). Conley and Krahenbuhl (1980) and Helgerud (1994) have shown inter-individual variations in C_{R} at a standard running velocity.

WE is typically defined as the relationship between mechanical work performed and the chemical energy spent in performing it (McMahon 1984, Pate and Kriska 1984, Kent 1994), which is the ratio between work output and C (\AA strand and Rodahl 1986, Hoff et al 2005). According to Margaria (1976), the maximum efficiency with which a muscle may transfer chemical energy into mechanical work during walking or running, is about 25%. To accurately measure the total work output during walking or running is, however a difficult task (Pate and Kriska 1984), at least on level ground. If mechanical work in walking or running is calculated from the product of BW and the net change of the centre of mass per step cycle divided by the time spent in completing this cycle, on level ground the mechanical work should be zero (McMahon 1984) and thus not useful to measure. When mechanical work in walking or running is calculated by use of the equation for kinetic energy Work $=\frac{1}{2} m v^{2}$ (equ. 1), where m is the body mass, and v is the velocity at which the runner or walker moves, and corrected for the gyration of the limbs around its centre of mass, Cavagna and Kaneko (1977) have found WE to increase steadily with increased running speed. Maximal muscular efficiency values well above the 25% described by Margaria (1976) are shown by Cavagna and Kaneko (1977). They suggest that this is due to passive recoil of
muscle elastic elements. Because of the complexity of calculating mechanical work in walking and running (Pate and Kriska 1984), it is thus more common to measure C in these activities. In cycling, however the force applied in the braking of the flywheel, the circumference of the wheel, and the velocity with which the wheel is turning, makes it easy to compute the external power output.

WE is thus easily calculated on cycle ergometer (Mogensen et al 2006):

$$
W E=\frac{\text { WorkRate }}{\text { EnergyExpenditure }- \text { BasalEnergyMetabolism }} \text { (equ. 2). }
$$

Factors influencing running and cycling economy

Walking or running mammals, such as humans are very inefficient with regards to the energetic cost of moving (Tucker 1975, Margaria 1976). During walking and running, a recruited muscle both shortens and lengthens in cycles. As it shortens, it does mechanical work, but as it lengthens, mechanical work is done on it (Tucker 1975). According to Tucker (1975) there are two main reasons why human locomotion is inefficient. First, as a muscle is stretched, it consumes extra metabolic energy at the same time as it is absorbing work. Second, as pointed out in Cavanagh et al (1964) about half of the work done by stretching a muscle is converted into heat, while the rest is stored in elastic elements. C_{R} could thus be represented by the equation presented in Alexander (1984):
$\mathrm{C}_{\mathrm{R}}=\frac{0.5 f E}{\eta}$ (equ. 3) where 0.5 is the approximate amount of energy from braking forces that is not stored in elastic elements, f is the step frequency, E is the potential kinetic and gravitational energy at each step, and η is the efficiency of muscle action, approximately 0.2 , as suggested by Alexander (1980). There will be three major ways to improve C_{R}. One is by decreasing the braking forces that causes stretching of muscle-tendon units i.e. by decreasing vertical movement of the center of mass. All braking forces can, however, not be prevented in running. Because of gravity, the center of mass must to some extent be sent upwards (as a result of a stem) as it will gradually fall down when it is not supported by the legs. To minimize vertical movement of the center of mass will therefore lead to an increase in step frequency (f). A second way to improve C_{R} is to increase the amount of energy from the braking forces that can be stored in elastic elements in muscle-tendon units i.e. elastic recoil. A third way in which C_{R} may be improved is by increasing muscular efficiency.

In cycling, vertical movement of the center of mass is minimal, unless riding uphill. The braking forces are first and foremost represented by the resistance to the cyclist and bicycle moving forward, and transferred to the pedals. The resistance to the cyclist moving forward is represented by the resistance to the rolling tyres, air resistance and gravitational energy if riding up hill. On an ergometer, the resistance is represented by the artificial braking of the flywheel and transferred to the pedals. A modified version of the equation for C_{R} presented in Alexander (1984), and applied to C_{C} can thus be $\mathrm{C}_{\mathrm{C}}=\frac{f P_{\mathrm{R}}}{\eta}$ (equ.4) where f is the pedaling frequency (cadence), P_{R} is pedaling resistance at each round, and η is the efficiency of muscle action, still approximately 0.2 , as suggested by Alexander (1980). According to Faria (1992), air resistance is by far the greatest retarding force affecting cycling. Consequently, the aerodynamics should be a major factor influencing C_{C}. At speeds above $30 \mathrm{~km} \cdot \mathrm{~h}^{-1}$, air resistance account for more than 90% of the total resistance the cyclist encounter. However, air resistance will not contribute to pedaling resistance on an ergometer cycle in a laboratory. At a given power, pedaling resistance will then be directly influenced by the pedaling frequency. One way to improve C_{C} on an ergometer cycle is thus to choose the optimal cadence related to the power output. A second way is by increasing muscular efficiency.

Muscular efficiency

Strength, Power and Rate of Force Development

Strength is defined as the maximal force a muscle or muscle group can generate (Komi, 1992). Power is work (which is the product of force and work distance) divided by time. Power is thus the rate of doing work, and is measured in watts (\AA strand and Rodahl, 1986). RFD is closely related to power. It is defined as the rate at which a force is developed (Kent 1994). If the force itself and the time to reach this force, or the time in which this force is acting is measured, RFD is measured as Ns^{-1}. If, in a dynamic action, the distance of a movement in which force is measured is taken in to account, RFD can be measured as Nms^{-1}. The latter is the same as watts, and in this case RFD is the same as power.

The importance of strength and power in long distance running or cycling would intuitively seem small. Each step would in average only account for a small percentage of the maximum force production possible in the involved muscle groups. In the final sprint toward the finish line, high power production may be of some importance, as is shown in shorter running
distances and in soccer. Wisløff et al (2004) demonstrated a strong positive correlation between 1RM half-squat strength and sprinting and running performance among soccer players. No studies have shown correlation between maximal strength and C, but several studies have shown strong correlations between training induced improvements in maximal strength and C (Johnston et al. 1997, Paavolainen et al. 1999, Hoff et al 1999, Hoff et al 2002, Millet et al. 2002, Østerås et al., 2002, Hoff and Helgerud 2003, McMillan et al 2005, Hoff et al 2005, Loveless et al 2005).

Running or cycling velocity

In 1963, Margaria et al. reported that when energy expenditure is given as functions of running speed, the functions appear to be straight lines given net aerobic conditions. They argue that since the extrapolations of these lines cross the ordinate very close to the rest metabolism, the net energy consumption per distance covered is independent of speed. Helgerud (1994) and Slavin et al (1993) reports no change in C_{R} with increasing running velocities, whereas Hoff and Helgerud (2003) and Harris et al. (2003) reports slightly decreasing C_{R} with increasing running velocities, as is reported by Loveless et al (2005) in C_{C} with increasing work intensity. Theoretically, if the intensity of work is high enough and at least above LT, measures over a relative short amount of time (i.e. 5 minutes) could show an improvement in C_{R} with increasing speed. This is because the relative amount of energy released aerobically decreases while the relative amount of energy released anaerobically increases. On the other hand, a deterioration of C_{R} with increasing speed is observed. Hunter and Smith (2007) found deterioration in C_{R} (approximately 3\%) at the end of a one hour running session at a speed close to maximal effort among 16 experienced distance runners. Also, Collins et al (2000) have found deteriorated C_{R} (approximately 5\%) after an intense interval session and Thomas et al (1995) report of deterioration in C_{R} (approximately 5\%) during a submaximal but intense $5-\mathrm{km}$ running session.

Ventilatory demands

VO_{2} is measured as a product of the difference between inspired $\mathrm{O}_{2}\left(\mathrm{FIO}_{2}\right)$ and expired O_{2} $\left(\mathrm{FEO}_{2}\right)$ and the total pulmonary ventilation (VE) (Åstrand and Rodahl 1986). As the difference $\mathrm{FIO}_{2}-\mathrm{FEO}_{2}$ represents the arterio-venous oxygen difference ($\mathrm{A}-\mathrm{V} \mathrm{O}_{2}$-difference) (Åstrand and Rodahl 1986), a lower VE at a standard work or velocity should thus be a result of either one or two of the following causes: One; the total aerobic demand for performing the
work has been lowered, Two; an increase in the $\mathrm{A}-\mathrm{V} \mathrm{O}_{2}$-difference. Improvements in any variable that may improve C will lower C_{R} and thus also VE , since VO_{2} is a product of the difference between FIO_{2} and FEO_{2} and VE. Arterial blood flow to exercising muscle occurs almost exclusively between muscle contractions (Shoemaker et al 1994). Mean transit time is found to positively correlate with A-V O 2_{2}-difference (Saltin, 1985). If, as a result of a decrease in skeletal muscle contraction time, the $\mathrm{A}-\mathrm{V} \mathrm{O}_{2}$-difference increases, both C_{R} and VE may theoretically decrease simultaneously. A high VE is energy demanding in itself. According to Aaron et al (1992) the relative oxygen cost of breathing increases from rest up to approximately 10% at an intensity corresponding to $\mathrm{VO}_{2 \max }$.

Franch et al (1998) found that VE decreased on average $11 \mathrm{~L} \cdot \mathrm{~min}^{-1}$ following intense interval training among male recreational runners. Since individual decrements in VE correlated with improvements in C_{R}, Franch et al (1998) suggest that these improvements may account for $25-70 \%$ of the improved C_{R}. It may however, be argued the opposite; that the improvement in C_{R} leads to the lower VE. Saunders et al (2004) found no such relation between VE and C_{R}. In the study by Saunders et al (2004), elite distance runners improved their C_{R} by 3.3% after 20 days of simulated moderate altitude exposure, but with no detectable changes in VE

Muscle fiber type distribution

Both Coyle et al (1992) and Mogensen et al (2006) have reported a close relationship between muscle fibre type I and cycling efficiency. Coyle et al (1992) found that the percentage of type I fibres in m.vastus lateralis, correlated positively with cycling efficiency.

Contact time

Nummela et al. (2007) have shown a strong negative correlation between contact time (CT) and C_{R} among young runners. Further, in a study by Paavolainen et al. (1999), it is indicated that better performance in a 10 km time trial is related to higher pre-activation of the working muscles accompanied with shorter CTs during the run. However, both Williams and Cavanagh (1987) and Kyrolainen et al (2001) have found no correlation between CT and C_{R}.

Braking forces

Vertical and horizontal forces in running

Heglund and Taylor (1988) have found C_{R} among different sized animals to be determined primarily by the cost of activating muscles and of generating a unit of force for a unit of time. It is hypothesized by Taylor (1985) that RFD during locomotion, rather than the mechanical work that the muscles perform determines C_{R}. Farley and McMahon (1992) and Kram and Taylor (1990) have found C_{R} to be proportional to the weight supported, i.e. directly dependent on the vertical forces. However, by increasing and decreasing horizontal resistance during treadmill running, Chang and Kram (1999) have found horizontal forces to constitute more than 33% of the total metabolic cost of horizontal running. When running on track, Kyrolainen et al (2001) actually found that the average horizontal forces in the braking phase of the step could explain over 80% of C_{R}.

Elastic storage of energy

C_{R} is of course a reflection of the runner's technique, which in turn is greatly influenced by biomechanical and neuro-muscular recruitment patterns (McMahon 1984, Williams and Cavanagh 1987). It has been estimated that the achilles tendon can store 35% of the kinetic and potential energy in a step at moderate running speeds, and when the speed increases, elastic storage and reutilization of energy seems to become increasingly important (Ker et al. 1987).

Muscle - tendon stiffness

According to Alexander (1991), one of the most important roles of the muscle is to modulate tendon stiffness to enhance exploitation of elastic energy. A tight muscle-tendon system and consequently a high degree of stiffness may thus be advantageous regarding C_{R}, as shown in kangaroos by Dawson and Taylor (1973) and in humans after plyometric training (Spurrs et al 2003). This is supported by the findings from Jones (2002) and Craib et al. (1996) that runners who were the least flexible in the lower limbs also had the best C_{R}. Yoon et al (2007) have found a negative correlation between ankle joint torque at midpoint and CT in rebound jumps. They also found the ankle joint torque to correlate positively with ankle joint stiffness. Arampatzis et al. (2006) investigated the influence of muscle-tendon unit's mechanical and morphological properties on C_{R} among runners at three different levels of C_{R}. They found that
the patellar tendon among the more economical runners was more compliant at low force levels, and that the triceps surae had higher contractile strength, with greater tendon stiffness. However, Lichtwark and Wilson (2007) have demonstrated a model predicting an optimal degree of muscle-tendon stiffness, suggesting that optimal muscle-tendon stiffness may be gait or task dependent and that the highest degree of stiffness thus does not necessarily lead to better muscle efficiency. Also, Kerdok et al. (2002) have shown changes in both muscletendon stiffness and C_{R} when manipulating the stiffness of running surface. Kerdok et al. (2002) are thus indicating that human runners adjust the level of muscle tendon stiffness towards the most optimal degree, to maintain consistent support mechanics on different surfaces.

Frequency of movement cycle

Step frequency in running and cadence in cycling

Testing different sized animals and scaling for body mass, Heglund and Taylor (1988) have shown that mass specific energetic cost of trotting and galloping is almost directly proportional to the stride frequency used to sustain a constant speed. According to Cavanagh and Williams (1982), most runners naturally choose a stride frequency which minimizes metabolic cost. In a study by Hunter and Smith (2007), the self optimized stride frequency among 16 experienced runners, which was both the self-selected one and the one expressing the best C_{R}, averaged 87 steps per minute. If most runners naturally choose a stride frequency which minimizes metabolic cost, there should not be a significant relationship between stride frequency and C_{R}. This is in line with Kyrolainen et al. (2001) who did not find significant correlations between stride frequency and C_{R}. In cycling, however, it is argued that the self selected cadence may be too high to optimize C_{C} (Chavarren and Calbet 1999, Foss and Hallen 2004). According to Lucia et al (2001), the preferred cadence among professional cyclists during competitions range from approximately 90 RPM to approximately 105 RPM in relatively flat courses. In contrast, it is reported that optimal cadence with regard to C_{C} is significantly lower than this, but increasing with increasing workload. Chavarren and Calbet (1999) have found the most economic cadence to be 60 RPM at several different work intensities ranging from 54% to 93% of MAP among competitive road cyclists. Foss and Hallen (2004) found the most economical cadence to be 60 RPM at 50 W and 80 RPM at 275 and 350 W among road cyclists at a national level. Why professional cyclists choose higher cadence than the most economic ones is an open question. Previous laboratory studies
measuring C_{C} had prior to the study by Foss and Hallen (2004) been carried out during short time (3-8 min) submaximal or maximal work stages. Foss and Hallen thus hypotised that elite cyclists would perform best at their most efficient cadence during prolonged time trial cycling (approximately 30 min). They found that the time results at freely chosen cadence (mean 90 RPM) were similar to those attained at the most efficient cadence (80 RPM). Marsh and Martin (1997) have compared highly trained cyclists and runners and less-trained non-cyclists regarding power output on preferred and most economical cycling cadences. They concluded that cycling experience and minimization of aerobic demand were not critical determinants of preferred cadence. This finding was supported by the results from Hansen and Ohnstad (2008), that freely chosen cadence was unaffected by increased loading on the cardiopulmonary system and was steady and individual over a 12 weeks period. Hansen and Ohnstad (2008) concluded that freely chosen cadence is primarily a robust innate voluntary motor rhythm, minimally affected by internal and external conditions.

Leg swing in running and cycling

A rather controversial aspect concerning C_{R} is that of the metabolic cost of leg swing. Modica and Kram (2005) have shown that the cost of initiating and propagating leg swing comprises approximately 20% of net C_{R}, by using an external swing assist. In cycling, measures of unloaded cycling made by Tokui and Hirakoba (2007) have shown an internal power output ranging from approximately 3 W (at 40 RPM) to approximately 90 W (at 120 RPM). The Cc of unloaded cycling in this study ranged from approximately $0.6 \mathrm{~L} \cdot \mathrm{~min}^{-1}$ (at 40 RPM) to 1.6 $\mathrm{L} \cdot \mathrm{min}^{-1}$ (at 120 RPM). They also found cycling efficiency to be best at a cadence of 80 RPM, with a marked reduction of efficiency (19\%) from 80 to 120 RPM. They speculate that the reduced efficiency at 120 RPM is due to higher levels of internal power output accompanying the higher cadence. Based on the studies by Modica and Kram (2005) and Tokui and Hirakoba (2007), it seems that the movements of limbs alone may contribute to a significant part of the net metabolic cost of running or cycling, and that the higher the frequency, the higher the cost. Is it the limb-moving frequency per se (i.e. activation-relaxation rate) that increases the cost of movement, or is it the muscle shortening velocity that naturally accompanies the frequencies? This problem has been addressed in bicycling by McDaniel et al (2002), whose results suggest that it is the muscle-shortening velocity and not the activation-relaxation rate that significantly contributes to the net metabolic cost.

Other factors interacting as determinants for running and cycling economy

Anthropometric factors

Anderson (1996) lists a number of anthropometric factors that could have a positive effect on C_{R}. These includes lower than average height for men, low percentage of body fat, leg morphology which distributes mass closer to the hip joint, and narrow pelvis. An inverse correlation between calf circumference and C_{R} is shown by Lucia et al (2006). Williams and Cavanagh (1987) have found elite female runners to have narrower pelvis than a female student population of the same age. Steudel-Numbers et al. (2007) have shown an inverse correlation between relative leg length and C_{R}, and Bunc (2000) reports of worse C_{R} expressed as $\mathrm{J} \cdot \mathrm{Kg}^{-1} \cdot \mathrm{~m}^{-1}$ with higher percentage body fat among non-trained females. Little is reported regarding anthropometric factors and C_{C}. Cyclists at an international level seems to be more heterogeneous in body dimensions than long distance runners at the same performance level. According to Mujika and Padilla (2001), male professional road cyclists represent variable anthropometric values. Although Faria (1992), count air resistance as the greatest retarding force affecting cycling, and thus state that the aerodynamics should be a major factor influencing C_{C}, anthropometric factors seem to be much less important regarding air resistance than are posture and equipment.

Gender

Helgerud (1994) has reported a better C_{R} at velocities equal to LT among female intermediate national elite marathon runners than in their performance-matched male counterparts when expressing C_{R} per kg body weight raised to the power of 0.75 and metre. This is seemingly not in line with results from Daniels and Daniels (1992) who reported male runners to be 6 7% more economical than women of equal $\mathrm{VO}_{2 \max }$ at set velocities, or with the results from Bunc and Heller (1989), who found no significant differences in C_{R} between the sexes. However, the results from Daniels and Daniels (1992) and Bunc and Heller (1989) are expressed per kg body mass. As females in general differ from the general male in a lower total body mass and a higher percentage of fat (Marieb and Hoehn 2007), it is important to scale for body mass when comparing genders. In cycling, Yasuda et al (2008) reports no gender-specific differences in mechanical efficiency during leg-cycling at intensity relative to ventilatory threshold. But according to Weber and Schneider (2000) there may be a gender
specific difference in aerobic and anaerobic efficiency, as they have shown untrained women to have a lower maximal accumulated oxygen deficit than untrained men after all out cycling, even when corrected for active muscle mass. To our knowledge, gender specific difference has not been reported in cycling economy.

Variations in Cost of running, Cost of cycling and efficiency

Inter individual variability in C_{R} is reported by di Prampero et al. (1986) to be 8%, if C_{R} is expressed per kg body mass. This is in accordance with results from Margaria et al (1963), who found experienced runners to spend 5-7\% less energy (measured as kcal per kg body weight per hour) compared to nonathletes when running at given velocities. When the heterogeneity of a tested variable within a group of subjects increases, so does the interindividual variability concerning this variable. Thus, Morgan et al (1995) found a withingroup variation of 20% in C_{R} in four different groups of runners, showing that the elite runners had a better C_{R} than the subelite runners, who in turn had a better C_{R} than the good runners, and that the good runners had better C_{R} than the untrained subjects. Although there is reported relatively large inter individual variability among runners regarding C_{R}, this variability may not be equally apparent in cycling. To compare the variability in running and cycling is somewhat difficult because of the practice of using economy measurements in running and efficiency measurements in cycling. Moseley et al (2004) report no differences in C_{C} between world-class and recreational cyclists. On the other hand, gross mechanical efficiency has been found to be 1.4% higher in trained cyclists than in untrained cyclists by Hopker et al (2007). This is seemingly a smaller difference than what has been shown in C_{R} between trained and untrained runners (Margaria et al 1963, Morgan et al 1995). Since the difference in C_{C} is expressed as a per cent of a per cent (the latter being approximately 22%), the 1.4% difference reported by Hopker et al (2007) is in reality approximately $1.4 \cdot(100 / 22)$ $\%=6.4 \%$, and thus in line with what is reported in running. As C does not increase in the same proportion as body weight, part of the variation in C_{R} in published experiments will be due to weight differences. Allometric scaling seems to reveal smaller inter-individual differences in C_{R}. Helgerud (1994) typically show SD's of approximately 5% between marathon runners when expressing C_{R} as oxygen cost per kg bodyweight raised to the power of 0.75 and metre. The variation in C_{R} between soccer players are also shown to be relatively small. Hoff et al. (2005) testing 36 professional players showed CV to be less than 5%. This is
in line with the results from Helgerud et al. (2001), Helgerud et al. (2003) and Hoff and Helgerud (2003)

Training induced changes in Cost of running and Cost of cycling

Adaptations to endurance training

In a controlled intervention study by Helgerud et al. (2001), an improvement of 6.7% in C_{R} among junior soccer players after eight weeks of interval running training, is reported. A 3.7% improvement is shown from a similar intervention in a soccer Champions League team where the training mode was treadmill running (Helgerud et al. 2003). Both interventions were followed by an improvement in $\mathrm{VO}_{2 \max }$ of approximately 10%. The C_{R} improvement is in accordance with results from Billat et al. (2002). They found improved C_{R} expressed as time to exhaustion at running velocities representing 90% and $95 \% \mathrm{VO}_{2 \max }$ after four weeks of interval training at MAS. This may indicate that high intensity interval training may increase race specific C_{R} among athletes competing at velocities representing approximately the runners $\mathrm{VO}_{2 \text { max }}(3000 \mathrm{~m}$ and 5000 m$)$.

As C_{R} is an expression of running technique it should be an obvious consequence from increasing the volume of running that running technique is improved. This is elegantly shown in McMillan et al. (2005) where soccer players used the same intervention with high intensity aerobic interval training as used by Helgerud et al $(2001,2003)$, this time only with the difference that the endurance training intervention was running with the soccer ball in a track including changes in direction and pace. The results from this intervention showed the same 10% improvement in $\mathrm{VO}_{2 \max }$, but no change in running economy measured on the treadmill. For inexperienced runners an improvement in C_{R} from increased amounts of running or walking should be expected. The same should thus apply to cycling efficiency. This is shown in an intervention study by Hintzy et al (2005) where nine previously sedentary women improved gross efficiency by 11% after 6 weeks of low intensity cycling endurance training. Competitive runners would probably not improve C_{R} much from increased volume of running, as it already constitutes almost all of their training. However Scrimgeour et al. (1986) found C_{R} to correlate highly with weekly running distance among marathon and ultra marathon runners. At $13 \mathrm{~km} \cdot \mathrm{~h}^{-1}$ the athletes running more than 100 km per week exhibited more than 15% better C_{R} than those running less than 60 km per week. Of course as the study by Scrimgeour et al (1986) is not an intervention, one can not conclude that it is the higher
amount of km covered per week that leads to the better C_{R}. It may be that the better C_{R} leads to the higher weekly training distance. A person with 15% lower cost of running will spend 15% less energy by covering a given distance, and should thus be able to run longer.

Adaptations to strength training

All strength training performed over an extended period of time will lead to some hypertrophy (Kraemer and Ratamess 2004). The amount of hypertrophy will depend on several factors. Two important determining factors seem to be type of strength training and muscle fibre type distribution (Kraemer and Ratamess 2004). Traditional hypertrophy training consisting of 5 12 repetitions maximum involves contractile protein damage and connective tissue damage as well as metabolic stress. Studies indicate greatest hypertrophic response when the maximum number of repetitions per set exceeds 5 but are below 12 (Atha 1981, Tesch 1988, Campos 2002). The hypertrophic response is most likely due to an increase in myofibril crosssectional area (Goldspink 1992).

Neural adaptations to strength training includes both selective activation of motor units, increased recruitments of motor units, increase of motor unit discharge rate, motor unit synchronization and co-contraction regulation of antagonists (Behm 1995). These neural adaptations have in common an increased ability of activation and regulation of motor unit signals as a result of external and to some extent internal demands (Kraemer and Ratamess 2004, Gandevia 2001). Based on the classic force-velocity curve of Hill (1938), it has been debated whether or not neural adaptations are subject to velocity specific strength training. While several authors (Coyle et al 1981, Kanehisa and Miyashita 1983, Kaneko et al 1983) have reported high velocity strength training to increase high velocity strength more than low velocity training, Behm and Sale (1993) have demonstrated that intent of high velocity in strength training produces almost the same high velocity strength response. As discussed in Hoff (2001), the recruitment pattern, rather than the actual movement velocity seem to be the crucial factor for the neural adaptations associated with strength training. This is also elegantly shown in the study by Hoff and Helgerud (2003). MST with high loads and focus on maximal mobilization in the concentric phase in a group of soccer players showed an increase in RFD of 52.3 \%. Strength training has also been reported to increase muscle - tendon stiffness (Kerdok et al. 2002), and tendon cross-sectional area (Kongsgaard et al. 2005). Hypertrophy leading to a significant increase in muscle physiological cross-sectional area will cause an increase in total body weight (Kraemer and Ratamess 2004). This weight gain may
prove negative on an athletes running performance, since the athlete has to transport and support his own body weight while running. Also in cycling weight gain may prove negative on performance, at least when climbing hills. When MST is performed with high loads, few repetitions and with focus of maximal concentric mobilization, improvements in maximal strength have been reported without any changes in body weight (Hoff et al., 1999, Hoff et al., 2002, Østerås et al., 2002, Hoff and Helgerud 2003, Hoff et al. 2005, McMillan et al. 2005).

MST performed without concurrent endurance training has previously been reported to impair aerobic endurance performance. According to Tanaka \& Swensen (1998), training of MST without concurrent endurance training will reduce relative mitochondrial density, capillary density, oxidative enzyme activity, and intramuscular fatty acid storage. Gettman \& Pollock (1981) found that MST performed over eight to nine weeks resulted in a 0.5 to 9.0% decrease in $\mathrm{VO}_{2 \text { max }}$ among their subjects. It is likely that the reduced densities are only relative, due to muscular hypertrophy from MST. The reduced performance could also by large be due to reduced volume of endurance training. On the other hand, intense endurance training without concurrent MST seems to impair the capacity to perform maximal power output. Dudley and Fleck (1987) have shown reduced vertical jump height after an increased amount of endurance training, and also increased vertical jump height when the amount of endurance training is reduced. Performed as a minor part of the total training volume, and when combined with endurance training, MST does not seem to impair the development of $\mathrm{VO}_{2 \text { max }}$. When comparing three different training groups, one training only MST, one only endurance training, and one a combination of the former two, Dudley \& Fleck (1987), found no significant differences in $\mathrm{VO}_{2 \text { max }}$ improvements between the endurance group and the combination group. This is in accordance with results from McCarthy et al. (1995), who performed a similar study. Several studies have reported improved work economy after MST as a supplement to endurance training, especially when employing strength training designed to enhance strength through neuromuscular adaptations rather than hypertrophy (Hoff and Almåsbakk 1995, Hoff et al. 2002). C at a standardised workload in double poling crosscountry skiing improved by $10-20 \%$ after MST using a modified pull-down apparatus in three separate experiments (Hoff et al., 1999, Hoff et al., 2002, Østerås et al., 2002). Hoff et al. (1999) points at the relative reduction in force and high improvement in rate of force development and thus reduced contraction time as a determining factor for improved circulation. Østerås et al. (2002) conclude that the improved exercise economy can be partly
explained by a specific change in the force-velocity relationship and the mechanical power output. Regarding running economy Hoff and Helgerud (2003) have demonstrated an improvement in C_{R} among soccer players by 4.7%, expressed as $\mathrm{ml} \cdot \mathrm{kg}^{-0.75} \cdot \mathrm{~m}^{-1}$, after eight weeks of MST. McMillan et al. (2005) using the same intervention have found similar improvements. A strength training intervention using the same intervention with experienced distance runners competing in orienteering and cross-country skiing was carried out by Hoff et al. (2005), and have shown a 5% improvement in C_{R} when running at 10% inclination and an 8% improvement in C_{R} when running at 20% inclination, indicating that relative load is an important factor for running economy. Paavolainen et al. (1999) also claim that strength training changes running economy, but both increased body weight, multiple interventions and increased running that also improves $\mathrm{VO}_{2 \text { max }}$ makes it problematic to detect the cause and relationship. In a study by Hansen et al (2007), 14 non-cyclists performed strength training 4 days per week for 12 weeks. They report a 20% improvement in 1 RM squats, accompanied by a decrease in cadence of 8 RPM at a cycling intensity of 37% of $\mathrm{VO}_{2 \max }$, and a 3% improvement in C_{C} at the same intensity. Marcinik et al (1991) reported improvements in cycling in LT brake power and time to exhaustion at 75% of MAP after 12 weeks of strength training, indicating an improvement in C_{C}.

MST as a supplement to endurance training is shown to improve C_{R}. However, no studies have shown that the subjects with the highest $1 R M$ results have the best C_{R}. The question thus arise: what are the mechanisms behind the shown improvements in C_{R} ? Theoretically, both an increase in RFD (Hoff and Helgerud, 2003), a more optimal activation of motoneurons and muscle fibers (Gandevia 2001), an optimizing of muscle-tendon stiffness (Kerdok et al, 2002) and pre-activation of working muscles (Paavolainen et al, 1999), a shorter contact time (CT) (Nummela et al. 2007) as a result of MST may improve C_{R}, possibly together with other factors. Central changes affecting muscle activation may occur both at a supraspinal as well as at a spinal level (Gandevia 2001). Further investigations regarding these variables are needed to gain a more thorough understanding of the effects of MST on C_{R}.

Rationale and aims of the experiments

Long distance running and cycling are activities where energy released aerobically is predominantly determining the performance (Åstrand and Rodal 1986; Medbø and Tabata 1989). Running or cycling economy is considered one of the three major factors accounting for inter-individual variance in aerobic endurance performance (Pate and Kriska 1984). The main aim of this thesis is to gain further knowledge about long distance running and cycling economy measured as the oxygen cost of running and cycling (C_{R} and C_{C}) by investigating:

- Determining factors for C_{R} (study IV).
- The reliability of an incremental test protocol for calculating C_{R} at different velocities and intensity levels (study II).
- The intensity levels to which C_{R} is reliably calculated (study II).
- The influence of lactic acid concentrations on C_{R} (study I).
- The effect of maximal strength training on C_{R} and C_{C} (studies III and V)

And further, to calculate from the results in the five studies:

- The relative importance of C_{R} and C_{C} on aerobic endurance performance
- Possible gender differences in C_{R}

Paper I:

Lactic acid accumulation is associated with development of muscle fatigue during exercise (Fitts 1994), and is thus considered to be negatively correlated to endurance performance (Åstrand and Rodahl 1986, Pilegaard et al 1999). As C_{R} deterioration seems to be related both to an increasing intensity and an increasing duration (Sproule 1998), the main aim of study I is to investigate if increased lactate levels influence C_{R} during endurance running.

Paper II:

C_{R} is often measured as the oxygen cost per meter of running. Helgerud (1994) and Slavin et al (1993) reports no change in C_{R} with increasing running velocities, whereas Hoff and Helgerud (2003) and Harris et al. (2003) reports slightly impaired C_{R} with increasing running velocities. If C_{R} is to deteriorate with increasing intensity and $\left[\mathrm{La}^{-}\right]_{b}$, there should be an upper
limit regarding intensity up to which C_{R} is a reliable measure of running economy. The main aim of study II is to find this limit, and further to evaluate the reliability of an incremental protocol for assessing C_{R}. Since Helgerud (1994) has shown that female marathon runners have better C_{R} than their performance matched male counterparts, a secondary aim in study II is to investigate potential differences between genders in C_{R}.

Paper III:

In both cross-country skiing (Hoff et al., 1999, Hoff et al., 2002, Østerås et al., 2002), soccer, (Hoff and Helgerud 2003, McMillan et al. 2005), and uphill running (Hoff et al. 2005), MST has been shown to improve C_{R}. Also in distance running, C_{R} is improved as a result of MST (Millet et al. 2002, Paavolainen et al. 1999, Johnston et al. 1997). But neither Millet et al. (2002), Johnston et al. (1997) nor Paavolainen et al. (1999) have scaled for body weight when reporting the C_{R} results. In these three studies several different strength training or ballistic exercises were used, which makes it difficult to identify the cause of improvements. In study III the main aim is to investigate if MST improves C_{R} for well trained runners when running at 1.5% inclinations. A secondary aim in study III is to investigate if MST has an effect on ${ }_{\mathrm{t}} \mathrm{MAS}$.

Paper IV:

Conley and Krahenbuhl (1980) and Helgerud (1994) have shown inter-individual variations in C_{R} at a standard running velocity. The causes of this variability are not well understood, but it seems likely that anatomical traits, mechanical skill, neuromuscular skill and storage of elastic energy are important factors (Pate and Kriska 1984). Also, MST interventions have improved C_{R} (Hoff and Helgerud 2003, McMillan et al. 2005, Hoff et al. 2005, Millet et al. 2002, Paavolainen et al. 1999, Johnston et al. 1997). The purpose of study IV is to identify possible causes of inter-individual variations in C_{R}, and also to possibly identify some of the factors involved when MST affects C_{R}. Thus, the aim of this study is to detect possible relationships between anthropometrical measures, vertical and horizontal ground reaction forces, stride frequency, maximal strength in lower extremities, $C T$ and C_{R} among elite endurance athletes.

Paper V:

No studies have shown correlations between maximal strength and C_{C}, but several studies have shown strong correlations between training induced improvements in maximal strength and work economy (C). In cross country skiing (Hoff et al., 1999, Hoff et al., 2002, Østerås et
al., 2002), soccer, (Hoff and Helgerud 2003, McMillan et al. 2005), and uphill running (Hoff et al. 2005), MST has been shown to improve C in only eight weeks. Likewise, Millet et al. (2002), Paavolainen et al. (1999) Johnston et al. (1997) have found improvements in C_{R} after MST interventions. Loveless et al (2005) have shown that maximal strength training improves C_{C} in previously untrained subjects. The aim of this study is thus to assess to what extent maximal strength training with emphasis on neural adaptations, as a supplement to endurance training, affect C_{C} and work efficiency (WE) among competitive road cyclists. A secondary aim in study v is to investigate if MST has an effect on ${ }_{\mathrm{t}}$ MAP.

Methods

Subjects

Subject characteristics are presented in table 1.

Table 1	Subject characteristics (N = 63)				
\mathbf{N}					
N	Study I	Study II	Study III	Study IV	Study V
(Interv. + control)	$7(7+0)$	$15(15+0)$	$17(8+9)$	$11(11+0)$	$13(8+5)$
Level	Elite	Moderately to well trained	Well trained	Elite	Well trained
Age in Years (Mean \pm SD)	23.0 ± 3.0	30.0 ± 9.2	28.6 ± 10.1	21.4 ± 3.9	32.9 ± 9.0
Gender (Males + Females)	$7+0$	$9+6$	$9+8$	$11+0$	$10+3$
Sport (N)	Orienteering (4) CC sking (3)	Dist. running (8) CC-country skiing (4) Triathlon (3)	Dist. running (17)	Dist. running (2) CC skiing (5)	Road Cycling (13)

N , number of subjects. Interv, intervention group. Control, control group. SD, standard deviation. CC skiing, cross - country skiing. Dist. Running, distance running.

Testing procedures

In studies II, III and V ergo-spiro-metrical data were collected using the metabolic test system, Sensor Medics Vmax Spectra (Sensor Medics 229, Yorba Linda, California, USA). Lactate measurements were performed using an Arcray Lactate Pro LT-1710 analyzer, venous whole blood (Arcray Inc. Kyoto, Japan) and heart rates were measured using Polar s610 heart rate monitors (Kempele, Finland). The treadmill used in studies II and III was a Woodway PPS 55sport (Waukesha, Germany), and the ergometer cycle used in study V was a Lode Corival 906900 (Lode, Groningen, Netherlands) modified at Department of Sport and Outdoor Life Studies, Telemark University College (Bø, Norway) to fit competitive cyclists.

Figure 1 Subject on the ergometer cycle, connected to the metabolic test system
Picture from study V. The subject has approved the use of the picture in this thesis. The ergometer cycle is a modified Lode Corival 906900. The metabolic test system is a Sensor Medics Vmax Spectra.

In studies I and IV ergo-spiro-metrical data were collected using the portable metabolic test system Cortex Metamax II (Cortex, Leipzig, Germany). Heart rate was measured using a Polar S410, (Kempele, Finland). The treadmill used in these two studies was a Technogym RunRace (Gambettola, Italy). Lactate measurements in study I were performed using an YSI 1500 Sports Lactate analyzer (whole blood) (Yellow Springs Instruments CO, USA).
The RFD data in study III and V were collected using the Muscle Lab system (Ergo test Technology, Langesund, Norway). Body fat was measured in study IV with a Lange skin calliper, (Beta Technology, Santa Cruz, CA, USA). Measurements of vertical forces in study IV were made by Pedar-X contact soles from (Novel, Munich, Germany). To measure horizontal forces in this study, the front of the treadmill was placed upon a force platform, Bioware (Kistler, Switzerland), with the rear end of the mill hanging freely in a special device designed for this purpose at the Department of Circulation and Imaging, Faculty of Medicine, Norwegian University of Science and Technology. CT and stride frequency were also measured using this system.

Assessment of $L T$ - In studies I, II and III, the subjects started at an individual warm-up velocity corresponding to approximately $60 \% \mathrm{VO}_{2 \max }$, which was maintained for either 5 or 10 minutes. Every five minutes from there on, the speed was increased by $1.5 \mathrm{~km} \cdot \mathrm{~h}^{-1}$. The protocol terminated at more than $1.5 \mathrm{~km} \cdot \mathrm{~h}^{-1}$ above the subjects' lactate threshold (LT). LT was defined as the warm up $\left[\mathrm{La}^{-}\right]_{\mathrm{b}}$ value (i.e. measured after the lowest velocity) +1.5
$\mathrm{mmol} \cdot \mathrm{L}^{-1}$. This is the protocol proposed by Helgerud et al. (1994). In study V, the subjects started at an individual warm-up intensity corresponding to approximately $40-50 \% \mathrm{VO}_{2 \text { max }}$, that is between 100 and 200W, which was maintained for either 5 or 10 minutes. Each of two subsequent five minute steps from there on, the brake power was increased by either 25 or 50W, after subjective evaluation. Every five minutes after the first two steps, the brake power was increased by 10 to 25 W , until the protocol terminated at more than 25 W above the subjects' LT , defined as the warm up $\left[\mathrm{La}^{-}\right]_{\mathrm{b}}$ value (i.e. measured after the lowest velocity) + $1.5 \mathrm{mmol} \cdot \mathrm{L}^{-1}$, as for running. Note that for the studies where Arcray Lactate Pro LT-1710 analyzer was used (studies II, III and V), $1.5 \mathrm{mmol} \cdot \mathrm{L}^{-1}$ equals $2.3 \mathrm{mmol} \cdot \mathrm{L}^{-1}$ as the Lactate Pro measures 40% higher values than the YSI.

Assessment of $\mathrm{VO}_{2 \text { max }}-\mathrm{VO}_{2 \max }$ was tested in all studies, by use of an incremental protocol. In studies I to IV, all subjects were running at 5% inclination throughout the test. In study V , the subjects used the same ergometer cycle as previously described, and cycled at a self-selected cadence. In all five studies, the subjects started at a velocity or intensity representing approximately their individual LT intensity level. Every 30 or 60 seconds, the speed or power was increased by 0.5 or $1.0 \mathrm{~km} \cdot \mathrm{~h}^{-1}$ or by 10 or 25 W , based on the subjective evaluation of the test leader. The test terminated at voluntary exhaustion by the subjects. $\mathrm{HR}\left(\geq 98 \% \mathrm{HR}_{\max }\right), \mathrm{R}$ (≥ 1.05) and $\left[\mathrm{La}^{-}\right]_{\mathrm{b}}\left(\geq 8.0 \mathrm{mmol} \cdot \mathrm{L}^{-1}\right)$ values, as well as a possible flattening of the VO_{2} curve, was used to evaluate if $\mathrm{VO}_{2 \max }$ was obtained. Measurements of VO_{2} values were made every 10 seconds when the Metamax II was used (studies I and IV) and every 20 seconds when the Vmax Spectra (studies II, III and V) was used. $\mathrm{VO}_{2 \max }$ was computed as the average of the three highest (Metamax II) or the two highest (Vmax Spectra) VO_{2} values at the end of the test.

Assessment of $C_{R}, \mathrm{C}_{\mathrm{C}}, M A S$ and $M A P-\mathrm{C}_{\mathrm{R}}$ or C_{C} at set velocities were calculated as the average of four (three with the Vmax Spectra) VO_{2} values between 3.30 min and 4.30 min , and divided by running velocity or brake power at each 5 min work in study II, III and V. In study I, C_{R} at set velocities was calculated as the average of four VO_{2} values between 4.00 min and 4.30 min , and divided by running velocity. At relative intensities such as 70% $\mathrm{VO}_{2 \text { max }}$ (study II, III and V); linear regressions between velocity or brake power and VO_{2} for each subject provided both the VO_{2} and the velocity or brake power values needed. By use of the linear regression equation, velocity or brake power at a certain per cent of $\mathrm{VO}_{2 \max }$ could
be calculated. An example is presented in figure 2. MAS was calculated on the basis of the submaximal measurements and $\mathrm{VO}_{2 \text { max }}$, and was defined as the velocity point where the horizontal line representing $\mathrm{VO}_{2 \max }$ meets the extrapolated linear regression representing the sub maximal VO_{2} measured in the LT assessment. MAP was calculated using the same method, only using brake power (W) instead of velocity. Further, in study I, the subjects were also tested for C_{R} at LT velocity with initial $\left[\mathrm{La}^{-}\right]_{\mathrm{b}}$ of either $3 \mathrm{mmol} \cdot \mathrm{L}^{-1}$ or $5 \mathrm{mmol} \cdot \mathrm{L}^{-1}$. After a $\mathrm{VO}_{2 \text { max }}$ test, four of the subjects in study I were randomly selected to run at a lower intensity in order to decrease $\left[\mathrm{La}^{-}\right]_{\mathrm{b}}$ values to target $3 \mathrm{mmol} \cdot \mathrm{L}^{-1}$. When reaching this target, they ran at LT velocity for 5 minutes with continuous registration of VO_{2} and HR . Thereafter, the speed was increased in order to increase $\left[\mathrm{La}^{-}\right]_{\mathrm{b}}$ values to target $5 \mathrm{mmol} \cdot \mathrm{L}^{-1}$. When reaching this target, they ran at LT velocity for 5 minutes with continuous registration of VO_{2} and HR . The same procedure was repeated for the three remaining subjects, but in the opposite order, i.e. starting with a $\left[\mathrm{La}^{-}\right]_{\mathrm{b}}$ value of $5 \mathrm{mmol} \cdot \mathrm{L}^{-1} . \mathrm{C}_{\mathrm{R}}$ was calculated from VO_{2} measures and running velocity as described above.

Figure 2 Linear regression between running velocity and VO_{2}.
The linear regression equation in figure 2 is: $\mathbf{y}=\mathbf{3 . 9 3 9 3} \mathbf{x}+\mathbf{2 . 7 9 6 3} \mathbf{R}=\mathbf{0 . 9 9 9 7} . \mathrm{VO}_{2 \max }$ for this runner is 69.2 $\mathrm{ml} \cdot \mathrm{kg}^{-1} \cdot \mathrm{~min}^{-1} .70 \% \mathrm{VO}_{2 \max }$ for this runner is $48.4 \mathrm{ml} \cdot \mathrm{kg}^{-1} \cdot \mathrm{~min}^{-1}$. From the equation, the corresponding velocity is $11.7 \mathrm{~km} \cdot \mathrm{~h}^{-1}$, which equals $195 \mathrm{~m} \cdot \mathrm{~min}^{-1} . \mathrm{C}_{\mathrm{R}}$ expressed as $\mathrm{ml} \cdot \mathrm{kg}^{-1} \cdot \mathrm{~m}^{-1}$ is thus $0.284 \mathrm{ml} \cdot \mathrm{kg}^{-1} \cdot \mathrm{~m}^{-1}$. MAS is the velocity point where the horizontal line representing $\mathrm{VO}_{2 \text { max }}$ meets the extrapolated linear regression representing the sub maximal VO_{2} measurements. Here represented by a velocity of $16.9 \mathrm{~km} \cdot \mathrm{~h}^{-1}$.

Assessment of Maximal strength (1RM) and RFD - Both in studies III, IV and V, half-squat was used as the exercise in the assessment of 1RM and RFD. Only 1RM was tested in study IV. Free weights were used in study III, whereas a leg-press machine was used in study IV and a Smith-machine was used in study V. Each lift was performed with a controlled slow eccentric phase, a complete stop of movement for approximately one second in the lowest position, followed by a maximal mobilization of force in the concentric phase ensuring a follow up by use of plantar flexors. In study III and V, the measurements of lifting time, distance of work and thus RFD were performed using the Muscle Lab system (Ergo test Technology, Langesund, Norway). This test started using 10 reps at a weight load assumed to be approximately 50% of 1 RM. After 3 minutes of rest: 5 reps at app $60 \% 1$ RM. After another 3 minutes rest: 3 reps at app $70 \% 1 \mathrm{RM}$, then 3 minutes of rest before 1 rep at app $80 \% 1$ RM. From there on: 1 rep at a weight load increased by $2.5 \mathrm{~kg}-5 \mathrm{~kg}$ from the subsequent lift, followed by 5 minutes of resting, until reaching 1RM. The time spent in each lift, as well as the work distance was measured. As the external force of each lift is represented by the weight of the lifted bars, the rate of force development (RFD) can be calculated and expressed as $\mathrm{N} \cdot \mathrm{m} \cdot \mathrm{s}^{-1}$ or watt (W). In study IV, The test started with one repetition at approximately 70% of predicted one repetition maximum (1RM). The loads were gradually increased (approximately a total of 10 lifts) until the athlete could no longer manage to overcome the load.

Assessment of peak average horizontal and vertical forces during running - In study IV, after five minutes warm up, the subjects ran for one minute at $15 \mathrm{~km} \cdot \mathrm{~h}^{-1}$ on a level treadmill. They were wearing contact soles, and the treadmill was adjusted as described previously. Average peak force (APF) for both vertical and horizontal forces was the average of peaks over a 10 seconds period. CT and stride frequency were calculated from the force measurements, running velocity and time. An example of one step force characteristics is presented in figure 3.

Figure 3 Force characteristics in one step from one runner
Figure from study IV. This is an example of the force characteristics in a single step by one of the runners. Force is displayed on the vertical axis, and time is displayed on the horizontal axis. N, Newton. S, seconds. The axis on top represents vertical forces, while the axis at the bottom represents horizontal forces.

Training procedures

Strength training intervention - In studies III and V, the intervention group completed an 8 week intervention whereas the controls completed an 8 week normal training period. During these weeks, both the intervention group and the control group were thus performing their running or cycling training as normal. To control the training, each subject had to report weekly the exact amount of time spent in the different training intensity zones $60-85 \%$, 85 90% and $90-95 \%$ of $\mathrm{HR}_{\text {max }}$. In addition to their normal endurance training, the intervention group completed a MST session consisting of 4 sets of 4RM half-squats, divided by 3 minutes of rest between each, three days a week. Each lift was performed with a controlled slow eccentric phase, a complete stop of movement for approximately one second in the lowest position, followed by a maximal mobilization of force in the concentric phase ensuring a follow up by use of plantar flexors. Every time a subject managed to do 5 repetitions during a set, 2.5 kg were added for the next set. The subjects used free weights in study III, and a Smith-machine in study V. Guidance and instructions were given all participants during the
training period, and training logs for the MST were made by all participants in the intervention groups.

Statistical analysis

All statistical analyses were performed using the software program SPSS, version 13.0 (Statistical Package for Social Science, Chicago, USA). In all cases, $\mathrm{p}<0.05$ was taken as the level of significance in two-tailed tests. Descriptive statistical analysis was made to display means and standard deviations (SD). To compare means, paired T-tests and independent samples T-tests were used in studies I, II and III. Non-parametric statistics (Wilcoxon`s and Man Whitney) were used in paper V. In paper II, changes in C_{R} across different intensity and velocity levels were analyzed by General Linear Model. The data were tested for normal distributions using Quantile-Quantile (QQ) plots. Correlations were calculated by the Pearson correlation test.

General summary of experiments

Paper I: High blood lactate levels deteriorates running economy in elite endurance athletes 7 elite endurance athletes (4 orienteers and 3 cross country skiers) participated in this study. The athletes were first tested for C_{R} at $10 \mathrm{~km} \cdot \mathrm{~h}^{-1}$ and for LT on a treadmill with 1.5% inclinations, and for $\mathrm{VO}_{2 \max }$ at 5.0% inclinations. They were then tested for C_{R} at their LT velocity with a pre $\left[\mathrm{La}^{-}\right]_{b}$ of either $3 \mathrm{mmol} \cdot \mathrm{L}^{-1}$ or $5 \mathrm{mmol} \cdot \mathrm{L}^{-1}$, followed by a crossover of the lactate levels. The study shows that C_{R} deteriorated (5.5\%) when pre [$\left.\mathrm{La}^{-}\right]_{b}$ was raised from 3 $\mathrm{mmol} \cdot \mathrm{L}^{-1}$ to $5 \mathrm{mmol} \cdot \mathrm{L}^{-1} \cdot\left[\mathrm{La}^{-}\right]_{\mathrm{b}}$ was found to decrease (31.2\%) during the run at LT velocity with a pre $\left[\mathrm{La}^{-}\right]_{\mathrm{b}}$ of $5 \mathrm{mmol} \cdot \mathrm{L}^{-1}$. This is a strong indication of an underestimation of LT velocity. Also during the running session at LT velocity with a pre $\left[\mathrm{La}^{-}\right]_{\mathrm{b}}$ of $3 \mathrm{mmol} \cdot \mathrm{L}^{-1},\left[\mathrm{La}^{-}\right]_{\mathrm{b}}$ was found to decrease significantly (21.8%). In conclusion, increased lactate levels are accompanied by deteriorating running economy.

Paper II: Are there differences in running economy at different velocities?
15 moderately to well trained (9 male and 6 female) endurance athletes participated in this study. C_{R}, heart rate and blood lactate was measured during 5 minutes runs at velocities ranging from 8.0 to $17 \mathrm{~km} \cdot \mathrm{~h}^{-1}$, representing intensities ranging from 60% to 90% of $\mathrm{VO}_{2 \max }$ on two different days. The athletes were also tested for $\mathrm{LT}, \mathrm{VO}_{2 \max }, \mathrm{MAS}$ and ${ }_{\mathrm{t}} \mathrm{MAS}$. There was found no differences in C_{R} between the different relative velocities or the different set velocities for the male or the female athletes. All athletes reached their $\mathrm{VO}_{2 \max }$ while running to exhaustion at MAS. The females showed significantly lower $\mathrm{VO}_{2 \max }(25.3 \%)$ but significantly better running economy (9.8%) than the males. In conclusion, running economy measured as oxygen cost of running is reliably calculated up to running intensities representing 90% of $\mathrm{VO}_{2 \text { max }}$. An incremental protocol for measuring VO_{2} at different velocities does not affect the reliability of these measurements.

Paper III: Maximal strength training improves running economy in distance runners. 17 well trained (9 male and 8 female) runners were randomly assigned into either an intervention or a control group. The intervention group (4 males and 4 females) performed half-squats, 4 sets of 4RM, three times per week for 8 weeks, in addition to their regular endurance training. The control group continued their normal endurance training during the same period. The intervention manifested significant improvements in 1RM (33.2\%), RFD
(26.0%), $\mathrm{C}_{\mathrm{R}}(5.0 \%)$, and time to exhaustion at pre test MAS (21.3\%). No changes were found in $\mathrm{VO}_{2 \text { max }}$ or BW . The control group exhibited no changes from pre to post values in any of the parameters. In conclusion, maximal strength training for 8 weeks improved C_{R} and increased ${ }_{\mathrm{t}}$ MAS among well trained long distance runners, without change in $\mathrm{VO}_{2 \text { max }}$ or BW .

Paper IV: Running stride peak forces inversely determines running economy in elite runners

11 elite endurance athletes participated in this study. 1 RM in half-squat leg press, $\mathrm{VO}_{2 \max }, \mathrm{C}_{\mathrm{R}}$, vertical and horizontal external forces while running, BW, height, leg length, calf circumference, hip width, and body fat percentage was examined. 3 km best time results attained during the last season were collected. None of the force measures correlated significantly alone with either 3000 m performance time or C_{R}. However, when put together, as the sum of horizontal and vertical eccentric and concentric peak forces (APFtotal) a significant inverse correlation ($\mathrm{p}<0.05$) was found both with 3000 m performance $(\mathrm{R}=0.71)$ and $C_{R}(\mathrm{R}=0.66)$. Moderate inverse correlations were found $(\mathrm{p}<0.05)$ between C_{R} and body height $(R=0.61)$ and between C_{R} and body fat percentage $(R=0.62)$.

Paper V: Strength training improves cycling economy.

16 competitive road cyclists (12 male and 4 female) were randomly assigned into either an intervention or a control group. 13 (10 male and 3 female) cyclists completed the study. The intervention group (7 males and 1 female) performed half-squats, 4 sets of 4RM, three times per week for 8 weeks, in addition to their regular endurance training. The controls should continue their regular endurance training during the same period. The intervention manifested significant improvements in 1RM (14.2\%), RFD (16.7\%), $\mathrm{C}_{\mathrm{C}}(4.8 \%)$, WE (4.7\%) and ${ }_{\mathrm{t}}$ MAP (17.2%). No changes were found in $\mathrm{VO}_{2 \max }$, BW or cadence. The control group improved WE by 1.4%, but there was a significant difference in improvements between the intervention and the control group. In conclusion, maximal strength training for 8 weeks improved C_{C} and WE and increased ${ }_{\mathrm{t}} \mathrm{MAP}$ among competitive road cyclists, without change in $\mathrm{VO}_{2 \max }$, cadence or BW.

Discussion across the experiments

General discussion

Paper I demonstrated that C_{R} deteriorates with increased $\left[\mathrm{La}^{-}\right]_{\mathrm{b}}$. Previous studies have reported deterioration in C_{R} of 3-5\% after intensive training (Collins et al 2000, Thomas et al 1995, Hunter and Smith 2007), but it is unclear whether or not these results are accompanied by increased levels of $\left[\mathrm{La}^{-}\right]_{\mathrm{b}}$. As in papers II, III and IV, inter-individual variability in C_{R} expressed as $\mathrm{ml} \cdot \mathrm{kg}^{-0.75} \cdot \mathrm{~m}^{-1}$ was found to be approximately $5-6 \%$. Previously, Helgerud (1994) has found a variability of approximately 5% among marathon runners when expressing the C_{R} as $\mathrm{VO}_{2} \mathrm{ml} \cdot \mathrm{kg}^{-0.75} \cdot \mathrm{~m}^{-1}$. These values are also in agreement with those found among soccer players (Helgerud et al 2001, Helgerud et al 2003, Hoff and Helgerud 2003, Hoff et al., 2005). No significant difference in C_{R} when the subjects were running at $10 \mathrm{~km} \cdot \mathrm{~h}^{-1}$ compared with LT velocity (paper I) was observed. This finding was supported in paper II, where no significant differences in C_{R} between the different relative velocities or the different set velocities were found for neither male nor female athletes, up to 90% of $\mathrm{VO}_{2 \text { max }}$. These results are in line with previous results from di Prampero et al. (1986) and Helgerud (1994), but not in agreement with the results from Daniels \& Daniels (1992) who found worsened C_{R} when relative running intensity increased in the area between 70% and $100 \% \mathrm{VO}_{2 \max }$. Paper II also demonstrated a significantly better C_{R} (approximately 10%) and a significantly poorer $\mathrm{VO}_{2 \max }$ (approximately 25%) among the females than among the males. The two genders were not matched for performance. Study III also contained both male and female subjects. When combining C_{R} results from these two studies, there is still a significantly ($p<0.01$) better C_{R} among the female subjects $\left(0.663 \pm 0.039 \mathrm{ml} \cdot \mathrm{kg}^{-0.75} \cdot \mathrm{~m}^{-1}\right)$ than among the male subjects $(0.724$ $\pm 0.057 \mathrm{ml} \cdot \mathrm{kg}^{-0.75} \cdot \mathrm{~m}^{-1}$). Since men and women were not matched for performance, we have no explanations as to why the women had better C_{R} than the men. However, the women had lower $\mathrm{VO}_{2 \max }\left(\mathrm{ml} \cdot \mathrm{kg}^{-0.75} \cdot \mathrm{~m}^{-1}\right)$ than the men, which was also the case in the study by Helgerud (1994). The incremental protocol evaluated in study II, was found not to affect the reliability of VO_{2} measurements at different intensity levels in that study. The protocol was thus used in parts of study III and study V.

In paper II we also demonstrated that all the subjects reached their $\mathrm{VO}_{2 \max }$ when running to exhaustion at MAS. The protocol for assessing MAS was thus repeated in study III, and for MAP in study V. All subjects reached their $\mathrm{VO}_{2 \max }$ when running or cycling to exhaustion at

MAS or MAP. ${ }_{\mathrm{t}}$ MAS was in paper III shown to increase significantly (21.3\%) as a result of a better $\mathrm{C}_{\mathrm{R}}(5.0 \%)$, due to eight weeks of MST. The better C_{R} after MST is in agreement with previous results by Hoff and Helgerud (2003), Millet et al. (2002), Paavolainen et al. (1999) and Johnston et al. (1997). This was supported in study V regarding cycling, expressing an improvement of 4.8% in C_{C} accompanied by an improvement of 17.2% in ${ }_{\mathrm{t}} \mathrm{MAP}$. In cycling unlike running, vertical movement of the centre of mass is minimal, unless riding uphill. The braking forces are first and foremost represented by the resistance to the cyclist and bicycle moving forward, or by the artificial braking of the flywheel if riding an ergometer cycle, and transferred to the pedals. Consequently elastic storage of energy that plays an important role in running economy should logically not be as important in cycling. Our results may indicate that an improvement in muscle-tendon stiffness leading to an improvement in elastic recoil is not the main adaptation from MST in these two studies.

Based on the papers I, II and II, and previously published studies regarding C_{R}, we sought to find some determining factors for C_{R} in study IV. In paper IV, we demonstrated that APFtotal was found to be negative related to C_{R} and 3000 m running performance. None of the force measures correlated, however, significantly alone with either performance or CrR $^{\text {. APFtotal }}$ gave a significant negative correlation ($\mathrm{p}<0.05$) both with 3000 m performance $(\mathrm{R}=0.71$) and $C_{R}(R=0.66)$. The only relationships observed between anthropometric variables and C_{R} were moderate inverse correlations between C_{R} and body height $(R=0.61)$ and between C_{R} and body fat percentage $(\mathrm{R}=0.62)$. This is probably because the subjects participating in this study were relatively homogenous regarding anthropometric variables. As in studies III and V, there was no direct relationship between $1 R M$ half-squat and C_{R}. No correlations between $1 R M$ and CT or time to peak force in study IV were observed. In previous intervention studies as well as in study III and study V, MST improved C_{R} and C_{C} by approximately 5%. The finding in study IV thus supports Hoff and Helgerud (2003) and Østerås et al (2002) that neuromuscular rather than hypertrophic responses to the MST is the main source of the reported improvements in these interventions.

Cost of running and cycling

In the four studies concerning C_{R} in this thesis, we found inter-individual variations between 6.3% (study I) and 7.0% (study IV). If results from all studies are combined, mean C_{R} was $0.691 \pm 0.042 \mathrm{ml} \cdot \mathrm{kg}^{-0.75} \cdot \mathrm{~min}^{-1}$, with an inter-individual variation of 7.3%. The variation of means between the different studies was 5.4%. These results are in accordance with results
from previous studies on running where body weight has been scaled $\left(\mathrm{kg}^{0.75}\right)$, like Helgerud et al. (2001), Helgerud et al (2003), Hoff and Helgerud (2003) and Hoff et al. (2005).

Table 2 Physical and physiological factors in paper I to V

Paper	$I(\mathrm{n}=7)$	II ($\mathrm{n}=15$)	III ($\mathrm{n}=8$)	IV ($\mathrm{n}=11$)	$\mathrm{V}(\mathrm{n}=8)$
Type of study	Intervention (Incr. [La] ${ }^{-}$)	Intervention (Incr. Km• h^{-1})	Intervention (8 weeks MST)	Descriptive	Intervention (8 weeks MST)
$\begin{aligned} & \mathrm{VO}_{2 \max } \\ & \mathrm{ml} \cdot \mathrm{~kg}^{-1} \cdot \mathrm{~min}^{-1} \end{aligned}$	80.7 ± 2.7	65.3 ± 7.0	61.4 ± 5.1	75.8 ± 6.2	63.4 ± 6.0
$\mathbf{m l} \cdot \mathrm{kg}^{-0.75} \cdot \mathrm{~min}^{\mathbf{- 1}}$	235.0 ± 8.8	190.0 ± 17.8	170.6 ± 15.3	220.2 ± 7.0	185.0 ± 15.4
$\mathrm{ml} \cdot \mathrm{kg}^{-0.67} \cdot \mathrm{~min}^{-1}$	331.0 ± 18.6	266.5 ± 23.7	237.5 ± 19.9	310.2 ± 15.3	259.7 ± 24.7
$\begin{aligned} & \mathrm{C}_{\mathrm{R}} \\ & \quad \mathrm{ml} \cdot \mathrm{~kg}^{-0.75} \cdot \mathrm{~m}^{-1} \end{aligned}$	0.704 ± 0.044	0.725 ± 0.040	0.679 ± 0.036	0.652 ± 0.043	
$\begin{aligned} & \mathrm{C}_{\mathrm{C}} \\ & \mathrm{ml} \cdot \mathrm{~kg}^{-0.67} \cdot \mathrm{~W}^{-1} \end{aligned}$					0.840 ± 0.065
C_{R} or C_{C} Change (\%)	$5.5 \pm 0.4^{* *}$	0.7 ± 0.8	$-5.0 \pm 0.9^{*}$		$-4.8 \pm 1.5 *$
LT					
\% $\mathrm{VO}_{2 \text { max }}$	82 ± 4	83 ± 4	83 ± 4		77 ± 5
$\mathbf{k m} \cdot \mathbf{h}^{-1}$	16.4 ± 0.8	12.8 ± 1.0	12.9 ± 1.4		
1RM					
$\mathbf{k g}$			$\begin{aligned} & 73.4 \pm 20.5 \\ & \text { (free weights) } \end{aligned}$	$\begin{gathered} 247.3 \pm 52.7 \\ (\text { leg press }) \end{gathered}$	$\begin{aligned} & 155.0 \pm 40.6 \\ & \text { (Smith-machine) } \end{aligned}$
Change (\%)			$33.2 \pm 1.1^{* *}$		14.2 ± 2.2 *
RFD					
W			$466.7 \pm 163.2{ }^{\text {\# }}$		$832.6 \pm 171.6^{\#}$
Change (\%)			$26.0 \pm 3.3 * *$		$16.7 \pm 6.6^{*}$

Values are Mean $\pm \mathrm{SD} . \mathrm{VO}_{2 \max }$, maximal oxygen uptake. C_{R}, oxygen cost of running. C_{C}, oxygen cost of cycling. LT, lactate threshold. 1RM, one repetition maximum in half-squat. RFD, rate of force development in half-squat. Incr, increase in. MST, maximal strength training. [La] $]_{b}$, blood lactate concentration. Min, minutes. M, metres. W, watts
${ }^{*} \mathrm{p}<0.05$ intervention difference, ${ }^{* *} \mathrm{p}<0.01$ intervention difference.
${ }^{\#} \mathrm{p}<0.05$ significant correlation with C_{R} or C_{C}.
In study II, the female athletes displayed significantly better C_{R} than the males. Study III also contained both male and female subjects, and when combining C_{R} results from these two studies divided by gender, there is still a significantly $(\mathrm{p}<0.01)$ better C_{R} between the female subjects $\left(0.663 \pm 0.039 \mathrm{ml} \cdot \mathrm{kg}^{-0.75} \cdot \mathrm{~min}^{-1}\right)$ than the male subjects $\left(0.724 \pm 0.057 \mathrm{ml} \cdot \mathrm{kg}^{-0.75} \cdot \mathrm{~min}^{-1}\right)$. The gender differences found in study II and III are in accordance with results from Helgerud (1994), who found that in performance matched male and female marathon runners, the women had better C_{R} than the men. However, in the study by Helgerud (1994), the female runners had a higher weekly mileage than the male runners. This was not the case in study II or in study III. When results from study I, II and III are put together, there is no correlation between C_{R} and LT expressed as $\% \mathrm{VO}_{2 \max }$ or LT velocity. As Franch et al (1998) relates improved C_{R} to reduced ventilatory demand, and since paper III in this thesis demonstrates a significantly improved C_{R} from pre to post intervention we
evaluated if VE in study III decreased according to the shown decrease in C_{R}. There was a significant $(\mathrm{R}=0.74, \mathrm{p}<0.05)$ correlation between pre intervention VE expressed as $\mathrm{L} \cdot \mathrm{kg}^{-}$ ${ }^{0.67} \cdot \min ^{-1}$ and C_{R}, indicating a possible relationship between these variables, but there were no correlation between changes in VE and changes in C_{R}. The correlation between C_{R} and VE was supported in study IV $(\mathrm{R}=0.82, \mathrm{p}<0.01)$, as depicted in figure 4 .

Figure 4 Linear regressions between $V E$ and C_{R} in study IV.
C_{R}, oxygen cost of running $\left(\mathrm{ml} \cdot \mathrm{kg}^{-0.75} \cdot \mathrm{~m}^{-1}\right)$ measured at $15 \mathrm{~km} \cdot \mathrm{~h}^{-1}$ on a level treadmill. VE, total pulmonary ventilation $\left(\mathrm{L} \cdot \mathrm{kg}^{-0.67} \cdot \mathrm{~min}^{-1}\right)$ measured at $15 \mathrm{~km} \cdot \mathrm{~h}^{-1}$ on a level treadmill. $\mathrm{p}<0.01, \mathrm{R}=0.82 . \mathrm{N}=11$.

In study V , the cyclists showed a 7% improvement in brake power from pre to post intervention at the same relative intensity $\left(70 \% \mathrm{VO}_{2 \text { max }}\right)$. VE $\left(\mathrm{L} \cdot \mathrm{kg}^{-067} \cdot \mathrm{w}^{-1}\right)$ stayed approximately the same from pre to post intervention when measured at both pre and post test brake power. This shows that the changes in VE are only apparent when measured at a set velocity or brake power, and must be taken into account when relating changes in VE to changes in economy.

Maximal strength

The long distance runners participating in study III had a considerably lower 1RM pre intervention in 90° half-squat ($73 \pm 21 \mathrm{~kg}$) than soccer players ($161 \pm 25 \mathrm{~kg}$) in Hoff and Helgerud (2003) and soccer players ($130 \pm 16 \mathrm{~kg}$) in McMillan et al (2005). The runners managed in average to lift approximately 5 kg per kg body weight raised to the power 0.67
pre intervention, compared to the approximately 8 kg per kg body weight raised to the power 0.67 among the soccer players. The finding in study III that pre intervention 1RM did not correlate with C_{R} is interesting. Neither did improvements in 1RM correlate with improvements in C_{R}. This indicates that not only improvement in muscle strength measured as 1 RM , but also other factors affecting C_{R} were improved by the MST.

A possible way to improve C_{R} might be to increase the amount of energy from the braking forces that can be stored in elastic elements in muscle-tendon units (elastic recoil). In this respect strength training has been reported to increase muscle - tendon stiffness (Kubo et al 2001). Neither muscle-tendon stiffness nor elastic recoil was measured in any of the studies presented in the present thesis. The improvements in C_{R} after an MST intervention shown in study III may thus be due partly to an improvement in the ability to store energy from the braking forces in elastic elements in muscle-tendon units, but to investigate this, muscletendon stiffness should have been measured pre- and post the MST intervention.

Another way in which C_{R} may be improved is by increasing muscular efficiency. The MST intervention for running (study III) may thus also have improved muscular efficiency. In study V the same improvements in economy as in study III were echoed, this time regarding cycling. Elastic storage of energy should logically not be as important in cycling as in running. Since the same improvements in economy as in running were found in cycling after the MST intervention, we suggest that muscular efficiency adaptations have exceeded adaptations regarding elastic recoil in the two studies. Muscular efficiency covers a variety of factors (Alexander 1984, Tokui and Hirakoba 2007).We suggest that the main sources to the economy adaptations to MST found in study III and study V are neural adaptations, discussed more thoroughly in the next passage. Theoretically the MST could also have led to hypertrophic adaptations. But neither the runners in study III nor the cyclists in study V changed their body weight from pre- to post intervention, as shown previously by Hoff et al (2002), Hoff et al (2002), Helgerud et al (2003), Hoff et al (2005) and McMillan et al (2005). A possible hypertrophic response to MST among well trained athletes should be detected as an increase in body weight.

Rate of force development

In study III, a significant correlation between pre intervention RFD and C_{R} was observed. The same finding was repeated in cycling (study V). RFD also improved significantly in the two

MST interventions (study III and V). In study V highly significant correlations between improvements in RFD and improvements in ${ }_{\mathrm{t}} \mathrm{MAP}$ were found ($\mathrm{p}<0.01, \mathrm{R}=0.75$). These results may indicate a relationship both between RFD in the muscles active in running and cycling and economy, as well as a relationship between improvements in RFD and time to exhaustion at a given intensity in cycling. RFD is logically related to contraction time in working muscles. A shorter contraction time will logically prolong transit time at a given cyclus frequency. An increase in RFD could also lead to a shorter CT in a running step. However, in study IV no correlation between CT and C_{R} was found. The results from study IV are thus in line with Williams and Cavanagh (1987) and Kyrolainen et al (2001) who found no significant correlation between CT and C_{R}. Even though no correlation was found between CT and C_{R} in study IV, it does not necessarily mean that CT was not affected by the MST in study III, but CT was not measured in this study. The increase in RFD found in studies III and V may represent a more effective activation of motoneurons and muscle fibers as discussed in Hoff et al (2002). If less motor units need to be recruited at the same time at a given intensity, more unfatigued motor units will be available during prolonged exercise, and a longer time to exhaustion at a specific intensity might be expected. Better ${ }_{\mathrm{t}}$ MAS and ${ }_{\mathrm{t}}$ MAP was shown in studies III and V . The results from these studies thus support the hypothesis of a more optimal activation of motoneurons and muscle fibers.

Running and cycling characteristics and force measures

In study V, the cyclists always used a freely chosen cadence (RPM). In both the MST intervention group and in the control group, the mean cadence at $70 \% \mathrm{VO}_{2 \max }$ was on average 95 RPM. There was no change in cadence after the MST intervention, although the intervention group improved their 1RM, RFD and C_{C} significantly. This is in line with results on double poling frequency in cross-country skiing (Hoff et al 1999, Hoff et al 2002, Østerås et al 2002). The results from study V are however in contrast to previous studies that have shown gross efficiency among elite cyclists to be significantly higher at a lower cadence than their freely chosen cadence (Foss and Hallen 2004), and that better economy is related to lower cadence (Hansen et al 2007). The cyclists in study V might have shown an even better C_{C} if the freely chosen cadence had been replaced by a set cadence. Theoretically, with an increased muscular strength, a cyclist can lower the cadence and still produce the same relative force in each pedal revolution at a given brake power. On the other hand, the cyclist may choose to maintain the cadence and then lower the relative force needed in each pedal
revolution at the same given brake power. The latter may be the most common pattern if freely chosen cadence is primarily a robust innate voluntary motor rhythm, as proposed by Hansen and Ohnstad (2008). If, as a result of MST, RFD increases, it would be an indication of a higher maximal muscle-shortening velocity. In study V the relationship between $R F D /$ cadence and C_{C} was found to be highly significant ($\mathrm{p}<0.01, \mathrm{R}=0.84$) and the correlation was higher than that between RFD alone and $\mathrm{C}_{\mathrm{C}}(\mathrm{p}<0.01, \mathrm{R}=0.76)$. This may indicate that the lower the relative muscle-shortening velocity needed for a given cadence, the better cycling economy.

There is a difference between cadence in cycling and stride frequency in running. Within a small range of pedal arm lengths available, the cyclist has to choose one. Once the pedal arm length is chosen, it stays the same throughout training or the race. Runners can vary stride lengths within a much larger range compared to the range of different pedal arm lengths in cycling. Also, the runners may vary stride lengths during training or a race. Previous studies on stride frequency in running have shown that the runners freely chosen stride frequencies correspond well with the optimal stride frequencies regarding C_{R}. In a study by Hunter and Smith (2007), the self optimized stride frequency among 16 experienced runners, which was both the self-selected one and the one expressing the best C_{R}, averaged 87 steps per minute. In study IV the mean stride frequency averaged 89 steps per minute and the result is thus in line with Hunter and Smith (2007). The stride frequency measured in study IV was also found to have a low variation between the subjects. Corrected for leg length, all runners chose approximately the same ratio between stride length and stride frequency. It seems thus logical that no correlation between stride frequency and C_{R} was found in study IV.

When maintaining a given running velocity on a treadmill, the sum of horizontal brake forces and the sum of horizontal propulsive forces in each step must be equal. The same applies for the vertical forces regarding the position of centre of gravity. In study IV we measured horizontal and vertical brake and propulsive forces. Average peak braking and propulsive forces, horizontal or vertical, need of course not be equal in each step, as it is possible to change position on the tread mill. However, the brake forces measured are approximately of the same size. In study IV none of the average peak force measures correlated significantly with C_{R}. However, the sum of horizontal and vertical eccentric and concentric peak forces (APFtotal) showed a significant inverse correlation with $\mathrm{C}_{\mathrm{R}}(\mathrm{p}<0.05, \mathrm{R}=0.66)$. If the braking
forces are large, the runner will consequently need large propulsive forces to maintain the velocity (horizontal) or maintain position of the centre of gravity (vertical). Thus, if only braking forces are taken into account, only about half of the size of the peak forces actually produced is measured. This may reduce the differences between runners. Both vertical and horizontal forces are each previously found to influence C_{R}. Farley and Mcmahon (1992) and Kram and Taylor (1990) have found C_{R} to be inversely proportional to the weight supported, i.e. directly dependent on the vertical forces, whereas Chang and Kram (1999) have found horizontal forces to constitute more than 33% of the total metabolic cost of horizontal running on treadmill. And for running on track, Kyrolainen et al (2001) actually found that the average horizontal forces in the braking phase of the step could explain more than 80% of C_{R}.

Maximal oxygen uptake

In studies I and IV, the subject groups are homogenous regarding $\mathrm{VO}_{2 \text { max }}$. In studies II, III and V the groups of subjects are more heterogeneous regarding $\mathrm{VO}_{2 \max }$. Data from studies I, II and III $(\mathrm{n}=39)$ show a significant correlation between $\mathrm{VO}_{2 \max }$ and LT velocity $(\mathrm{R}=0.85$, $\mathrm{p}<0.01$). This indicates that among these subjects $\mathrm{VO}_{2 \max }$ explains 72% of the inter-individual difference in LT velocity. In cycling in study $\mathrm{V}(\mathrm{n}=13)$, there is also a high, although somewhat lower correlation between $\mathrm{VO}_{2 \max }$ and LT brake power $(\mathrm{R}=0.75, \mathrm{p}<0.01)$, indicating that among these subjects $\mathrm{VO}_{2 \max }$ explains 57% of the inter-individual difference in LT brake power. Time performance data were collected from the athletes at 5000 m and 3000 m in studies III and IV respectively. Recalculating the 3000 m times from study IV by using the equation by Riegel (1981): $t 2=t 1 *(d 2 / d 1)^{1.06}$ (equ. 4), 5000 m performance times for all the athletes in study III and IV can be put together. The heterogeneity regarding $\mathrm{VO}_{2 \text { max }}$ then consequently increases, as the athletes in study III are well trained whereas the athletes in study IV are elite and have much higher $\mathrm{VO}_{2 \max }$ values. A highly significant correlation $(\mathrm{R}=$ $0.92, \mathrm{p}<0.01$) then appears between competition time performance and $\mathrm{VO}_{2 \max }$, as depicted in figure 5. This points at a larger relative importance of $\mathrm{VO}_{2 \max }$ in groups that are more heterogeneous regarding $\mathrm{VO}_{2 \text { max }}$.

Figure 5 Linear regressions between $\mathrm{VO}_{2 \text { max }}$ and 5000 m time performance in study III and V
$\mathrm{VO}_{2 \text { max }}$, maximal oxygen consumption $\left(\mathrm{ml} \cdot \mathrm{kg}^{-0.75} \cdot \mathrm{~min}^{-1}\right) .5000 \mathrm{~m}$ time, seasonal best time performance in 5000 m competition (in seconds). $\mathrm{p}<0.01, \mathrm{R}=0.92$. $\mathrm{N}=28$.

Lactate threshold

In study $\mathrm{I}\left[\mathrm{La}^{-}\right]_{\mathrm{b}}$ was found to decrease 31.2% during the 5 minute run at LT velocity with a pre $\left[\mathrm{La}^{-}\right]_{\mathrm{b}}$ of $5 \mathrm{mmol} \cdot \mathrm{L}^{-1}$, determining LT velocity from running velocity at $1.5 \mathrm{mmol} \cdot \mathrm{L}^{-1}$ above post warm up values according to Helgerud (1994). This is a strong indication of an underestimation of LT velocity. Also during the running session at LT velocity with a pre $[\mathrm{La}]_{b}$ of $3 \mathrm{mmol} \cdot \mathrm{L}^{-1},[\mathrm{La}]_{b}$ was found to decrease significantly by 21.8%.

In studies I, II and III put together we found LT velocity to correlate highly with $\mathrm{VO}_{2 \text { max }}$ but not with C_{R} alone. The high correlation between aerobic endurance performance and LT velocity is not surprising since the velocity then will depend on both $\mathrm{VO}_{2 \max }$ and C_{R}. Also in studies III and IV performance characteristics measured as time performance in 5000 m and 3000 m running respectively were collected. The results from study III correlated highly with LT velocity among the subjects, whereas LT was not measured in study IV. But although LT velocity in intervention studies has been shown to change with the alteration of $\mathrm{VO}_{2 \text { max }}$ andor C , in terms of the percentage of $\mathrm{VO}_{2 \text { max }}$ the adaptability has been found to be minor (Bangsbo 1994, Helgerud et al. 2001). The latter thus seem to be in accordance with the results from studies I, II and III that LT expressed as $\% \mathrm{VO}_{2 \text { max }}$ does not correlate with either time performance in 5000 m or 3000 m running, or with MAS. In table 2 , LT expressed as $\%$
$\mathrm{VO}_{2 \text { max }}$ is very consistent between all three groups of athletes regarding running, with no significant difference of means. The variation between means in these three different studies is only 0.7%.

Only study III contains data from $\mathrm{VO}_{2 \max }, \mathrm{C}_{\mathrm{R}}$, LT and time performance $(5000 \mathrm{~m})$. If a performance equation $\left(\mathrm{VO}_{2 \max } / \mathrm{C}_{\mathrm{R}}\right)$ is used in study III, the correlation between $\mathrm{VO}_{2 \max } / \mathrm{C}_{\mathrm{R}}$ and time performance in 5000 m is high $(\mathrm{R}=0.82, \mathrm{p}<0.01)$. If this performance equation is expanded, multiplying $\left(\mathrm{VO}_{2 \max } / \mathrm{C}_{\mathrm{R}}\right)$ with LT expressed as $\% \mathrm{VO}_{2 \max }$, the correlation gets even higher $(\mathrm{R}=0.86, \mathrm{p}<0.01)$. This indicates that among these athletes, the relative importance of LT expressed as $\% \mathrm{VO}_{2 \max }$ is approximately 7% (figure 6).

Figure 6 Relationship between endurance performance equation including LT and 5000 m time performance in study III
Endurance performance equation, $\left(\mathrm{VO}_{2 \max } / \mathrm{C}_{\mathrm{R}}\right) \cdot \mathrm{LT}$ expressed as $\% \mathrm{VO}_{2 \max } . \mathrm{VO}_{2 \max }$, maximal oxygen consumption ($\mathrm{ml} \cdot \mathrm{kg}^{-0.75} \cdot \mathrm{~min}^{-1}$). C_{R}, oxygen cost of running at $70 \% \mathrm{VO}_{2 \text { max }}$. LT, lactate threshold. 5000 m time, seasonal best time performance in 5000 m competition (in seconds). $\mathrm{p}<0.01, \mathrm{R}=0.86$. $\mathrm{N}=15$.

The relative importance of cost of running on distance running performance

When the seasonal best time performance data from the athletes in study III and IV are put together, there is significant correlation $(\mathrm{R}=0.92, \mathrm{p}<0.01)$ between 5000 m time performance and $\mathrm{VO}_{2 \text { max }}$ (figure 4). The heterogeneity regarding $\mathrm{VO}_{2 \max }$ is consequently high (variation of 17.4%), as the athletes in study III are well trained whereas the athletes in study IV are elite and have much higher $\mathrm{VO}_{2 \max }$ values. The correlation between $\mathrm{VO}_{2 \max } / \mathrm{C}_{\mathrm{R}}$ and 5 km performance show an $R=0.94(p<0.01)$, indicating that C_{R} should account for 4% of the
difference in 5 km performance between subjects. In study IV alone, with a more homogenous group regarding $\mathrm{VO}_{2 \max }$ (variation of 7.0%), the combination of $\mathrm{VO}_{2 \max }$ and C_{R} correlated with time performance with an $\mathrm{R}=0.93$ ($\mathrm{p}<0.01$). The correlation between $\mathrm{VO}_{2 \max }$ alone and time performance showed an $\mathrm{R}=0.85(\mathrm{p}<0.01)$. This indicates that C_{R} accounts for 13% of the difference in time performance between subjects in study IV, and that the relative importance of C_{R} on distance running performance increases with increasing homogeneity regarding $\mathrm{VO}_{2 \text { max. }}$. This supports the finding by Conley and Krahenbuhl (1980) in highly trained and experienced runners with similar $\mathrm{VO}_{2 \text { max }}$, where running economy accounted for 65% of the variation observed in performance on a 10 km race.

The relative importance of Cost of cycling on cycling performance

In study V , competition time performance results were not collected from the cyclists as road racing results are not comparable. But a performance equation $\left(\mathrm{VO}_{2 \max } / \mathrm{C}_{\mathrm{C}}\right) \cdot \mathrm{LT}$ gives a good picture of physiological performance capacity. The performance equation thus shows a high correlation with $\mathrm{VO}_{2 \max }(\mathrm{R}=0.77, \mathrm{p}<0.01)$ and a much better correlation with $\mathrm{VO}_{2 \max }$ / $C_{C}(R=0.94, p<0.01)$, indicating a relative importance of C_{C} of approximately 29% for physiological performance capacity in cycling among the cyclists in study V. This is higher than the relative importance of C_{R} on running performance in studies III and IV. Of course the studies can not be uncritically compared as time performance results were not directly measured among the cyclists.

Limitations of the studies in this thesis and future research

The discussion of gender differences in C_{R} in paper II would have benefited from a larger number of female athletes. Although the gender differences were large and highly significant, the statistical power would have increased with more than 6 female athletes. With 10 female athletes, given the same average gender differences in C_{R}, the statistical power would increase by approximately 25%.To repeat this study design with more female runners would thus be of interest. The improvements in C_{R} after an MST intervention shown in study III may be due partly to an improvement in the ability to store energy from the braking forces in elastic elements in muscle-tendon units. To confirm or disprove this hypothesis, muscle-tendon stiffness could have been measured pre- and post the MST intervention, but this was not done in study III. To repeat this study design with the addition of muscle-tendon stiffness measurements as well as measurements of contact time and time to peak force may increase the knowledge about the causes of C_{R} adaptations to MST.

Running performance data expressed as time results in long distance running were only collected in papers III and IV. Papers I and II would have benefited from such data to classify the athletes running ability. Also these data would have provided a more thorough discussion of the relative importance of C_{R} on distance running performance in this thesis. The same applies for study V on cycling. An ergometer cycle time trial could have given directly measured time performance results. To repeat the study design of study V with the addition of ergometer cycle time trials could thus be valuable. In studies III and V, RFD pre intervention was found to negatively correlate with C_{R} and C_{C}, meaning that the subjects with the best RFD had the best work economy. Study IV would have profited on measurements of RFD in addition to maximal strength measurements. The study design of study IV should thus be repeated with additional measurements of RFD.

Conclusions

Running economy was found to correlate significantly inverse with the sum of average peak horizontal and vertical forces in each running step. Running economy was found to deteriorate with increased levels of lactate. Women were found to have better running economy than men. Both running and cycling economy was found to correlate significantly positive with rate of force development in half-squat. Body fat percentage and height were found to correlate moderately inverse with running economy. From the investigations presented in this thesis, the sum of average peak horizontal and vertical forces in each running step, blood lactate concentration, rate of force development, gender, body fat percentage and height were found to be determining factors for running economy, while rate of force development was found to be a determining factor for cycling economy.

An incremental protocol for assessing running economy was found to reliably calculate running economy in a cross-over study. Running economy was found to be unaffected by running intensity in the area between 60% and 90% of maximal oxygen consumption.

Both running and cycling economy was found to be improved significantly after eight weeks of maximal strength training in half-squats. These improvements led to improved time to exhaustion at maximal aerobic speed and time to exhaustion at maximal aerobic power. The
maximal strength training interventions did not alter body weight or maximal oxygen consumption.

Practical applications

Practical implications from the research presented in this thesis is first and foremost based on the finding that maximal strength training, with emphasis on maximal mobilization and thus neural adaptations, improves both running economy and cycling economy, as long as the maximal strength training is a supplement to the subjects regular endurance training. Maximal strength training can thus serve as a useful tool for enhancing endurance running and cycling performance.

Evaluation of running economy in long distance runners can be based on testing at any running velocity representing intensity between $60-90 \%$ of maximal oxygen consumption. The finding that running economy is impaired with increasing blood lactate concentration, points to the importance of finding a suitable intensity, with as little accumulation of blood lactate as possible at the start of an endurance race. The sum of average peak horizontal and vertical forces in each running step is found to be negatively related to running economy. This indicates that a minimizing of the external vertical and horizontal forces during running may improve running economy. How to make such adaptations through training is however a complex task, but one logical approach may be to try to minimize the vertical movement of the centre of mass.

References

1. Aaron EA, Seow KC, Johnson BD, Dempsey JA, Oxygen cost of exercise hyperpnea: implications for performance. J Appl Physiol 72(5):1818-1825
2. Alexander RM, Hopping and running on two legs or four. Nature 1980; 18: 287
3. Alexander RM, Elastic Energy Stores in Running Vertebrates. Amer Zool 1984; 24: 8594
4. Alexander RM, Energy-saving Mechanism in walking and running. J exp Biol 1991; 160: 55-69
5. Andersen P, Saltin B, Maximal perfusion of skeletal muscle in man. J Physiol. 1985 Sep;366:233-49
6. Anderson T, Biomechanics and running economy. Sports Med 1996; 22(2): 76-89
7. Arampatzis A, De Monte G, Karamanidis K, Morey-Klapsing G. Stafilidis S, Bruggemann G-P, Influence of the muscle-tendon unit's mechanical and morphological properties on running economy The Journal of Experimental Biology 2006; 209: 33453357
8. Atha J, Strengthening Muscle. Exercise Sports Science Review 1981; Vol. 9: 71-73
9. Bangsbo J, Estimation of lactate release from contracting muscles in man. Acta Physiol Scand. 1994 Mar;150(3):349-50
10. Behm DG, Neuromuscular implications and applications of resistance training. J Strength Cond Res 1995; 9: 264-274
11. Behm DG, Sale DG, Intended rather than actual movement velocity determines velocity-specific training response. J Appl Physiol 74:359-368, 1993
12. Billat V, Mille-Hamard L, Demarle A, Koralsztein JP, Effect of training in humans on and off-transient oxygen uptake kinetics after severe exhausting intensity runs. European Journal of Applied Physiology 2002; 87, 6: 496-505
13. Brooks GA, Lactate production under fully aerobic conditions: the lactate shuttle during rest and exercise. Fed Proc 1986; 45: 2924-2929
14. Bunc V, Energy cost of treadmill running in non-trained females differing in body fat. J Sports Med Phys Fitness 2000; 40(4): 290-296
15. Bunc V, Heller J, Energy cost of running in similarly trained men and women. Eur J Appl Physiol Occup Physiol. 1989;59(3):178-83
16. Campos GER, Luecke T, Wendeln KH, Toma K, Hagerman F, Murray TF, Ragg KE, Ratamess NA, Kraemer WJ, Staron RS, Muscular adaptations in response to three different resistance-training regimens: specificity of repetition maximum zones. Eur J Appl Physiol 2002; 88: 50-60
17. Cavagna GA, Kaneko M, Mechanical work and efficiency in level walking and running. J. Physiol 1977; 268: 467-481
18. Cavanagh GA, Saibene FP, Margaria R, Mechanical work in running. J Appl Physiol 1964; 19: 249-256
19. Cavanagh PR, Williams KR, The effect of stride length variation on oxygen uptake during distance running. Med Sci Sports Exerc 1982; 14: 30-35
20. Chang Y-H, Kram R, Metabolic cost of generating horizontal forces during human running J Appl Physiol 1999; 86: 1657-1662
21. Chavarren J, Calbet JA, Cycling efficiency and pedaling frequency in road cyclists. Eur J Appl Physiol Occup Physiol 1999; 80(6): 555-563
22. Coetzer P, Noakes TD, Sanders B, Lambert MI, Bosch AN, Wiggins T, Dennis SC, Superior fatigue resistance of elite black South African distance runners. J Appl Physiol 1993; 75(4):1822-7
23. Collins MH, Pearsall DJ, Zavorsky GS, Bateni H, Turcotte R, Montgomery DL, Acute effects of intense interval training on running mechanics J Sports Sci 2000; 18(2): 83-90
24. Conley DL, Krahenbuhl GS, Running economy and distance running performance of highly trained athletes. Med Sci Sports Exerc. 1980; 12(5):357-60
25. Costill DL, Thomas H, Roberts E, Fractional utilization of the aerobic capacity during distance running. Med Sci Sports Exerc 1973; 5: 248-252
26. Coyle EF, Physiological determinants of endurance exercise performance. J Sci Med Sport. 1999; 2(3): 181-189
27. Coyle EF, Feiring DC, Rotkis TC, Cote RW, Lee W, Wilmore JH, Specificity of power improvements through slow and fast isokinetic training. J Appl Physiol 51:1437-1442, 1981
28. Coyle EF, Sidossis LS, Horowitz JF, Beltz JD, Cycling efficiency is closely related to the percentage of type I muscle fibers. Med Sci Sports Exerc 1992; 24(7): 782-788
29. Craib MW, Mitchell VA, Fields KB, Cooper TR, Hopewell R, Morgan DW, The association between flexibility and running economy in sub-elite male distance runners. Med Sci Sports Exerc 1996; 28(6): 737-743
30. Daniels J, Daniels N, Running economy of elite male and elite female runners. Med Sci Sports Exerc 1992; 24(4): 483-489
31. Davis JA, Anaerobic threshold: review of the concepts and directions of future research. Med Sci Sports Exerc 1985; 17:6-18
32. Dawson TJ, Taylor CR, Energetic cost of locomotion in kangaroos. Nature 1973; 246; 313-314
33. di Prampero PE, Atchou G, Brückner JC, Moia C, The energetics of endurance running. Eur J Appl Physiol 1986; 55:259-266
34. Dudley GA, Fleck ST, Strength and Endurance Training: Are they Mutually Exclusive? Sports Medicine 1987; 4: 79-85
35. Farell PA, Wilmore JH, Coyle EF, Billing JE, Costill DL, Plasma lactate accumulation and distance running performance. Medicine and Science in Sports, 11(4): 338-344, 1979
36. Faria IE, Energy expenditure, aerodynamics and medical problems in cycling. An update. Sports Med 1992; 14(1): 43-63
37. Farley CT, McMahon TA, Energetics of walking and running: Insights from simulated reduced gravity experiments. J Appl Physiol 1992; 73(6), 2709-2712
38. Fitts RH, Cellular mechanisms of muscle fatigue. Physiol Rev 74: 49-94, 1994
39. Foss \emptyset, Hallen J, The most economical cadence increases with increasing workload. Eur J Appl Physiol 2004; 92: 443-451
40. Foss Ø, Hallen J, Cadence and performance in elite cyclists. Eur J Appl Physiol 2004; 93: 453-462
41. Franch J, Madsen K, Djurhuus MS, Pedersen PK, Improved running economy following intensified training correlates with reduced ventilatory demands. Med Sci Sports Exerc 1998; 30(8): 1250-1256
42. Gandevia SC, Spinal and supraspinal factors in human muscle fatigue Physiol Rev 2001; 81(4): 1726-1789
43. Gettman LR, Pollock ML, Circuit weight training: A critical review of its physiological benefits. The Physician and Sports Medicine 1981; 9: 44-60
44. Goldspink G, Cellular and Molecular Aspects of Adaptation in Skeletal Muscle in: Komi PV, (ed.), Strength and power in sport, Blackwell Scientific Publications, 1992
45. Hansen AE, Ohnstad AE, Evidence for freely chosen pedalling rate during submaximal cycling to be a robust innate voluntary motor rhythm. Exp Brain Res 2008, 186: 365373
46. Hansen EA, Raastad T, Hallen J, Strength training reduces freely chosen pedal rate during submaximal cycling. Eur J Appl Physiol 2007; 101: 419-426
47. Harris C, Debeliso M, Adams KJ, The effects of running speed on the metabolic and mechanical energy costs of running. Journal of Exercise Physiology Online 2003; vol 6, no 3: 28-37
48. Heglund NC, Taylor CR, Speed, stride frequency and energy cost per stride: how do they change with body size and gait? J Exp Biol 1988; Sep; 138: 301-318
49. Helgerud J, Maximal oxygen uptake, anaerobic threshold and running economy in women and men with similar performance level in marathons. European Journal of Applied Physiology 1994; 68: 155-161
50. Helgerud J, Engen LC, Wisløff U, Hoff J, Aerobic endurance training improves soccer performance. Medicine and Science in Sports Exercise 2001; 33(11): 1925-1931
51. Helgerud J, Høydal K, Wang E, Karlsen T, Berg P, Bjerkaas M, Simonsen T, Helgesen C, Hjorth N, Bach R, Hoff J, Aerobic high-intensity intervals improve VO2max more than moderate training. Med Sci Sports Exerc. 2007 Apr; 39(4):665-71
52. Helgerud J, Kemi OJ, Hoff J, Pre-season concurrent strength and endurance development in elite soccer players. In Hoff J, Helgerud J (Eds), Football (Soccer) New developments in physical training research, 2003, NTNU, Trondheim.
53. Hill AV, The heat of shortening and the dynamic constants of muscle. Proc R Soc Lond B Biol 126:136-195, 1938
54. Hintzy F, Mourot L, Perrey S, Tordi N, Effect of endurance training on different mechanical efficiency indices during submaximal cycling in subjects unaccustomed to cycling. Can J Appl Physiol 2005; 30(5): 520-528
55. Hoff J, Specificity of strength and power training effects. Doctorial thesis, NTNU, Trondheim, 2001
56. Hoff J, Almåsbakk B, The effects of maximum strength training on throwing velocity and muscle strength in female team handball players. Journal of Strength and Conditioning Research. 1995, 9(4):255-258
57. Hoff J, Gran A, Helgerud J, Maximal strength training improves aerobic endurance performance. Scandinavian Journal of Medicine and Science in Sports, (2002) 12: 288295
58. Hoff J, Helgerud J, Maximal strength training enhances running economy and aerobic endurance performance. In: Hoff J, Helgerud J (eds.) Football (Soccer). New developments in physical training research. Norwegian University of Science and Technology, 2003 pp. 37-53.
59. Hoff J, Helgerud J, Wisløff U, Maximal strength training improves work economy in trained female cross-country skiers. Med Sci Sports Exerc 1999; 31:870-877
60. Hoff J, Helgerud J, Wisløff U, Endurance training into the next millennium; Muscular strength training effects on aerobic endurance performance: A review. Am J Med Sports 2002; 4: 58-67
61. Hoff J, McMillan K, Helgerud J, Football (Soccer) specific, simple, low cost, test of endurance performance and maximal oxygen uptake. Br J Sports Med, 2005, in press
62. Hoff J, Samdal ST, Helgerud J, Maximal strength training improves running economy endurance performance for experienced runners. 2005. in preparation.
63. Hoff J, Tjønna AE, Steinshamn S, Høydal M, Richardson RS, Helgerud J, Maximal strength training of the legs in COPD: a therapy for mechanical inefficiency Med Sci Sports Exerc 2007 Feb;39(2): 220-226
64. Hopker JG, Coleman DA, Wiles JD, Difference in efficiency between trained and recreational cyclists. Appl Physiol Nutr Metab 2007; 32(6): 1036-1042
65. Hunter I, Smith GA, Preferred and optimal stride frequency, stiffness and economy: changes with fatigue during a 1-h high-intensity run. Eur J Appl Physiol, 2007; 100: 653-661
66. Johnston RE, Quinn TJ, Kertzer R, Vroman NB, Strength training in female distance runners: Impact on running economy Journal of strength and conditioning research 1997; 11(4): 224-229
67. Jones AM, Running economy is negatively related to sit-and-reach test performance in international-standard distance runners. Int J Sports Med 2002; 40-43
68. Kanehisha H, Myiashita M, Specificity of velocity in strength training. Eur J Appl Physiol 52:104-106, 1983
69. Kaneko M, Fuchimoto T Toji H, Suei K, Training effect on different loads on the forcevelocity relationship and mechanical output in human muscle. Scand J Sports Sci 5:5055, 1983
70. Kent M, The Oxford Dictionary of Sports Science and Medicine. Oxford university press, Oxford, UK, 1994
71. Ker RF, Bennett MB, Bibby SR, The spring in the arch of the human foot. Nature 1987; 325(7000):147-149
72. Kerdok AE, Biewener AA, McMahon T, Weyand PG, Herr HM, Energetics and mechanics of human running on surfaces of different stiffnesses. J Appl Physiol 2002; 92(2): 469-478
73. Knight DR, Schaffarttzik W, Poole DC, et al, Effects of hyperoxia on maximal leg O_{2} supply and utilization in humans. J Appl Physiol 1993; 75: 2586-2594
74. Komi P (ed), Strength and power in sport; Olympic encyclopaedia of sports medicine Vol III, 2. ed. Blackwell Scientific Publishing 1992
75. Kongsgaard M, Aagaard P, Kjaer M, Magnusson SP, Structural Achilles tendon properties in athletes subjected to different exercise modes and in Achilles tendon rupture patients J Appl Physiol 2005; 99: 1965-1971
76. Kraemer WJ, Ratamess NA, Fundamentals of resistance training: progression and exercise prescription. Med Sci Sports Exerc 2004; 36(4): 674-688
77. Kram R, Taylor CR, Energetics of running: a new perspective Nature 1990; 346(6281): 265-267
78. Kubo K, Kanehisa H, Fukunaga T, Effects of isometric training on the elasticity of human tendon structures in vivo J Appl Physiol 2001; 91(1): 26-32
79. Kyrolainen H, Belli A, Komi PV, Biomechanical factors affecting running economy Med Sci Sports Exerc 2001; 33(8): 1330-1337
80. Leger L, The relationship between $\% \mathrm{VO}_{2 \max }$ and running performance time. Sport and elite performers. Human Kinetics 1986; 113-120
81. Lichtwark GA, Wilson AM, Is Achilles tendon compliance optimized for maximum efficiency during locomotion? Journal of Biomechanics, 2007: 40: 1768-1775
82. Loveless DJ, Weber CL, Haseler LJ, Scneider DA, Maximal Leg-Strength Training Improves Cycling Economy in Previously Untrained Men. Med Sci Sports Exerc 2005; 33(8): 1330-1337
83. Lucia A, Esteve-Lanao J, Olivan J, Gomez-Gallego F, San Juan AF, Santiago C, Perez M, Chamorro-Vina C, Foster C, Physiological characteristics of the best Eritrean runners - exceptional running economy. Applied Physiology, Nutrition \& Metabolism 2006; 37(7): 1231-1236
84. Lucia A, Hoyos J, Chicharro J, Preferred pedalling cadence in professional cycling. Med Sci Sports Exerc 2001; 8: 1361-1366
85. Marcinik EJ, Potts J, Sclabach G, Will S, Dawson P Hurley BF, Effects of strength training on lactate threshold and endurance performance. Med Sci Sports Exerc 1991; 23(6): 739-743
86. Margaria R, Biomechanics and Energetics of Muscular Exercise. Oxford: Clarendon 1976
87. Margaria R, Cerretelli P, Aghemo P, Sassi G, Energy cost of running. J Appl Physiol 1963; 18(2): 367-370
88. Marieb N, Hoehn K, Human anatomy and physiology. Pearson Education Inc. int. edition, San Francisco US 2007
89. Marsh AP, Martin PE, Effect of cycling experience, aerobic power, and power output on preferred and most economical cycling cadences. Med Sci Sports Exerc 1997, 29(9): 1225-1232
90. Maughan RJ, Reilly T, Secher N, et al, Marathon running In: Reilly T et al. (eds), Physiology of sports. London, UK: E\&FN Spoon; 1969: 121-152
91. McCarthy JP, Agre JC, Graf BK, Pozniak MA, Vailas AC, Compatibility of adaptive responses with combining strength and endurance training. Medicine and Science in Sports and Exercise 1995; 27(3): 429-436
92. McDaniel J, Durstine JL, Hand GA, Martin JC, Determinants of metabolic cost during submaximal cycling. J Appl Physiol 2002; 93: 823-828
93. McMahon TA, Muscles, reflexes and locomotion. Princeton University Press, USA, 1984
94. McMillan K, Helgerud J, Macdonald R, Hoff J, Physiological adoptions to soccerspecific endurance training in professional youth soccer players. Br J Sports Med. 2005 May; 39(5):273-7
95. Medbø JI, Tabata I, Relative importance of aerobic and anaerobic energy release during short-lasting exhausting bicycle exercise. Journal of Applied Physiology 1989; 67(5): 1881-1886
96. Millet GP, Jaouen B, Borrani F, Candau R, Effects of concurrent endurance and strength training on running economy and VO_{2} kinetics Med Sci Sports Exerc 2002; 34(8): 13511359
97. Modica JR, Kram R, Metabolic energy and muscular activity required for leg swing in running J Appl Physiol 2005; 98(6): 2126-2131
98. Mogensen M, Bagger M, Pedersen PK, Fernstrom M, Sahlin K, Cycling efficiency is related to low UCP3 content and to type I fibres but not to mitochondrial efficiency. J Physiol 2006; 517,3: 669-681
99. Morgan DW, Bransford DR, Costill DL, Daniels JT, Howley ET, Krahenbuhl GS, Variation in the aerobic demand of running among trained and untrained subjects. Medicine and Science in Sports and Exercise 1995; 27: 404-409
100. Moseley L, Acten J, Martin JC, Jeukendrup AE, No differences in cycling efficiency between world-class and recreational cyclists. Int J Sports Med 2004; 25(5): 374-379
101. Mujika I, Padilla S, Physiological and performance characteristics of male professional road cyclists. Sports Med 2001; 31(7): 479-487
102. Nicholson RM, Sleivert GG, Indices of lactate threshold and their relationship with 10km running velocity. Med Sci Sports Exerc. 2001 Feb; 33(2):339-42
103. Nummela A, Keranen T, Mikkelsson LO, Factors Related to Top Running Speed and Economy Int J Sports Med 2007 Aug; 28(8):655-61
104. Padilla S, Mujika I, Orbananos J, Angulo F, Exercise intensity during competition time trials in professional road cycling. Med Sci Sports Exerc 2000; 32(4): 850-856
105. Paavolainen LM, Nummela A, Rusko K, Hakkinen K Neuromuscular characteristics and fatigue during $10-\mathrm{km}$ running Int J Sports Med 1999; 20: 1-6
106. Paavolainen L, Häkkinen K, Hämäläinen I, Nummela A, Rusko H, Explosive-strength training improves 5-km running time by improving running economy and muscle power. Journal of Applied Physiology 1999; 86:1527-1533
107. Pate RR, Kriska A, Physiological basis of the sex difference in cardiorespiratori endurance. Sports Medicine 1984; 1:87-98
108. Pilegaard H, Domino K, Noland T, Juel C, Hellsten Y, Halestrap AP, Bangsbo J. Effect of high-intensity exercise training on lactate $/ \mathrm{H}^{+}$transport capacity in human skeletal muscle. Am J Physiol 1999; 276(39): 255-261
109. Pollock ML, Submaximal and maximal working capacity of elite distance runners. Part 1: Cardiorespiratori aspects. Ann N Y Acad Sci 1977; 301: 310-322
110. Powers SK, Laler J, Dempsey J et al, Effects of incomplete pulmonary gas exchange on $\mathrm{VO}_{2 \max }$. J Appl Physiol 1989; 66: 2491-2495
111. Richardson RS, Leigh JS, Wagner PD et al, Cellular PO_{2} as a determinant of maximal mitochondrial O_{2} consumption in trained human skeletal muscle. J Appl Physiol 1999; 87: 321-331
112. Riegel p, Records and Human Endurance. American Scientist Magazine 1981; 69: 285
113. Roca J, Augusti AGN, Alonso A et al, Effects of training on muscle O_{2} transport at VO $_{2 \text { max }}$. J Appl Physiol 1992; 73: 1067-1076
114. Saltin B, Malleability of the system in overcoming limitations: Functional elements J exp Biol 1985; 115, 345-354
115. Saltin B, Maximal oxygen uptake: limitations and malleability. In: Nazar K, Terjung RL (eds), International Perspectives in Exercise. Physiology Champaign, IL: Human Kinetics Publishers; 1990: 26-40
116. Saunders PU, Telford RD, Pyne DB, Cunningham RB, Core CJ, Hahn AG, Hawley JA, Improved running economy in elite runners after 20 days of simulated moderate altitude exposure. J Appl Physiol 2004; 96(3): 931-937
117. Scrimgeour AG, Noakes TD, Adams B, Myburgh K, The influence of weekly training distance on fractional utilization of maximum aerobic capacity in marathon and ultramarathon runners. Eur J Appl Physiol 1986 55:202-209
118. Shoemaker JK, Hodge L, Hughson RL, Cardiorespiratori kinetics and femoral artery blood velocity during dynamic knee extension exercise J Appl Physiol 1994; 77:26252632
119. Slavin MM, Hintermeister RA, Hamill J, A comparison of five mechanical work algorithms for different foot strike patterns and speeds during distance running. In: HamillJ, Derrick TR, Elliot EH (ed.), Biomechanics XI. Proceedings of the XIth Symposium of the International Society of Biomechanics in Sports. University of Massachusetts, Amherst, 1993: 106-109
120. Sproule J, Running economy deteriorates following 60 min of exercise at $80 \% \mathrm{VO}_{2 \text { max }}$ Eur J Physiol Occup Physiol 1998; 77(4): 366-371
121. Spurrs RW, Murphy AJ, Watsford ML, The effect of plyometric training on distance running performance. Eur J Appl Physiol 2003; 89:1-7
122. Steudel-Numbers KL, Weaver TD, Wall-Scheffler CM, The evolution of human running: effects of changes in lower-limb length on locomotor economy. J Hum Evol 2007; 53(2). 191-196
123. Strømme SB, Ingjer F, Meen HD, Assessment of maximal aerobic power in specifically trained athletes. J Appl Physiol 1977;42(6): 833-837
124. Tanaka H, Swensen T, Impact of Resistance Training on Endurance Performance. Sports Medicine 1998; 25(3): 191-200
125. Taylor CR, Force development during sustained locomotion: a determinant of gait, speed and metabolic power J Exp Biol 1985; Mar; 115: 253-262
126. Thomas DQ, Fernhall B, Blanpied P, Stillwell K, Changes in running economy and mechanics during a submaximal 5-km run J Strength Cond Res 1995; 9(3): 170-175
127. Tesch PA, Skeletal muscle adaptations consequent to long-term heavy resistance training. Medicine and Science in Sports and Exercise 1988, 20(5) pp. s132-s134
128. Tokui M., Hirakoba K, Effect of internal power on muscular efficiency during cycling exercise. Eur J Appl Physiol 2007; 101: 565-570
129. Tucker VA, The energetic cost of moving about. American Scientist 1975 (63):413419
130. Vogt S, Heinrich L, Schumacher YO, Blum A, Roecker K, Dickhuth H-H, Schmid A, Power Output during Stage Racing in Professional Road Cycling. Med Sci Sports Exerc 2006; 38(1): 147-151
131. Wagner PD, Central and peripheral aspects of oxygen transport and adaptations with exercise. Sports Med 1991; 11: 133-142
132. Wagner PD, Algebraic analysis of the determinants of $\mathrm{VO}_{2 \max }$. Respir Physiol 1993; 93: 221-237
133. Wagner PD, A theoretical analysis of factors determining $\mathrm{VO}_{2 \max }$ at sea level and altitude. Respir Physiol 1996; 106(3): 329-343
134. Wang E, Hoff J, Loe H, Kaehler N, Helgerud J, Plantar flexion: an effective training for peripheral arterial disease. Eur J Appl Physiol. 2008 Aug 23 (epub ahead of print)
135. Weber CL, Schneider DA, Maximal accumulated oxygen deficit expressed relative to the active muscle mass for cycling in untrained male and female subjects. Eur J Appl Physiol 2000; 82(4): 255-261
136. Williams KR, Cavanagh PR, Relationship between distance running mechanics, running economy, and performance. Journal of Applied Physiology 1987; 63(3):12361245
137. Wisløff U, Castagna C, Helgerud J, Hoff J, Maximal squat strength is strongly correlated to sprint performance in elite soccer players. Br J Sports Med 2004; 38: 285288
138. Yoon S, Tauchi K, Takamatsu K, Effect of Ankle Joint Stiffness during Eccentric Phase in Rebound Jumps on Ankle Joint Torque at Midpoint. Int J Sports Med 2007; 28: 66-71
139. Yasuda N, Gaskill SE, Ruby BC, No gender-specific differences in mechanical efficiency during arm or leg exercise relative to ventilatory threshold. Scand J Med Sci Sports 2008 Apr; 18 (2):205-12
140. Yoshida T, Chida M, Ichioka M, Suda Y, Blood lactate parameters related to aerobic capacity and endurance performance. Eur J Appl Physiol Occup Physiol. 1987; 56(1): 711
141. Østerås H, Helgerud J, Hoff J, Maximal strength-training effects on force-velocity and force-power relationships explain increases in aerobic performance in humans. European Journal of Applied Physiology 2002; 88: 255-263
142. Åstrand PO, Rodahl K, Textbook of work physiology 3. ed. McGraw-Hill, New York, 1986

PAPER I

Hoff J, Støren Ø, Finstad A, Wang E, Helgerud J (2009)

High blood lactate levels deteriorates running economy in elite endurance athletes.

Is not included due to copyright

PAPER II

Helgerud J, Støren Ø, Hoff J (2009)

Are there differences in running economy at different velocities?

Submitted to Eur J Appl Physiol, May 2009

Jan Helgerud ${ }^{1,2}$, Øyvind Støren ${ }^{1,3}$, Jan Hoff ${ }^{1,4}$

Are there differences in running economy at different velocities for well trained distance runners?

${ }^{1}$ Norwegian University of Science and Technology, Faculty of Medicine, Department of Circulation and Medical Imaging, Trondheim, Norway
${ }^{2}$ Hokksund Medical Rehabilitation Centre, Norway
${ }^{3}$ Department of Sport and Outdoor Life Studies, Telemark University College, Norway
${ }^{4}$ St.Olav University Hospital, Dep of Physical Medicine and Rehabilitation, Trondheim, Norway

Running title: Running velocity and running economy

Corresponding author:
Jan Helgerud,
Norwegian University of Science and Technology, Faculty of Medicine,
NO-7489 Trondheim, Norway
Jan.Helgerud@ntnu.no
Phone: +4791821892
Fax: +4773598613

Abstract

Purpose: The present study investigated if there are differences in running economy at different velocities for well trained distance runners, and to what extent a commonly used incremental protocol for measuring oxygen uptake $\left(\mathrm{VO}_{2}\right)$ at different velocities affects the reliability of these measurements.

Methods: 15 well trained distance runners (9 male and 6 female) participated in this study. Gross oxygen cost of running $\left(\mathrm{C}_{\mathrm{R}}\right)$, heart rate (Hf) and $\left[\mathrm{La}^{-}\right]_{\mathrm{b}}$ during 5 minute runs at velocities ranging from 8.0 to $17 \mathrm{~km} \cdot \mathrm{~h}^{-1}$, representing intensities ranging from 60% to 90% of maximal oxygen consumption $\left(\mathrm{VO}_{2 \max }\right)$ was measured on two different days in random order. The athletes were also tested for lactate threshold (LT), $\mathrm{VO}_{2 \max }$ and time to exhaustion at MAS (${ }^{(M A S}$).

Results: No significant differences in C_{R} between the different relative velocities or the different set velocities were found up to 90% of $\mathrm{VO}_{2 \max }$. The incremental protocol for measuring VO_{2} at different velocities was found not to affect the reliability of these measurements. All athletes reached their $\mathrm{VO}_{2 \max }$ while running to exhaustion at MAS. The females showed significantly lower $\mathrm{VO}_{2 \text { max }}$ but significantly better C_{R} than the males. Conclusion: At velocities representing intensities between 60% and 90% of $\mathrm{VO}_{2 \max }$, no differences in C_{R} were found. The commonly used incremental protocol for measuring oxygen uptake $\left(\mathrm{VO}_{2}\right)$ at different velocities was found not to affect the reliability of these measurements. This means that C_{R} measured at sub maximal velocities are representative for C_{R} at race velocity for distances above 10000 metres for most runners.

Keywords: Oxygen cost of running; running velocities; test protocol.

INTRODUCTION

Endurance performance, as in long distance running, imposes great demands on both the cardiovascular system and the employed locomotor organs. A model described by Pate and Kriska (1984) incorporates three major factors accounting for interindividual variance in aerobic endurance performance, namely maximal oxygen consumption $\left(\mathrm{VO}_{2 \max }\right)$, lactate threshold (LT) and work economy. This model is supported by numerous published studies (Pollock, 1977, Farell et al., 1979, Conley and Krahenbuhl, 1980, Di Prampero et al,. 1986, Bunc and Heller, 1989, Helgerud, 1994). Maximal aerobic speed (MAS), or the minimum speed needed to reach $\mathrm{VO}_{2 \text { max }}\left(\nu \mathrm{VO}_{2 \text { max }}\right)$ has been explained by Morgan et al., (1989) as the $\mathrm{VO}_{2 \text { max }}$ divided by C_{R}. Noakes et al., (1990) have shown that maximal speed reached during $\mathrm{VO}_{2 \text { max }}$ testing correlates better with performances for distances between 10 and 90 km than $\mathrm{VO}_{2 \text { max }}$ alone. In accordance with this, Lacour et al., (1990) found that C_{R} or $\mathrm{VO}_{2 \max }$ alone did not correlate with race velocity among well trained middle and long distance runners (800 m 5000 m), whereas MAS correlated well with the race velocity for distances longer than 800 m . The MAS has been found to represent $1500 \mathrm{~m}-3000 \mathrm{~m}$ velocity in elite and sub-elite distance runners (Lacour et al., 1990, Billat \& Koralsztein, 1996, Bassett et al., 2003). The time to exhaustion at MAS in these studies was approximately 3-9 minutes.
C_{R} is commonly defined as the steady rate VO_{2} in $\mathrm{ml} \cdot \mathrm{kg}^{-1} \cdot \mathrm{~min}^{-1}$ at a standard velocity (Costill et al., 1973, Conley and Krahenbuhl, 1980) or as energy cost of running per metre $\left(\mathrm{ml} \cdot \mathrm{kg}^{-1} \cdot \mathrm{~m}^{-}\right.$ $\left.{ }^{1}\right)$ (Di Prampero et al., 1986, Helgerud, 1994, Helgerud et al., 2001). It is also expressed as mechanical efficiency, which is referred to as the ratio between work output and oxygen cost (Åstrand and Rodahl, 1986).

Conley and Krahenbuhl (1980) and Helgerud (1994) have shown inter-individual variations in the oxygen cost of running $\left(\mathrm{C}_{\mathrm{R}}\right)$. The causes of this variability are not well understood, but it seems likely that anatomical trait, mechanical skill, neuromuscular skill and storage of elastic
energy are important factors (Pate and Kriska, 1984). Interindividual variability in C_{R} reflects the importance of this parameter for performance in long distance running. Interindividual variability in C_{R} expressed as standard deviations (SD) is reported by Di Prampero et al. (1986) to be $\pm 8 \%$, if the C_{R} is expressed per kg body mass. This is in line with results from Morgan et al. (1995) and Lacour et al. (1990). These results are also expressed per kg body mass.

Energy cost for movement does not increase in the same rate as body mass (Bergh et al., 1991, Eisenmann et al., 2001, Berg, 2003). According to Helgerud (1994), a lack of allometric scaling will underestimate $\mathrm{VO}_{2 \max }$ and overestimate C_{R} among the heavier runners. Consequently, part of the variation in C_{R} in the experiments by Di Prampero et al. (1986), Morgan et al., (1995) and Lacour et al., (1990) are due to body mass differences. To use allometric scaling when expressing C_{R} has seemed to reveal smaller differences. Helgerud (1994) has reported SD for C_{R} of approximately 5% within intermediate national elite marathon runners when expressing C_{R} per kg body weight raised to the power of 0.75 and metre. In accordance with this, Helgerud et al. $(2001,2003)$ have shown $S D$ for C_{R} to be 5% in junior soccer players and 3-4\% in adult players including a group of players at European Champions League level. Hoff et al. (2005) report SD for C_{R} to be less than 5% among 36 professional soccer players.

Helgerud (1994) has reported a lower C_{R} at velocities equal to LT among female intermediate national elite marathon runners than in their performance-matched male counterparts when expressing C_{R} per kg body weight raised to the power of 0.75 and metre. Daniels and Daniels (1992) and Bunc and Heller (1989) did not report gender differences in C_{R} when the results are recalculated (body weight raised to the power of 0.75 and metre).

If measurements of C_{R} at a sub-maximal running velocity are to be used to evaluate race performance capacity among long distance runners, the measurements should be
representative for the C_{R} at racing velocity. Previous investigations have shown C_{R} to be independent of running velocity up to intensities close to $\mathrm{VO}_{2 \max }$ for long distance runners (Di prampero et al., 1986, Helgerud, 1994). However Daniels and Daniels (1992) report increasing C_{R} at increasing relative running velocities. They also found elite middle distance runners to have better C_{R} at velocities at or above marathon pace than elite long distance runners. The long distance runners had better C_{R} at velocities below marathon pace than the middle distance runners.

In most studies that have investigated C_{R} at different velocities, an incremental protocol with different sub-maximal work periods over 3-10 minutes each, have been used (Di Prampero et al., 1986, Bunc and Heller, 1989, Lacour et al., 1990, Helgerud, 1994). A possible cause of error in these protocols is the incremental order in which the runs have been performed. In this context it should be of interest to assess to what extent VO_{2} at one velocity is affected by previously completed runs.

The aim of the present study was to investigate if there are differences in running economy at different velocities for well trained distance runners, and to what extent a commonly used incremental protocol for measuring oxygen uptake $\left(\mathrm{VO}_{2}\right)$ at different velocities affects the reliability of these measurements.

The hypothesis of the present study was;

1. There are no differences in C_{R} at different velocities in male and female distance runners between $75-90 \% \mathrm{VO}_{2 \max }$.
2. The commonly used incremental protocol for measuring VO_{2} at different intensity levels is reliable up to $90 \% \mathrm{VO}_{2 \max }$.

MATERIALS AND METHODS

Subjects: 15 moderately to well trained runners, 9 males and 6 females, aged 29.3 ± 7.0 years, with an average $\mathrm{VO}_{2 \max }$ of $65.2 \pm 10.4 \mathrm{ml} \cdot \mathrm{kg}^{-1} \cdot \mathrm{~min}^{-1}$ were included in the study, after giving their written consent to participate.

Test procedures: The subjects were tested on two different days, with a minimum of one day and a maximum of seven days of rest or easy training in between. The first day consisted of measurements of heart rate (HR), blood lactate concentration ($\left[\mathrm{La}^{-}\right]_{\mathrm{b}}$) and oxygen consumption $\left(\mathrm{VO}_{2}\right)$ during five minutes runs $(1.5 \%$ inclination $)$ at different velocities until exhaustion. The subjects started with a velocity assumed to be about 60% of their $\mathrm{VO}_{2 \text { max }}$. This was either 8.0 or $9.5 \mathrm{~km} \cdot$ hour $^{-1}$. After completing five minutes at this velocity, the speed was increased by $1.5 \mathrm{~km} \cdot$ hour $^{-1}$ to the next five minute work period. New steps were performed until the subject no longer could complete five minutes at the desired velocity. After 60 minutes of rest, a $\mathrm{VO}_{2 \max }$ test was performed, using an incremental protocol at 5.2% inclination. The $\mathrm{VO}_{2 \max }$ test terminated at voluntary fatigue by the subjects. $\mathrm{HR}(\geq 98 \%$ predicted $\left.\mathrm{HR}_{\max }\right), \mathrm{R}(\geq 1.05)$ and $\left[\mathrm{La}^{-}\right]_{\mathrm{b}}\left(\geq 8.0 \mathrm{mmol} \cdot \mathrm{L}^{-1}\right)$ values, as well as a possible platouing of the VO_{2} curve, was used to evaluate if $\mathrm{VO}_{2 \max }$ was obtained. LT and maximal aerobic speed (MAS) were calculated on the basis of these measurements. The second day of testing consisted of measurements of $\mathrm{HR},\left[\mathrm{La}^{-}\right]_{\mathrm{b}}$ and VO_{2} at the same velocities as the first day, but performed in the opposite order (i.e. starting with the highest running velocity after a warm up). Following a 60 min rest, the subjects then performed a run to exhaustion at MAS. The protocol for one of the runners is presented in table 1.

Protocol for one of the runners (table 1).
The VO_{2} was measured using the metabolic test system, Sensor Medics Vmax Spectra (SensorMedics 229 California, USA). The lactate measurements were performed using an Arkray Lactate Pro LT-1710 analyser (whole blood) (Arkray Inc. Kyoto, Japan). The LT was
defined as the warm up $\left[\mathrm{La}^{-}\right]_{\mathrm{b}}$ value (i.e. measured after the lowest velocity in day one) +1.5 mmol . This is in line with the protocol proposed by Helgerud et al. (1990), consisting of several five minute steps, at 1.5% inclination, increasing the speed by $1.5 \mathrm{~km} \cdot$ hour $^{-1}$ after each step. The oxygen cost of running was measured at the same 5 -minute steps at 1.5% inclination. These steps were performed until the subjects no longer managed to run for 5 min (exhaustion). In day two the same velocities were measured, but in the opposite order. C_{R} was calculated as gross oxygen cost per kilo bodyweight raised to the power of 0.75 , per meter of running for the set running velocities. For the relative intensities, for example $75 \% \mathrm{VO}_{2 \text { max }}$, running velocity was calculated in the same way as for maximal aerobic speed (figure 1).

Assessment of maximal aerobic speed (figure 1).

MAS was defined at the velocity at 1.5% inclination of the treadmill, where the horizontal line representing $\mathrm{VO}_{2 \max }$ meets the extrapolated incremental line representing the sub maximal VO_{2} measured in the LT assessment. By plotting VO_{2} data against running velocity, individual regression equations for each subject could be obtained. Based on the findings of Helgerud (1994), values in between $60-90 \% \mathrm{VO}_{2 \max }$ were used to calculate the incremental line. An example of the assessment of MAS is presented in figure 1.

Alometric scaling has been reported to decrease the SDs in C_{R} between subjects (Helgerud, 1994, Helgerud et al., 2001, Hoff et al., 2005). VO_{2} values are thus mainly expressed in $\mathrm{ml} \cdot \mathrm{kg}^{-0.75}$ in the present study.

Statistical analysis: Descriptive statistical analyses were made to display means, standard deviations, standard error and coefficient of variance. To assess whether or not the VO_{2} values would be affected by the preceding step (i.e. the day to day measures described above), two way ANOVA-tests were used. Differences in C_{R} at different velocities and possible gender differences in C_{R} were also tested by using two-ways ANOVA-tests. Linear regressions were made to display the equations representing the linearity between running
velocity and oxygen cost of running. Correlations were calculated by the Pearson correlation test.

RESULTS

Physical characteristics of subjects (table 2)

Physical characteristics of the subjects are presented in table 2. There was no significant gender differences in age, in LT velocity, in LT expressed as per cent of $\mathrm{VO}_{2 \max }$ or in ${ }_{\mathrm{t}} \mathrm{MAS}$. The male subjects were taller, heavier and had a higher $\mathrm{VO}_{2 \max }$ than the females.

To compare physiological parameters at $\mathrm{VO}_{2 \max }$ and at MAS, only the participants that completed more than five minutes at MAS were included, independent of gender. They would thus have at least spent the same time at this intensity as at the set submaximal intensities. Further, five minutes should allow a possible steady rate to occur. These runners clearly reach their $\mathrm{VO}_{2 \text { max }}$ at MAS (99.4% of $\mathrm{VO}_{2 \max }$). Neither the results regarding HR nor $[\mathrm{La}]_{b}{ }_{\mathrm{b}}$ peak were different being obtained at $\mathrm{VO}_{2 \text { max }}$ or at MAS. However, the subjects exhibited significantly lower R-values when running at MAS compared with the R -values achieved during the $\mathrm{VO}_{2 \text { max }}$ test. These results are presented in table 3 .

Physiological variables at $\mathrm{VO}_{2 \text { max }}$ and at MAS (table 3)

Table 4 shows the mean values in VO_{2} at each of the set intensities by the 10 subjects who completed at least $15.5 \mathrm{~km} \cdot \mathrm{~h}^{-1}$, independent of gender. The results are divided into the two different test days. In day one the subjects ran at the lowest velocity first, increasing the speed for each separate run. In day two they started at the highest velocity, decreasing the speed for each separate run.

Oxygen cost of running at different test days (table 4)

There were no significant differences in oxygen costs of running $\left(\mathrm{C}_{\mathrm{R}}\right)$ expressed as
$\mathrm{VO}_{2} \mathrm{ml} \cdot \mathrm{kg}^{-0.75} \cdot \mathrm{~min}^{-1}$ between the two test days. The coefficient of variation for the mean differences between day one and day two is 0.9%. Consequently, only results from test day one, apart from the MAS results (day two) are used in the following statistical analysis.

The mean data for C_{R} expressed as $\mathrm{VO}_{2} \mathrm{ml} \cdot \mathrm{kg}^{-0.75} \cdot \mathrm{~m}^{-1}$ at those of the set velocities that were completed by all the fifteen subjects are shown in table 5 . These results are divided by gender.

Oxygen cost of running at set velocities (table 5)

There were no significant differences in C_{R} expressed as $\mathrm{VO}_{2} \mathrm{ml} \cdot \mathrm{kg}^{-0.75} \cdot \mathrm{~m}^{-1}$ between the different set velocities. The females had significantly lower C_{R} than the males at the set velocities. Mean interindividual variability expressed as standard deviations (SD) for the males was $\pm 7.1 \%$. For the females, mean interindividual variability was $\pm 5.2 \%$.

By plotting VO_{2} data against running velocity as described in the protocol for assessing MAS, individual regression equations for each subject could be used to find the cost of running at the different relative velocities. By using running intensities representing $75-90 \%$ of $\mathrm{VO}_{2 \max }$, the data are within the area of velocity completed by all the subjects. Table 6 shows the mean data for the C_{R} expressed as $\mathrm{VO}_{2} \mathrm{ml} \cdot \mathrm{kg}^{-0.75} \cdot \mathrm{~m}^{-1}$ at these velocities relative to $\mathrm{VO}_{2 \text { max }}$.

Oxygen cost of running at relative intensities (table 6, figure 2)

No significant differences in oxygen costs of running expressed as $\mathrm{VO}_{2} \mathrm{ml} \cdot \mathrm{kg}^{-0.75} \cdot \mathrm{~m}^{-1}$ between the different relative velocities was found for the male or for the female subjects. The females had significantly lower oxygen cost of running than the males at all the relative velocities.

DISCUSSION

The major findings in this study are that oxygen cost of running $\left(\mathrm{C}_{\mathrm{R}}\right)$ did not differ for velocities between 75% and $90 \% \mathrm{VO}_{2 \max }$, and that the commonly used incremental protocol for measuring VO_{2} at different intensity levels is reliable up to $90 \% \mathrm{VO}_{2 \text { max }}$.

Cost of running at different velocities and intensities

The finding that C_{R} did not differ at the different set velocities or relative intensities is in agreement with reports from di Prampero et al. (1986) and Helgerud (1994). These results are, however, not in agreement with the results from Daniels \& Daniels (1992) who found increasing oxygen cost of running as relative running intensity increased in the area between 70% and $100 \% \mathrm{VO}_{2 \max }$.

Reliability of the incremental protocol for assessing oxygen cost of running

When comparing the C_{R} from test-day one and test-day two, using the two different protocols (incremental order day one, descending order day two), no significant differences were found. The coefficient of variation for the mean differences between day one and day two is only 0.9%. Thus it seems safe to assume that the commonly used incremental protocol for measuring VO_{2} at different intensity levels is reliable up to $90 \% \mathrm{VO}_{2 \max }$.

Interindividual variability in oxygen cost of running

Interindividual variability in oxygen cost of running expressed as mean standard deviations for the three velocities completed by all fifteen subjects (SD) is $\pm 7.1 \%$ for the males and $\pm 5.2 \%$ for the females in the present study. The variability is lowest at the lowest velocity $(9.5$ $\mathrm{km} \cdot \mathrm{h}^{-1}$), and highest at the highest velocity ($12.5 \mathrm{~km} \cdot \mathrm{~h}^{-1}$). Interindividual variability is reported by di Prampero et al. (1986) to be $\pm 8 \%$, if the oxygen cost of running is expressed
per kg body mass. Morgan et al. (1995) and Lacour et al. (1990) have found within group variations of about 20%. These results are also expressed per kg body mass. As energy cost for movement does not increase in the same rate as body weight, it seems likely that part of the variation in the oxygen cost of running in the experiments by di Prampero et al. (1986), Morgan et al. (1995) and Lacour et al. (1990) is due to weight differences. If allometric scaling had been used, these results would assumingly be more in line with those reported in the present study, since the use of allometric scaling when expressing running economy has revealed smaller differences (approximaltely $\pm 5 \%$) in previous investigations (Helgerud, 1994, Helgerud et al., 2001, Helgerud et al., 2003, Hoff and Helgerud, 2003, Hoff et al., 2005).

Gender differences

Although possible gender differences was not one of the original aims of the present study, the results showed better C_{R} among the females than among their male counterparts. The populations are however small (9 males and 6 females). These results are in agreement with results from Helgerud (1994), but seemingly in contrast to results from Daniels and Daniels (1992) and Bunc and Heller (1989). If we recalculate the oxygen cost in the two studies by Daniels and Daniels, (1992) and Bunc and Heller (1989) by raising the body mass to the power of 0.75 and metre, the results tend to be more in agreement with the results in the present study and in Helgerud (1994). This phenomenon has not been explained in previous literature, assumingly because it has been concealed, as the results have not been scaled by raising body weight to the power of 0.75 and metre. Since the female subjects in the present study had considerable lower $\mathrm{VO}_{2 \max }$ than the males, the gender differences in C_{R} could be related to differences in $\mathrm{VO}_{2 \text { max }}$. This would be in line with the suggestion by Woodruff et al. (2005) that runners with the highest $\mathrm{VO}_{2 \max }$ tended to be less economical with respect to the
change in VO_{2} from one velocity to the next. However, in our study no correlation was found between $\mathrm{VO}_{2 \max }$ and C_{R} when the subjects were divided by gender. We have thus no explanations to why women should have lower C_{R} than men. Further investigations' regarding this phenomenon is thus needed.

Maximal aerobic speed

Eight of the fifteen subjects in our study completed more than five minutes at MAS, independent of gender. This group clearly reaches their $\mathrm{VO}_{2 \max }$ at MAS $\left(99.4 \%\right.$ of $\mathrm{VO}_{2 \max }$ at MAS). The results regarding heart rate and lactate confirm this. However, the subjects had significantly lower R-values when running at MAS compared with the R -values achieved during the $\mathrm{VO}_{2 \text { max }}$ test. A possible explanation for this is the lower intensity at MAS than at the end of the $\mathrm{VO}_{2 \text { max }}$ test.

We found a significant correlation between time at MAS and LT as per cent of $\mathrm{VO}_{2 \text { max }}$ for the male subjects, but not for the females. With LT representing a higher percentage of $\mathrm{VO}_{2 \max }$, the anaerobic contribution to the work done per metre at MAS should logically be smaller.

Participating subjects

The participating subjects in the present study are characterised as a heterogenous group with regards to running performance, $\mathrm{VO}_{2 \max }$ and C_{R}. However, they are all well trained runners. Thus it seems natural that the C_{R} by the group as a whole is higher than reported for elite runners (Daniels \& Daniels, 1992), intermediate national standard marathon runners (Helgerud, 1994) and recreational marathon runners (Helgerud et al., 1990). The mean C_{R} among the males $\left(0.755 \mathrm{ml} \cdot \mathrm{kg}^{-0.75} \cdot \mathrm{~m}^{-1}\right)$ correspond to a CR of $0.246 \mathrm{ml} \cdot \mathrm{kg}^{-1} \cdot \mathrm{~m}^{-1}$, whereas the mean C_{R} among the females $\left(0.680 \mathrm{ml} \cdot \mathrm{kg}^{-0.75} \cdot \mathrm{~m}^{-1}\right)$ correspond to a CR of $0.243 \mathrm{ml} \cdot \mathrm{kg}^{-1}$

- m^{-1}. The present results are more in agreement with results from soccer players as reported by Helgerud et al. (2001) and by Hoff and Helgerud (2003).

Conclusion

At velocities representing intensities between 60% and 90% of $\mathrm{VO}_{2 \max }$, no differences in C_{R} were found. This means that C_{R} measured at sub maximal velocities are representative for C_{R} at race velocity for distances above 10000 metres for most runners. The commonly used incremental protocol for measuring oxygen uptake $\left(\mathrm{VO}_{2}\right)$ at different velocities was found not to affect the reliability of these measurements.

ACKNOWLEDGEMENTS

There is no conflict of interest.

REFERENCES

Åstrand PO, Rodahl K (1986) Textbook of work physiology. McGraw-Hill, New York.

Bassett FA, Chouinard R, Boulay MR (2003) Training Profile Counts for time-to-Exhaustion Performance. Canadian Journal of Applied Physiology; 28(4): 654-666

Berg K (2003) Endurance Training and Performance in Runners - Reserarch Limitations and Unanswered Questions. Sports Med; 33(1): 59-73

Bergh U, Sjődin B, Forsberg A, Svedenhag J (1991) The relationship between body mass and oxygen uptake during running in humans. Med Sci Sports Exerc.; 23(2):205-211

Billat LV, Koralsztein JP (1996) Significance of the velocity at $\mathrm{VO}_{2 \max }$ and time to exhaustion at this velocity. Sports Med; 22: 90-108

Brandon LJ (1995) Physiological factors associated with middle distance running performance. Sports Med.; Apr, 19(4):268-77

Bunc V, Heller J (1989) Energy cost of running in similarly trained men and women. Eur J Appl Physiol Occup Physiol.; 59(3):178-83

Conley DL, Krahenbuhl GS (1980) Running economy and distance running performance of highly trained athletes. Med Sci Sports Exerc.; 12(5):357-60.

Costill DL, Thomas H, Roberts E (1973) Fractional utilization of the aerobic capacity during distance running. Med Sci Sports Exerc; 5: 248-252

Daniels J, Daniels N (1992) Running economy of elite male and elite female runners.
Med Sci Sports Exerc; 24(4):483-489

Di Pampero PE, Atchou G, Brückner JC, Moia C (1986) The energetics of endurance running. Eur J Appl Physiol; 55:259-266

Eisenmann JC, Pivarnik JM, Malina RM (2001) Scaling peak VO_{2} to body mass in yong male and female distance runners. J Appl Physiol; 90:2172-2180

Farell PA, Wilmore JH, Coyle EF, Billing JE, Costill DL (1979) Plasma lactate accumulation and distance running performance. Med Sci Sports Exerc, 11(4): 338-344,

Helgerud J (1994) Maximal oxygen uptake, anaerobic threshold and running economy in womwn and men with similar performance level in marathons. Eur J Appl Physiol; 68: 155161

Helgerud J, Engen LC, Wisløff U, Hoff J (2001) Aerobic endurance training improves soccer performance. Med Sci Sports Exerc; 33(11): 1925-1931

Helgerud J, Kemi OJ, Hoff J (2003) Pre-season concurrent strength and endurance development in elite soccer players. In Hoff J, Helgerud J (eds), Football (Soccer) New developments in physical training research, , NTNU, Trondheim.

Helgerud J, Ingjer F, Strømme SB (1990) Sex differences in performance-matched marathon runners. Eur J Appl Physiol; 61: 433-439

Hoff J, Helgerud J (2003) Maximal strength training enhances running economy and aerobic endurance performance. In: Hoff J, Helgerud J (eds.) Football (Soccer).

New developments in physical training research. Norwegian University of Science and Technology, pp. 37-53.

Hoff J, McMillan K, Helgerud J (2005) Football (Soccer) specific, simple, low cost, test of endurance performance and maximal oxygen uptake. Doctorial thesis at Norwegian University of Science and Technology, Trondheim, Norway, no 184.

Lacour JR, Padilla-Magunacelaya S, Barthelemy JC, Dormois D (1990) The energetics of middle-distance running. Eur J Appl Physiol; 60: 38-43

Morgan DW, Baldini FD, Martin PE, Kohrt WM (1989) Ten kilometer performance and predicted velocity at $\mathrm{VO}_{2 \max }$ among well-trained male runners. Med Sci Sports Exerc; 21: 7883

Morgan DW, Bransford DR, Costill DL, Daniels JT, Howley ET, Krahenbuhl GS (1995) Variation in the aerobic demand of running among trained and untrained subjects. Med Sci Sports Exerc; 27: 404-409

Noakes TD, Myburgh KH, Scall R (1990) Peak treadmill running velocity during the $\mathrm{VO}_{2 \max }$ test predicts running performance. J Sports Sci; 8(1): 35-45

Pate RR, Kriska A (1984) Physiological basis of the sex difference in cardiorespiratori endurance. Sports Medicine; 1:87-98

Pollock ML (1977) Submaximal and maximal working capacity of elite distance runners. Part
1: Cardiorespiratory aspects. Ann N Y Acad Sci; 301: 310-322

Woodruff ME, Cole AS, Mahon AD, Horn MP (2005) The relationship between running economy and maximal oxygen uptake in trained adolscent female distance runners. Med Sci Sports Exerc; 37(5): 16
Table 1 Test protocol for one of the runners

Day one				Day two			
Step	Inclination (\%)	Velocity (km \cdot hour $^{-1}$)	Duration (min.sec)	Step	Inclination (\%)	Velocity (km \cdot hour $^{-1}$)	Duration (min.sec)
1	1.5	9.5	5	1	1.5	15.5	5
2	1.5	11	5	2	1.5	14	5
3	1.5	12.5	5	3	1.5	12.5	5
4	1.5	14	5	4	1.5	11	5
5	1.5	15.5	5	5	1.5	9.5	5
Rest for 60 min				Rest for 60 m			
$\mathrm{VO}_{2 \text { max }}$ test	5.2	$12.5 \rightarrow 17.5$	6.50	MAS test	1.5	16.9	5.25

Table 2. Physical characteristics of the subjects

	males ($n=9$)	females ($n=6$)
Age (yr)	$\mathbf{3 0 . 0} \pm \mathbf{9 . 2}$	27.8 ± 6.1
Height (m)	1.80 ± 0.06	1.68 ± 0.12 *
Mass (kg)	76.9 ± 5.0	$62.0 \pm 11.2 *$
$\mathrm{HR}_{\text {max }}$ (beats. min^{-1})	187 ± 8	190 ± 9
$\mathrm{VO}_{2 \text { max }}\left(\mathrm{ml} \cdot \mathrm{kg}^{-1} \cdot \mathrm{~min}^{-1}\right)$	71.4 ± 6.3	$56.2 \pm 9.2 *$
$\mathrm{VO}_{2 \text { max }}\left(\mathrm{ml} \cdot \mathrm{kg}^{-0.75} \cdot \mathrm{~min}^{-1}\right)$	211.3 ± 17.8	$157.8 \pm 17.8^{*}$
$\mathrm{R}_{\text {peak }}$	1.09 ± 0.03	1.08 ± 0.04
$\left[\mathrm{La}^{-}\right]_{\mathrm{b} \text { peak }}\left(\mathrm{mmol} \cdot \mathrm{l}^{-1}\right)$	10.7 ± 1.8	9.8 ± 1.7
LT (km• ${ }^{-1}$)	13.7 71.0	11.5 ± 1.6
LT (\% Vo ${ }_{2 \text { max }}$)	82.6 ± 6.35	82.2 ± 2.4
MAS (km h^{-1})	16.5 ± 1.6	14.0 ± 1.9
$\mathrm{Time}_{\mathrm{MAS}}(\mathrm{s})$	432.5 ± 170.7	242.8 ± 92.0

Values are means \pm SD., $H R_{\text {max }}$, maximal heart rate. $\mathrm{VO}_{2 \max }$, maximal oxygen uptake. LT, lactate threshold. $\mathrm{R}_{\text {peak, }}$,gas exchange ratio at $\mathrm{Vo}_{2 \text { max }}$. $\left[\mathrm{La}^{-}\right]_{\mathrm{b} \text { peak, }}$, highest blood lactate concentration reached during the $\mathrm{VO}_{2 \text { max }}$ test. MAS, maximal aerobic speed. Time mAS , time until exhaustion at MAS

* $\mathbf{p}<0.05$ Significant different from male values.

Table 3. Physiological variables at $\mathrm{VO}_{2 \max }$ and at maximal aerobic speed (MAS)

	$\mathrm{VO}_{2 \text { max }}(n=8) 5.2 \%$ incl.	MAS ($n=8$) 1.5\% incl.
$\mathrm{Vo}_{\text {2max }}$	66.4 ± 8.8	66.0 ± 8.7
HR (beats. min^{-1})	186 ± 7	185 ± 5
R	1.08 ± 0.04	$1.02 \pm 0.04 *$
$\left[\mathrm{La}^{-}\right]_{\mathrm{b} \text { peak }}\left(\mathrm{mmol} \cdot \mathrm{l}^{-1}\right)$	10.5 ± 1.8	10.5 ± 2.4

* $\mathbf{p}<0.01$ Significantly different from $\mathrm{Vo}_{\mathbf{2}_{\text {max }}}$ values.

Table 4. Oxygen costs of running at different test-days

	$\mathrm{VO}_{2} \mathbf{m l} \cdot \mathrm{~kg}^{-0.75} \cdot \mathbf{m i n}^{-1}(\boldsymbol{n}=\mathbf{1 0})$		Δ day two
Velocity	Day $\mathbf{1}$ (incremental)	Day 2 (descending)	- day one
$\left(\mathrm{km} \cdot \mathrm{h}^{-1}\right)$	$\mathbf{1 1 7 . 6} \pm \mathbf{8 . 2}$	$\mathbf{1 1 4 . 8} \pm 7.7$	-2.8 ± 6.5
9.5	$\mathbf{1 3 5 . 8} \pm \mathbf{1 1 . 3}$	$\mathbf{1 3 0 . 9} \pm \mathbf{1 2 . 1}$	-4.9 ± 5.7
11	$\mathbf{1 5 3 . 4} \pm \mathbf{1 4 . 3}$	$\mathbf{1 5 4 . 0} \pm \mathbf{1 4 . 7}$	0.6 ± 6.9
12.5	$\mathbf{1 7 1 . 9} \pm \mathbf{1 4 . 8}$	$\mathbf{1 7 6 . 4} \pm \mathbf{1 6 . 0}$	4.5 ± 8.6
14	$\mathbf{1 8 7 . 2} \pm \mathbf{1 4 . 4}$	$\mathbf{1 9 3 . 4} \pm \mathbf{1 4 . 5}$	6.2 ± 10.8
15.5			

Values are means \pm SD.
Incremental, velocities run in an incremental order. Descending, velocities run in a descending order.

Table 5. Oxygen costs of running at set velocities

Velocity $\left(\mathbf{k m} \cdot \mathbf{h}^{-1}\right)$	$\mathbf{V O}_{2} \boldsymbol{m l} \cdot \mathbf{k g}^{-0.75} \cdot \boldsymbol{m}^{-1}$ Males $(\mathbf{n}=\mathbf{9})$	$\mathbf{V O}_{2} \boldsymbol{m l} \cdot \mathbf{k g}^{-0.75} \cdot \boldsymbol{m}^{-1}$ Females $(\mathbf{n}=\mathbf{6})$
9.5	$\mathbf{0 . 7 5 3} \pm \mathbf{0 . 0 4}$	$0.689 \pm 0.027^{*}$
11	$\mathbf{0 . 7 5 2} \pm \mathbf{0 . 0 5 3}$	$0.686 \pm 0.038^{*}$
12.5	$\mathbf{0 . 7 4 9} \pm \mathbf{0 . 0 6 1}$	$0.6757 \pm 0.049^{*}$
Values are means \pm SD.		
*p $<\mathbf{0 . 0 1}$ Significantly different from males.		

Table 6. Oxygen costs of running at relative intensities

Intensity in \% VO ${ }_{2}$ max	$\mathrm{VO}_{2} \mathrm{ml} \cdot \mathrm{kg}^{-0.75} \cdot \mathrm{~m}^{-1}$ Males ($\mathrm{n}=9$)	$\mathrm{VO}_{2} \mathrm{ml} \cdot \mathrm{kg}^{-0.75} \cdot \mathrm{~m}^{-1}$ Females $(\mathrm{n}=6)$
75\%	0.753 ± 0.049	$0.684 \pm 0.037 *$
80\%	0.755 ± 0.051	$0.681 \pm 0.038^{*}$
LT	0.755 ± 0.055	$0.672 \pm 0.043 *$
85\%	0.756 ± 0.054	$0.677 \pm 0.040^{*}$
90\%	0.757 ± 0.056	$0.675 \pm 0.042 *$

Values are means \pm SD.

* $\mathbf{p}<0.01$ Significantly different from males.

LEGEND TABLE 1

The table shows the protocol for one of the runners. The number of 5 minutes steps is individual, as well as the running velocities. Otherwise the protocol is the same for all runners. $\mathrm{VO}_{2 \max }$, maximal oxygen uptake. MAS, maximal aerobic speed.

LEGEND TABLE 2

Values are means \pm SD., $\mathrm{HR}_{\text {max }}$, maximal heart rate. $\mathrm{VO}_{2 \max }$, maximal oxygen uptake. LT, lactate threshold. $\mathrm{R}_{\text {peak }}$, gas exchange ratio at $\mathrm{Vo}_{2 \text { max }} .\left[\mathrm{La}^{-}\right]_{\mathrm{b}}$ peak, highest blood lactate concentration reached during the $\mathrm{VO}_{2 \max }$ test. MAS, maximal aerobic speed. Time ${ }_{\mathrm{MAS}}$, time until exhaustion at MAS

* $\mathrm{p}<0.05$ Significant different from male values.

LEGEND TABLE 3

Values are means $\pm \mathrm{SD} . \mathrm{VO}_{2}, \mathrm{O}_{2}$ uptake. HR , heart rate. $\left[\mathrm{La}^{-}\right]_{\text {bpeak }}$, blood lactate concentration. * $\mathrm{p}<0.01$ Significantly different from $\mathrm{Vo}_{2 \max }$ values.

LEGEND TABLE 4

Values are means \pm SD.
Incremental, velocities run in an incremental order. Descending, velocities run in a descending order.

LEGEND TABLE 5

Values are means \pm SD.
*p<0.01 Significantly different from males.

LEGEND TABLE 6

Values are means \pm SD.
*p<0.01 Significantly different from males.

Figure 1.

Figure 2.

LEGEND FIGURE 1

Figure 1. Assessment of maximal aerobic speed.
The linear regression equation in figure 1 is: $\mathbf{y}=\mathbf{3 . 9 3 9 3} \mathbf{x}+\mathbf{2 . 7 9 6 3} . \mathbf{R}=\mathbf{0 . 9 9 9 7} . \mathrm{VO}_{2 \max }$ for this runner is $69.2 \mathrm{ml} \cdot \mathrm{kg}^{-1} \cdot \mathrm{~min}^{-1} \cdot 70 \% \mathrm{VO}_{2 \text { max }}$ for this runner is $48.4 \mathrm{ml} \cdot \mathrm{kg}^{-1} \cdot \mathrm{~min}^{-1}$. From the equation, the corresponding velocity is $11.7 \mathrm{~km} \cdot \mathrm{~h}^{-1}$, which equals $195 \mathrm{~m} \cdot \mathrm{~min}^{-1} \cdot \mathrm{C}_{\mathrm{R}}$ expressed as $\mathrm{ml} \cdot \mathrm{kg}-{ }^{1} \cdot \mathrm{~m}^{-1}$ is thus $0.284 \mathrm{ml} \cdot \mathrm{kg}^{-1} \cdot \mathrm{~m}^{-1}$. MAS is the velocity point where the horizontal line representing $\mathrm{VO}_{2 \max }$ meets the extrapolated linear regression representing the sub maximal VO_{2} measurements. Here represented by a velocity of $16.9 \mathrm{~km} \cdot \mathrm{~h}^{-1}$.

LEGEND FIGURE 2

Figure 2. Oxygen cost of running at relative intensities.

Values are means \pm SD.

PAPER III

Støren Ø, Helgerud J, Støa EM, Hoff J (2008)

Maximal Strength Training Improves Running Economy in Distance Runners

Med Sci Sports Exerc, Vol 40, No 6, pp 1087-1092.

Is not included due to copyright

PAPER IV

Støren Ø, Helgerud J, Hoff J (2009)

Running stride peak forces inversely determines running economy in elite runners.

Submitted to J Strength Cond Res, April 2009.

Is not included due to copyright

PAPER V

Sunde A, Støren Ø, Bjerkaas M, Larsen MH, Hoff J, Helgerud J, (2009)

Strength Training Improves Cycling Economy.

Accepted in J Strength Cond Res, May 2009.

Is not included due to copyright

Dissertations at the Faculty of Medicine, NTNU

```
1977
    Knut Joachim Berg: EFFECT OF ACETYLSALICYLIC ACID ON RENAL FUNCTION
    Karl Erik Viken and Arne Ødegaard: STUDIES ON HUMAN MONOCYTES CULTURED IN VITRO
1978
    Karel Bjørn Cyvin: CONGENITAL DISLOCATION OF THE HIP JOINT.
    Alf O. Brubakk: METHODS FOR STUDYING FLOW DYNAMICS IN THE LEFT VENTRICLE AND
    THE AORTA IN MAN
1979
    5. Geirmund Unsgaard: CYTOSTATIC AND IMMUNOREGULATORY ABILITIES OF HUMAN
        BLOOD MONOCYTES CULTURED IN VITRO
1980
    6. Størker Jørstad: URAEMIC TOXINS
    7. Arne Olav Jenssen: SOME RHEOLOGICAL, CHEMICAL AND STRUCTURAL PROPERTIES OF
        MUCOID SPUTUM FROM PATIENTS WITH CHRONIC OBSTRUCTIVE BRONCHITIS
1981
    8. Jens Hammerstrøm: CYTOSTATIC AND CYTOLYTIC ACTIVITY OF HUMAN MONOCYTES AND
    EFFUSION MACROPHAGES AGAINST TUMOR CELLS IN VITRO
1983
    9. Tore Syversen: EFFECTS OF METHYLMERCURY ON RAT BRAIN PROTEIN
    0. Torbjørn Iversen: SQUAMOUS CELL CARCINOMA OF THE VULVA.
1984
    11. Tor-Erik Widerøe: ASPECTS OF CONTINUOUS AMBULATORY PERITONEAL DIALYSIS.
    12. Anton Hole: ALTERATIONS OF MONOCYTE AND LYMPHOCYTE FUNCTIONS IN REALTION
        TO SURGERY UNDER EPIDURAL OR GENERAL ANAESTHESIA.
    13. Terje Terjesen: FRACTURE HEALING AND STRESS-PROTECTION AFTER METAL PLATE
        FIXATION AND EXTERNAL FIXATION.
    14. Carsten Saunte: CLUSTER HEADACHE SYNDROME.
    15. Inggard Lereim: TRAFFIC ACCIDENTS AND THEIR CONSEQUENCES.
    16. Bjørn Magne Eggen: STUDIES IN CYTOTOXICITY IN HUMAN ADHERENT MONONUCLEAR
        BLOOD CELLS.
    17. Trond Haug: FACTORS REGULATING BEHAVIORAL EFFECTS OG DRUGS
1985
    18. Sven Erik Gisvold: RESUSCITATION AFTER COMPLETE GLOBAL BRAIN ISCHEMIA.
    9. Terje Espevik: THE CYTOSKELETON OF HUMAN MONOCYTES.
    . Lars Bevanger: STUDIES OF THE Ibc (c) PROTEIN ANTIGENS OF GROUP B STREPTOCOCCI
    . Ole-Jan Iversen: RETROVIRUS-LIKE PARTICLES IN THE PATHOGENESIS OF PSORIASIS.
    Lasse Eriksen: EVALUATION AND TREATMENT OF ALCOHOL DEPENDENT BEHAVIOUR
    Per I. Lundmo: ANDROGEN METABOLISM IN THE PROSTATE.
1986
    . Dagfinn Berntzen: ANALYSIS AND MANAGEMENT OF EXPERIMENTAL AND CLINICAL PAIN.
    25. Odd Arnold Kildahl-Andersen: PRODUCTION AND CHARACTERIZATION OF MONOCYTE-
    DERIVED CYTOTOXIN AND ITS ROLE IN MONOCYTE-MEDIATED CYTOTOXICITY.
    26. Ola Dale: VOLATILE ANAESTHETICS
1987
    27. Per Martin Kleveland: STUDIES ON GASTRIN
    28. Audun N. Øksendal: THE CALCIUM PARADOX AND THE HEART
    . Vilhjalmur R. Finsen: HIP FRACTURES
1988
30. Rigmor Austgulen: TUMOR NECROSIS FACTOR: A MONOCYTE-DERIVED REGULATOR OF
CELLULAR GROWTH.
    31. Tom-Harald Edna: HEAD INJURIES ADMITTED TO HOSPITAL.
    32. Joseph D. Borsi: NEW ASPECTS OF THE CLINICAL PHARMACOKINETICS OF
        METHOTREXATE.
    33. Olav F. M. Sellevold: GLUCOCORTICOIDS IN MYOCARDIAL PROTECTION
```

34. Terje Skjærpe: NONINVASIVE QUANTITATION OF GLOBAL PARAMETERS ON LEFT VENTRICULAR FUNCTION: THE SYSTOLIC PULMONARY ARTERY PRESSURE AND CARDIAC OUTPUT.
35. Eyvind Rødahl: STUDIES OF IMMUNE COMPLEXES AND RETROVIRUS-LIKE ANTIGENS IN PATIENTS WITH ANKYLOSING SPONDYLITIS.
36. Ketil Thorstensen: STUDIES ON THE MECHANISMS OF CELLULAR UPTAKE OF IRON FROM TRANSFERRIN.
37. Anna Midelfart: STUDIES OF THE MECHANISMS OF ION AND FLUID TRANSPORT IN THE BOVINE CORNEA.
38. Eirik Helseth: GROWTH AND PLASMINOGEN ACTIVATOR ACTIVITY OF HUMAN GLIOMAS AND BRAIN METASTASES - WITH SPECIAL REFERENCE TO TRANSFORMING GROWTH FACTOR BETA AND THE EPIDERMAL GROWTH FACTOR RECEPTOR.
39. Petter C. Borchgrevink: MAGNESIUM AND THE ISCHEMIC HEART.
40. Kjell-Arne Rein: THE EFFECT OF EXTRACORPOREAL CIRCULATION ON SUBCUTANEOUS TRANSCAPILLARY FLUID BALANCE.
41. Arne Kristian Sandvik: RAT GASTRIC HISTAMINE.
42. Carl Bredo Dahl: ANIMAL MODELS IN PSYCHIATRY.

1989
43. Torbjørn A. Fredriksen: CERVICOGENIC HEADACHE.
44. Rolf A. Walstad: CEFTAZIDIME.
45. Rolf Salvesen: THE PUPIL IN CLUSTER HEADACHE.
46. Nils Petter Jørgensen: DRUG EXPOSURE IN EARLY PREGNANCY.
47. Johan C. Ræder: PREMEDICATION AND GENERAL ANAESTHESIA IN OUTPATIENT GYNECOLOGICAL SURGERY.
48. M. R. Shalaby: IMMUNOREGULATORY PROPERTIES OF TNF- α AND THE RELATED CYTOKINES.
49. Anders Waage: THE COMPLEX PATTERN OF CYTOKINES IN SEPTIC SHOCK.
50. Bjarne Christian Eriksen: ELECTROSTIMULATION OF THE PELVIC FLOOR IN FEMALE URINARY INCONTINENCE.
51. Tore B. Halvorsen: PROGNOSTIC FACTORS IN COLORECTAL CANCER.

1990
52. Asbjørn Nordby: CELLULAR TOXICITY OF ROENTGEN CONTRAST MEDIA.
53. Kåre E. Tvedt: X-RAY MICROANALYSIS OF BIOLOGICAL MATERIAL.
54. Tore C. Stiles: COGNITIVE VULNERABILITY FACTORS IN THE DEVELOPMENT AND MAINTENANCE OF DEPRESSION.
55. Eva Hofsli: TUMOR NECROSIS FACTOR AND MULTIDRUG RESISTANCE.
56. Helge S. Haarstad: TROPHIC EFFECTS OF CHOLECYSTOKININ AND SECRETIN ON THE RAT PANCREAS.
57. Lars Engebretsen: TREATMENT OF ACUTE ANTERIOR CRUCIATE LIGAMENT INJURIES.
58. Tarjei Rygnestad: DELIBERATE SELF-POISONING IN TRONDHEIM.
59. Arne Z. Henriksen: STUDIES ON CONSERVED ANTIGENIC DOMAINS ON MAJOR OUTER MEMBRANE PROTEINS FROM ENTEROBACTERIA.
60. Steinar Westin: UNEMPLOYMENT AND HEALTH: Medical and social consequences of a factory closure in a ten-year controlled follow-up study.
61. Ylva Sahlin: INJURY REGISTRATION, a tool for accident preventive work.
62. Helge Bjørnstad Pettersen: BIOSYNTHESIS OF COMPLEMENT BY HUMAN ALVEOLAR MACROPHAGES WITH SPECIAL REFERENCE TO SARCOIDOSIS.
63. Berit Schei: TRAPPED IN PAINFUL LOVE.
64. Lars J. Vatten: PROSPECTIVE STUDIES OF THE RISK OF BREAST CANCER IN A COHORT OF NORWEGIAN WOMAN.
1991
65. Kåre Bergh: APPLICATIONS OF ANTI-C5a SPECIFIC MONOCLONAL ANTIBODIES FOR THE ASSESSMENT OF COMPLEMENT ACTIVATION.
66. Svein Svenningsen: THE CLINICAL SIGNIFICANCE OF INCREASED FEMORAL ANTEVERSION.
67. Olbjørn Klepp: NONSEMINOMATOUS GERM CELL TESTIS CANCER: THERAPEUTIC OUTCOME AND PROGNOSTIC FACTORS.
68. Trond Sand: THE EFFECTS OF CLICK POLARITY ON BRAINSTEM AUDITORY EVOKED POTENTIALS AMPLITUDE, DISPERSION, AND LATENCY VARIABLES.
69. Kjetil B. Åsbakk: STUDIES OF A PROTEIN FROM PSORIATIC SCALE, PSO P27, WITH RESPECT TO ITS POTENTIAL ROLE IN IMMUNE REACTIONS IN PSORIASIS.

```
    70. Arnulf Hestnes: STUDIES ON DOWN'S SYNDROME.
    71. Randi Nygaard: LONG-TERM SURVIVAL IN CHILDHOOD LEUKEMIA.
    72. Bjørn Hagen: THIO-TEPA.
    73. Svein Anda: EVALUATION OF THE HIP JOINT BY COMPUTED TOMOGRAMPHY AND
        ULTRASONOGRAPHY
1992
    74. Martin Svartberg: AN INVESTIGATION OF PROCESS AND OUTCOME OF
        SHORT-TERM PSYCHODYNAMIC PSYCHOTHERAPY.
    75. Stig Arild Slørdahl: AORTIC REGURGITATION.
    76. Harold C Sexton: STUDIES RELATING TO THE TREATMENT OF
        SYMPTOMATIC NON-PSYCHOTIC PATIENTS
    77. Maurice B. Vincent: VASOACTIVE PEPTIDES IN THE OCULAR/FOREHEAD AREA.
    78. Terje Johannessen: CONTROLLED TRIALS IN SINGLE SUBJECTS.
    79. Turid Nilsen: PYROPHOSPHATE IN HEPATOCYTE IRON METABOLISM
    80. Olav Haraldseth: NMR SPECTROSCOPY OF CEREBRAL ISCHEMIA AND REPERFUSION IN RAT.
    81. Eiliv Brenna: REGULATION OF FUNCTION AND GROWTH OF THE OXYNTIC MUCOSA
1993
    82. Gunnar Bovim: CERVICOGENIC HEADACHE
    83. Jarl Arne Kahn: ASSISTED PROCREATION.
    84. Bjørn Naume: IMMUNOREGULATORY EFFECTS OF CYTOKINES ON NK CELLS
    85. Rune Wiseth: AORTIC VALVE REPLACEMENT
    86. Jie Ming Shen: BLOOD FLOW VELOCITY AND RESPIRATORY STUDIES.
    87. Piotr Kruszewski: SUNCT SYNDROME WITH SPECIAL REFERENCE TO THE AUTONOMIC
        NERVOUS SYSTEM
    88. Mette Haase Moen: ENDOMETRIOSIS.
    89. Anne Vik: VASCULAR GAS EMBOLISM DURING AIR INFUSION AND AFTER
        DECOMPRESSION IN PIGS
    90. Lars Jacob Stovner: THE CHIARI TYPE I MALFORMATION
    91. Kjell Å. Salvesen: ROUTINE ULTRASONOGRAPHY IN UTERO AND DEVELOPMENT IN
        CHILDHOOD.
1994
    92. Nina-Beate Liabakk: DEVELOPMENT OF IMMUNOASSAYS FOR TNF AND ITS SOLUBLE
        RECEPTORS
    93. Sverre Helge Torp: erbB ONCOGENES IN HUMAN GLIOMAS AND MENINGIOMAS
    94. Olav M. Linaker: MENTAL RETARDATION AND PSYCHIATRY. Past and present.
    95. Per Oscar Feet: INCREASED ANTIDEPRESSANT AND ANTIPANIC EFFECT IN COMBINED
        TREATMENT WITH DIXYRAZINE AND TRICYCLIC ANTIDEPRESSANTS.
    96. Stein Olav Samstad: CROSS SECTIONAL FLOW VELOCITY PROFILES FROM TWO-
        DIMENSIONAL DOPPLER ULTRASOUND: Studies on early mitral blood flow.
    97. Bjørn Backe: STUDIES IN ANTENATAL CARE.
    98. Gerd Inger Ringdal: QUALITY OF LIFE IN CANCER PATIENTS
    99. Torvid Kiserud: THE DUCTUS VENOSUS IN THE HUMAN FETUS
    100.Hans E. Fjøsne: HORMONAL REGULATION OF PROSTATIC METABOLISM
    101.Eylert Brodtkorb: CLINICAL ASPECTS OF EPILEPSY IN THE MENTALLY RETARDED.
    102.Roar Juul: PEPTIDERGIC MECHANISMS IN HUMAN SUBARACHNOID HEMORRHAGE.
    103.Unni Syversen: CHROMOGRANIN A. Phsysiological and Clinical Role.
1995
    104.Odd Gunnar Brakstad: THERMOSTABLE NUCLEASE AND THE nuc GENE IN THE DIAGNOSIS OF
        Staphylococcus aureus INFECTIONS.
    105.Terje Engan: NUCLEAR MAGNETIC RESONANCE (NMR) SPECTROSCOPY OF PLASMA IN
        MALIGNANT DISEASE
    106.Kirsten Rasmussen: VIOLENCE IN THE MENTALLY DISORDERED.
    107.Finn Egil Skjeldestad: INDUCED ABORTION: Timetrends and Determinants.
    108.Roar Stenseth: THORACIC EPIDURAL ANALGESIA IN AORTOCORONARY BYPASS SURGERY.
    109.Arild Faxvaag: STUDIES OF IMMUNE CELL FUNCTION in mice infected with MURINE
        RETROVIRUS
1996
    110.Svend Aakhus: NONINVASIVE COMPUTERIZED ASSESSMENT OF LEFT VENTRICULAR
        FUNCTION AND SYSTEMIC ARTERIAL PROPERTIES. Methodology and some clinical applications.
```

111.Klaus-Dieter Bolz: INTRAVASCULAR ULTRASONOGRAPHY.
112.Petter Aadahl: CARDIOVASCULAR EFFECTS OF THORACIC AORTIC CROSS-CLAMPING
113.Sigurd Steinshamn: CYTOKINE MEDIATORS DURING GRANULOCYTOPENIC INFECTIONS.
114.Hans Stifoss-Hanssen: SEEKING MEANING OR HAPPINESS?
115.Anne Kvikstad: LIFE CHANGE EVENTS AND MARITAL STATUS IN RELATION TO RISK AND PROGNOSIS OF CANCER.
116.Torbjørn Grøntvedt: TREATMENT OF ACUTE AND CHRONIC ANTERIOR CRUCIATE LIGAMENT INJURIES. A clinical and biomechanical study.
117.Sigrid Hørven Wigers: CLINICAL STUDIES OF FIBROMYALGIA WITH FOCUS ON ETIOLOGY, TREATMENT AND OUTCOME.
118.Jan Schjøtt: MYOCARDIAL PROTECTION: Functional and Metabolic Characteristics of Two Endogenous Protective Principles.
119. Marit Martinussen: STUDIES OF INTESTINAL BLOOD FLOW AND ITS RELATION TO TRANSITIONAL CIRCULATORY ADAPATION IN NEWBORN INFANTS.
120.Tomm B. Müller: MAGNETIC RESONANCE IMAGING IN FOCAL CEREBRAL ISCHEMIA.
121.Rune Haaverstad: OEDEMA FORMATION OF THE LOWER EXTREMITIES.
122. Magne Børset: THE ROLE OF CYTOKINES IN MULTIPLE MYELOMA, WITH SPECIAL REFERENCE TO HEPATOCYTE GROWTH FACTOR.
123.Geir Smedslund: A THEORETICAL AND EMPIRICAL INVESTIGATION OF SMOKING, STRESS AND DISEASE: RESULTS FROM A POPULATION SURVEY.
1997
124.Torstein Vik: GROWTH, MORBIDITY, AND PSYCHOMOTOR DEVELOPMENT IN INFANTS WHO WERE GROWTH RETARDED IN UTERO.
125. Siri Forsmo: ASPECTS AND CONSEQUENCES OF OPPORTUNISTIC SCREENING FOR CERVICAL CANCER. Results based on data from three Norwegian counties.
126.Jon S. Skranes: CEREBRAL MRI AND NEURODEVELOPMENTAL OUTCOME IN VERY LOW BIRTH WEIGHT (VLBW) CHILDREN. A follow-up study of a geographically based year cohort of VLBW children at ages one and six years.
127.Knut Bjørnstad: COMPUTERIZED ECHOCARDIOGRAPHY FOR EVALUTION OF CORONARY ARTERY DISEASE.
128. Grethe Elisabeth Borchgrevink: DIAGNOSIS AND TREATMENT OF WHIPLASH/NECK SPRAIN INJURIES CAUSED BY CAR ACCIDENTS.
129.Tor Elsås: NEUROPEPTIDES AND NITRIC OXIDE SYNTHASE IN OCULAR AUTONOMIC AND SENSORY NERVES.
130.Rolf W. Gråwe: EPIDEMIOLOGICAL AND NEUROPSYCHOLOGICAL PERSPECTIVES ON SCHIZOPHRENIA.
131.Tonje Strømholm: CEREBRAL HAEMODYNAMICS DURING THORACIC AORTIC CROSSCLAMPING. An experimental study in pigs.
1998
132.Martinus Bråten: STUDIES ON SOME PROBLEMS REALTED TO INTRAMEDULLARY NAILING OF FEMORAL FRACTURES.
133. Ståle Nordgård: PROLIFERATIVE ACTIVITY AND DNA CONTENT AS PROGNOSTIC INDICATORS IN ADENOID CYSTIC CARCINOMA OF THE HEAD AND NECK.
134.Egil Lien: SOLUBLE RECEPTORS FOR TNF AND LPS: RELEASE PATTERN AND POSSIBLE SIGNIFICANCE IN DISEASE
135.Marit Bjørgaas: HYPOGLYCAEMIA IN CHILDREN WITH DIABETES MELLITUS
136.Frank Skorpen: GENETIC AND FUNCTIONAL ANALYSES OF DNA REPAIR IN HUMAN CELLS.
137.Juan A. Pareja: SUNCT SYNDROME. ON THE CLINICAL PICTURE. ITS DISTINCTION FROM OTHER, SIMILAR HEADACHES.
138. Anders Angelsen: NEUROENDOCRINE CELLS IN HUMAN PROSTATIC CARCINOMAS AND THE PROSTATIC COMPLEX OF RAT, GUINEA PIG, CAT AND DOG
139.Fabio Antonaci: CHRONIC PAROXYSMAL HEMICRANIA AND HEMICRANIA CONTINUA: TWO DIFFERENT ENTITIES?
140.Sven M. Carlsen: ENDOCRINE AND METABOLIC EFFECTS OF METFORMIN WITH SPECIAL EMPHASIS ON CARDIOVASCULAR RISK FACTORES.
1999
141.Terje A. Murberg: DEPRESSIVE SYMPTOMS AND COPING AMONG PATIENTS WITH CONGESTIVE HEART FAILURE.
142.Harm-Gerd Karl Blaas: THE EMBRYONIC EXAMINATION. Ultrasound studies on the development of the human embryo.
143.Noèmi Becser Andersen:THE CEPHALIC SENSORY NERVES IN UNILATERAL HEADACHES Anatomical background and neurophysiological evaluation.
144.Eli-Janne Fiskerstrand: LASER TREATMENT OF PORT WINE STAINS. A study of the efficacy and limitations of the pulsed dye laser. Clinical and morfological analyses aimed at improving the therapeutic outcome.
145.Bård Kulseng: A STUDY OF ALGINATE CAPSULE PROPERTIES AND CYTOKINES IN RELATION TO INSULIN DEPENDENT DIABETES MELLITUS.
146.Terje Haug: STRUCTURE AND REGULATION OF THE HUMAN UNG GENE ENCODING URACIL-DNA GLYCOSYLASE.
147.Heidi Brurok: MANGANESE AND THE HEART. A Magic Metal with Diagnostic and Therapeutic Possibilites.
148.Agnes Kathrine Lie: DIAGNOSIS AND PREVALENCE OF HUMAN PAPILLOMAVIRUS INFECTION IN CERVICAL INTRAEPITELIAL NEOPLASIA. Relationship to Cell Cycle Regulatory Proteins and HLA DQBI Genes.
149.Ronald Mårvik: PHARMACOLOGICAL, PHYSIOLOGICAL AND PATHOPHYSIOLOGICAL STUDIES ON ISOLATED STOMACS.
150.Ketil Jarl Holen: THE ROLE OF ULTRASONOGRAPHY IN THE DIAGNOSIS AND TREATMENT OF HIP DYSPLASIA IN NEWBORNS.
151.Irene Hetlevik: THE ROLE OF CLINICAL GUIDELINES IN CARDIOVASCULAR RISK INTERVENTION IN GENERAL PRACTICE.
152.Katarina Tunòn: ULTRASOUND AND PREDICTION OF GESTATIONAL AGE.
153.Johannes Soma: INTERACTION BETWEEN THE LEFT VENTRICLE AND THE SYSTEMIC ARTERIES.
154.Arild Aamodt: DEVELOPMENT AND PRE-CLINICAL EVALUATION OF A CUSTOM-MADE FEMORAL STEM.
155.Agnar Tegnander: DIAGNOSIS AND FOLLOW-UP OF CHILDREN WITH SUSPECTED OR KNOWN HIP DYSPLASIA.
156.Bent Indredavik: STROKE UNIT TREATMENT: SHORT AND LONG-TERM EFFECTS
157.Jolanta Vanagaite Vingen: PHOTOPHOBIA AND PHONOPHOBIA IN PRIMARY HEADACHES 2000
158.Ola Dalsegg Sæther: PATHOPHYSIOLOGY DURING PROXIMAL AORTIC CROSS-CLAMPING CLINICAL AND EXPERIMENTAL STUDIES
159. xxxxxxxxx (blind number)
160. Christina Vogt Isaksen: PRENATAL ULTRASOUND AND POSTMORTEM FINDINGS - A TEN YEAR CORRELATIVE STUDY OF FETUSES AND INFANTS WITH DEVELOPMENTAL ANOMALIES.
161.Holger Seidel: HIGH-DOSE METHOTREXATE THERAPY IN CHILDREN WITH ACUTE LYMPHOCYTIC LEUKEMIA: DOSE, CONCENTRATION, AND EFFECT CONSIDERATIONS.
162.Stein Hallan: IMPLEMENTATION OF MODERN MEDICAL DECISION ANALYSIS INTO CLINICAL DIAGNOSIS AND TREATMENT.
163.Malcolm Sue-Chu: INVASIVE AND NON-INVASIVE STUDIES IN CROSS-COUNTRY SKIERS WITH ASTHMA-LIKE SYMPTOMS.
164.Ole-Lars Brekke: EFFECTS OF ANTIOXIDANTS AND FATTY ACIDS ON TUMOR NECROSIS FACTOR-INDUCED CYTOTOXICITY
165.Jan Lundbom: AORTOCORONARY BYPASS SURGERY: CLINICAL ASPECTS, COST CONSIDERATIONS AND WORKING ABILITY.
166.John-Anker Zwart: LUMBAR NERVE ROOT COMPRESSION, BIOCHEMICAL AND NEUROPHYSIOLOGICAL ASPECTS.
167. Geir Falck: HYPEROSMOLALITY AND THE HEART.
168.Eirik Skogvoll: CARDIAC ARREST Incidence, Intervention and Outcome.
169.Dalius Bansevicius: SHOULDER-NECK REGION IN CERTAIN HEADACHES AND CHRONIC PAIN SYNDROMES.
170.Bettina Kinge: REFRACTIVE ERRORS AND BIOMETRIC CHANGES AMONG UNIVERSITY STUDENTS IN NORWAY.
171.Gunnar Qvigstad: CONSEQUENCES OF HYPERGASTRINEMIA IN MAN
172.Hanne Ellekjær: EPIDEMIOLOGICAL STUDIES OF STROKE IN A NORWEGIAN POPULATION. INCIDENCE, RISK FACTORS AND PROGNOSIS
173. Hilde Grimstad: VIOLENCE AGAINST WOMEN AND PREGNANCY OUTCOME.
174.Astrid Hjelde: SURFACE TENSION AND COMPLEMENT ACTIVATION: Factors influencing bubble formation and bubble effects after decompression.
175.Kjell A. Kvistad: MR IN BREAST CANCER - A CLINICAL STUDY.
176.Ivar Rossvoll: ELECTIVE ORTHOPAEDIC SURGERY IN A DEFINED POPULATION. Studies on demand, waiting time for treatment and incapacity for work
177.Carina Seidel: PROGNOSTIC VALUE AND BIOLOGICAL EFFECTS OF HEPATOCYTE GROWTH FACTOR AND SYNDECAN-1 IN MULTIPLE MYELOMA.
2001
178.Alexander Wahba: THE INFLUENCE OF CARDIOPULMONARY BYPASS ON PLATELET FUNCTION AND BLOOD COAGULATION - DETERMINANTS AND CLINICAL CONSEQUENSES
179.Marcus Schmitt-Egenolf: THE RELEVANCE OF THE MAJOR hISTOCOMPATIBILITY COMPLEX FOR THE GENETICS OF PSORIASIS
180.Odrun Arna Gederaas: BIOLOGICAL MECHANISMS INVOLVED IN 5-AMINOLEVULINIC ACID BASED PHOTODYNAMIC THERAPY
181.Pål Richard Romundstad: CANCER INCIDENCE AMONG NORWEGIAN ALUMINIUM WORKERS
182.Henrik Hjorth-Hansen: NOVEL CYTOKINES IN GROWTH CONTROL AND BONE DISEASE OF MULTIPLE MYELOMA
183.Gunnar Morken: SEASONAL VARIATION OF HUMAN MOOD AND BEHAVIOUR
184.Bjørn Olav Haugen: MEASUREMENT OF CARDIAC OUTPUT AND STUDIES OF VELOCITY PROFILES IN AORTIC AND MITRAL FLOW USING TWO- AND THREE-DIMENSIONAL COLOUR FLOW IMAGING
185.Geir Bråthen: THE CLASSIFICATION AND CLINICAL DIAGNOSIS OF ALCOHOL-RELATED SEIZURES
186.Knut Ivar Aasarød: RENAL INVOLVEMENT IN INFLAMMATORY RHEUMATIC DISEASE. A Study of Renal Disease in Wegener's Granulomatosis and in Primary Sjögren's Syndrome
187.Trude Helen Flo: RESEPTORS INVOLVED IN CELL ACTIVATION BY DEFINED URONIC ACID POLYMERS AND BACTERIAL COMPONENTS
188. Bodil Kavli: HUMAN URACIL-DNA GLYCOSYLASES FROM THE UNG GENE: STRUCTRUAL BASIS FOR SUBSTRATE SPECIFICITY AND REPAIR
189.Liv Thommesen: MOLECULAR MECHANISMS INVOLVED IN TNF- AND GASTRIN-MEDIATED GENE REGULATION
190.Turid Lingaas Holmen: SMOKING AND HEALTH IN ADOLESCENCE; THE NORD-TRØNDELAG HEALTH STUDY, 1995-97
191.Øyvind Hjertner: MULTIPLE MYELOMA: INTERACTIONS BETWEEN MALIGNANT PLASMA CELLS AND THE BONE MICROENVIRONMENT
192.Asbjørn Støylen: STRAIN RATE IMAGING OF THE LEFT VENTRICLE BY ULTRASOUND. FEASIBILITY, CLINICAL VALIDATION AND PHYSIOLOGICAL ASPECTS
193.Kristian Midthjell: DIABETES IN ADULTS IN NORD-TRØNDELAG. PUBLIC HEALTH ASPECTS OF DIABETES MELLITUS IN A LARGE, NON-SELECTED NORWEGIAN POPULATION.
194.Guanglin Cui: FUNCTIONAL ASPECTS OF THE ECL CELL IN RODENTS
195.Ulrik Wisløff: CARDIAC EFFECTS OF AEROBIC ENDURANCE TRAINING: HYPERTROPHY, CONTRACTILITY AND CALCUIM HANDLING IN NORMAL AND FAILING HEART
196. Øyvind Halaas: MECHANISMS OF IMMUNOMODULATION AND CELL-MEDIATED CYTOTOXICITY INDUCED BY BACTERIAL PRODUCTS
197. Tore Amundsen: PERFUSION MR IMAGING IN THE DIAGNOSIS OF PULMONARY EMBOLISM
198.Nanna Kurtze: THE SIGNIFICANCE OF ANXIETY AND DEPRESSION IN FATIQUE AND PATTERNS OF PAIN AMONG INDIVIDUALS DIAGNOSED WITH FIBROMYALGIA: RELATIONS WITH QUALITY OF LIFE, FUNCTIONAL DISABILITY, LIFESTYLE, EMPLOYMENT STATUS, CO-MORBIDITY AND GENDER
199.Tom Ivar Lund Nilsen: PROSPECTIVE STUDIES OF CANCER RISK IN NORD-TRØNDELAG: THE HUNT STUDY. Associations with anthropometric, socioeconomic, and lifestyle risk factors
200.Asta Kristine Håberg: A NEW APPROACH TO THE STUDY OF MIDDLE CEREBRAL ARTERY OCCLUSION IN THE RAT USING MAGNETIC RESONANCE TECHNIQUES
2002
201.Knut Jørgen Arntzen: PREGNANCY AND CYTOKINES
202.Henrik Døllner: INFLAMMATORY MEDIATORS IN PERINATAL INFECTIONS
203.Asta Bye: LOW FAT, LOW LACTOSE DIET USED AS PROPHYLACTIC TREATMENT OF ACUTE INTESTINAL REACTIONS DURING PELVIC RADIOTHERAPY. A PROSPECTIVE RANDOMISED STUDY.
204.Sylvester Moyo: STUDIES ON STREPTOCOCCUS AGALACTIAE (GROUP B STREPTOCOCCUS) SURFACE-ANCHORED MARKERS WITH EMPHASIS ON STRAINS AND HUMAN SERA FROM ZIMBABWE.
205.Knut Hagen: HEAD-HUNT: THE EPIDEMIOLOGY OF HEADACHE IN NORD-TRØNDELAG
206. Li Lixin: ON THE REGULATION AND ROLE OF UNCOUPLING PROTEIN-2 IN INSULIN PRODUCING $ß$-CELLS
207.Anne Hildur Henriksen: SYMPTOMS OF ALLERGY AND ASTHMA VERSUS MARKERS OF LOWER AIRWAY INFLAMMATION AMONG ADOLESCENTS
208.Egil Andreas Fors: NON-MALIGNANT PAIN IN RELATION TO PSYCHOLOGICAL AND ENVIRONTENTAL FACTORS. EXPERIENTAL AND CLINICAL STUDES OF PAIN WITH FOCUS ON FIBROMYALGIA
209.Pål Klepstad: MORPHINE FOR CANCER PAIN
210.Ingunn Bakke: MECHANISMS AND CONSEQUENCES OF PEROXISOME PROLIFERATORINDUCED HYPERFUNCTION OF THE RAT GASTRIN PRODUCING CELL
211.Ingrid Susann Gribbestad: MAGNETIC RESONANCE IMAGING AND SPECTROSCOPY OF BREAST CANCER
212.Rønnaug Astri Ødegård: PREECLAMPSIA - MATERNAL RISK FACTORS AND FETAL GROWTH
213. Johan Haux: STUDIES ON CYTOTOXICITY INDUCED BY HUMAN NATURAL KILLER CELLS AND DIGITOXIN
214.Turid Suzanne Berg-Nielsen: PARENTING PRACTICES AND MENTALLY DISORDERED ADOLESCENTS
215.Astrid Rydning: BLOOD FLOW AS A PROTECTIVE FACTOR FOR THE STOMACH MUCOSA. AN EXPERIMENTAL STUDY ON THE ROLE OF MAST CELLS AND SENSORY AFFERENT NEURONS
2003
216.Jan Pål Loennechen: HEART FAILURE AFTER MYOCARDIAL INFARCTION. Regional Differences, Myocyte Function, Gene Expression, and Response to Cariporide, Losartan, and Exercise Training.
217.Elisabeth Qvigstad: EFFECTS OF FATTY ACIDS AND OVER-STIMULATION ON INSULIN SECRETION IN MAN
218.Arne Åsberg: EPIDEMIOLOGICAL STUDIES IN HEREDITARY HEMOCHROMATOSIS: PREVALENCE, MORBIDITY AND BENEFIT OF SCREENING.
219.Johan Fredrik Skomsvoll: REPRODUCTIVE OUTCOME IN WOMEN WITH RHEUMATIC DISEASE. A population registry based study of the effects of inflammatory rheumatic disease and connective tissue disease on reproductive outcome in Norwegian women in 1967-1995.
220.Siv Mørkved: URINARY INCONTINENCE DURING PREGNANCY AND AFTER DELIVERY: EFFECT OF PELVIC FLOOR MUSCLE TRAINING IN PREVENTION AND TREATMENT
221.Marit S. Jordhøy: THE IMPACT OF COMPREHENSIVE PALLIATIVE CARE
222. Tom Christian Martinsen: HYPERGASTRINEMIA AND HYPOACIDITY IN RODENTS - CAUSES AND CONSEQUENCES
223. Solveig Tingulstad: CENTRALIZATION OF PRIMARY SURGERY FOR OVARAIN CANCER. FEASIBILITY AND IMPACT ON SURVIVAL
224.Haytham Eloqayli: METABOLIC CHANGES IN THE BRAIN CAUSED BY EPILEPTIC SEIZURES
225.Torunn Bruland: STUDIES OF EARLY RETROVIRUS-HOST INTERACTIONS - VIRAL DETERMINANTS FOR PATHOGENESIS AND THE INFLUENCE OF SEX ON THE SUSCEPTIBILITY TO FRIEND MURINE LEUKAEMIA VIRUS INFECTION
226.Torstein Hole: DOPPLER ECHOCARDIOGRAPHIC EVALUATION OF LEFT VENTRICULAR FUNCTION IN PATIENTS WITH ACUTE MYOCARDIAL INFARCTION
227. Vibeke Nossum: THE EFFECT OF VASCULAR BUBBLES ON ENDOTHELIAL FUNCTION
228.Sigurd Fasting: ROUTINE BASED RECORDING OF ADVERSE EVENTS DURING ANAESTHESIA - APPLICATION IN QUALITY IMPROVEMENT AND SAFETY
229.Solfrid Romundstad: EPIDEMIOLOGICAL STUDIES OF MICROALBUMINURIA. THE NORDTRØNDELAG HEALTH STUDY 1995-97 (HUNT 2)
230.Geir Torheim: PROCESSING OF DYNAMIC DATA SETS IN MAGNETIC RESONANCE IMAGING
231. Catrine Ahlén: SKIN INFECTIONS IN OCCUPATIONAL SATURATION DIVERS IN THE NORTH SEA AND THE IMPACT OF THE ENVIRONMENT
232.Arnulf Langhammer: RESPIRATORY SYMPTOMS, LUNG FUNCTION AND BONE MINERAL DENSITY IN A COMPREHENSIVE POPULATION SURVEY. THE NORD-TRØNDELAG HEALTH STUDY 1995-97. THE BRONCHIAL OBSTRUCTION IN NORD-TRØNDELAG STUDY
233.Einar Kjelsås: EATING DISORDERS AND PHYSICAL ACTIVITY IN NON-CLINICAL SAMPLES
234.Arne Wibe: RECTAL CANCER TREATMENT IN NORWAY - STANDARDISATION OF SURGERY AND QUALITY ASSURANCE
2004
235.Eivind Witsø: BONE GRAFT AS AN ANTIBIOTIC CARRIER
236.Anne Mari Sund: DEVELOPMENT OF DEPRESSIVE SYMPTOMS IN EARLY ADOLESCENCE
237.Hallvard Lærum: EVALUATION OF ELECTRONIC MEDICAL RECORDS - A CLINICAL TASK PERSPECTIVE
238.Gustav Mikkelsen: ACCESSIBILITY OF INFORMATION IN ELECTRONIC PATIENT RECORDS; AN EVALUATION OF THE ROLE OF DATA QUALITY
239. Steinar Krokstad: SOCIOECONOMIC INEQUALITIES IN HEALTH AND DISABILITY. SOCIAL EPIDEMIOLOGY IN THE NORD-TRØNDELAG HEALTH STUDY (HUNT), NORWAY
240.Arne Kristian Myhre: NORMAL VARIATION IN ANOGENITAL ANATOMY AND MICROBIOLOGY IN NON-ABUSED PRESCHOOL CHILDREN
241.Ingunn Dybedal: NEGATIVE REGULATORS OF HEMATOPOIETEC STEM AND PROGENITOR CELLS
242.Beate Sitter: TISSUE CHARACTERIZATION BY HIGH RESOLUTION MAGIC ANGLE SPINNING MR SPECTROSCOPY
243.Per Arne Aas: MACROMOLECULAR MAINTENANCE IN HUMAN CELLS - REPAIR OF URACIL IN DNA AND METHYLATIONS IN DNA AND RNA
244.Anna Bofin: FINE NEEDLE ASPIRATION CYTOLOGY IN THE PRIMARY INVESTIGATION OF BREAST TUMOURS AND IN THE DETERMINATION OF TREATMENT STRATEGIES
245.Jim Aage Nøttestad: DEINSTITUTIONALIZATION AND MENTAL HEALTH CHANGES AMONG PEOPLE WITH MENTAL RETARDATION
246.Reidar Fossmark: GASTRIC CANCER IN JAPANESE COTTON RATS
247. Wibeke Nordhøy: MANGANESE AND THE HEART, INTRACELLULAR MR RELAXATION AND WATER EXCHANGE ACROSS THE CARDIAC CELL MEMBRANE
2005
248.Sturla Molden: QUANTITATIVE ANALYSES OF SINGLE UNITS RECORDED FROM THE HIPPOCAMPUS AND ENTORHINAL CORTEX OF BEHAVING RATS
249. Wenche Brenne Drøyvold: EPIDEMIOLOGICAL STUDIES ON WEIGHT CHANGE AND HEALTH IN A LARGE POPULATION. THE NORD-TRØNDELAG HEALTH STUDY (HUNT)
250.Ragnhild Støen: ENDOTHELIUM-DEPENDENT VASODILATION IN THE FEMORAL ARTERY OF DEVELOPING PIGLETS
251.Aslak Steinsbekk: HOMEOPATHY IN THE PREVENTION OF UPPER RESPIRATORY TRACT INFECTIONS IN CHILDREN
252.Hill-Aina Steffenach: MEMORY IN HIPPOCAMPAL AND CORTICO-HIPPOCAMPAL CIRCUITS
253. Eystein Stordal: ASPECTS OF THE EPIDEMIOLOGY OF DEPRESSIONS BASED ON SELFRATING IN A LARGE GENERAL HEALTH STUDY (THE HUNT-2 STUDY)
254.Viggo Pettersen: FROM MUSCLES TO SINGING: THE ACTIVITY OF ACCESSORY BREATHING MUSCLES AND THORAX MOVEMENT IN CLASSICAL SINGING
255. Marianne Fyhn: SPATIAL MAPS IN THE HIPPOCAMPUS AND ENTORHINAL CORTEX
256.Robert Valderhaug: OBSESSIVE-COMPULSIVE DISORDER AMONG CHILDREN AND ADOLESCENTS: CHARACTERISTICS AND PSYCHOLOGICAL MANAGEMENT OF PATIENTS IN OUTPATIENT PSYCHIATRIC CLINICS
257.Erik Skaaheim Haug: INFRARENAL ABDOMINAL AORTIC ANEURYSMS - COMORBIDITY AND RESULTS FOLLOWING OPEN SURGERY
258.Daniel Kondziella: GLIAL-NEURONAL INTERACTIONS IN EXPERIMENTAL BRAIN DISORDERS
259.Vegard Heimly Brun: ROUTES TO SPATIAL MEMORY IN HIPPOCAMPAL PLACE CELLS
260.Kenneth McMillan: PHYSIOLOGICAL ASSESSMENT AND TRAINING OF ENDURANCE AND STRENGTH IN PROFESSIONAL YOUTH SOCCER PLAYERS
261.Marit Sæbø Indredavik: MENTAL HEALTH AND CEREBRAL MAGNETIC RESONANCE IMAGING IN ADOLESCENTS WITH LOW BIRTH WEIGHT
262.Ole Johan Kemi: ON THE CELLULAR BASIS OF AEROBIC FITNESS, INTENSITY-DEPENDENCE AND TIME-COURSE OF CARDIOMYOCYTE AND ENDOTHELIAL ADAPTATIONS TO EXERCISE TRAINING
263.Eszter Vanky: POLYCYSTIC OVARY SYNDROME - METFORMIN TREATMENT IN PREGNANCY
264.Hild Fjærtoft: EXTENDED STROKE UNIT SERVICE AND EARLY SUPPORTED DISCHARGE. SHORT AND LONG-TERM EFFECTS
265.Grete Dyb: POSTTRAUMATIC STRESS REACTIONS IN CHILDREN AND ADOLESCENTS
266. Vidar Fykse: SOMATOSTATIN AND THE STOMACH
267.Kirsti Berg: OXIDATIVE STRESS AND THE ISCHEMIC HEART: A STUDY IN PATIENTS UNDERGOING CORONARY REVASCULARIZATION
268. Björn Inge Gustafsson: THE SEROTONIN PRODUCING ENTEROCHROMAFFIN CELL, AND EFFECTS OF HYPERSEROTONINEMIA ON HEART AND BONE
269. Torstein Baade Rø: EFFECTS OF BONE MORPHOGENETIC PROTEINS, HEPATOCYTE GROWTH FACTOR AND INTERLEUKIN-21 IN MULTIPLE MYELOMA
270.May-Britt Tessem: METABOLIC EFFECTS OF ULTRAVIOLET RADIATION ON THE ANTERIOR PART OF THE EYE
271.Anne-Sofie Helvik: COPING AND EVERYDAY LIFE IN A POPULATION OF ADULTS WITH HEARING IMPAIRMENT
272.Therese Standal: MULTIPLE MYELOMA: THE INTERPLAY BETWEEN MALIGNANT PLASMA CELLS AND THE BONE MARROW MICROENVIRONMENT
273.Ingvild Saltvedt: TREATMENT OF ACUTELY SICK, FRAIL ELDERLY PATIENTS IN A GERIATRIC EVALUATION AND MANAGEMENT UNIT - RESULTS FROM A PROSPECTIVE RANDOMISED TRIAL
274.Birger Henning Endreseth: STRATEGIES IN RECTAL CANCER TREATMENT - FOCUS ON EARLY RECTAL CANCER AND THE INFLUENCE OF AGE ON PROGNOSIS
275. Anne Mari Aukan Rokstad: ALGINATE CAPSULES AS BIOREACTORS FOR CELL THERAPY
276. Mansour Akbari: HUMAN BASE EXCISION REPAIR FOR PRESERVATION OF GENOMIC STABILITY
277.Stein Sundstrøm: IMPROVING TREATMENT IN PATIENTS WITH LUNG CANCER - RESULTS FROM TWO MULITCENTRE RANDOMISED STUDIES
278. Hilde Pleym: BLEEDING AFTER CORONARY ARTERY BYPASS SURGERY - STUDIES ON HEMOSTATIC MECHANISMS, PROPHYLACTIC DRUG TREATMENT AND EFFECTS OF AUTOTRANSFUSION
279.Line Merethe Oldervoll: PHYSICAL ACTIVITY AND EXERCISE INTERVENTIONS IN CANCER PATIENTS
280.Boye Welde: THE SIGNIFICANCE OF ENDURANCE TRAINING, RESISTANCE TRAINING AND MOTIVATIONAL STYLES IN ATHLETIC PERFORMANCE AMONG ELITE JUNIOR CROSSCOUNTRY SKIERS
281.Per Olav Vandvik: IRRITABLE BOWEL SYNDROME IN NORWAY, STUDIES OF PREVALENCE, DIAGNOSIS AND CHARACTERISTICS IN GENERAL PRACTICE AND IN THE POPULATION
282.Idar Kirkeby-Garstad: CLINICAL PHYSIOLOGY OF EARLY MOBILIZATION AFTER CARDIAC SURGERY
283.Linn Getz: SUSTAINABLE AND RESPONSIBLE PREVENTIVE MEDICINE. CONCEPTUALISING ETHICAL DILEMMAS ARISING FROM CLINICAL IMPLEMENTATION OF ADVANCING MEDICAL TECHNOLOGY
284.Eva Tegnander: DETECTION OF CONGENITAL HEART DEFECTS IN A NON-SELECTED POPULATION OF 42,381 FETUSES
285.Kristin Gabestad Nørsett: GENE EXPRESSION STUDIES IN GASTROINTESTINAL PATHOPHYSIOLOGY AND NEOPLASIA
286.Per Magnus Haram: GENETIC VS. AQUIRED FITNESS: METABOLIC, VASCULAR AND CARDIOMYOCYTE ADAPTATIONS
287. Agneta Johansson: GENERAL RISK FACTORS FOR GAMBLING PROBLEMS AND THE PREVALENCE OF PATHOLOGICAL GAMBLING IN NORWAY
288. Svein Artur Jensen: THE PREVALENCE OF SYMPTOMATIC ARTERIAL DISEASE OF THE LOWER LIMB
289.Charlotte Björk Ingul: QUANITIFICATION OF REGIONAL MYOCARDIAL FUNCTION BY STRAIN RATE AND STRAIN FOR EVALUATION OF CORONARY ARTERY DISEASE. AUTOMATED VERSUS MANUAL ANALYSIS DURING ACUTE MYOCARDIAL INFARCTION AND DOBUTAMINE STRESS ECHOCARDIOGRAPHY
290.Jakob Nakling: RESULTS AND CONSEQUENCES OF ROUTINE ULTRASOUND SCREENING IN PREGNANCY - A GEOGRAPHIC BASED POPULATION STUDY
291.Anne Engum: DEPRESSION AND ANXIETY - THEIR RELATIONS TO THYROID DYSFUNCTION AND DIABETES IN A LARGE EPIDEMIOLOGICAL STUDY
292.Ottar Bjerkeset: ANXIETY AND DEPRESSION IN THE GENERAL POPULATION: RISK FACTORS, INTERVENTION AND OUTCOME - THE NORD-TRØNDELAG HEALTH STUDY (HUNT)
293.Jon Olav Drogset: RESULTS AFTER SURGICAL TREATMENT OF ANTERIOR CRUCIATE LIGAMENT INJURIES - A CLINICAL STUDY
294.Lars Fosse: MECHANICAL BEHAVIOUR OF COMPACTED MORSELLISED BONE - AN EXPERIMENTAL IN VITRO STUDY
295.Gunilla Klensmeden Fosse: MENTAL HEALTH OF PSYCHIATRIC OUTPATIENTS BULLIED IN CHILDHOOD
296.Paul Jarle Mork: MUSCLE ACTIVITY IN WORK AND LEISURE AND ITS ASSOCIATION TO MUSCULOSKELETAL PAIN
297.Björn Stenström: LESSONS FROM RODENTS: I: MECHANISMS OF OBESITY SURGERY - ROLE OF STOMACH. II: CARCINOGENIC EFFECTS OF HELICOBACTER PYLORI AND SNUS IN THE STOMACH
2007
298.Haakon R. Skogseth: INVASIVE PROPERTIES OF CANCER - A TREATMENT TARGET? IN VITRO STUDIES IN HUMAN PROSTATE CANCER CELL LINES
299.Janniche Hammer: GLUTAMATE METABOLISM AND CYCLING IN MESIAL TEMPORAL LOBE EPILEPSY
300.May Britt Drugli: YOUNG CHILDREN TREATED BECAUSE OF ODD/CD: CONDUCT PROBLEMS AND SOCIAL COMPETENCIES IN DAY-CARE AND SCHOOL SETTINGS
301.Arne Skjold: MAGNETIC RESONANCE KINETICS OF MANGANESE DIPYRIDOXYL DIPHOSPHATE (MnDPDP) IN HUMAN MYOCARDIUM. STUDIES IN HEALTHY VOLUNTEERS AND IN PATIENTS WITH RECENT MYOCARDIAL INFARCTION
302.Siri Malm: LEFT VENTRICULAR SYSTOLIC FUNCTION AND MYOCARDIAL PERFUSION ASSESSED BY CONTRAST ECHOCARDIOGRAPHY
303.Valentina Maria do Rosario Cabral Iversen: MENTAL HEALTH AND PSYCHOLOGICAL ADAPTATION OF CLINICAL AND NON-CLINICAL MIGRANT GROUPS
304.Lasse Løvstakken: SIGNAL PROCESSING IN DIAGNOSTIC ULTRASOUND: ALGORITHMS FOR REAL-TIME ESTIMATION AND VISUALIZATION OF BLOOD FLOW VELOCITY
305.Elisabeth Olstad: GLUTAMATE AND GABA: MAJOR PLAYERS IN NEURONAL METABOLISM
306.Lilian Leistad: THE ROLE OF CYTOKINES AND PHOSPHOLIPASE A_{2} S IN ARTICULAR CARTILAGE CHONDROCYTES IN RHEUMATOID ARTHRITIS AND OSTEOARTHRITIS
307.Arne Vaaler: EFFECTS OF PSYCHIATRIC INTENSIVE CARE UNIT IN AN ACUTE PSYCIATHRIC WARD
308.Mathias Toft: GENETIC STUDIES OF LRRK2 AND PINK1 IN PARKINSON'S DISEASE
309.Ingrid Løvold Mostad: IMPACT OF DIETARY FAT QUANTITY AND QUALITY IN TYPE 2 DIABETES WITH EMPHASIS ON MARINE N-3 FATTY ACIDS
310.Torill Eidhammer Sjøbakk: MR DETERMINED BRAIN METABOLIC PATTERN IN PATIENTS WITH BRAIN METASTASES AND ADOLESCENTS WITH LOW BIRTH WEIGHT
311.Vidar Beisvåg: PHYSIOLOGICAL GENOMICS OF HEART FAILURE: FROM TECHNOLOGY TO PHYSIOLOGY
312. Olav Magnus Søndenå Fredheim: HEALTH RELATED QUALITY OF LIFE ASSESSMENT AND ASPECTS OF THE CLINICAL PHARMACOLOGY OF METHADONE IN PATIENTS WITH CHRONIC NON-MALIGNANT PAIN
313.Anne Brantberg: FETAL AND PERINATAL IMPLICATIONS OF ANOMALIES IN THE GASTROINTESTINAL TRACT AND THE ABDOMINAL WALL
314.Erik Solligård: GUT LUMINAL MICRODIALYSIS
315.Elin Tollefsen: RESPIRATORY SYMPTOMS IN A COMPREHENSIVE POPULATION BASED STUDY AMONG ADOLESCENTS 13-19 YEARS. YOUNG-HUNT 1995-97 AND 2000-01; THE NORD-TRØNDELAG HEALTH STUDIES (HUNT)
316.Anne-Tove Brenne: GROWTH REGULATION OF MYELOMA CELLS
317.Heidi Knobel: FATIGUE IN CANCER TREATMENT - ASSESSMENT, COURSE AND ETIOLOGY
318. Torbjørn Dahl: CAROTID ARTERY STENOSIS. DIAGNOSTIC AND THERAPEUTIC ASPECTS
319.Inge-Andre Rasmussen jr.: FUNCTIONAL AND DIFFUSION TENSOR MAGNETIC RESONANCE IMAGING IN NEUROSURGICAL PATIENTS
320.Grete Helen Bratberg: PUBERTAL TIMING - ANTECEDENT TO RISK OR RESILIENCE ? EPIDEMIOLOGICAL STUDIES ON GROWTH, MATURATION AND HEALTH RISK BEHAVIOURS; THE YOUNG HUNT STUDY, NORD-TRØNDELAG, NORWAY
321.Sveinung Sørhaug: THE PULMONARY NEUROENDOCRINE SYSTEM. PHYSIOLOGICAL, PATHOLOGICAL AND TUMOURIGENIC ASPECTS
322.Olav Sande Eftedal: ULTRASONIC DETECTION OF DECOMPRESSION INDUCED VASCULAR MICROBUBBLES
323.Rune Bang Leistad: PAIN, AUTONOMIC ACTIVATION AND MUSCULAR ACTIVITY RELATED TO EXPERIMENTALLY-INDUCED COGNITIVE STRESS IN HEADACHE PATIENTS
324.Svein Brekke: TECHNIQUES FOR ENHANCEMENT OF TEMPORAL RESOLUTION IN THREEDIMENSIONAL ECHOCARDIOGRAPHY
325. Kristian Bernhard Nilsen: AUTONOMIC ACTIVATION AND MUSCLE ACTIVITY IN RELATION TO MUSCULOSKELETAL PAIN
326.Anne Irene Hagen: HEREDITARY BREAST CANCER IN NORWAY. DETECTION AND PROGNOSIS OF BREAST CANCER IN FAMILIES WITH BRCAIGENE MUTATION
327.Ingebjørg S. Juel : INTESTINAL INJURY AND RECOVERY AFTER ISCHEMIA. AN EXPERIMENTAL STUDY ON RESTITUTION OF THE SURFACE EPITHELIUM, INTESTINAL PERMEABILITY, AND RELEASE OF BIOMARKERS FROM THE MUCOSA
328.Runa Heimstad: POST-TERM PREGNANCY
329.Jan Egil Afset: ROLE OF ENTEROPATHOGENIC ESCHERICHIA COLI IN CHILDHOOD DIARRHOEA IN NORWAY
330.Bent Håvard Hellum: IN VITRO INTERACTIONS BETWEEN MEDICINAL DRUGS AND HERBS ON CYTOCHROME P-450 METABOLISM AND P-GLYCOPROTEIN TRANSPORT
331.Morten André Høydal: CARDIAC DYSFUNCTION AND MAXIMAL OXYGEN UPTAKE MYOCARDIAL ADAPTATION TO ENDURANCE TRAINING
2008
332. Andreas Møllerløkken: REDUCTION OF VASCULAR BUBBLES: METHODS TO PREVENT THE ADVERSE EFFECTS OF DECOMPRESSION
333.Anne Hege Aamodt: COMORBIDITY OF HEADACHE AND MIGRAINE IN THE NORDTRØNDELAG HEALTH STUDY 1995-97
334. Brage Høyem Amundsen: MYOCARDIAL FUNCTION QUANTIFIED BY SPECKLE TRACKING AND TISSUE DOPPLER ECHOCARDIOGRAPHY - VALIDATION AND APPLICATION IN EXERCISE TESTING AND TRAINING
335.Inger Anne Næss: INCIDENCE, MORTALITY AND RISK FACTORS OF FIRST VENOUS THROMBOSIS IN A GENERAL POPULATION. RESULTS FROM THE SECOND NORDTRØNDELAG HEALTH STUDY (HUNT2)
336.Vegard Bugten: EFFECTS OF POSTOPERATIVE MEASURES AFTER FUNCTIONAL ENDOSCOPIC SINUS SURGERY
337. Morten Bruvold: MANGANESE AND WATER IN CARDIAC MAGNETIC RESONANCE IMAGING
338.Miroslav Fris: THE EFFECT OF SINGLE AND REPEATED ULTRAVIOLET RADIATION ON THE ANTERIOR SEGMENT OF THE RABBIT EYE
339. Svein Arne Aase: METHODS FOR IMPROVING QUALITY AND EFFICIENCY IN QUANTITATIVE ECHOCARDIOGRAPHY - ASPECTS OF USING HIGH FRAME RATE
340.Roger Almvik: ASSESSING THE RISK OF VIOLENCE: DEVELOPMENT AND VALIDATION OF THE BRØSET VIOLENCE CHECKLIST
341.Ottar Sundheim: STRUCTURE-FUNCTION ANALYSIS OF HUMAN ENZYMES INITIATING NUCLEOBASE REPAIR IN DNA AND RNA
342.Anne Mari Undheim: SHORT AND LONG-TERM OUTCOME OF EMOTIONAL AND BEHAVIOURAL PROBLEMS IN YOUNG ADOLESCENTS WITH AND WITHOUT READING DIFFICULTIES
343.Helge Garåsen: THE TRONDHEIM MODEL. IMPROVING THE PROFESSIONAL COMMUNICATION BETWEEN THE VARIOUS LEVELS OF HEALTH CARE SERVICES AND IMPLEMENTATION OF INTERMEDIATE CARE AT A COMMUNITY HOSPITAL COULD PROVIDE BETTER CARE FOR OLDER PATIENTS. SHORT AND LONG TERM EFFECTS
344.Olav A. Foss: "THE ROTATION RATIOS METHOD". A METHOD TO DESCRIBE ALTERED SPATIAL ORIENTATION IN SEQUENTIAL RADIOGRAPHS FROM ONE PELVIS
345.Bjørn Olav Åsvold: THYROID FUNCTION AND CARDIOVASCULAR HEALTH
346.Torun Margareta Melø: NEURONAL GLIAL INTERACTIONS IN EPILEPSY
347.Irina Poliakova Eide: FETAL GROWTH RESTRICTION AND PRE-ECLAMPSIA: SOME CHARACTERISTICS OF FETO-MATERNAL INTERACTIONS IN DECIDUA BASALIS
348.Torunn Askim: RECOVERY AFTER STROKE. ASSESSMENT AND TREATMENT; WITH FOCUS ON MOTOR FUNCTION
349.Ann Elisabeth Åsberg: NEUTROPHIL ACTIVATION IN A ROLLER PUMP MODEL OF CARDIOPULMONARY BYPASS. INFLUENCE ON BIOMATERIAL, PLATELETS AND COMPLEMENT
350.Lars Hagen: REGULATION OF DNA BASE EXCISION REPAIR BY PROTEIN INTERACTIONS AND POST TRANSLATIONAL MODIFICATIONS
351.Sigrun Beate Kjøtrød: POLYCYSTIC OVARY SYNDROME - METFORMIN TREATMENT IN ASSISTED REPRODUCTION
352.Steven Keita Nishiyama: PERSPECTIVES ON LIMB-VASCULAR HETEROGENEITY: IMPLICATIONS FOR HUMAN AGING, SEX, AND EXERCISE
353.Sven Peter Näsholm: ULTRASOUND BEAMS FOR ENHANCED IMAGE QUALITY
354.Jon Ståle Ritland: PRIMARY OPEN-ANGLE GLAUCOMA \& EXFOLIATIVE GLAUCOMA. SURVIVAL, COMORBIDITY AND GENETICS
355.Sigrid Botne Sando: ALZHEIMER'S DISEASE IN CENTRAL NORWAY. GENETIC AND EDUCATIONAL ASPECTS
356.Parvinder Kaur: CELLULAR AND MOLECULAR MECHANISMS BEHIND METHYLMERCURYINDUCED NEUROTOXICITY
357.Ismail Cüneyt Güzey: DOPAMINE AND SEROTONIN RECEPTOR AND TRANSPORTER GENE POLYMORPHISMS AND EXTRAPYRAMIDAL SYMPTOMS. STUDIES IN PARKINSON'S DISEASE AND IN PATIENTS TREATED WITH ANTIPSYCHOTIC OR ANTIDEPRESSANT DRUGS
358.Brit Dybdahl: EXTRA-CELLULAR INDUCIBLE HEAT-SHOCK PROTEIN 70 (Hsp70) - A ROLE IN THE INFLAMMATORY RESPONSE ?
359.Kristoffer Haugarvoll: IDENTIFYING GENETIC CAUSES OF PARKINSON'S DISEASE IN NORWAY
360.Nadra Nilsen: TOLL-LIKE RECEPTOR 2 -EXPRESSION, REGULATION AND SIGNALING
361.Johan Håkon Bjørngaard: PATIENT SATISFACTION WITH OUTPATIENT MENTAL HEALTH SERVICES - THE INFLUENCE OF ORGANIZATIONAL FACTORS.
362.Kjetil Høydal : EFFECTS OF HIGH INTENSITY AEROBIC TRAINING IN HEALTHY SUBJECTS AND CORONARY ARTERY DISEASE PATIENTS; THE IMPORTANCE OF INTENSITY,, DURATION AND FREQUENCY OF TRAINING.
363.Trine Karlsen: TRAINING IS MEDICINE: ENDURANCE AND STRENGTH TRAINING IN CORONARY ARTERY DISEASE AND HEALTH.
364.Marte Thuen: MANGANASE-ENHANCED AND DIFFUSION TENSOR MR IMAGING OF THE NORMAL, INJURED AND REGENERATING RAT VISUAL PATHWAY
365. Cathrine Broberg Vågbø: DIRECT REPAIR OF ALKYLATION DAMAGE IN DNA AND RNA BY 2-OXOGLUTARATE- AND IRON-DEPENDENT DIOXYGENASES
366. Arnt Erik Tjønna: AEROBIC EXERCISE AND CARDIOVASCULAR RISK FACTORS IN OVERWEIGHT AND OBESE ADOLESCENTS AND ADULTS
367.Marianne W. Furnes: FEEDING BEHAVIOR AND BODY WEIGHT DEVELOPMENT: LESSONS FROM RATS
368.Lene N. Johannessen: FUNGAL PRODUCTS AND INFLAMMATORY RESPONSES IN HUMAN MONOCYTES AND EPITHELIAL CELLS
369.Anja Bye: GENE EXPRESSION PROFILING OF INHERITED AND ACQUIRED MAXIMAL OXYGEN UPTAKE - RELATIONS TO THE METABOLIC SYNDROME.
370.Oluf Dimitri Røe: MALIGNANT MESOTHELIOMA: VIRUS, BIOMARKERS AND GENES. A TRANSLATIONAL APPROACH
371.Ane Cecilie Dale: DIABETES MELLITUS AND FATAL ISCHEMIC HEART DISEASE. ANALYSES FROM THE HUNT1 AND 2 STUDIES
372.Jacob Christian Hølen: PAIN ASSESSMENT IN PALLIATIVE CARE: VALIDATION OF METHODS FOR SELF-REPORT AND BEHAVIOURAL ASSESSMENT
373.Erming Tian: THE GENETIC IMPACTS IN THE ONCOGENESIS OF MULTIPLE MYELOMA
374.Ole Bosnes: KLINISK UTPRØVING AV NORSKE VERSJONER AV NOEN SENTRALE TESTER PÅ KOGNITIV FUNKSJON
375.Ola M. Rygh: 3D ULTRASOUND BASED NEURONAVIGATION IN NEUROSURGERY. A CLINICAL EVALUATION
376.Astrid Kamilla Stunes: ADIPOKINES, PEROXISOME PROFILERATOR ACTIVATED RECEPTOR (PPAR) AGONISTS AND SEROTONIN. COMMON REGULATORS OF BONE AND FAT METABOLISM
377.Silje Engdal: HERBAL REMEDIES USED BY NORWEGIAN CANCER PATIENTS AND THEIR ROLE IN HERB-DRUG INTERACTIONS
378.Kristin Offerdal: IMPROVED ULTRASOUND IMAGING OF THE FETUS AND ITS CONSEQUENCES FOR SEVERE AND LESS SEVERE ANOMALIES
379. Øivind Rognmo: HIGH-INTENSITY AEROBIC EXERCISE AND CARDIOVASCULAR HEALTH
380. Jo-Åsmund Lund: RADIOTHERAPY IN ANAL CARCINOMA AND PROSTATE CANCER
381.Tore Grüner Bjåstad: HIGH FRAME RATE ULTRASOUND IMAGING USING PARALLEL BEAMFORMING
382.Erik Søndenaa: INTELLECTUAL DISABILITIES IN THE CRIMINAL JUSTICE SYSTEM
383.Berit Rostad: SOCIAL INEQUALITIES IN WOMEN'S HEALTH, HUNT 1984-86 AND 1995-97, THE NORD-TRØNDELAG HEALTH STUDY (HUNT)
384.Jonas Crosby: ULTRASOUND-BASED QUANTIFICATION OF MYOCARDIAL DEFORMATION AND ROTATION
385.Erling Tronvik: MIGRAINE, BLOOD PRESSURE AND THE RENIN-ANGIOTENSIN SYSTEM 386.Tom Christensen: BRINGING THE GP TO THE FOREFRONT OF EPR DEVELOPMENT
387.Håkon Bergseng: ASPECTS OF GROUP B STREPTOCOCCUS (GBS) DISEASE IN THE NEWBORN. EPIDEMIOLOGY, CHARACTERISATION OF INVASIVE STRAINS AND EVALUATION OF INTRAPARTUM SCREENING
388.Ronny Myhre: GENETIC STUDIES OF CANDIDATE TENE3S IN PARKINSON'S DISEASE
389. Torbjørn Moe Eggebø: ULTRASOUND AND LABOUR
390.Eivind Wang: TRAINING IS MEDICINE FOR PATIENTS WITH PERIPHERAL ARTERIAL DISEASE
391.Thea Kristin Våtsveen: GENETIC ABERRATIONS IN MYELOMA CELLS
392.Thomas Jozefiak: QUALITY OF LIFE AND MENTAL HEALTH IN CHILDREN AND ADOLESCENTS: CHILD AND PARENT PERSPECTIVES
393.Jens Erik Slagsvold: N-3 POLYUNSATURATED FATTY ACIDS IN HEALTH AND DISEASE CLINICAL AND MOLECULAR ASPECTS
394.Kristine Misund: A STUDY OF THE TRANSCRIPTIONAL REPRESSOR ICER. REGULATORY NETWORKS IN GASTRIN-INDUCED GENE EXPRESSION
395.Franco M. Impellizzeri: HIGH-INTENSITY TRAINING IN FOOTBALL PLAYERS. EFFECTS ON PHYSICAL AND TECHNICAL PERFORMANCE
396.Kari Hanne Gjeilo: HEALTH-RELATED QUALITY OF LIFE AND CHRONIC PAIN IN PATIENTS UNDERGOING CARDIAC SURGERY
397. Øyvind Hauso: NEUROENDOCRINE ASPECTS OF PHYSIOLOGY AND DISEASE
398.Ingvild Bjellmo Johnsen: INTRACELLULAR SIGNALING MECHANISMS IN THE INNATE IMMUNE RESPONSE TO VIRAL INFECTIONS
399.Linda Tømmerdal Roten: GENETIC PREDISPOSITION FOR DEVELOPMENT OF PREEMCLAMPSIA - CANDIDATE GENE STUDIES IN THE HUNT (NORD-TRØNDELAG HEALTH STUDY) POPULATION
400.Trude Teoline Nausthaug Rakvåg: PHARMACOGENETICS OF MORPHINE IN CANCER PAIN
401.Hanne Lehn: MEMORY FUNCTIONS OF THE HUMAN MEDIAL TEMPORAL LOBE STUDIED WITH fMRI
402.Randi Utne Holt: ADHESION AND MIGRATION OF MYELOMA CELLS - IN VITRO STUDIES -
403.Trygve Solstad: NEURAL REPRESENTATIONS OF EUCLIDEAN SPACE
404.Unn-Merete Fagerli: MULTIPLE MYELOMA CELLS AND CYTOKINES FROM THE BONE MARROW ENVIRONMENT; ASPECTS OF GROWTH REGULATION AND MIGRATION
405.Sigrid Bjørnelv: EATING- AND WEIGHT PROBLEMS IN ADOLESCENTS, THE YOUNG HUNTSTUDY
406.Mari Hoff: CORTICAL HAND BONE LOSS IN RHEUMATOID ARTHRITIS. EVALUATING DIGITAL X-RAY RADIOGRAMMETRY AS OUTCOME MEASURE OF DISEASE ACTIVITY, RESPONSE VARIABLE TO TREATMENT AND PREDICTOR OF BONE DAMAGE
407.Siri Bjørgen: AEROBIC HIGH INTENSITY INTERVAL TRAINING IS AN EFFECTIVE TREATMENT FOR PATIENTS WITH CHRONIC OBSTRUCTIVE PULMONARY DISEASE
408.Susanne Lindqvist: VISION AND BRAIN IN ADOLESCENTS WITH LOW BIRTH WEIGHT
409.Torbjørn Hergum: 3D ULTRASOUND FOR QUANTITATIVE ECHOCARDIOGRAPHY
410.Jørgen Urnes: PATIENT EDUCATION IN GASTRO-OESOPHAGEAL REFLUX DISEASE. VALIDATION OF A DIGESTIVE SYMPTOMS AND IMPACT QUESTIONNAIRE AND A RANDOMISED CONTROLLED TRIAL OF PATIENT EDUCATION
411.Elvar Eyjolfsson: 13C NMRS OF ANIMAL MODELS OF SCHIZOPHRENIA
412. Marius Steiro Fimland: CHRONIC AND ACUTE NEURAL ADAPTATIONS TO STRENGTH TRAINING
413. Øyvind Støren: RUNNING AND CYCLING ECONOMY IN ATHLETES; DETERMINING FACTORS, TRAINING INTERVENTIONS AND TESTING

