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Abstract. Real-Time Calculus (RTC) is a framework for modeling and
performance analysis of real-time networked systems. In RTC, workload
and resources are modeled as arrival and service curves, and processing
semantics are modeled by abstract components. Greedy Processing Com-
ponent (GPC) is one of the fundamental abstract components in RTC,
which processes incoming events in a greedy fashion as long as there are
available resources. The relations between inputs and outputs of GPC
have been established, which are consistent with its behaviors. In this pa-
per, we first revise the original proof of calculating output curves in GPC,
and then propose a new method to obtain tighter output arrival curves.
Experiment results show that the precision of output arrival curves can
be improved by our method compared with the original calculation and
existing work.
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1 Introduction

Real-Time Calculus (RTC), originated in Network Calculus, is a framework for
modeling and performance analysis of real-time networked embedded systems.
RTC uses arrival and service curves to model workload and resource, and the
performance analysis is mainly based on min-plus and max-plus algebra. Com-
pared with the traditional real-time scheduling theory, RTC is more expressive
and can model a much wider range of realistic systems due to usage of much
more general workload and resource models. At the same time, the models and
analysis techniques of RTC generate closed-form analytical results, thus having
higher analysis efficiency, compared to state-based modeling and analysis tech-
niques such as model checking [2], [7]. All these advantages make RTC draw
much attention from both real-time community and industry.

Greedy Processing Component (GPC) is one of the fundamental abstract
components in RTC, which processes input events in a greedy fashion in FIFO
order, as long as there are available resources. GPCs can be connected into
networks to model the behaviors of real-time systems, and one of the typical
scenarios is fixed-priority scheduling, where the remaining resource of one GPC
related to a higher-priority task is used as input resource of the GPC related to
a lower-priority task.
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The analysis of GPC has been consistently studied and improved since it
was proposed in [1, 5, 6]. The improvement involves two aspects: efficiency and
precision. For efficiency, [9] proved that the output curves can be calculated with
a finite length of input curves, thus greatly shortening the computation time for
output curves. This work was further generalized in [10], which eliminates the
dependency of Finitary RTC on the semantics of GPC and applied Finitary RTC
to the level of RTC-operators. For precision, [8] proposed to reduce the unused
resource from total resource before calculating the output arrival curves, which
improves the precision of output arrival curves.

Contributions. In this work, we improve the analysis of GPC in two as-
pects. First, we revise the proof of output curves in GPC and complement the
missing deduction steps, which further clarifies the correctness of the original
results. Second, we propose a new method for calculating output arrival curves,
which generates more precise results based on the connection between output
arrival curves and the number of accumulated events, rather than focusing on
the interaction of between arrival and service curves as in [8].

2 RTC Basics

2.1 Arrival and Service Curves

RTC uses arrival curves and service curves to describe timing properties of event
streams and available resource.

Definition 1 (Arrival Curve). Let R[s, t) denote the total number of arrived
events in time interval [s, t)3, where s and t are two arbitrary non-negative real
numbers. Then, the corresponding upper and lower arrival curves are denoted as
αu and αl, respectively, and satisfy:

∀s < t, αl(t− s) ≤ R[s, t) ≤ αu(t− s),

where αu(0) = αl(0) = 0.

Generally we assume that αu is concave satisfying αu(t) +αu(s) ≥ αu(t+ s).

Definition 2 (Service Curve). Let C[s, t) denote the total available resource
in time interval [s, t)4. Then, the corresponding upper and lower service curves
are denoted as βu and βl, respectively, and satisfy:

∀s < t, βl(t− s) ≤ C[s, t) ≤ βu(t− s),

where βu(0) = βl(0) = 0.

In our work, we adopt the PJD workload model for arrival curve and TDMA
model for service curve in [4] for easy understanding. In detail, the input arrival

3 R[s, t) = −R[t, s), R[s, s) = 0
4 C[s, t) = −C[t, s), C[s, s) = 0
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curves are characterized by (p, j, d), where p denotes the period, j the jitter, and
d the minimum inter-arrival distance of events in the modeled stream:

αu(∆) = min

(⌈
∆+ j

p

⌉
,

⌈
∆

d

⌉)
, αl(∆) =

⌊
∆− j
p

⌋
.

The service curves are characterized by (s, c, b):

βu(∆) =

(⌊
∆

c

⌋
· s+ min(∆ mod c, s)

)
·b, βl(∆) =

(⌊
∆′

c

⌋
· s+ min(∆′ mod c, s)

)
·b

, where ∆′ = max(∆− c+ s, 0).
Fig. 1(a) shows an example of arrival curve with p = 10, j = 2, d = 0 and

service curve s = 1, c = 5, b = 1, and Fig. 1(b) shows a possible sequence of
workload and TDMA resource corresponding to Fig. 1(a).

(a) Input arrival/service curve. (b) A possible event stream and
TDMA resource

Fig. 1. An example for inputs

2.2 Greedy Processing Component (GPC)

In this paper, we focus on one of the widely used abstract components in RTC
called Greedy Processing Component (GPC). A GPC processes events from the
input event stream in a greedy fashion, as long as it complies with the availability
of resource. If we use R′[s, t) and C ′[s, t) to describe the accumulated number of
processed events and remaining resources during the time interval [s, t), then it
satisfies

R′[s, t) = C[s, t)− C ′[s, t)
C ′[s, t) = sup

s≤u≤t
{C[s, u)−R[s, u)−B(s), 0}

The output event stream produced by GPC is described by arrival curve α
′u, α

′l,
and the remaining resource is described by service curve β

′u, β
′l.

α′u = min((αu ⊗ βu)� βl, βu),
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α′l = min((αl � βu)⊗ βl, βl),
β′u = (βu − αl)�0,

β′l = (βl − αu)⊗0,

where

(f ⊗ g)(∆) = inf
0≤λ≤∆

{f(∆− λ) + g(λ)},

(f⊗g)(∆) = sup
0≤λ≤∆

{f(∆− λ) + g(λ)},

(f � g)(∆) = sup
λ≥0
{f(∆+ λ)− g(λ)},

(f�g)(∆) = inf
λ≥0
{f(∆+ λ)− g(λ)}.

The maximum delay dmax experienced by any event on the event stream and
the amount of events in the input buffer bmax, i.e., the backlog, are respectively
bounded by

dmax ≤ sup
λ≥0

{
inf{δ ≥ 0 : αu(λ) ≤ βl(λ+ δ)}

}
= Del(αu, βl)

bmax ≤ sup
λ≥0
{αu(λ)− βl(λ)} = Buf(αu, βl)

GPCs can be connected together to model systems with various scheduling
and arbitration policies. One of the typical scenarios is to model fixed-priority
scheduling, where the resource allocation for tasks with different priorities is
described by the resource stream direction.

An example. Suppose two event streams S1, S2 are processed on two suc-
cessive processors. S1 has higher priority than S2 and the execution of S2 will
be preempted by S1 as long as an event of S1 arrives on each processor. Such
a system (Fig. 2 (a)) can be modeled by a GPC network (Fig. 2 (b)). The pro-
cessing of each stream on each processor is modeled as a GPC component. The
output arrival curves of G1 are the input arrival curves of G2, corresponding
to the system behavior that the events of S1 completing execution on P1 are
further processed on P2. And the remaining service curve of G1(G2) is the input
service curve G3(G4), since S1 has higher priority on both processors.

3 Revised Proof of Output Curves

Although how to calculate bounds for output curves in GPC has been proved
in [4], some important deduction steps are missing. In detail, the process of
specifying the numerical relations between some critical parameters is too simple
to be convincing. In this section, we add these missing deduction parts and give
revised proof of calculating output curves in GPC.
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(a) A networked system. (b) A GPC network

Fig. 2. An example for GPC network.

Theorem 1. Given a GPC with arrival curve αu, αl and service curve βu, βl,
then its remaining service curves are bounded by

β′u = ((βu − αl)�0)+

β′l = (βl − αu)⊗0

where for a function f(∆), (f(∆))+ = max(f(∆), 0).

Proof. (1) We first prove β′l.
Suppose p is an arbitrarily small time such that the backlog satisfiesB(p) = 0.
Then for all p ≤ s ≤ t,

C ′[s, t)

= C ′[p, t)− C ′[p, s)
= sup
p≤a≤t

{C[p, a)−R[p, a)}+ − sup
p≤b≤s

{C[p, b)−R[p, b)}+

Since C[p, p) = R[p, p) = C[p, p)−R[p, p) = 0, the suprema are nonnegative
and we have

C ′[s, t)

= sup
p≤a≤t

{C[p, a)−R[p, a)} − sup
p≤b≤s

{C[p, b)−R[p, b)}

= inf
p≤b≤s

{ sup
p≤a≤t

{C[b, a)−R[b, a)}}

= inf
p≤b≤s

{max{ sup
b≤a≤t

{C[b, a)−R[b, a)}, sup
p≤a≤b

{C[b, a)−R[b, a)}}}

Let χ1(b) = sup
b≤a≤t

{C[b, a) − R[b, a)} = max{C[b, b) − R[b, b), C[b, b + 1) −

R[b, b+ 1), ..., C[b, t)−R[b, t)} ≥ 05,

5 For ease of presentation we assume s, t, a, b, p to be integer in following proofs.
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χ2(b) = sup
p≤a≤b

{C[b, a)−R[b, a)} = max{C[b, p)−R[b, p), C[b, p+1)−R[b, p+

1), ..., C[b, b− 1)−R[b, b− 1), C[b, b)−R[b, b)} ≥ 0.
Next we prove that6

C ′[s, t) = inf
p≤b≤s

{max{χ1(b), χ2(b)}} = inf
p≤b≤s

{χ1(b)}.
We consider two cases:
1) For any i ∈ [p, s], χ1(i) ≥ χ2(i), then
C ′[s, t) = inf

p≤b≤s
{max{χ1(b), χ2(b)} = inf

p≤b≤s
{χ1(b)},

then C ′[s, t) = inf
p≤b≤s

{χ1(b)}.

2) There exists at least one i ∈ [p, s] that χ1(i) < χ2(i), that is, there exists
one x ∈ [p, i] that

C[b, a) − R[b, a) = C[i, x) − R[i, x) = max{χ1(i), χ2(i)} = max{C[i, p) −
R[i, p), ..., C[i, x− 1)−R[i, x− 1), ..., C[i, x+ 1)−R[i, x+ 1), ..., C[i, t)−R[i, t)}

Then we have

R[x, i)− C[x, i) ≥ R[p, i)− C[p, i)⇒ C[p, x) ≥ R[p, x)

R[x, i)− C[x, i) ≥ R[p+ 1, i)− C[p+ 1, i)⇒ C[p+ 1, x) ≥ R[p+ 1, x)

...

R[x, i)− C[x, i) ≥ R[x− 1, i)− C[x− 1, i)⇒ C[x− 1, x) ≥ R[x− 1, x)

R[x, i)− C[x, i) ≥ R[x+ 1, i)− C[x+ 1, i)⇒ R[x, x+ 1) ≥ C[x, x+ 1)

R[x, i)− C[x, i) ≥ C[i, i+ 1)−R[i, i+ 1)⇒ R[x, i+ 1) ≥ C[x, i+ 1)

R[x, i)− C[x, i) ≥ C[i, t)−R[i, t)⇒ R[x, t) ≥ C[x, t)

Then when b = x, we have
χ1(x) = max{C[x, x)−R[x, x), C[x, x+1)−R[x, x+1), ..., C[x, t)−R[x, t)} =

0,
χ2(x) = max{C[x, p)−R[x, p), C[x, p+1)−R[x, p+1), ..., C[x, b−1)−R[x, b−

1), C[x, x)−R[x, x)} = 0.
So max{χ1(x), χ2(x)} = 0.
Then
C ′[s, t) = inf

p≤b≤s
{max{χ1(b), χ2(b)}} = max{χ1(x), χ2(x)} = 0 (since C ′[s, t) ≥

0).
On the other hand,

inf
p≤b≤s

{χ1(b)} = min{χ1(p), χ1(p+ 1), ..., χ1(x), ..., χ1(s)} = 0, then we have

C ′[s, t) = inf
p≤b≤s

{χ1(b)} = 0.

So in both cases, C ′[s, t) = inf
p≤b≤s

{χ1(b)}, which implies that removing the

cases when a < b does not influence the final result. Note that a ≥ b is a
consequence of above deduction, but not simply a direct result of s ≤ t as
implied in [4].

6 This part is just briefly explained as ′a ≥ b since t ≥ s′ in the existing proof [4].
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Then we continue to lower bound C ′[s, t).

C ′[s, t)

= inf
p≤b≤s

{ sup
b≤a≤t

{C[b, a)−R[b, a)}

= inf
p≤b≤s

{ sup
0≤a−b≤t−b

{C[b, a)−R[b, a)}

≥ inf
p≤b≤s

{ sup
0≤λ≤t−b

{βl(λ)− αu(λ)}

≥ sup
0≤λ≤t−s

{βl(λ)− αu(λ)}

= (βl − αu)⊗0

(2) Next we prove β′u.

C ′[s, t)

= C ′[p, t)− C ′[p, s)
= sup
p≤a≤t

{ inf
p≤b≤s

{C[b, a)−R[b, a)}}

= max{ sup
p≤a≤s

{ inf
p≤b≤s

{C[b, a)−R[b, a)}}, sup
s≤a≤t

{ inf
p≤b≤s

{C[b, a)−R[b, a)}}}

= max{ sup
p≤a≤s

{min{ inf
a≤b≤s

{C[b, a)−R[b, a)}, inf
b≤a≤s

{C[b, a)−R[b, a)}}}, sup
s≤a≤t

{ inf
p≤b≤s

{C[b, a)−R[b, a)}}}

Similar as above, we define ψ = sup
p≤a≤s

{ inf
p≤b≤s

{C[b, a) − R[b, a)}}, ψ1(a) =

inf
a≤b≤s

{C[b, a) − R[b, a)}, and ψ2(a) = inf
b≤a≤s

{C[b, a) − R[b, a)}. Next we prove

ψ ≤ 0.
For any a ∈ [p, s], we consider three cases:
1) ψ1(a) = ψ2(a). Then there must exist binf = a such that C[binf , a) −

R[binf , a) = 0 = min{ψ1(a), ψ2(a)}.
2) ψ1(a) > ψ2(a). Then there must exist binf < a such that
C[binf , a)−R[binf , a) = min{ψ1(a), ψ2(a)} < ψ1(a) ≤ 0.
3) ψ1(a) < ψ2(a). Then there must exist binf > a such that
C[binf , a)−R[binf , a) = min{ψ1(a), ψ2(a)} < ψ2(a) ≤ 0.
Then combining the above three cases, for each a ∈ [p, s],min{ψ1(a), ψ2(a)} ≤

0, so ψ ≤ 0.
By now we have

C ′[s, t)

= sup
p≤a≤t

{ inf
p≤b≤s

{C[b, a)−R[b, a)}}

= sup
s≤a≤t

{ inf
p≤b≤s

{C[b, a)−R[b, a)}}+

= sup
s≤a≤t

{ inf
a−s≤a−b≤a−p

{C[b, a)−R[b, a)}}+

Note that a ≥ b is a consequence of a ≥ s, but not a direct result of s ≤ t.
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Then with substitution λ we have

C ′[s, t) ≤ sup
s≤a≤t

{ inf
a−s≤a−b≤a−p

{βu(λ)− αl(λ)}}+

≤ sup
s≤a≤t

{ inf
t−s≤a−b≤p

{βu(λ)− αl(λ)}}+

= inf
t−s≤λ≤p

{βu(λ)− αl(λ)}}+

= inf
t−s≤λ

{βu(λ)− αl(λ)}}+

= ((βu − αl)�0)+

ut

Theorem 2. Given a GPC with arrival curve αu, αl and service curve βu, βl,
then its output arrival curves are bounded by

α′u = min((αu ⊗ βu)� βl, βu)

α′l = min((αl � βu)⊗ βl, βl)

Proof. The proofs are presented in the Appendix. ut

An example. We take the calculation of β′l as an example to show C ′[s, t) =
inf

p≤b≤s
{χ1(b)}. Let p = 0,s = 3, t = 5. Then the value of C ′[s, t) with different

values of a, b is shown in Table 1.

b = 0 b = 1 b = 2 b = 3

a = 0 0 R[0, 1) − C[0, 1) R[0, 2) − C[0, 2) R[0, 3) − C[0, 3)

a = 1 C[0, 1) −R[0, 1) 0 R[1, 2) − C[1, 2) R[1, 3) − C[1, 3)

a = 2 C[0, 2) −R[0, 2) C[1, 2) −R[1, 2) 0 R[2, 3) − C[2, 3)

a = 3 C[0, 3) −R[0, 3) C[1, 3) −R[1, 3) C[2, 3) −R[2, 3) 0

a = 4 C[0, 4) − C[0, 4) C[1, 4) −R[1, 4) C[2, 4) −R[2, 4) C[3, 4) −R[3, 4)

a = 5 C[0, 5) −R[0, 5) C[1, 5) −R[1, 5) C[2, 5) −R[2, 5) C[3, 5) −R[3, 5)

Table 1. An example for part of Theorem 1.

Assume that when b = 2, χ1(2) < χ2(2) and χ2(2) = R[1, 2)− C[1, 2). Then
we have

R[1, 2)− C[1, 2) ≥ R[0, 2)− C[0, 2)⇒ C[0, 1) ≥ R[0, 1)

R[1, 2)− C[1, 2) ≥ C[2, 3)−R[2, 3)⇒ R[1, 3) ≥ C[1, 3)

R[1, 2)− C[1, 2) ≥ C[2, 4)−R[2, 4)⇒ R[1, 4) ≥ C[1, 4)
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R[1, 2)− C[1, 2) ≥ C[2, 5)−R[2, 5)⇒ R[1, 5) ≥ C[1, 5)

Then when b = 1, max{χ1(1), χ2(1)} = χ1(1) = 0, and

C ′[0, 3) = inf
0≤b≤3

{max{χ1(b), χ2(b)}} = 0 = min{χ1(0), χ1(1), χ1(2), χ1(3)} =

inf
0≤b≤3

{χ1(b)}.

4 Improving Output Arrival Curves

In this section, we adopt the idea in [3] and derive a new upper bound for output
arrival curves, which combined with the original result in [4] generates a tighter
upper bound, as shown in Section 5.

Lemma 1. Given an event stream with input function R(t), output function
R′(t), arrival curve αu, αl, service curve βu, βl, the output arrival curve of a
GPC is upper bounded by α′u(∆) = αu(∆) +Buf(αu, βl)− αu(0+).

Proof. We use B(s) to denote the backlog at time s. For all s ≤ t, we have

B(t)−B(s) = R[s, t)−R′[s, t)

Suppose p is an arbitrarily small time satisfying B(p) = 0, then substituting t
with p gives

B(s) = R[p, s)−R′[p, s)

Based on the behaviors of GPC, it holds that

C ′[p, s) = sup
p≤u≤s

{C[p, u)−R[p, u)−B(p), 0}

Then

R′[p, s) = C[p, s)− C ′[p, s) = C[p, s)− sup
p≤u≤s

{C[p, u)−R[p, u)−B(p), 0}

Since B(p) = 0 and C[p, p)−R[p, p) = 0, we have

R′[p, s) = C[p, s)− C ′[p, s) = C[p, s)− sup
p≤u≤s

{C[p, u)−R[p, u)}
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Since αu(∆) is concave, there exists α̃u(∆) satisfying that for any ∆ > 0,
αu(∆) = α̃u(∆) + αu(0+). Then

R′[s, t) = R[s, t) +B(s)−B(t)

≤ R[s, t) +B(s)

= R[p, t)−R[p, s) +R[p, s)− {C[p, s)− sup
p≤u≤s

{C[p, u)−R[p, u)}}

= R[p, t)− C[p, s) + sup
p≤u≤s

{C[p, u)−R[p, u)}

= sup
p≤u≤s

{R[u, t)− C[u, s)}

≤ sup
p≤u≤s

{αu(t− u)− βl(s− u)}

= sup
p≤u≤s

{α̃u(t− u) + αu(0+)− βl(s− u)}

≤ sup
p≤u≤s

{α̃u(s− u) + α̃u(t− s) + αu(0+)− βl(s− u)}

= α̃u(t− s) + sup
p≤u≤s

{αu(s− u)− βl(s− u)}

≤ α̃u(t− s) +Buf(αu, βl)

= αu(t− s) +Buf(αu, βl)− αu(0+)

Then the lemma is proved. ut

Theorem 3. Given a GPC with input arrival curves αu, αl and service curves
βu, βl, the output events can be upper bounded by:

α′u = ((αu ⊗ βu)� βl) ∧ βu ∧ (αu +Buf(αu, βl)− αu(0+)),
where f ∧ g = min(f, g).

An example. Suppose a GPC has arrival curves and service curves as in Fig.
1, then the output arrival curves calculated by Theorem 3 (blue dashed lines)
and the original result (blue full lines) are shown in Fig. 3(a). Next we show
the influence of j, s to the results calculated with these two methods, where the
result of original method is denoted with full lines, and that of our new method
(Theorem 3) is denoted with dashed lines.

Fig. 3(a) shows the influence of j with 4 different sets of inputs. All these 4
inputs are generated with p = 10, d = 0, s = 1, c = 5, b = 1, and they differ in
j which equals 2, 4, 5, 6 respectively. Comparing the cases when j = 2, 4, 5 and
that when j = 6, it implies when p− j > c− s, the new method is more possible
to outperform the original one7. Focusing on the cases when j = 2, 4, 5, it is
observed that the new method performs better when j is smaller.

Fig. 3(b) shows the influence of s with 3 different sets of inputs. All these
4 inputs are generated with p = 10, j = 6, d = 0, c = 5, b = 1, and they differ
in s which equals 1, 2, 3 respectively. Our method outperforms the original one

7 Note that this is not applicable to all task sets.
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when s = 2, 3 with p− j > c− s, which is consistent with the trend in Fig. 3(a).
Considering the inputs with s = 2, 3, the difference between our method and the
original one grows larger when s is smaller.

(a) Different j. (b) Different s.

Fig. 3. Intuitive observations about the influence of j and s.

5 Experiments

We implement our new theoretical results in RTC Toolbox [11] and conduct
experiments to evaluate their performance. The new proposed method (denoted
by new) is compared with the original GPC (denoted by org), and the existing
work in [8](denoted by ext). Task sets of two different parameter settings are
generated, under which both single GPC and GPC network are considered . For
single GPC, the comparison is conducted with regards to two aspects:

(1) Percentage, denoted by p(method1,method2), describes the ratio between
the number of task sets where method1 generates more precise upper output
arrival curves than method2 and the total number of generated task sets.

(2) Average distance, denoted by d(method1,method2), shows the average
numerical distance between upper output arrival curves calculated with method1
and method2 in each setting. The distance of two curves f and g is defined as
follows, and n is fixed to be 500.

dist(f, g) =

∑n
∆=1 |(f(∆)− g(∆))|

n
.

For GPC network, we compare the delay bound calculated by different meth-
ods.
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5.1 Parameter setting I

Under this parameter setting, arrival curves and service curves are generated as:
p ∈ [20, 100], j ∈ [1, x], d ∈ [1, 20], s = y, c = 50, b = 1 ( x and y to be specified
in the following)8. For each setting, we generate 200 task sets.

Single GPC. Fig. 4 (a) shows the results with different s (X-axis) with
x = 100. Fig. 4 (b)(c)(d) shows the results with different jitter range (X-axis)
with y = 20, 30, 40 respectively. The number of task sets where our new method
generates more precise results than the original calculation and existing work
increases with larger s and smaller jitter range.

GPC network. In Fig. 5, we generate 3 × 3, 4 × 4, 5 × 5 GPC networks
and evaluate the normalized quality, which is the ratio between delay bound
calculated with two different methods. The parameters are the same as Fig.4
(b)(c)(d). The improvement of our method is more obvious when the network
scale is larger.

(a) Different s. (b) Different jitter range, s = 20

(c) Different jitter range, s = 30. (d) Different jitter range, s = 40.

Fig. 4. Experiment results for single GPC under parameter setting I.

8 Note that p and c are relatively small since larger values will cause computation
exception with larger-scale GPC networks.
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(a) s = 20. (b) s = 30. (c) s = 40.

Fig. 5. Experiment results for GPC network under parameter setting I.

5.2 Parameter setting II

Under this parameter setting, arrival curves and service curves are generated as:
p ∈ [20, 50], j ∈ [10, 100], d ∈ [1, 10], c = 60, b = 1, and s varies for different
groups of experiments (corresponding to the X-axis). With each s value, we
generate 200 task sets.

Single GPC. Fig. 6(a) shows the results with s from 2 to 6. Under this
parameter setting, the percentage of task sets where the new proposed method
outperforms the original calculation grows with increasing s, while it does not
perform better than the method in existing work [8].

GPC Network. As shown in Fig. 6(b), we generate 3× 3, 4× 4, 5× 5 GPC
networks and evaluate the normalized quality. s is fixed to be 20. The method
in existing work [8] has better performance than the new proposed method with
regards to delay bound.

(a) Different s. (b) s = 20.

Fig. 6. Experiment results under parameter setting II.
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6 Conclusion

In this work, the improvement of GPC is conducted in two aspects. First, we
revise the existing proof of output curves in GPC. Specially, we add the missing
deduction parts about the numerical relations between critical parameters. Sec-
ond, we propose a new method to calculate output arrival curves, which generates
more precise results than original methods. In future work, we tend to explore
other fundamental abstract components in RTC and improve the precision of
related calculation.
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Appendix : Proof of Theorem 2

(1) We first prove α′u. Suppose p is an arbitrarily small time such
that the backlog satisfies B(p) = 0.
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Then for all p ≤ s ≤ t,

R′[s, t)

= R′[p, t)−R′[p, s)
= sup

p≤b≤s
{C[p, b)−R[p, b)}+ − sup

p≤a≤t
{C[p, a)−R[p, a)}+ + C[p, t)− C[p, s)

Since C[p, p) = R[p, p) = C[p, p) − R[p, p) = 0, the suprema are
nonnegative and we have

R′[s, t)

= sup
p≤b≤s

{C[p, b)−R[p, b)} − sup
p≤a≤t

{C[p, a)−R[p, a)}+ C[p, t)− C[p, s)

= sup
p≤b≤s

{ inf
p≤a≤t

{R[b, a) + C[a, t)− C[b, s)}}

= sup
p≤b≤s

{ inf
p≤a≤t

{C[s, t) + C[a, b)−R[a, b)}}

= C[s, t) + sup
p≤b≤s

{ inf
p≤a≤t

{C[a, b)−R[a, b)}}

= C[s, t) + sup
p≤b≤s

{min{ inf
b≤a≤t

{C[a, b)−R[a, b)}, inf
p≤a≤b

{C[a, b)−R[a, b)}}}

Let χ = sup
p≤b≤s

{min{ inf
b≤a≤t

{C[a, b)−R[a, b)}, inf
p≤a≤b

{C[a, b)−R[a, b)}}},

χ1(b) = inf
b≤a≤t

{C[a, b) − R[a, b)} = min{C[b, b) − R[b, b), C[b +

1, b)−R[b+ 1, b), ..., C[t, b)−R[t, b)} ≤ 0,
χ2(b) = inf

p≤a≤b
{C[a, b) − R[a, b)} = min{C[p, b) − R[p, b), C[p +

1, b)−R[p+ 1, b), ..., C[b− 1, b)−R[b− 1, b), C[b, b)−R[b, b)} ≤ 0.
Next we prove χ = sup

p≤b≤s
{χ1(b)}9.

We consider two cases:
1) For any i ∈ [p, s], χ1(i) ≤ χ2(i), then χ = sup

p≤b≤s
{χ1(b)}.

2) There exists at least one i ∈ [p, s] satisfying χ1(i) > χ2(i), then
min{χ1(i), χ2(i)} = χ2(i) < 0,
Similar as the proof for β′l, there exists x ∈ [p, s] such that

min{χ1(x), χ2(x)} = χ1(x) = χ2(x) = 0.
Then

χ = sup
p≤b≤s

{min{χ1(b), χ2(b)}}

9 This is not detailed in [4].
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= max{min{χ1(p), χ2(p)}, ...,min{χ1(x), χ2(x)}, ...,min{χ1(s), χ2(s)}}
= sup

b∈φ
{min{χ1(b), χ2(b)}} = sup

b∈φ
{χ1(b)}

where ψ is the set of values in [p, s] which satisfy for any b ∈ φ,
χ1(b) ≤ χ2(b).

On the other hand, sup
p≤b≤s

{χ1(b)} = sup
b∈ψ
{χ1(b)}, since when b ∈

([p, s]− ψ), χ1(b) < 0. Then we have χ = sup
p≤b≤s

{χ1(b)}.

So in both two cases we have χ = sup
p≤b≤s

{χ1(b)}.

Then

R′[s, t)

= C[s, t) + sup
p≤b≤s

{ inf
p≤a≤t

{C[a, b)−R[a, b)}}

= C[s, t) + sup
p≤b≤s

{ inf
b≤a≤t

{C[a, b)−R[a, b)}}

= sup
p≤b≤s

{ inf
b≤a≤t

{C[s, t) + C[a, b)−R[a, b)}}

= sup
p≤b≤s

{ inf
b≤a≤t

{R[b, a) + C[a, t)− C[b, s)}}

Then with λ = s− b and µ = a+ λ− s, we have

R′[s, t)

= sup
p≤b≤s

{ inf
b≤a≤t

{R[b, a) + C[a, t)− C[b, s)}}

= sup
0≤λ≤s−p

{ inf
0≤µ≤λ+(t−s)

{R[s− λ, µ− λ+ s) + C[µ− λ+ s, t)− C[s− λ, s)}}

≤ sup
0≤λ≤s−p

{ inf
0≤µ≤λ+(t−s)

{αu(µ) + βu(λ+ (t− s)− µ)− βl(λ)}}

≤ sup
0≤λ
{ inf
0≤µ≤λ+(t−s)

{αu(µ) + βu(λ+ (t− s)− µ)− βl(λ)}}

= (αu ⊗ βu)� βl

Since the number of processed events can not be larger than
the available resource, R′[s, t) ≤ βu(t − s), then we have R′[s, t) ≤
min((αu ⊗ βu)� βl, βu).

(2) The results for α′l can be proved as with a combination of β′u

and α′u .


