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Hukommelsesfunksjoner i den mediale temporallappen

studert med funksjonell MR 

Bakgrunn: Den mediale temporallappen (MTL) er et område i hjernen som er viktig for læring og 

hukommelse. Dette ble fastslått i 1957 da legene William Scoville og Brenda Milner beskrev pasienten 

H.M. H.M. fikk operert bort store deler av MTL som et ledd i behandlingen av epilepsi, men utviklet 

alvorlig amnesi (hukommelsesvansker) etter inngrepet. Siden den gang har MTL vært gjenstand for en 

betydelig forskningsaktivitet. I dag vet vi at MTL er viktig for deklarativ hukommelse, som omfatter 

evnen til bevisst gjenkalling av personlige opplevelser og faktakunnskap. Vi vet også at MTL består av 

ulike områder: hippocampus, entorhinal cortex, perirhinal cortex og parahippocampal cortex. Disse 

områdene har alle ulike anatomiske egenskaper og forbindelser med andre områder i resten av hjernen, 

noe som impliserer at de også har forskjellige funksjoner. Forskningen strides derimot om hva disse 

funksjonelle forskjellene innebærer.  

Formål: Formålet med avhandlingen er å beskrive funksjonelle forskjeller mellom ulike områder i MTL 

relatert til hukommelse.

Metode: Fire eksperimentelle studier er gjennomført, alle basert på funksjonell magnetisk resonans

bildedannelse (fMRI). FMRI er en teknikk som brukes til å avbilde aktiveringsmønstre i hjernen relatert 

til bestemte oppgaver som personen utfører under bildeopptakene. Alle studiene er gjennomført med 

friske, frivillige forsøkspersoner.

Hovedfunn: FMRI-studier av hukommelse har antydet at MTL er særlig aktiv når man gjenkaller

selvopplevde hendelser fra det virkelige liv, sannsynligvis fordi slike hendelser har større detaljrikdom og 

personlig relevans enn den typen stimuli som vanligvis brukes i laboratorietester. I Studie 1 spurte vi om 

denne typen hukommelse aktiverer MTL sterkt nok til å kunne påvises i individuelle analyser. 

Individuelle analyser gjør det mulig å lokalisere aktiveringen mer nøyaktig enn i tradisjonelle 

gruppeanalyser, noe som er viktig for å kunne skille mellom de små områdene i MTL. I fMRI-

eksperimentet ba vi forsøkspersonene huske hendelser fra en bursdagsfest de hadde vært med på to uker 

tidligere. Denne oppgaven ga sterk aktivering i hippocampus og parahippocampal cortex, og aktiveringen 

var meget signifikant på individnivå. De påfølgende studiene ble basert på gruppeanalyser for å bedre 

muligheten til generalisering av resultatene, men tok hensyn til fordelene med komplekse, naturlige 

stimuli. 

Tidligere studier har antydet at hippocampus er særlig viktig for å assosiere informasjon i 

hukommelsen, men noen mener at også andre områder i MTL bidrar til dette. Vi undersøkte derfor om de 

ulike områdene i MTL former assosiasjoner av ulik art. I Studie 2 testet vi evnen til å assosiere hendelser 

over tid. Når man husker tidligere opplevelser kan man ofte se for seg en rekke hendelser som henger 

sammen og følger hverandre i tid. For å måle dette lot vi forsøkspersonene først se en film fra en TV-

serie. Dagen etter deltok de i et fMRI-eksperiment hvor de fikk se bilder av ulike scener fra filmen og 

måtte plassere disse i riktig rekkefølge. Denne oppgaven aktiverte hippocampus, og jo flere riktige svar 



en forsøksperson hadde, jo sterkere var aktiveringen. I Studie 3 testet vi evnen til å huske assosiasjoner 

på tvers av sansemodaliteter. Denne evnen er viktig for hukommelsen, fordi et minne ofte inneholder 

informasjon fra ulike modaliteter; f.eks. fargen, smaken og konsistensen på et eple. Vi lot 

forsøkspersonene først lære assosiasjoner mellom en rekke nye stimuli – visuelle (abstrakte bilder), 

auditive (lyder av musikk) og taktile (berøring av mønstret papir). I det påfølgende fMRI-eksperimentet 

fikk de presentert en auditiv eller taktil stimulus og ble bedt om å huske den tilhørende visuelle. Denne 

oppgaven aktiverte perirhinal cortex, og aktiveringen var sterkere enn når forsøkspersonenen husket 

assosiasjoner mellom stimuli fra samme modalitet.  

De fleste studier av MTL har brukt visuelle stimuli som ord og bilder, og man vet derfor lite om 

hukommelse i andre modaliteter. I Studie 3 fant vi at hippocampus, entorhinal cortex og parahippocampal 

cortex viste sterkere responser til auditive enn taktile stimuli, men ikke perirhinal cortex. Dette kan 

skyldes at de førstnevnte områdene mottar mer auditiv enn taktil informasjon fra sensoriske områder i 

hjernen. I Studie 4 sammenlignet vi responser til gjenkjenning av lukter og objekter. Forsøkspersonene 

fikk først presentert forskjellige lukter og objekter. Dagen etter, i fMRI eksperimentet, fikk de se navn på 

gamle og nye lukter og objekter og måtte si hvilke de husket fra dagen før. Gjenkjenning av objekter 

aktiverte hippocampus, men gjenkjenning av lukter gjorde det ikke. Dette kan muligens skyldes en 

forskjell i strategi. Gjenkjenning av lukter var oftere basert på en ”magefølelse”, og denne typen 

hukommelse antas å ikke være avhengig av hippocampus.  

Konklusjon: Våre funn viser at flere områder i MTL assosierer informasjon i hukommelsen, men 

assosiasjonene kan være av ulik art. Hippocampus knytter sammen hendelser over tid, slik at man i 

etterkant kan huske i hvilken rekkefølge de fant sted. Perirhinal cortex knytter sammen informasjon fra 

ulike sansemodaliteter til en helhetlig representasjon, slik at man senere kan relatere disse til hverandre. 

Våre funn viser også at områdene i MTL responderer ulikt på informasjon fra ulike sanser. Noen områder 

er mer sensitive til auditiv enn taktil informasjon, mens hippocampus aktiveres ved gjenkjenning av 

objekter, men ikke lukter. Til sammen gir disse funnene økt kunnskap om hvordan MTL bidrar til ulike 

aspekter av hukommelse.  

Navn kandidat:  Hanne Lehn  

Institutt:  Institutt for sirkulasjon og bildediagnostikk (ISB) 

Veiledere: Menno Witter (hovedveileder), Asta Håberg og Olav Haraldseth (biveiledere) 

Finansieringskilder: Norges forskningsråd, Centre for the Biology of Memory, Medical Imaging 

Laboratory

Ovennevnte avhandling er funnet verdig til å forsvares offentlig for graden PhD i nevrovitenskap. 

Disputas finner sted i auditoriet ØHA-11, Øya Helsehus, fredag 28. august kl 10.15. 



TABLE OF CONTENTS 

Acknowledgements.................................................................................................. 4 

List of papers...........................................................................................................  5 

Abbreviations..........................................................................................................  6 

Introduction................................................................................................ ............. 7 

Anatomy of the medial temporal lobe........................................................... 7

Theories of the medial temporal lobe.......................................................... 10 

Functional neuroimaging studies of the medial temporal lobe................... 17 

Box 1: Magnetic resonance imaging........................................................... 19 

Box 2: Functional MRI................................................................................ 20 

Aims of the thesis..................................................................................................  31 

Summary of the papers........................................................................................  33 

Discussion..............................................................................................................  38 

 Methodological issues................................................................................. 39 

 Main findings............................................................................................... 42 

Conclusions............................................................................................................  53 

References..............................................................................................................  54 

Contributions (Papers 1-4)...................................................................................  67  

3



ACKNOWLEDGEMENTS

This work was conducted at the Norwegian University of Science and Technology, 
Department of Circulation and Medical Imaging. The work was funded with a grant 
from the Norwegian Research Council. Additional financial support was provided by 
the Centre for the Biology of Memory and Medical Imaging Laboratory.  

I would like to thank my supervisor, Prof. Menno Witter, for his withstanding support in 
my years as a PhD student. His scientific advice has been crucial for my project to 
succeed and has helped me to become a better researcher. I am very grateful to Menno 
for always encouraging me to do my best, and for helping me to achieve my goals.  

I would also like to thank my co-supervisors, Ass. Prof. Asta Håberg and Prof. Olav 
Haraldseth. Thanks to Asta for sharing her knowledge and competence with 
neuroscience in general, and fMRI in particular, and for always being supportive and 
taking the time to help. Thanks to Olav for providing the facilities I needed to do my 
research, and for practical assistance and encouragement along the way.  

I thank Prof. Edvard Moser, Prof. May-Britt Moser and Prof. Dick Veltman for valuable 
discussions regarding the design of my experiments and the interpretation of my data. I 
am very grateful to Edvard and May-Britt for their help with getting my project started, 
and for letting me take part in the scientific meetings and social gatherings of their lab. 
Dick made important contributions to two of my experiments, and I am particularly 
grateful for his advice on fMRI paradigm design and data analysis.     

I would like to thank all my colleagues in the fMRI group in Trondheim for being so 
cooperative and for creating such a positive work atmosphere. Special thanks to Niels 
van Strien for his close collaboration on two of the experiments. I am very grateful to 
Niels for always being prepared to help, and for the many fruitful discussions of our 
work. Thanks to Hill-Aina Steffenach for helping me design and carry out two of the 
experiments, and in particular for her many creative solutions and positive attitude. 
Many thanks also to Lisa Jannicke Kjønigsen and Grete Kjelvik for all their help with 
the olfactory experiment. I thank Jian Xu for computer assistance, Inge Rasmussen and 
Torgil Vangberg for help with scanning and image processing, and Hallvard Røe 
Evensmoen for help with figures. I also thank Per Arvid Steen, Pål Erik Goa and Anders 
Kristoffersen at St. Olavs Hospital for their help with the scan protocols, and for their 
efforts to explain MRI physics to me. 

I am very thankful to my friends and family for their support and encouragement. This 
has been a great help, especially during the last months of my project. Most of all, I am 
thankful to Espen for his love and patience, and for always backing me up. 

4



LIST OF PAPERS

Paper 1  Lehn H, Steffenach H-A, Witter MP, Veltman DJ, Haraldseth O. A

birthday to remember: Subject-specific activation in the medial temporal 

lobe. Manuscript.

Paper 2  Lehn H, Steffenach H-A, van Strien NM, Veltman DJ, Witter MP, 

Håberg AK (2009). A specific role of the human hippocampus in recall 

of temporal sequences. J Neurosci 29:3475-3484. 

Paper 3 Van Strien NM, Lehn H, Gonlag AM, Ceritoglu C, Miller MI, Witter 

MP. Retrieval of learned crossmodal associations specifically involves 

the perirhinal cortex. Submitted to Eur J Neurosci, April 23 2009. 

Paper 4  Lehn H, Kjønigsen LJ, Kjelvik G, Håberg AK. Distinct patterns of brain 

activity during episodic retrieval of odors and objects. Submitted to 

Neuropsychologia, April 28 2009. 

5



ABBREVIATIONS

BOLD  blood oxygen level-dependent, contrast mechanism for fMRI 

CA(1-3) cornu ammonis (fields 1-3)  

DG  dentate gyrus 

EC  entorhinal cortex 

EEG  electroencephalography 

fMRI  functional magnetic resonance imaging 

HF  hippocampal formation, hippocampus 

LEC  lateral entorhinal cortex 

MEC  medial entorhinal cortex 

MEG  magnetoencephalography 

MRI  magnetic resonance imaging 

MTL  medial temporal lobe 

PER  perirhinal cortex 

PHG  parahippocampal gyrus 

PHC   parahippocampal cortex 

PET  positron-emission tomography 

T  Tesla, unit of magnetic field strength  

TE  area in the inferior temporal cortex in the macaque monkey 

TR  repetition time, time required for acquisition of one fMRI volume  

V4  area in the extrastriate visual cortex in the macaque monkey 

VR  virtual reality 
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INTRODUCTION

ANATOMY OF THE MEDIAL TEMPORAL LOBE 

The medial temporal lobe (MTL) of the human brain is located at the ventro-medial 

surface of the hemisphere. It comprises a network of several highly interconnected 

structures (Fig 1). The major components of the network are the hippocampal formation 

(HF), which is located on the floor of the lateral ventricle, and the adjacent 

parahippocampal gyrus (PHG). The PHG can be further divided into five cortical 

regions; the entorhinal cortex (EC), the perirhinal cortex (PER), the parahippocampal 

cortex (PHC), the presubiculum and the parasubiculum. Within the HF a number of 

cytoarchitectonically distinct subfields can be distinguished, including the cornu 

ammonis (CA) fields 1-3, the dentate gyrus (DG), and the subiculum. The pre- and 

parasubiculum are too small to be studied with the current resolution of fMRI and will 

therefore not be discussed further in this thesis.

Anatomical studies in rodents and monkeys have given insights into the connectivity 

among the above regions (Fig 1). The findings are broadly consistent across species and 

likely to apply in humans as well. The MTL forms a hierarchy of projections, with the 

HF situated at the top, and the prevailing model of the projection pathways is as follows 

(Burwell, 2000; Lavenex and Amaral, 2000; Witter et al., 2000a; Insausti and Amaral, 

2004; Van Strien et al., 2009). The PER and the PHC receive cortical inputs from 

widespread unimodal and polymodal association areas, as well as several subcortical 

projections. The projections continue their path to the EC, which also receives direct 

projections, most notably from the piriform cortex and olfactory bulb. The EC mediates 

the main cortical input to the HF. Its major output projections are through the perforant 

path, which targets all subdivisions of the HF. The intrinsic wiring of the HF is largely 

unidirectional such that the DG projects to CA3 through the mossy fibers, and CA3 

projects to CA1 through the Schaffer collaterals. CA1 projects mainly to the subiculum, 

and both CA1 and the subiculum project back to the EC. The EC communicates back to 

cortex, mainly through its connections with the PER and the PHC. As can be seen in 

Fig 1, there are direct reciprocal connections between the PER and the PHC. The HF is 

7



also reciprocally connected via the fimbria-fornix with a number of subcortical regions, 

including the amygdala, thalamus, basal forebrain and basal ganglia. 

Figure 1.  Diagram of the medial temporal lobe: subregions and major intrinsic connections. SUB = 

subiculum. For further abbreviations, see text. 

Anatomy and function 

The networks in the MTL are thought to be engaged in processes such as memory and 

spatial cognition, and their anatomical characteristics provide several clues as to how 

these functions are achieved. For example, the convergence of inputs suggests that the 

MTL is capable of integrating information from various sources to form complex and 

multimodal representations. However, there is also evidence for segregation of inputs. 

The PER receives visual input mainly from the adjacent inferotemporal cortex (area 

TE), which conveys representations of object features. In contrast, the PHC receives 

visual input mainly from area V4 and the posterior parietal cortex, conveying 

representations of spatial locations and motion. Furthermore, polymodal inputs to the 

PER originate mainly in anterior association areas (e.g., orbitofrontal cortex), while 

polymodal inputs to the PHC originate mainly in posterior association areas (e.g., 

retrosplenial cortex). This is similar in rats (Burwell and Amaral, 1998) and monkeys 
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(Suzkuki and Amaral, 1994). The divergence of object and spatial information can be 

seen as extensions of ‘what’ and ‘where’ processing in the ventral and dorsal visual 

stream, respectively (Ungerleider and Mishkin, 1982). Studies in rats suggest that the 

two types of information remain partially segregated also at subsequent levels of 

processing (Burwell, 2000; Witter et al., 2000b). The PER and the PHC project most 

strongly to the lateral EC (LEC) and the medial EC (MEC), respectively, which in turn 

project to distinct portions of CA1 and the subiculum. However, projections from the 

LEC and the MEC converge in the DG and CA3. This pattern of connections suggests 

that object and spatial information are processed in parallel streams through the MTL, 

but become fully integrated in the HF.  

Computational models have described functional implications of specific network 

characteristics in the MTL. Several models of PHG subregions exist (e.g., Fuhs and 

Touretzky, 2006; McNaughton et al., 2006; Burgess et al., 2007), but most models focus 

on hippocampal subfields. A characteristic feature of CA3 is its extensive recurrent 

connections with associatively modifiable synapses. The recurrent connections are 

thought to allow autoassociation between related input signals, whereby a stored 

representation can be reactivated from a partial or degraded version of the original input 

(‘pattern completion’; Marr, 1971; O’Reilly and McClelland, 1994; Treves and Rolls, 

1994). In contrast, the DG is distinguished by granule cells that fire sparsely and have 

sparse but powerful connections to CA3. This may allow overlapping inputs to be 

orthogonalized (‘pattern separation’; O’Reilly and McClelland, 1994; Treves and Rolls, 

1994), which may reduce interference between similar experiences in memory. A given 

input will be treated either as similar to a stored pattern and initiate recall (pattern 

completion) or as different and encoded as a new experience (pattern separation) 

(O’Reilly and McClelland, 1994; O’Reilly and Rudy, 2001). CA1 has been proposed to 

provide the required ‘match/mismatch’ signal (Lisman and Otmakhova, 2001) by 

comparing stored representations from CA3 with new input conveyed through the direct 

projections from the EC. CA1 may also recode input from CA3 into more compressed 

representations (Rolls, 1996) and support temporal processing of information (Rolls and 

Kesner, 2006). The functional relevance of the subiculum is still poorly understood 

(O’Mara, 2006). 

Please note that the term ‘hippocampus’, as used in the remainder of this thesis, refers to 

the HF.
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THEORIES OF THE MEDIAL TEMPORAL LOBE

In one of the first accounts of MTL function, the hippocampus and the PHG were 

described as part of the limbic system or ‘Papez’ circuit’, a set of interrelated brain 

structures that were involved in the regulation of emotions (Papez, 1937). Later, this 

function was located more specifically to the amygdala, and other theories developed 

regarding the role of the MTL. Most of these theories describe a role in either memory 

or spatial cognition.

Memory

Declarative theory 

Our current understanding of MTL function took shape with Scoville and Milner’s 

(1957) description of the now famous patient H.M. He underwent bilateral medial 

temporal lobectomy at the age of 27 to reduce the severity of his epileptic seizures. 

Tissue was resected from the hippocampus and adjacent structures, mainly the 

temporopolar cortex, the amygdala and the EC (Corkin, 1997).  The surgery 

successfully reduced the frequency of seizure attacks but caused H.M. to suffer from 

severe memory impairments. Although his intellectual and perceptual abilities remained 

intact, H.M. was unable to learn new information (anterograde amnesia) and had 

difficulties recalling events that occurred prior to his surgery (retrograde amnesia). 

These findings provided the first clear evidence that the MTL is critically involved in 

learning and memory, and initiated extensive research into the amnesic syndrome, both 

in human patients and animal models. This research formed the basis of the declarative 

theory of ‘the medial temporal lobe memory system’ (Squire, 1986; Squire and Zola-

Morgan, 1991). 

Three observations had particular influence on the formulation of the declarative theory. 

The first observation was that MTL damage affected some but not all types of memory. 

H.M. was severely impaired on tasks that required explicit (conscious) storage and 

recollection of information, such as free recall of word pairs, but not on tasks that relied 

on implicit (unconscious) learning, such as mirror drawing (Milner et al., 1968; Corkin, 

1984). Also his short-term memory was intact. Based on these and similar observations 

in other amnesic patients, long-term memory was proposed to consist of two separate 
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types, declarative (explicit) and non-declarative (implicit) memory (see Fig 2). Only 

declarative memory was said to depend on the MTL (Squire and Zola-Morgan, 1996). 

Tulving (1972) made a further distinction between semantic and episodic memory; the 

former includes general, factual knowledge, and the latter unique events from one’s 

personal past. However, the declarative theory claims that the MTL is equally important 

for both types (Squire and Zola, 1998).

Figure 2. Classification of long-term memory. The medial temporal lobe is involved in declarative 

memory. Other brain regions, like the striatum, cerebellum and amygdala, support non-declarative 

memory. Declarative and non-declarative memory are sometimes referred to as explicit and implicit 

memory, respectively.  

The second important observation was that the retrograde amnesia tended to be 

temporally graded, i.e., affect recent memories more than remote (Squire and Zola-

Morgan, 1985; Zola-Morgan and Squire, 1990). According to the declarative theory, the 

MTL facilitates the encoding and storage of information in interaction with neocortical 

regions, where the permanent memory traces are stored. The MTL is said to establish 

connections between different cortical modules that represent the multiple features of an 

experience, and to keep an index that allows the complete representation to be 

reactivated at the time of retrieval (Teyler and DiScenna, 1986). However, repeated 

reactivation of a memory trace will gradually strengthen the direct connections between 
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the relevant cortical modules (‘consolidation’), whereby retrieval becomes independent 

of the MTL over time (Alvarez and Squire, 1994; McClelland et al. 1995).

The third observation that shaped the declarative theory was that the severity of amnesia 

depended on the location and extent of MTL damage. Whereas H.M. suffered from 

extensive MTL lesions, another patient (R.B.) with selective damage to CA1 was shown 

to have similar, though somewhat less severe, memory deficits (Zola-Morgan et al., 

1986). The hippocampus was therefore assigned a central function within the MTL 

memory system. However, other studies demonstrated that both hippocampal and 

parahippocampal structures are important for memory (Zola-Morgan et al., 1989), and 

that the severity of amnesia increased with size of the lesion (Zola-Morgan et al., 1994). 

Therefore, although the declarative theory accepts that different subregions of the MTL 

may have different functional properties, it stresses that they operate in a highly 

cooperative manner and that each one is required for intact memory performance.  

The declarative theory remains one of the most influential theories of MTL function to 

date. It receives continuing support from studies of amnesic patients and animals with 

experimental lesions, and more recently also from functional neuroimaging studies of 

healthy human subjects (for review, see Squire et al., 2004).

Dual-process theories 

Early research on amnesia suggested that different subregions of the MTL do not 

operate in a unitary manner but make distinct contributions to memory. For example, 

recognition of visual objects was found to be impaired in monkeys with selective 

lesions to the parahippocampal region (Zola-Morgan et al., 1989; Meunier et al., 1993), 

but intact in monkeys with hippocampal lesions (Murray and Mishkin, 1998). In 

particular the PER/EC seemed to be important for object recognition (Meunier et al., 

1993; 1996), and electrophysiological recordings in monkeys indicated that cells in this 

region respond to item familiarity (Miller et al., 1993). Other tasks appeared more 

sensitive to hippocampal function. For example, rats with hippocampal damage were 

found to be impaired on tasks that required learning of stimulus relationships or 

implementation of past learning in novel situations (e.g., Morris et al., 1982; 

Eichenbaum et al., 1988; 1989).
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To account for these findings, a dual-process theory (sometimes referred to as the 

‘relational theory’ of hippocampal function; Cohen and Eichenbaum, 1993; 

Eichenbaum et al., 1994) was proposed. Here, the existence of two separate but 

complementary forms of memory processes within the MTL was hypothesized. 

Parahippocampal regions were considered to represent individual items in memory and 

support passive retention of specific sensory features. In contrast, the hippocampus was 

suggested to represent relationships between multiple items, and to connect current 

inputs with previously stored knowledge in order to enable flexible expressions of 

memory. This theory agrees that the MTL supports encoding and storage of long-term 

declarative memories, both episodic and semantic, but claims that the hippocampus is 

only required for associative operations. A related dual-process account was proposed 

by Aggleton and Brown (1999). In line with others (Tulving, 1985; Yonelinas et al., 

2001), Aggleton and Brown distinguish between recognition based on recollection 

(retrieval of contextual details associated with the previous encounter of an item) and 

recognition based on familiarity (a subjective feeling that a specific item has appeared 

before). They claim that the hippocampus preferentially supports recollection, whereas 

parahippocampal regions, and in particular the PER, support item familiarity. 

The dual-process theories described above have similarities with several other views of 

MTL function. For example, one view holds that the hippocampus is only necessary for 

episodic memory, since this requires associations between a past experience and its 

unique spatio-temporal context, and that parahippocampal structures mediate semantic 

memory, considered to be ‘context-free’ (Tulving and Markowitsch, 1998). This view 

was inspired by the report of three patients with selective hippocampal lesions who 

were are unable to recall events from their personal past, but had intact factual 

knowledge (Vargha-Khadem et al., 1997). Others have emphasized the associative 

capacities of the hippocampus but been less explicit about the role of parahippocampal 

structures.  The ‘multiple-trace theory’ (Nadel and Moscovitch, 1997; Moscovitch et al., 

2005) asserts that the hippocampus is crucial for ‘detail binding’ and hence required for 

contextually rich, i.e., episodic and spatial memory, but not semantic memory. This 

theory claims that the hippocampus has a permanent role in retrieval of contextually 

rich memories, as demonstrated by a patient who was unable to recall detailed spatial 

memories from his remote past (Rosenbaum et al., 2000). Yet others have suggested 

that the hippocampus represents stimulus conjunctions (‘configural association theory’; 
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Sutherland and Rudy, 1989), associates temporally discontinuous events (Rawlins, 

1985), or represents the spatial relationships between landmarks in the environment 

(‘cognitive map theory’; O’Keefe and Nadel, 1978; see below).

The view that MTL subregions are functionally heterogeneous is increasingly 

acknowledged in the literature, and several lines of evidence support a distinction 

between associative and item-based processing (for reviews, see Brown and Aggleton, 

2001; Eichenbaum et al., 2007). More recently, a ‘three-component model’ has been 

proposed as an extension of the dual-process accounts (Davachi, 2006; Diana et al., 

2007; Eichenbaum et al., 2007). This model claims that the PER supports memory for 

single objects (items), whereas the PHC supports memory for spatial locations 

(context). The hippocampus is said to be responsible for binding of information across 

these domains (item-in-context), and as such to represent the most generic level of 

processing.

Spatial cognition 

Cognitive map theory 

In 1971, O’Keefe and Dostrovsky reported electrophysiological data recorded from 

hippocampal cells in freely moving rats. Of particular interest were their descriptions of 

cells that increased their firing rate whenever the rat entered a specific location in the 

environment, the so-called ‘place cells’. Based on the discovery of place cells, O’Keefe 

and Nadel (1978) proposed the ‘cognitive map theory’ of hippocampal function. The 

theory states that the hippocampus represents the spatial geometry of the local 

environment as a cognitive map (Tolman, 1948), i.e. an allocentric (viewpoint 

independent) representation of the spatial relationships between landmarks in the 

environment and of one’s own position relative to those landmarks. Further 

investigations into the properties of place cells largely confirmed this view (Muller et 

al., 1996). Place cells were observed also in humans (Ekstrom et al., 2003), suggesting 

homology across species.  

The cognitive map theory is primarily a theory about memory, but strictly confined to 

the spatial domain (Nadel, 1991). The hippocampus is said to both create and store 

spatial maps, and to use these to support navigation and other forms of adaptive 
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behavior. Consistent with this view, hippocampal lesions were found to disrupt spatial 

learning in rats (Morris et al., 1982), and patients with MTL damage were reported to 

have impairments in recall of spatial locations (Smith and Milner, 1981). Additional 

lesion and functional neuroimaging studies confirmed that the human hippocampus 

supports spatial memory and navigation (for review, see Burgess et al., 2002). 

Recent work has necessitated some modifications of the above theory. 

Electrophysiological recordings in rats have demonstrated that hippocampal neurons are 

not only sensitive to spatial location, but also have non-spatial firing correlates. For 

example, hippocampal neurons have been shown to respond selectively to specific 

odors regardless of spatial location, or to certain odor-place combinations (Wood et al., 

1999). Place cells may code for both spatial position and non-spatial cues in the 

environment, by modifications in firing location and firing rate, respectively (Leutgeb et 

al., 2005). Place cells also express temporal coding, such as ‘phase precession’ 

(tendency of place cells to fire at progressively earlier phases of the theta cycle; 

O’Keefe and Recce, 1993) and ‘replay’ (reactivation of a previous firing sequence; 

Skaggs and McNaughton, 1996). Furthermore, the MEC was recently shown to contain 

so-called grid cells, i.e., cells that fire preferentially at multiple locations across the 

whole environment in a repetitive, triangular pattern (Hafting et al., 2005). Cells in this 

region may also be sensitive to head direction (Sargolini et al., 2006) and geometrical 

borders (Solstad et al., 2008).

According to a contemporary view of ‘the brain’s spatial representation system’ (Moser 

et al., 2008), the hippocampus integrates spatial and non-spatial cues to represent one’s 

current location in the environment, as well as the temporal sequence of past and future 

locations. The EC may provide a metric representation of space and operate as a ‘path 

integrator’, i.e., integrate self-motion cues like direction and speed to keep track of 

one’s changing position (Hafting et al., 2005).

Relevance for memory

The capacity to form conjunctive representations and represent temporal sequences can 

be seen to support both spatial cognition and memory, perhaps in particular episodic 

memory. Episodic memory depends on the ability to combine information about ‘what’ 

happened ‘where’ and ‘when’, and to organize past experiences as temporal sequences 
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of related events (Tulving, 1983; Tulving, 2002; Eichenbaum, 2004). The cognitive map 

theory recognizes that at least the human hippocampus may have evolved to support not 

only spatial but also verbal and episodic memory (O’Keefe and Nadel, 1978; Nadel, 

1991; see also Burgess et al., 2002). Others have argued that also the rat hippocampus 

supports ‘episodic-like’ memory, such as one-trial learning of flavor-place associations 

(Day et al., 2003; Tse et al., 2007), and recall of temporal order based on a combination 

of spatial and olfactory cues (Ergorul and Eichenbaum, 2004).  

It can be argued that the MTL is best described in terms of the representations and 

computations it performs, rather than as a system dedicated to a specific cognitive 

function. As described above, computational models suggest that the hippocampus 

performs ‘pattern completion’, ‘pattern separation’ and ‘mismatch detection’. 

Experimental work in rodents has made considerable progress in describing how these 

computations affect spatial processing in the hippocampus.  For example, place cells are 

said to reflect pattern completion when the location of firing remains stable after some 

characteristics of the environment have been changed, which occurs most clearly in 

CA3 (Lee et al., 2004). Pattern separation is apparent when place cells fire in distinct 

locations or at different rates in two highly similar environments, and this has been 

shown to occur in the DG and CA3 (Leutgeb et al., 2007). Mismatch detection can be 

measured when rats respond to alterations in a previously learned sequence of stimuli, 

i.e., by orienting toward the unexpected stimulus. Honey et al. (1998) found that 

hippocampal lesions disrupt this type of response, but the lesions were not confined to a 

specific hippocampal subfield. Although mismatch detection is proposed to occur in 

CA1 (Lisman and Otmakhova, 2001), one study suggests that also CA3 contributes 

(Lee et al., 2005; but see Hasselmo, 2005).  

It is often argued that the above described computations also contribute to memory 

performance in humans (e.g., Eichenbaum, 2004; Knierim et al., 2006; Bird and 

Burgess, 2008; Moser et al., 2008; Kumaran and Maguire, 2009). Empirical support for 

this view is now emerging, and some examples of this will be described later.  
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FUNCTIONAL NEUROIMAGING STUDIES OF THE MEDIAL TEMPORAL 

LOBE

Functional magnetic resonance imaging (fMRI), based on the blood oxygen level-

dependent (BOLD) contrast (see Boxes 1 and 2), is becoming increasingly important as 

a tool to study MTL functions in healthy human subjects. There are several other 

neuroimaging methods available, such as positron-emission tomography (PET), 

magnetoencephalography (MEG), quantitative electroencephalography (EEG), and 

fMRI depending on other contrast that than BOLD. Since all studies in the present 

thesis are based on BOLD fMRI, the focus here will be on results obtained with this 

method.  

In a pioneering study, Stern et al. (1996) showed increased activation in the 

hippocampus and the PHG during presentation of novel, as compared to repeated, 

pictures. Based on the assumption that novel stimuli induce more encoding-related 

activation than repeated stimuli (Tulving and Kroll, 1995), this was the first fMRI study 

to demonstrate involvement of the MTL in memory. Later, Brewer et al. (1998) used an 

event-related paradigm to locate the effects of successful encoding. They compared 

encoding of pictures that were recognized on a subsequent memory test to encoding of 

pictures that were later forgotten, and observed increased PHG activation in the former 

condition (‘subsequent memory effect’; Sanquist et al., 1980). Additional work soon 

confirmed the involvement of MTL structures in both encoding and retrieval of 

declarative memories (Schacter and Wagner, 1999).  

Ongoing research in the field has several focuses. Among these is the attempt to 

determine what type of memory the MTL is sensitive to, and whether different 

subregions make different functional contributions in this regard. Functional 

differentiation among subregions of the MTL is the main focus of this thesis, and fMRI 

studies that are relevant to this issue will be reviewed in further detail below. Before 

proceeding, it should be noted that imaging MTL subregions is technically challenging, 

due to their small size and convoluted structure. Separating activation in the 

hippocampus from activation in parahippocampal structures is just about possible with 

conventional fMRI methods, i.e., with a voxel size of 3x3x3 mm, spatial filter of 5-8 

mm, and transformation of images to a group template or standard brain. The accuracy 

of localization may also be hampered by signal loss and geometric distortions caused by 
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magnetic field inhomogeneities that are particularly prominent in ventromedial parts of 

the brain (Ojemann et al., 1997). Despite these difficulties, continuing improvements in 

fMRI methodology allow MTL functions to be studied with increasing anatomical 

specificity. Several studies have now applied high-resolution techniques (e.g., 

1.5x1.5x1.5 mm) in combination with improved methods for cross-participant image 

alignment, and report activation within hippocampal subfields (e.g., Zeineh et al., 2003; 

Eldridge et al., 2005; Bakker et al., 2008). Below, relevant studies are discussed 

regardless of spatial resolution and activations are therefore described at varying levels 

of anatomical specificity.  
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Box 1: Magnetic resonance imaging 

Magnetic resonance imaging (MRI) is a technique that is used to visualize internal organs of the body, 
developed mainly for clinical purposes. MRI is based on signals from hydrogen nuclei which are 
abundant in fat and water and therefore also in the human body. A hydrogen nucleus consists of a single 
proton that spins around its own axis. This spinning induces a magnetic field with a certain direction and 
size, called magnetic moment (Fig. 1A), which induces the type of signal that is detected by MRI 
scanners.  

When placed inside an MRI scanner, the majority of the hydrogen nuclei in the body align parallel with 
the external magnetic field (B0), in order to maintain a low energy state (Fig. 1B). The sum of their 
magnetic moments is called the net magnetization vector (NMV). The magnetic moments spin around the 
external magnetic field, a process called precession (Fig. 1C). Nuclei precess with a certain frequency 
defined by the Larmor equation: [ 0 = B0 * ] where B0 is the strength of external magnetic field 
expressed in Tesla, and  is the precessional frequency of a specific nucleus at 1T. 

Fig. 1: Nuclear effects  

                                    

A: Magnetic moment         B: Nuclei align with B0                        C: Precession         

During image acquisition, a radiofrequency (RF) pulse is applied at for instance 90 degrees to B0 (Fig. 2).
This has two effects: 1) The energy of the RF pulse is absorbed by the hydrogen nuclei, and NMV is 
flipped into the transverse plane, i.e., 90 degrees to B0. 2) The magnetic moments of the hydrogen nuclei 
move into phase with each other, whereby NMV precesses in the transverse plane. The nuclei emit the 
absorbed energy and produce an electrical signal that is measured with a receiver coil in the transverse 
plane.

Fig. 2. Application of the RF pulse 

When the RF pulse is turned off, the magnetic moments start to move out of phase and return to their low 
energy state. The loss of phase coherence results in decreased transverse magnetization. Several 
relaxation processes occur (e.g., T1 recovery, T2 decay) and at different rates in different types of tissue. 
This provides MR images with the contrast that display anatomy or function. Functional MRI is based on 
a relaxation process called T2* dephasing. This is the decrease in signal from NMV in the transverse 
plane, which occurs exponentially at a time constant called T2*. 

References: 

Weishaupt D, Koechli VD, Marineck B (2006). How Does MRI Work? An Introduction to The Physics 
and Function of Magnetic Resonance Imaging. New York: Springer.   

Westbrook C (2002). MRI at a Glance. Oxford: Blackwell Publishing
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Box 2: Functional MRI

Functional magnetic resonance imaging (fMRI) is an MRI application that is used to image brain 
function, based on hemodynamic responses to neural activity. In 1990, Ogawa et al. demonstrated that 
gradient echo (i.e., T2*-weighted) MRI signals are sensitive to the level of blood oxygenation in the 
brain. They called this phenomenon ‘blood oxygen level-dependent’ (BOLD) contrast, which today is the 
most commonly used contrast mechanism in fMRI.  

The BOLD contrast is based on the different magnetic properties of oxygenated and deoxygenated 
hemoglobin in the blood. Oxygenated hemoglobin is diamagnetic, which means it has no effect on the 
local magnetic field, whereas deoxygenated haemoglobin is paramagnetic and disturbs the magnetic field. 
This implies that T2* dephasing is accelerated, and that the MR signal decays faster, in the presence of 
deoxygenated haemoglobin. When a population of neurons becomes increasingly active, there is a local 
increase in cerebral blood flow, blood volume and blood oxygenation. Because the blood flow increases 
more than the metabolic rate of oxygen, the combined result of these changes is a decrease in 
deoxygenated hemoglobin in the capillary and venous blood volume. The BOLD signal is therefore 
enhanced in areas of increased neural activation. See Fig. 1.

Fig. 1: The BOLD effect                                   Fig, 2: The BOLD signal curve 

                  

Since the BOLD signal is measured in arbitrary units, only relative changes in activation can be inferred. 
Fig. 2 shows the prototypical BOLD signal curve in response to a transient stimulus (e.g., a flickering 
light) relative to a baseline condition (e.g., blank screen). The response is delayed by ~2 s compared to 
the onset of neural activity. It peaks after 5-8 seconds, and returns to baseline approximately 10 s later. A 
transient decrease in BOLD signal intensity is sometimes observed before the onset of the standard 
increase. This ‘initial dip’ is thought to reflect a rapid increase in oxygen consumption that precedes the 
increase in cerebral blood flow1,2. A more prolonged signal decrease can occur in the final stage of the 
BOLD response (‘post-stimulus undershoot’). This may be caused by a continuation of oxygen 
consumption in the absence of flow changes3, or by a slow return of venous blood volume4. There are still 
many controversies regarding the relationship between the hemodynamic responses and the underlying 
neural activity5. However, the BOLD signal has been found to correlate well with neural activity, and in 
particular with local field potentials, i.e., local synaptic processing6,7.

fMRI is typically used to measure changes in brain activity during performance of a cognitive or 
behavioral task. Rapid image acquisition techniques like echo-planar imaging (EPI8) allow the whole 
brain to be imaged approximately every 2 s and with a spatial resolution of 1-3 mm. Compared to other 
functional neuroimaging techniques like positron-emission tomography (PET) and 
magnetoencephalography (MEG), fMRI has the advantage of being both non-invasive with a superior 
spatial resolution, and is more available than PET and MEG. For these reasons, fMRI has become a 
valuable tool for studying brain functions in healthy human subjects.   

(continues on next page) 
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Encoding vs. retrieval 

One of the earliest fMRI studies of memory (Gabrieli et al., 1997) suggested that 

encoding and retrieval are supported by posterior and anterior parts of the MTL, 

respectively. Encoding of novel pictures yielded posterior activation that was focused in 

the PHC, whereas cued recall of line drawings yielded anterior activation that was 

focused in the subiculum. Other fMRI studies (see Schacter and Wagner, 1999) also 

reported activation primarily in the posterior MTL during encoding. However, more 

recent studies often find the opposite pattern of activation and suggest that anterior 

regions respond preferentially to stimulus novelty or encoding, and posterior regions to 

familiarity or retrieval (Dolan and Fletcher, 1999; Saykin et al., 1999; Prince et al., 

2005; Strange et al., 2005; Daselaar et al., 2006). These latter findings are consistent 

with the Hippocampal Encoding/Retrieval (HIPER) model that describes an anterior-

posterior gradient in encoding and retrieval processes, based on a meta-analysis of 52 

PET studies (Lepage et al., 1998).
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Some fMRI studies have found no difference in MTL activation during encoding and 

retrieval (Greicius et al., 2003; Daselaar et al., 2004), and rather suggest that that the 

same network is engaged in reactivation of a stored pattern as in the initial encoding 

hereof (Small et al., 2001).  Zeineh et al. (2003) examined the distribution of activation 

across hippocampal subfields in the transversal plane during encoding and retrieval of 

face-name associations. They found that a region that comprised the CA2, CA3 and DG 

was only activated during learning, whereas the subiculum was more active during 

retrieval. Also in a more recent study, encoding and retrieval were associated with 

activation in the CA2/CA3/DG and subiculum, respectively (Eldridge et al., 2005). 

However, subicular activation has also been associated with successful encoding of 

faces and scenes (Preston et al., 2009).

Clearly, no consensus has yet emerged regarding a segregation of encoding and retrieval 

processes within the MTL. At the behavioral level, the two processes may be difficult to 

separate, as incidental encoding may occur during retrieval (Stark and Okado, 2003). 

There is also no anatomical (Insausti and Amaral, 2004) nor electrophysiological 

(Suzuki and Eichenbaum, 2000) evidence to suggest that encoding and retrieval occur in 

distinct subregions.  Based on research in animals, differences along the anterior-

posterior axis of the hippocampus seem more likely to reflect other functional 

specializations. For example, in rats, spatial memory has been shown to depend in 

particular on the dorsal two third of the hippocampus (Moser and Moser, 1998), which 

corresponds to the posterior hippocampus in humans. The ventral hippocampus 

(anterior in humans) seems less sensitive to spatial variables (Kjelstrup et al., 2008) and 

may serve a specific function in fear-related behavior (Kjelstrup et al., 2002). These 

findings are consistent with fMRI data that show greater activation in the anterior 

hippocampus during successful encoding of emotional versus neutral pictures (Dolcos 

et al., 2004). Among subregions in the transversal plane of the hippocampus, functional 

differences may not portray either encoding or retrieval but rather reflect more specific 

network capacities, like pattern completion and pattern separation (see below).

Episodic vs. semantic memory 

Although most fMRI studies have focused on the role of MTL in episodic memory, a 

few studies have also explored its contribution to semantic memory. Activation in the 
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hippocampus and the PHG has been observed during recognition of famous faces 

(Bernard et al., 2004; Elfgren et al., 2006) and famous names (Douville et al., 2005), 

and activation in the hippocampus during acquisition of new factual knowledge 

(Maguire and Frith, 2004).

The multiple trace theory (Nadel and Moscovitch, 1997) and related accounts of MTL 

function (Tulving and Markowitsch, 1998) predict that the hippocampus is 

preferentially involved in episodic memory. Ryan et al. (2008) tested this prediction by 

comparing episodic retrieval (recall of category exemplars presented 24h earlier) to 

semantic retrieval (generation of category exemplars) but found similar levels of 

hippocampal and PHG activation in both conditions. In a later study, Ryan et al. (2009) 

tested retrieval of episodic and semantic associations among previously studied objects, 

and found increased activation in the hippocampus and the PHG during episodic 

retrieval. Recall of autobiographical events has more consistently been associated with 

increased hippocampal activation when compared to semantic retrieval, e.g., recall of 

public events (Maguire and Frith, 2003), retrieval of factual knowledge (Mayes et al., 

2004; Svoboda and Levine, 2009) and category generation (Greenberg et al., 2005). In 

two of these studies, additional activation was observed in the PHC (Mayes et al., 2004) 

and the PHG (Greenberg et al., 2005).

The hippocampus may be more sensitive to recall of autobiographical events than to 

traditional laboratory tasks of episodic memory, because autobiographical events are 

personally more relevant and embedded in a rich context of temporal, spatial and 

perceptual details (Cabeza and St. Jacques, 2007). Cabeza et al. (2004) found support 

for this view when testing scene recognition with a ‘novel photo paradigm’. Participants 

were shown their own pictures of various campus locations (autobiographical 

condition), similar pictures taken by other participants (laboratory condition), and new 

pictures (control condition). Activation in the hippocampus and the PHG increased 

when subjects recognized pictures in the autobiographical condition, compared to in the 

laboratory condition.

Although MTL regions appear particularly sensitive to recall of autobiographical 

events, direct comparisons with semantic retrieval are complicated by several factors. 

First, autobiographical memories are difficult to standardize or control in terms of 

encoding conditions, retrieval accuracy, and content (Cabeza and St. Jacques, 2007), 
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and this may introduce possible confounds in comparisons with semantic memory. 

Prospective paradigms can be useful in this regard. For example, Svoboda and Levine 

(2009) showed that increased activation during autobiographical retrieval was not due to 

more frequent repetitions and hence better consolidation of the semantic memories. In 

their study, all stimuli were collected prospectively and subject to multiple (1-8) 

repetitions. The hippocampus was more active during autobiographical retrieval, 

regardless of the number of repetitions. Second, autobiographical memories are tightly 

bound to semantic knowledge about one’s personal past (Conway and Pleydell-Pearce, 

2000), and episodic and semantic processes may therefore interact during retrieval. 

However, Addis et al. (2004a) found that that the hippocampus was equally involved in 

retrieval of unique autobiographical events and ‘facts’, and that hippocampal 

involvement was mainly determined by recollective qualities like number of details, 

emotional intensity and personal significance.  

Item vs. associative memory 

Among the most debated issues in research on the MTL is whether its subregions are 

differentially involved in memory for items and associations. One line of research is 

rooted in dual-process theories of recognition and has adopted the ‘Remember/Know’

procedure (Tulving, 1985) to separate recognition based on recollection of the study 

context (‘Remember’) from recognition based on feelings of familiarity (‘Know’). 

Subjects first encode a list of items, typically words or pictures. On a subsequent 

recognition test, they are asked to discriminate old from new items, and for items 

judged as old, to indicate whether they ‘Remember’ or ‘Know’ they have seen it before. 

FMRI studies that have used this type of test show increased activation in the 

hippocampus (Wheeler and Buckner, 2004), the PHC (Sharot et al., 2004), or both 

(Eldridge et al., 2000; Dolcos et al., 2005; Woodruff et al., 2005) on Remember as 

opposed to Know trials. During encoding, hippocampal activation has been shown to 

predict subsequent recollection, whereas activation in the PHG predicts subsequent 

familiarity (Uncapher and Rugg, 2005).  

Advocates of the declarative theory have claimed that findings like those just described 

are confounded by memory strength. It is argued that remembering and knowing are not 

qualitatively different but instead represent endpoints of a continuum from weak 
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(‘Know”) to strong (‘Remember’) memories (Wixted, 2007), and that both hippocampal 

and parahippocampal activations vary as a function of memory strength (Squire et al., 

2007). In support of this view, a positive linear relationship has been found between the 

level of hippocampal and PER activation during encoding and the strength (confidence 

rating) of subsequent item recognition (Shrager et al., 2008; Kirwan et al., 2008). 

However, there is also evidence for non-linear responses in the hippocampus during 

retrieval, i.e. preferential activation during item recognition accompanied by the highest 

level of confidence (Daselaar et al., 2006) or recollection (Yonelinas et al., 2005; 

Montaldi et al., 2006). Moreover, several studies have observed a negative correlation 

between item recognition confidence and level of activation, frequently in the PER 

(Gonsalves et al., 2005; Daselaar et al., 2006; Montaldi et al., 2006). This may reflect a 

form of repetition suppression that signals stimulus familiarity or novelty (Fernández 

and Tendolkar, 2006; Grill-Spector et al., 2006), and is consistent with several other 

studies that report PER involvement in successful item encoding (Davachi et al., 2003; 

Uncapher et al., 2006) and recognition (Tendolkar et al., 2008).

In contrast to the Remember/Know procedure, other tasks provide more objective 

measures of associative memory. One example is tests of source memory, the ability to 

retrieve both an item (e.g., word, object) and the form or context in which it was 

presented during encoding (e.g., color, position). When comparing trials where subjects 

remember both the item and its source to trials where they remember only the item, 

increased activation has been found in the hippocampus (Weis et al., 2004; but see Wais 

et al., 2009), the PHC (Kahn et al., 2004) or both (Cansino et al., 2002). During 

encoding, successful source retrieval can be predicted by the level of activation in the 

hippocampus and the PHC (Davachi et al., 2003; Ranganath et al., 2004; but see Gold et 

al., 2006). FMRI studies have also tested retrieval of temporal order, i.e., the relative 

recency of previously presented items. Several studies do not find increased activation 

in the MTL during retrieval of temporal order compared to item recognition (e.g., 

Suzuki et al., 2002; Ekstrom and Bookheimer, 2007). However, PHC activation was 

shown to increase with the demands for recollection (Konishi et al., 2002; St. Jacques et 

al., 2008), and hippocampal activation was shown to increase when subjects had 

explicitly encoded the temporal relationships between items (Konishi et al., 2006). 

Finally, associative memory has been tested with encoding and retrieval of stimulus

pairs. Kirwan and Stark (2004) asked subjects to learn face-name associations and in a 
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subsequent recognition test presented these in either intact or recombined form. 

Increased activation was observed in the hippocampus, PHC, PER and EC on trials 

where the face-name associations were correctly recognized (intact pair called ‘intact’), 

relative to trials where the associations were forgotten (intact pairs called 

‘recombined’). During encoding, activation in the hippocampus and the PHC predicted 

whether the association was later remembered or forgotten. Another study found 

subsequent memory effects in the hippocampus and the PER/EC during encoding of 

word pairs (Jackson and Schacter, 2004).

Overall, the majority of relevant studies show that the hippocampus is preferentially 

involved in associative memory, consistent with dual-process theories of MTL function. 

However, there is also evidence for involvement of parahippocampal structures. This 

suggests that hippocampal and parahippocampal functions cannot be separated by a 

simple item-associative dichotomy, as emphasized in the declarative theory. In 

particular the PHC is frequently active in associative memory tasks, and several authors 

have therefore suggested that this region supports associative binding similarly to the 

hippocampus. Others have attempted to further differentiate their contributions. 

Tendolkar et al. (2008) recently showed that hippocampal activation increased during 

source relative to item retrieval, whereas PHC activation increased linearly with the 

amount of contextual details retrieved. Similarly to Daselaar et al. (2006), who found a 

positive correlation between PHC activation and recognition confidence, this result 

suggests that the hippocampus and the PHC support associative retrieval based on 

recollection and memory strength, respectively. Another view is that the PHC is 

selectively involved in memory for spatial context, which is discussed in further detail 

below.

Although most evidence favors a role for the PER in item memory, PER activation is 

often seen in studies that involve encoding or retrieval of stimulus pairs (see 

Eichenbaum et al., 2007). It has been suggested that the PER creates unitized or 

‘configural’ object representations in memory (Bussey et al., 2005) and supports 

memory for intra-item or within-domain associations (e.g., an object’s color and shape) 

(Mayes et al., 2007). Consistent with this view, Haskins et al., (2008) found increased 

PER activation during encoding of word pairs and preferentially on trials where words 

were treated as a single compound rather than as separate units. Similarly, Staresina and 

Davachi (2008) showed that PER activation predicts subsequent memory for both items 
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and item-related features, but only hippocampal activity predicted subsequent memory 

for item-context associations. Another view is that the hippocampus has a unique role in 

tasks that require flexible use of learned representations, which is confirmed by fMRI 

studies of transitive inference (Heckers et al., 2004; Preston et al., 2004).

Spatial vs. non-spatial memory 

FMRI studies have demonstrated involvement of MTL regions in a variety of spatial 

tasks, such as free exploration (Aguirre et al., 1996) and wayfinding (Hartley et al., 

2003) in virtual reality (VR) environments, and mental navigation through familiar 

towns (Rosenbaum et al., 2004). A recent study reported patterns of MTL activity that 

resemble the spatial coding expressed by hippocampal neurons in rats (Hassabis et al., 

2009). Activation maps were obtained while subjects were positioned in two different 

rooms (VR). Pattern classification analyses revealed that activity within the 

hippocampus accurately predicted the subject’s position within each room, whereas 

activity in the PHC predicted in which of the two rooms the subject was placed. 

Several studies have tested whether MTL activation is greater in spatial compared to 

non-spatial memory tasks, as predicted by the cognitive map theory. For example, 

Pihlajamäki et al. (2004) showed that the posterior hippocampus and the posterior PHC 

responded more to novel spatial arrangements of objects than to novel objects as such, 

whereas the anterior hippocampus, the anterior PHC and the PER showed the opposite 

effect. A potential confound in this type of study is that the spatial condition requires 

associative memory but the non-spatial condition does not, hence the activations may 

reflect a difference in associative rather than spatial processing. Studies that 

manipulated the novelty of both spatial and non-spatial stimulus configurations found 

that the hippocampus responds to both (Köhler et al., 2005; Kumaran and Maguire, 

2007).

Studies have also compared retrieval of spatial and non-spatial associations. Ryan et al. 

(2009) found that both the hippocampus and the PHG were preferentially active during 

retrieval of spatial compared to non-spatial object relations. In contrast, Ekstrom and 

Bookheimer (2007) used a VR ‘taxi driver game’ to compare retrieval of spatial context 

(customer locations), temporal context (customer order) and objects (landmark 
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recognition), but only the PHC was preferentially active during retrieval of spatial 

context. Other studies have also found preferential activation during retrieval of spatial 

versus non-spatial context in the PHC (Burgess et al., 2001) and the PHG (Hayes et al., 

2004), but not in the hippocampus. However, Kumaran and Maguire (2005) have 

suggested that the hippocampus responds selectively to tasks that require flexible use of 

large-scale spatial representations. In their study, participants were asked to mentally 

navigate through a spatial environment (home city) and a social environment (network 

of friends), as well as to visualize individual places and faces (spatial and non-spatial 

non-relational conditions). The hippocampus was more active during mental navigation 

in the spatial domain than in the social domain, but equally active in the two non-

relational conditions.

The above findings are in line with other fMRI evidence for PHC involvement in spatial 

processing. In the posterior PHC, a region known as the ‘parahippocampal place area’ is 

preferentially active when subjects view pictures of scenes and spatial layouts, 

compared to pictures of objects, faces, or houses (Epstein and Kanwisher, 1998, but see 

Bar et al., 2008). PHC activation has also been associated with successful encoding 

(Brewer et al., 1998) and retrieval (Hayes et al., 2007) of visuospatial scenes, encoding 

of object locations (Sommer et al., 2005; Buffalo et al., 2006) and recognition of objects 

that are relevant for navigation (Janzen and van Turennout, 2004). The findings are also 

consistent with the view that parahippocampal structures serve domain-specific 

functions in memory (Davachi, 2006; Diana et al., 2007; Eichenbaum et al., 2007). This 

was nicely demonstrated in a recent study by Litman et al. (2009). Litman et al. found a 

double dissociation between preferential responses to objects in the anterior PER, and to 

spatial scenes in the posterior PHC. They also suggest that the responsiveness to objects 

and scenes shifts gradually along the anterior-posterior axis of the PHG.

The above findings suggest that the hippocampus is not necessarily more involved in 

spatial than in non-spatial memory tasks, but rather performs a domain general function. 

FMRI studies that compare activations across other domains than spatial and non-spatial 

memory provide additional support for this view. For example, the hippocampus has 

been shown to respond similarly to successful encoding of faces and scenes (Preston et 

al., 2009), and to encoding and retrieval of semantic and perceptual associations (Prince 

et al., 2005). In contrast, the PHC responded preferentially to scenes (Preston et al., 

2009) and perceptual associations (Prince et al., 2005). It is largely unknown whether 
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the hippocampus generalizes across sensory modalities as well. One study compared 

encoding and retrieval of auditory and visual source memory (Peters et al., 2007a). 

During encoding, subsequent memory effects for both modalities were found in the 

anterior hippocampus/PER. During retrieval, successful judgments of auditory and 

visual source were associated with selective activation in the PHC and PER/EC, 

respectively, but no significant hippocampal activation was detected.  

Pattern completion, pattern separation, and mismatch detection 

A handful of fMRI studies have attempted to separate activations within subfields of the 

hippocampus. Studies comparing effects of encoding and retrieval (Zeineh et al., 2003; 

Eldridge et al., 2005) were discussed above. Others have tested hypotheses derived from 

computational models and experimental work in animals. Bakker et al. (2008; see also 

Kirwan et al., 2007) used an incidental encoding task to assess the neural correlates of 

pattern separation. Subjects were presented with objects that were either identical 

(targets) or similar (lures) to previously presented objects, or completely new (foils). 

Activation in the CA3/DG region was higher when subjects viewed a lure than when 

they viewed a target, and the response to lures was similar as to novel objects. The 

authors took these findings to suggest that pattern separation occurred in CA3/DG. In 

other regions in the MTL, including CA1, activation was highest when subjects viewed 

novel objects, and the responses to lures and targets were similar. This response pattern 

may reflect pattern completion.  

Kumaran and Maguire (2006a) also found support, albeit less direct, for separation of 

overlapping inputs in the hippocampus. In their study, hippocampal activation 

correlated with learning rate during encoding of overlapping, but not non-overlapping, 

temporal sequences. The correlation was particularly strong during presentation of the 

critical, i.e., overlapping, items. In another study of sequence encoding (Kumaran and 

Maguire 2006b; see also Kumaran and Maguire, 2007), the hippocampus responded 

maximally to a sequence of pictures that partly overlapped with a previous sequence, 

rather than a sequence that was completely new. This activation was seen to reflect 

‘mismatch detection’, a novelty response that is contingent upon prior expectations. 

Activation in the PER/EC responded equally to both conditions, consistent with a more 

general novelty response. A more recent study (Duncan et al., 2009) found that the 
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hippocampus responds equally to perceptually matching and mismatching stimuli, if 

either is relevant for the trial instruction (i.e., ‘goal match’). Although these latter 

studies did not map activation onto specific hippocampal subfields, they nevertheless 

contribute to the debate about the type of computations that are supported by the 

hippocampus.  
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AIMS OF THE THESIS 

It is widely agreed that the MTL operates as an associative network that integrates 

inputs from widespread cortical and subcortical areas to form complex, multimodal 

representations. The MTL is thought to aid in the formation, storage and later 

reactivation of these representations, and hereby support performance in multiple 

cognitive domains, including memory and spatial navigation. Yet, discussions still 

continue over the type of memory that is supported by the MTL, as well as whether and 

in what sense different subregions make different functional contributions. The overall 

objective of this thesis is to gain further insight in functional differences among 

subregions of the MTL. Of primary interest is to differentiate functions of the 

hippocampus from functions of the parahippocampal structures. Based on previous 

fMRI research on MTL functions, the objective translates into three more specific aims.  

First, MTL activation has been observed in both episodic and semantic memory tasks, 

as predicted by the declarative theory. However, there is some evidence to suggest 

stronger activation during recall of autobiographical events, consistent with the multiple 

trace theory and related accounts of MTL function. It is not clear whether this effect 

pertains specifically to the hippocampus, but recollective qualities like number of 

details and personal significance may be among the factors that determine hippocampal 

involvement. In this thesis we examine the potential of a naturalistic 

autobiographical memory paradigm to yield both strong and anatomically precise 

activation in MTL subregions (Aim 1; Paper 1).

Second, fMRI studies have consistently shown that the hippocampus is preferentially 

involved in memory for stimulus relationships and contextual associations. Activation 

in parahippocampal regions, in particular in the PER, more often correlates with 

memory for single items. These findings are consistent with predictions from dual-

process theories, and with anatomical models of the MTL. However, several studies 

have shown that also parahippocampal regions are involved in certain types of 

associative memory. This implies that functional divisions go beyond the dichotomy 

‘item-associative’, a point that is also stressed in the declarative theory. To shed further 
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light on this issue, we investigate the contribution of MTL subregions to different 

types of associative retrieval (Aim 2; Papers 2 and 3). 

Third, as predicted by the cognitive map theory, MTL regions seem to be preferentially 

involved in spatial memory tasks. This has been shown most consistently for the PHC, 

in agreement with anatomical and theoretical models that predict domain-specific 

involvement of the PHC, i.e., in memory for spatial context. It is less clear whether the 

hippocampus has a special role in spatial memory or rather serves a domain-general 

function. Since few studies have compared activation across other domains than spatial 

and non-spatial memory, this thesis will study the effect of stimulus modality on 

activation in MTL subregions (Aim 3; Papers 3 and 4).

In order to achieve these aims, four fMRI experiments were conducted. FMRI was 

chosen because it is currently the only method that allows brain activation to be 

measured in neurologically intact humans, noninvasively and with a relatively high 

spatial resolution.
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SUMMARY OF THE PAPERS

PAPER 1 

Background: Previous fMRI studies of episodic memory suggest that MTL regions are 

particularly sensitive to recall of autobiographical events, rich in contextual details and 

personally significant. In this study, we developed a novel, prospective memory 

paradigm to measure recall of real-life, autobiographical events. The aim was to test 

whether this paradigm would yield robust activation in MTL subregions that could be 

reliably detected in single-subject analyses. This would obviate the need for group 

analysis and hence image transformations and loss of spatial resolution.

Methods: Events from a real-life birthday party were recorded to construct a surprise 

memory test. The memory test was administered two weeks later as part of an fMRI 

experiment, and six subjects who had attended the party participated. Subjects were 

given a series of questions about episodes from the birthday party and instructed to 

answer each question covertly. Periods of recall (19 blocks, 5 questions in each) 

alternated with periods of baseline measurements, during which subjects performed 

simple perceptual-motor control tasks (23 blocks, 5 tasks in each). Subjects were 

scanned at 3 Tesla (T) (35 slices; 2x2x3 mm; TR=3 sec). Immediately after scanning, 

subjects reported their answers to all questions. The data were analyzed for each subject 

separately.

Main results: The recall task yielded highly significant activation in the MTL. In all 

subjects, activation was observed in the PHC, whereas two subjects showed extensive 

activation also in the hippocampus. The other subjects also showed hippocampal 

activations, but these activations were confined to smaller regions and detected only 

sub-threshold in two of the subjects. The hippocampal activations were typically 

observed at a medial location that may correspond to CA1 or the subiculum. In four 

subjects, there was a significant positive correlation between retrieval performance and 

level of activation in one or more PHC clusters. The hippocampal activations were not 

related to performance in any of the subjects.
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Conclusions: Our findings suggest that fMRI studies of MTL functions may benefit 

from using naturalistic paradigms. Recall of real-life autobiographical events triggers 

strong activation in MTL subregions that is detectable at single-subject level. This may 

allow a more accurate localization of activation than in conventional group analyses of 

fMRI data. Our task most consistently activated the PHC, and additional work is needed 

to identify the exact conditions that determine hippocampal involvement in 

autobiographical recall.  

PAPER 2 

Background: Theoretical models propose that the hippocampus has a unique capacity to 

associate events across time and represent past episodes as temporal sequences of 

related events. Animal research has largely confirmed this view, but firm evidence from 

human subjects is lacking. In particular, fMRI studies have often failed to detect MTL 

activation during retrieval of temporal order, possibly because subjects were asked to 

judge the relative recency among two previously presented but otherwise unrelated 

items. We hypothesized that recalling a temporal sequence of life-like events would rely 

more on the temporal associations proposed to occur in the hippocampus. This 

prediction was tested in Paper 2.  

Methods: The experiment took place across two consecutive days. On day one, subjects 

(n=20) watched a novel detective movie (89 min). On the next day, subjects recalled the 

temporal sequence of events from the movie while they underwent fMRI scanning (3T; 

26 slices; 1.5x1.5x3.0 mm; TR=2 sec). On each trial (n=15), subjects were shown four 

scenes from the movie and asked to rearrange these in correct order. Activation was 

compared to a control condition where subjects used logical inference to identify the 

correct order of scenes from the same movie. The experiment included trial-by-trial 

assessments of retrieval performance, effort and strategy. The data were analyzed at 

group level, and probabilistic maps in the Jülich atlas were used for tentative 

descriptions of activation within hippocampal subfields.  

Main results: Recall of temporal sequences yielded increased activation in the right 

hippocampus. There was a significant positive correlation between the level of 

hippocampal activation and accuracy of sequence recall. A region-of-interest analysis 
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based on the Jülich probabilistic atlas suggested that the hippocampal activation was 

primarily located in the CA-fields and subiculum. Similar activations were observed in 

the left hippocampus, albeit sub-threshold. The recall task also yielded increased 

activation in the bilateral PHC, but this activation was not related to performance.  

Conclusions: This study identifies a unique contribution of the hippocampus to correct 

recall of temporal sequences. The findings are consistent with theoretical accounts of 

hippocampal function and with fMRI studies that show hippocampal involvement in 

other forms of sequence memory. Our findings also suggest that the PHC is activated 

during sequence recall, but that it does not contribute to performance. 

PAPER 3 

Background: Although declarative memories typically consist of information in 

multiple modalities, little is known about the role of MTL in crossmodal memory. In 

this study we investigated the contribution of different subregions in the MTL to 

retrieval of crossmodal associations. Of main interest was to determine whether retrieval 

of crossmodal associations relies on domain-general associative capacities of the 

hippocampus, or on feature conjunction in the PER. We additionally tested whether 

retrieval of inferred (indirect) associations would specifically involve the hippocampus, 

and explored the influence of stimulus modality on activation across all MTL 

subregions.

Methods: Subjects (n=15) learned novel associations between visual, auditory and 

tactile stimuli. Four unique visual objects (abstract paintings) were presented and 

subjects learned to associate each one with another visual stimulus (spatial location on 

screen) as well as with an auditory stimulus (music clip) and a tactile stimulus (textured 

paper). Each type of association was learned in a separate session towards criterion 

(85% correct). Immediately after the last session, retrieval was tested during fMRI 

scanning (3T; 26 slices; 1.5x1.5x3.0 mm; TR=2 sec). On each trial (n=120), one 

stimulus was presented (visual object, auditory or tactile) and subjects were asked to 

identify the associated stimulus (visual: object or spatial).  The analysis compared 

retrieval of crossmodal vs. unimodal associations, auditory vs. tactile associations, and 

inferred vs. learned associations. Modality-specific effects on the latter comparison 
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were also examined. The data were analyzed at group level. A non-linear registration 

technique was applied to improve the cross-participant alignment of functional images.   

Main results: Retrieval of crossmodal associations selectively activated the PER. This 

activation was independent of stimulus modality, i.e., similar for retrieval of tactile-

visual and auditory-visual associations. Activation in other areas, including the 

hippocampus, the PHC and the EC, was increased during auditory compared to tactile 

recall. Retrieval of inferred associations yielded increased activation in the 

hippocampus compared to retrieval of learned associations, but only with tactile stimuli.   

Conclusions: This study identifies a unique role of the PER in retrieval of crossmodal 

associations. This observation is consistent with its proposed capacity for feature 

conjunction, previously shown to occur within the visual domain. Our findings provide 

partial support for the view that the hippocampus supports flexible expressions of 

previously learned associations. Preferential activation during auditory recall may 

reflect stronger auditory than tactile innervation of the MTL.

PAPER 4 

Background: The MTL, and in particular the hippocampus, is proposed to integrate 

information from multiple modalities and serve domain-general functions in memory. 

However, most studies of the human MTL have tested memory functions in the visual 

domain, and little is known about its contributions to memory in other sensory 

modalities. Paper 3 showed that the hippocampus was more active during auditory than 

tactile recall, similarly to the PHC and the EC. In this study, we compared activation in 

MTL subregions during recognition of visual and olfactory stimuli. We also tested 

whether recognition would yield activation in sensory-specific cortical regions, i.e., 

reinstatement of cortical memory traces. 

Methods: The experiment took place across two consecutive days. On day one, subjects 

(n=19) encoded 54 unique odors and 54 unique objects, presented once in random order. 

Subjects identified the stimuli covertly and were discouraged from verbalization. 

Recognition was tested the next day during fMRI (3T; 40 slices; 3x3x3 mm; TR=3 sec). 

An old/new recognition paradigm with verbal cues was used in order to identify 
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modality-specific effects that were independent of sensory input. Subjects were 

presented with the names of previously studied (old) and unstudied (new) odors and 

objects, and pressed a button to indicate which stimuli they recognized. The stimuli 

were grouped in blocks of primarily old/new odors/objects (9x4 blocks, 6 stimuli in 

each). Post-scan assessment included ratings of retrieval strategy, level of difficulty, and 

ability to recollect the study episode. All data were analyzed at group level. 

Main results: Both identification and recognition of odors was more difficult and less 

accurate than of objects. Moreover, odor recognition was more often based on a sense of 

familiarity, rather than recollection of the study episode. The fMRI data showed that 

successful recognition of objects activated the hippocampus, as well as parietal and 

frontal regions that have previously been implicated in retrieval of episodic memories. 

In contrast, successful recognition of odors activated only a subset of these regions, and 

not the hippocampus. Recognition of objects and odors were associated with increased 

activation in visual and olfactory cortical regions, respectively.  

Conclusions: Our findings suggest that hippocampal involvement in visual memory 

tasks cannot automatically be generalized to other sensory modalities. Recognition of 

objects and odors are associated with marked differences in behavioral performance and 

strategy, and possibly as a result of this yield differences in hippocampal activation. Our 

study is the first to show cortical reinstatement of olfactory representations during 

episodic retrieval in a direct comparison with visual stimuli.  
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DISCUSSION

It is well established that the MTL is important for declarative memory, the conscious 

recollection of facts and events. Within the MTL, a number of subregions can be 

distinguished, each with unique architectural, connectional and electrophysiological 

characteristics. These most likely have functional implications; hence, the different 

subregions can be expected to make different contributions to memory. Theoretical 

models make different predictions as to whether and in what sense MTL subregions are 

functionally distinct. The declarative theory emphasizes that subregions operate in close 

collaboration to support all aspects of declarative memory. In contrast, dual-process 

theories suggest that the hippocampus and parahippocampal regions are specialized in 

associative and item-based memory operations, respectively. Empirical investigations 

give some support to the latter view, but there is also evidence that the functional 

divisions are more complex than the item-associative dichotomy suggests. What are the 

critical dimensions that separate the functional contributions of MTL subregions?  

A review of the literature (Introduction) provided us with two ideas. First, both the 

hippocampus and the parahippocampal regions may form associations in memory, but 

at different levels of complexity. To investigate this issue, we compared the 

contribution of MTL subregions to recall of temporal sequences (Paper 2) and retrieval 

of crossmodal associations (Paper 3). Second, MTL subregions may be differentially 

responsive to stimuli of a specific content or modality. To investigate this issue, we 

compared auditory and tactile crossmodal retrieval (Paper 3) and recognition of odors 

and visual objects (Paper 4). All studies made use of fMRI, since this method allows a 

non-invasive investigation of MTL functions in healthy human subjects, and has a 

higher spatial resolution than other functional neuroimaging techniques. Yet, the 

position of the MTL ventromedially in the skull and the size of its subregions render 

imaging at the current limit of spatial resolution in fMRI. One source of inaccuracies in 

the localizations of activity changes is the image transformations required for 

conventional group analyses. Therefore, we also examined the potential of a naturalistic, 

autobiographical memory paradigm to yield robust activation in MTL subregions at 

single-subject level (Paper 1).
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This discussion will first deal with some methodological issues that are relevant for the 

interpretation of our findings. The main findings are then discussed in the context of 

past research and contemporary theories of MTL function.  

METHODOLOGICAL ISSUES 

What does the “activation” reflect? 

The BOLD signal is measured in arbitrary units and most experimental paradigms, 

including those adopted here, rely on the method of cognitive subtraction (Donders, 

1969). Task effects are expressed as changes in signal intensity relative to a baseline or 

control condition that involves the same processes as the experimental condition except 

for the one of interest. At least four issues need to be considered when interpreting 

signal increases that arise from this type of comparison. 

First, a significant increase in signal intensity in a particular region does not mean that 

the region is not active in the control condition, only that it is “more active” in the 

experimental condition, and hence sensitive to its unique component(s). Comparisons 

with a low-level baseline condition can show which brain regions are involved in all 

components of the task, as described in Papers 1-3. Here, baseline activation was 

measured during a perceptual-motor task (Paper 1) and a simple arithmetic task (Papers 

2 and 3). We explicitly avoided a more passive baseline condition, because levels of 

MTL activation may increase in the absence of explicit task demands, for example 

during periods of rest (Stark and Squire, 2001).

Second, increased BOLD signal indicates that there is a relationship between activity in 

a region and performance of a specific task, not whether the activity is necessary for 

performance. For example, processing of temporal sequences has been shown to result 

in increased activation of the prefrontal cortex (Knutson et al., 2004), and crossmodal 

integration has been associated with activation increases in the superior temporal sulcus 

(Beauchamp et al., 2004). It is possible that contributions from these and/or other brain 
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regions could be sufficient for good task performance in Papers 2 and 3. However, our 

fMRI data offer valuable insights in which regions contribute to these functions under 

normal circumstances in healthy human subjects.  

Third, the method of subtraction assumes ‘pure insertion’ – that adding one task 

component does not influence the effect of other task components. This assumption has 

been questioned because of nonlinearities in the BOLD response (Friston et al., 1996; 

Logothetis, 2008). Although nonlinearities are most evident at shorter stimulus 

durations (<4 sec; Vazquez and Noll, 1998; Soltysik et al., 2004) than in most of the 

current experiments, all results should be interpreted with caution until verified by data 

from non-subtractive analyses (e.g., parametric; Büchel et al., 1998).   

Finally, it is typically assumed that BOLD signal increases reflect increased neuronal 

firing. The neuronal activity depicted with increased BOLD signal has been shown to 

correlate best with the local field potential (LFP), which reflects the sum of synaptic 

activity in a region, or local processing of inputs (Logothetis et al., 2001; Goense and 

Logothetis, 2008). The BOLD signal correlates less with multiunit spiking activity, 

which represents the output from a cortical region (Logothetis et al., 2001; Goense and 

Logothetis, 2008). Thus, the BOLD signal may change without changes in neuronal 

firing, if the synaptic inputs cause balanced proportional increases in the excitatory and 

inhibitory conductances (Logothetis, 2008). This uncoupling implies that the observed 

activations may reflect processes that take place upstream of the area with increased 

signal intensity. However, despite the potential decoupling, neuronal firing and BOLD 

are usually well correlated (Mukamel et al., 2005; Nir et al., 2008), in particular when 

there is coherent spiking at the population level (Nir et al., 2007). This has so far only 

been demonstrated in neocortical regions.  

How accurate are the localizations? 

Separating the anatomical subregions of the MTL remains a challenge in fMRI. The 

accuracy of localization depends on a number of factors, including voxel size, spatial 

filtering, image registration, and geometric distortions. Paper 1 showed that a 

naturalistic, autobiographical memory paradigm has the potential to evoke strong 

activation within subregions of the MTL at single subject level. Single subject analyses 
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in native space allows more anatomical precision than conventional group analyses, as it 

avoids extensive spatial filtering and inaccuracies due to imperfections in the cross-

participant alignment. However, a group analysis also has its advantages. Specifically, 

random-effects group analyses in larger samples than in Paper 1 (n=6), allow inferences 

to be made at the population level (Friston et al., 1999). In the other experiments 

(Papers 2-4) we opted for random-effects group analyses to improve the generalizability 

of our findings.

Paper 4 aimed to study retrieval-related activity both within and outside the MTL. In 

order to obtain whole-brain (approximate) coverage, the voxel size was set to 3x3x3 

mm, and standard settings for cross-participant alignment (linear registration to MNI 

standard space) and spatial smoothing (5 mm) were adopted. Geometric distortions 

were counteracted by the use of parallel imaging (Bellgowan et al., 2006) and by 

orienting slices perpendicular to the long axis of the hippocampus (Weiskopf et al., 

2006). Because Papers 2 and 3 aimed to differentiate functions of MTL subregions, a 

reduced field-of-view was adopted to improve the in-plane resolution to 1.5 mm. 

Additional improvements were sought by minimizing spatial filtering 3 mm (Paper 2) 

and by the use of a non-linear registration method (Paper 3). As such, these papers may 

provide a more accurate description of localizations than conventional approaches as 

exemplified in Paper 4. However, the reported localizations must be interpreted with 

caution, at least with regard to the hippocampal subfields. Accurate delineation of 

hippocampal subfields requires a spatial resolution of <1 mm, and geometric distortions 

and imperfections in the image alignment are likely to remain despite the applied 

optimizations.  

In order to acknowledge some of these uncertainties, activations within hippocampal 

subregions were expressed in probabilities derived from the Jülich atlas (Amunts and 

Zilles, 2001). The Jülich atlas contains probabilistic maps of various brain regions, 

including the hippocampus and the EC (Amunts et al., 2005), that are based on 

cytoarchitectonic analyses of 10 human postmortem brains. The maps have been 

transformed to the Montreal Neurological Institute standard template (MNI152), and the 

reported probabilities reflect the relative frequency with which a structure is present in a 

given voxel. It has to be considered that the probabilities do not take into account 

imperfections in the alignment of functional images or possible errors due to 

interpolation (to 1 mm standard brain), and that the 10 brains on which the maps are 
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based may not be representative for the population. Still, the Jülich atlas offers a time-

effective and reproducible method to express both the location and variability of 

activations in fMRI data, and is the only probabilistic map of hippocampal subregions 

currently available. 

MAIN FINDINGS 

The MTL supports retrieval of episodic and semantic memories 

Declarative memory is typically divided in episodic memory, which refers to memory 

for unique experiences in one’s personal past, and semantic memory, which refers to 

general knowledge or facts.  The present work shows that the MTL is activated during 

retrieval of both episodic (Papers 1, 2 and 4), and semantic (Paper 3) memory. The 

crossmodal paradigm (Paper 3) is seen to measure semantic memory because subjects 

learned the associations across multiple learning trials and are therefore likely to have 

formed general, i.e., context-free, representations in memory. Although most previous 

fMRI studies of the MTL have tested episodic memory, several studies have also 

observed MTL activation in tasks of semantic memory (e.g., Maguire and Frith, 2004; 

Elfgren et al., 2006; Douville et al., 2005; Ryan et al., 2008).

The multiple-trace theory (Nadel and Moscovitch, 1997) and related accounts of MTL 

function (Vargha-Khadem et al., 1997; Tulving and Markowitsch, 1998) predict that the 

hippocampus preferentially supports episodic memory, as it requires associations to be 

formed between a particular experience and its unique spatial and temporal context 

(Tulving, 1983). This may be particularly evident during recall of autobiographical 

episodes since these – in contrast to the kind of stimuli used in most laboratory tasks of 

episodic memory – are  personally significant and rich in contextual details  (Gilboa, 

2004; Cabeza et al., 2004; Cabeza & St. Jacques, 2007). We observed strong activation 

in both the hippocampus and the PHC during recall of real-life autobiographical events 

(Paper 1) that was detectable at single subject-level and with a much stricter statistical 

threshold than typically used in fMRI studies of the MTL. However, since the other 

types of memory were tested in separate experiments, we cannot make a formal 
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comparison of their effects to determine whether there is preferential involvement in 

autobiographical memory. Moreover, contrary to the predictions, activation was most 

consistent in the PHC, and hippocampal activation was reliably detected in only a few 

subjects.

The results of Paper 1 did not indicate in what sense the hippocampal and PHC 

activations may reflect different mnemonic operations, nor did they provide a clear 

explanation for the lack of hippocampal activation in some subjects. Activation was 

measured during events with variable content and compared to activation in a low-level 

baseline condition. Although the prospective method allowed more experimental 

control than in most studies of autobiographical memory, several variables that may 

affect MTL activation (e.g., memory strategy [Kondo et al., 2005] and quality of 

memories [Addis et al., 2004]) could have varied but were not measured. In order to 

obtain more insight in the functional roles of MTL subregions, the subsequent 

experiments included task manipulations and behavioral data that measured more 

specific aspects of retrieval.

What is the role of the hippocampus? 

In Paper 2 we identified a unique contribution of the hippocampus to recall of temporal 

sequences. In this experiment, naturalistic stimuli from a movie were used to mimic 

“mental replay”, i.e., a vivid recollection of how past events unfold over time, which is 

seen as a central feature of episodic memory (Tulving, 1983). This makes our study 

similar to studies that measure recall of autobiographical episodes and that also report 

hippocampal and parahippocampal activation (Steinvorth et al., 2006; Addis et al., 

2007). However, our task was more constrained in that subjects were explicitly asked to 

retrieve the temporal order of events, and the control condition allowed us to subtract 

out effects of other mnemonic processes. Although activation was observed in both the 

hippocampus and the PHC, the performance-based analysis showed that the ability to 

accurately recall the temporal sequence of events uniquely involves the hippocampus.  

Hippocampal involvement in sequence recall was predicted by theories suggesting that 

the hippocampus is essential for forming associations across time (Rawlins, 1985) and 

representing past episodes as temporal sequences of related events (Eichenbaum et al., 
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2004). So far, most evidence for this has been derived from research in animals. For 

example, hippocampal lesions have been shown to disrupt sequence learning in rats 

(Honey et al., 1998), and electrophysiological recordings from hippocampal neurons 

have revealed several types of sequence coding, including theta phase precession 

(O’Keefe and Recce, 1993) and replay (Skaggs & McNaughton, 1996). In humans, 

fMRI studies have shown that the hippocampus contributes to encoding of overlapping 

sequences (Kumaran and Maguire, 2006a) and temporal sequence mismatch detection 

(Kumaran and Maguire, 2006b; 2007). Lesion studies suggest that the hippocampus is 

critical also for recall of temporal sequences (Mayes et al., 2001; Holdstock et al., 

2005), and our study is the first to confirm this with imaging data from healthy subjects. 

A more recent fMRI study (Ross et al., 2009) found additional support for hippocampal 

involvement in both encoding and retrieval of temporal sequences.

The mechanisms of sequence coding are yet poorly understood but typically ascribed to 

the associative capacities of the recurrent collaterals in CA3 (Levy, 1996; Lisman, 

1999). Paper 2 offered a tentative description of the localization of activation within the 

transversal plane of the hippocampus, but found no clear evidence for a specific role of 

CA3. The hippocampal activation was focused in CA and the subiculum, but the 

different CA fields could not be separated. Based on anatomical studies it is proposed 

that CA1 and the subiculum form parts of the same functional circuit (Witter et al., 

2000b; Knierim et al., 2006), hence the results could be seen to reflect involvement of 

CA1. It has been argued that CA1 recodes information from CA3 into a more 

compressed form (Rolls, 1996) and performs temporal pattern separation to support 

accurate sequence recall (Kesner et al., 2004; Rolls and Kesner, 2006). Relatively little 

is known about the functions of the subiculum. Animal studies report that subicular 

neurons fire during delay intervals in working memory tasks, suggesting that it 

participates in short-term retention of information (Deadwyler and Hampson, 2004) and 

that it cooperates with CA1 to support performance across long time intervals 

(Deadwyler and Hampson, 2006). FMRI studies have suggested that the subiculum is 

particularly important during memory retrieval (Gabrieli et al., 1997, Zeineh et al., 

2003; Eldridge et al., 2005), but subicular activation has also been associated with 

successful encoding (Preston et al., 2009). Previous fMRI studies of sequence memory 

did not separate between hippocampal subregions, hence whether or not the 
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CA/subicular region is involved in or necessary for temporal processing awaits further 

confirmation.  

The hippocampus is proposed to associate past events with their unique spatio-temporal 

context (Davachi, 2006). This view is supported by fMRI studies that show increased 

hippocampal activation during correct versus incorrect retrieval of contextual features 

associated with an item, like screen location (Cansino et al., 2002) or color (Weis et al., 

2004).  However, previous fMRI studies have tested retrieval of temporal context by 

asking subjects to judge the relative recency of two previously presented items and 

often failed to detect hippocampal activation (e.g., Suzuki et al., 2002; Hayes et al., 

2004; Rajah & McIntosh, 2006; Ekstrom & Bookheimer, 2007). This is possibly 

because recency judgments can be based on indices of relative item strength or 

familiarity (Hintzman, 2005). Recalling a sequence of multiple related events is more 

likely to require retrieval of temporal relationships or “order codes” (Friedman, 1993). 

Hence, in light of previous null findings, our results suggest that hippocampal 

involvement in retrieval of temporal context depends on the associative demands, as 

argued by others (Konishi et al., 2006; Aggleton et al., 2007). This is similar to 

observations of preferential hippocampal activation during item recognition based on 

recollection rather than familiarity (e.g., Eldridge et al., 2000; Dolcos et al., 2005; 

Woodruff et al., 2005). 

Is the hippocampus involved in all forms of associative memory? Many studies have 

compared hippocampal involvement in associative versus item-based memory, but only 

few have compared different types of associative memory. Konkel et al. (2008) tested 

three types of ‘relational memory’ in patients with hippocampal lesions, including 

‘spatial’ (object location on screen), ‘sequential’ (order of object presentation) and 

‘associative’ (co-occurrence of objects in set), and found that patients were impaired on 

all tasks relative to controls. This suggests that the hippocampus supports different types 

of associative memory. However, it has been argued that the hippocampus is 

particularly important for tasks that require flexible expressions of previously learned 

associations (Eichenbaum et al., 1994, 2004). An example of this type of task is 

transitive inference, where subjects first learn a set of overlapping stimulus pairs (e.g., 

AB and BC) and are then asked to identify a stimulus pair that was only indirectly 

associated during learning (e.g., AC). A similar function was measured in Paper 3 by 

comparing retrieval of learned (direct) and inferred (indirect) crossmodal associations. 
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We found partial support for the above hypothesis, as there was increased activation in 

the hippocampus during retrieval of inferred versus learned associations, based on 

tactile cues. However, inferential recall based on auditory cues was not associated with 

increased hippocampal activation, and the main effects showed increased activation 

during retrieval of learned associations, both in the hippocampus and the PHC.

Hippocampal involvement in transitive inference is supported by lesion studies in rats 

(Bunsey and Eichenbaum, 1996) and imaging studies of visual recognition in humans 

(Heckers et al., 2004; Preston et al., 2004). As discussed in Paper 3, increased activation 

during retrieval of learned associations could possibly reflect new learning on these 

trials. It has previously been shown that incidental encoding occurs during retrieval 

(Stark and Okado, 2003). A performance-based analysis may have yielded clearer 

results. Because the stimulus associations were learned across multiple trials until the 

subjects had reached a predefined criterion of performance (>85% correct), there were 

too few incorrect responses to allow a comparison between successful and unsuccessful 

trials. Although performance was high and similar on both learned and inferred recall 

trials, performance-based analyses can be used to identify purely mnemonic effects of 

both encoding (e.g., subsequent memory effects) and retrieval (e.g., hits vs. misses or 

correct rejections) and may help to separate the functional contributions of different 

subregions, as shown in Paper 2 and in other fMRI studies (e.g., Danckert et al., 2007).

What is the role of the parahippocampal structures? 

In Paper 3, we showed that also the PER supports associative memory. The PER was 

the only region that was more active during retrieval of crossmodal associations (tactile-

visual, auditory-visual) than during retrieval of unimodal associations (visual: object-

location). This observation seems to challenge evidence that suggest the PER is 

specialized in familiarity judgments and other forms of item memory (Brown and 

Aggleton, 2001; Eichenbaum et al., 2007). However, it has recently been argued that the 

PER supports memory for intra-item or within-domain associations, i.e., when different 

stimulus features are combined to form a unitized representation (Mayes et al., 2007). In 

Paper 3, subjects learned the stimulus associations across multiple trials and may 

therefore have created unitized, multimodal representations in memory. In support of 

this interpretation, previous imaging studies have shown that PER activation is 
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associated with unitization of word pairs during encoding (Haskins et al., 2008) and 

predicts subsequent memory for associations between items and item-related features 

(Staresina and Davachi, 2008).

A related view of PER function is articulated in the ‘perceptual-mnemonic/feature 

conjunction’ (PMFC) model (Bussey et al., 2005). Here, the PER is said to operate at 

the end of the ventral visual stream, throughout which increasingly complex object 

representations are built. As such, it is proposed to form complex, conjunctive 

representations of visual object features in support of both perception and memory. This 

model predicts that the PER is required for object discrimination in conditions with high 

levels of feature ambiguity (e.g., AB+, CD+, BC-, AD-), which is confirmed by lesion 

studies in monkeys (Bussey et al., 2002) and humans (Barense et al., 2005). A previous 

fMRI study suggested that the PER also integrates features across modalities, since the 

level of PER activation differed during presentation of congruent versus incongruent 

auditory-visual stimulus pairs (Taylor et al., 2006). Paper 3 extends these findings by 

showing that the PER contributes also to retrieval of crossmodal associations, and that 

this effect is independent of stimulus modality (see below).  

How does the above suggested function of the PER relate to hippocampal contributions 

to associative memory? The ‘configural association theory’ (Sutherland and Rudy, 

1989), claims that conjunctive representations are formed in the hippocampus. The 

hippocampus is said to be essential for configural learning, i.e., tasks where the solution 

is not given by the individual stimuli but contingent upon the particular combination of 

stimuli; for example when stimulus A is rewarded only if it appears together with B but 

not if it appears together with C (i.e., AB+, AC-). This is, however, similar to tasks with 

high levels of feature ambiguity, which according to the PMFC model rely on the PER. 

Indeed, several studies have found that rats with hippocampal damage are unimpaired 

on tasks of configural learning, forcing a revision of the configural association theory 

(Rudy and Sutherland, 1995). According to one view, the hippocampus is only required 

for rapid, incidental learning of stimulus configurations, whereas cortical areas learn 

more slowly by extracting regularities across repeated experiences (O’Reilly and Rudy, 

2001). Hence, the PER activation observed in Paper 3 could reflect that the crossmodal 

associations had been learned gradually across multiple trials rather than through “one-

shot”, hippocampal-dependent learning (see Nakazawa et al., 2003). O’Reilly and Rudy 

(2001) suggest that pattern completion and pattern separation underlie hippocampal 
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contributions to rapid, incidental coding and may also be relevant for certain forms of 

flexible memory. Another view is that the hippocampus is only needed for configural 

learning that involves ‘structural discrimination’, i.e., when the solution is given not 

only by which stimuli are combined but also how they are combined in terms of their 

spatial arrangement or temporal order (Aggleton et al., 2007). Rats with hippocampal 

lesions are selectively impaired on this type of configural learning (Sanderson et al., 

2006). Structural discrimination, as defined above, was not required for crossmodal 

retrieval in Paper 3, which could possibly explain the lack of hippocampal activation. 

This interpretation has appeal in the present context because it predicts hippocampal 

involvement in sequence memory, which coincides with the results of Paper 2.

Paper 1 suggested that the PHC has a central role during recall of past events, but the 

data did not identify its specific functional contributions. In Paper 2, increased 

activation was observed in the PHC during recall of temporal sequences, but the level of 

activation was not related to accuracy. In light of previous findings we reasoned that the 

activation could reflect encoding/perception of visual scenes (Epstein and Kanwisher, 

1998) or retrieval of spatial context (Burgess et al., 2001; Ekstrom and Bookheimer, 

2007), not sufficiently matched in the experimental and control conditions. PHC 

activation was also observed in the direct comparison of object versus odor recognition 

(Paper 4), which could also reflect retrieval of visuospatial information, in particular 

since object recognition was frequently accompanied by recollection of the study 

context. However, since none of the conducted experiments included a formal test of 

scene encoding/perception or retrieval of spatial context, the data are only suggestive of 

these functions. In Paper 3, the PHC responded to many of the same task manipulations 

as the hippocampus (e.g., main effects of unimodal>crossmodal, learned>inferred, 

auditory>tactile), as found in several other fMRI studies of associative memory (e.g., 

Eldridge et al., 2000; Cansino et al., 2002; Davachi et al., 2003; Kirwan and Stark, 

2004) and consistent with the view that the PHC is sensitive to both spatial and non-

spatial associations (Bar et al., 2008).

What is the effect of stimulus modality? 

Early research on amnesia showed that MTL damage disrupts memory performance 

regardless of the sensory modality in which information was presented (Milner, 1972). 
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The MTL integrates information from all sensory modalities (Lavenex and Amaral, 

2000) and is believed to serve domain-general functions in memory (Squire et al., 

2004). In particular the hippocampus is ascribed a domain-general function (Davachi, 

2006; Diana et al., 2007; Eichenbaum et al., 2007), since it represents the highest level 

of integration. Yet, most research on MTL functions has tested visual memory and little 

is known about its contributions to memory in other sensory domains. We observed that 

the hippocampus was activated during visual object recognition but not during odor 

recognition (Paper 4). The hippocampus was also more active during auditory compared 

to tactile recall, similarly to the EC and the PHC (Paper 3). Together, these findings 

suggest that MTL functions are sensitive to stimulus modality.   

Although research in humans has focused on visual memory, odor stimuli are often used 

to assess memory functions of the rodent hippocampus (Eichenbaum, 1998). Rodents 

have a highly developed sense of smell and the hippocampus receives strong olfactory 

inputs via the PER and the EC (Burwell, 2000). In primates, vision is the dominant 

sense and the PER receives no direct olfactory input, whereas olfactory input to the EC 

is limited (Suzuki and Amaral, 1994). Therefore, the human hippocampus is likely to be 

less responsive to olfactory than to visual stimuli. However, the complete absence of 

hippocampal activation during odor recognition was unexpected. Our behavioral data 

suggest that the lack of hippocampal activation reflects qualitative differences in the 

processing of odors and objects. Odors were more often recognized by a sense of 

familiarity, which likely does not involve the hippocampus (Brown and Aggleton, 2001; 

Eichenbaum et al., 2007). The absence of hippocampal activation during recognition of 

odors, but not objects, could also reflect differences in performance. The ability to 

discriminate old from new odors was significantly lower than the ability to discriminate 

old from new objects. In order to obtain unbiased estimates of odor and object 

recognition effects, the event-related analysis was based on correct trials only (hits 

versus correct rejections). However, recognition accuracy could not be verified, given 

the combination of covert labeling/identification during encoding and verbal cues 

during retrieval. It is possible that other task conditions may have facilitated 

performance and/or recollection during odor recognition and yielded hippocampal 

activation also on those trials. Although most fMRI studies of episodic odor memory 

have failed to detect MTL activation, one study observed hippocampal activation during 
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odor recognition (Cerf-Ducastel and Murphy, 2006). Human lesion studies also suggest 

that the hippocampus contributes to olfactory memory (Levy et al., 2004). 

The PER and the PHC have been hypothesized to support domain-specific functions in 

memory (Davachi, 2006; Diana et al., 2007; Eichenbaum et al., 2007), based on 

differential innervations by regions in the ventral (‘what’) and dorsal (‘where’) visual 

streams, respectively (Suzuki and Amaral, 1994). Paper 3 suggests that 

parahippocampal responses may differ also between sensory modalities. PER activation 

during crossmodal retrieval was independent of modality, but the PHC was more active 

during auditory compared to tactile recall. This result is consistent with anatomical 

studies in monkeys, showing that auditory association areas in the superior temporal 

gyrus project predominantly to the PHC and much less to the PER (Suzuki and Amaral, 

1994). It is also consistent with previous imaging (Peters et al., 2007a) and lesion data 

(Peters et al., 2007b) suggesting that the PHC is particularly sensitive to auditory 

memory. Peters et al. (2007a) observed increased activation in the PHC during 

successful retrieval of auditory source (speaker voice associated with object during 

encoding), and increased activation in the PER during successful retrieval of visual 

source (picture background associated with object during encoding).

In contrast to the study of Peters et al. (2007a), Paper 3 found increased PHC activation 

in a direct comparison between auditory and tactile recall. It is possible that auditory 

stimuli were easier to associate with the visual stimuli, similar to the effectiveness of 

verbal cues in odor versus object recognition, discussed in Paper 4. Speaking against 

this interpretation is the finding that there was no difference in performance on 

auditory-visual and tactile-visual recall trials. The most parsimonious explanation for 

the modality effects may be that the PHC receives stronger auditory than tactile input 

(Suzuki and Amaral, 1994), and that this causes stronger responses to the former. This 

implies that the hippocampus and the EC receive stronger auditory input (via the PHC) 

than tactile input, which could explain why also these regions were more active during 

auditory than tactile recall. The PER receives most cortical afferents from visual areas, 

and projections from both auditory and tactile somatosensory areas are weak (Suzkui 

and Amaral, 1994). This could explain why the PER was not sensitive to the 

comparison of auditory and tactile recall.  
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Where are memories stored?

Permanent memory traces are thought to reside in the neocortex (Mishkin, 1982; Fuster, 

1997; Harris, 2001), stored as synaptic modifications among neurons that were involved 

in processing the original experience (Hebb, 1949). According to the cortical 

reinstatement hypothesis (James, 1890; Damasio, 1989), memory retrieval will 

therefore involve reactivation of sensory processing areas. This prediction was tested in 

Paper 4 by comparing whole-brain patterns of activation during recognition of odors 

and objects. We found that recognition of odors and objects were associated with 

activation in olfactory and visual cortical regions, respectively. Since these activations 

occurred in the absence of different sensory input, triggered merely by a verbal cue to 

retrieve either an odor or object, they most likely reflect reinstatement of cortical 

memory traces. Previous fMRI studies have demonstrated activation in sensory-specific 

cortical regions during retrieval of visual and auditory stimuli (Nyberg et al., 2000; 

Wheeler et al., 2000), but our study is the first to show a similar effect in a direct 

comparison of visual and olfactory stimuli. 

The MTL can be seen to have a coordinating function during memory encoding and 

retrieval, interacting with neocortical storage sites. Several theories have proposed that 

the hippocampus stores memories in a compressed form, e.g., as an ‘index’ (Teyler and 

DiScenna, 1986), ‘summary sketch’ (McNaughton, 1989) or ‘link system’ (Murre, 

1996), that identifies the neocortical modules that represent the various sensory features 

of an experience. The hippocampus is said to bind these modules together and hereby 

allow the complete memory trace to be reactivated at the time of retrieval (McClelland 

et al., 1995). Also parahippocampal structures are thought to assist in this process, 

forming intermediate layers of association. However, the standard consolidation theory 

(Alvarez and Squire, 1994; McClelland et al., 1995) claims that the MTL has only a 

time-limited role in retrieval. Over time, repeated reactivations of a memory trace will 

gradually strengthen the direct connections between the neocortical modules, whereby 

retrieval becomes independent of the representation in the MTL.  

In our experiments, MTL activation was observed after study-test intervals of 10 min 

(Paper 3), 1 day (Papers 2 and 4) and 2 weeks (Paper 1). Since we did not test effects of 

consolidation, it is not known to what degree the length of these intervals may have 

affected the activations. However, it seems unlikely to have had a major effect, since 
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consolidation is considered to be a slow process (McClelland et al., 1995; but see Tse et 

al., 2007) and temporal gradients in amnesia are typically observed across several years 

or decades (Squire and Bayley, 2007). Moreover, according to the multiple-trace theory, 

the MTL has a permanent role in retrieval of contextually rich, episodic memories 

(Nadel and Moscovitch, 1997; Moscovitch et al., 2005), which is the type of memory 

that was tested after the longest, 2-week interval (Paper 1). In support of this view, 

several fMRI studies of autobiographical memory have found that the level of 

hippocampal activation does not vary with the age of the retrieved memories (Ryan et 

al., 2001; Steinvorth et al., 2006) but rather depends on recollective qualities like 

vividness and personal significance of the retrieved memories (Addis et al., 2004; 

Gilboa et al., 2004).
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CONCLUSIONS

The aim of this thesis was to characterize functional differences among subregions of 

the MTL. The conducted experiments allow us to draw three general conclusions.   

First, recall of real-life autobiographical events yields strong responses in MTL 

subregions, and most consistently in the parahippocampal cortex. The experimental 

paradigm has high ecological validity and allows an anatomically precise description of 

activations, as well as of individual variation herein. These factors should be taken into 

consideration in future fMRI studies of functional differentiations within the MTL.

Second, both the hippocampus and parahippocampal structures serve associative 

functions in memory, but at different levels of complexity. Accurate recall of temporal 

sequences was uniquely related to activation in the hippocampus. This suggests that the 

hippocampus associates events across time to represent temporal sequences. In contrast, 

retrieval of crossmodal associations uniquely engaged the perirhinal cortex. This 

suggests that the perirhinal cortex associates different stimulus features to facilitate 

storage of coherent, multimodal representations in memory.   

Third, MTL subregions are sensitive to stimulus modality. Whereas perirhinal 

activation during crossmodal retrieval was independent of modality, both the 

hippocampus as well as the parahippocampal and entorhinal cortices responded more to 

auditory than to tactile stimuli. This likely reflects stronger auditory innervation of these 

regions. The hippocampus was also found to be activated during successful retrieval of 

objects, but not odors, and this may reflect that visual and olfactory stimuli evoke 

different responses at the behavioral level.
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A Specific Role of the Human Hippocampus in Recall of
Temporal Sequences
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There is a growing interest in how temporal order of episodic memories is represented within the medial temporal lobe (MTL). Animal
studies suggest that the hippocampal formation (HF) is critical for retrieving the temporal order of past experiences. However, human
imaging studies that have tested recency discrimination between pairs of previously encoded items have generally failed to report HF
activation. We hypothesized that recalling a naturalistic sequence of past events would be particularly sensitive to HF function, attribut-
able to greater involvement of associative processes. To test this prediction, we let subjects watch a novel movie and later, during
functional magnetic resonance imaging, asked them to rearrange and “replay” scenes from the movie in correct order. To identify areas
specifically involved in retrieval of temporal order, we used a control condition where subjects logically inferred the order of scenes from
the same movie. Extensive MTL activation was observed during sequence recall. Activation within the right HF was specifically related to
retrieval of temporal order and correlated positively with accuracy of sequence recall. Also, the bilateral parahippocampal cortex re-
sponded to retrieval of temporal order, but the activation here was not related to performance. Our study is the first to unequivocally
demonstrate that correct sequence recall depends on HF.

Introduction
Memories of past experiences (episodic memories) are thought
to be organized by order of occurrence (Tulving, 1983; Eichen-
baum, 2004). The medial temporal lobe (MTL) supports episodic
memory, and accumulating evidence from animal research (Sk-
aggs and McNaughton, 1996; Fortin et al., 2002; Kesner et al.,
2002; Dragoi and Buzsáki, 2006; Pastalkova et al., 2008) suggests
that temporal order is represented in the hippocampal formation
(HF). This view is consistent with theoretical models of hip-
pocampal function that propose a critical role in associating
events across time (Rawlins, 1985; Wallenstein et al., 1998), pos-
sibly drawing on the recurrent connections in area CA3 (Levy,
1996; Lisman, 1999). Human imaging studies are less conclusive
about hippocampal involvement in memory for temporal order.
Most studies do not report preferential HF responses but instead
emphasize the importance of the prefrontal cortex (Nyberg et al.,
1996; Cabeza et al., 1997; Suzuki et al., 2002; Dobbins et al., 2003;
Fujii et al., 2004; Hayes et al., 2004).

Previous imaging studies may not have been sensitive to the
type of temporal order memory that involves HF. Typically, sub-

jects were asked to make recency discriminations between pairs
of stimuli, in which they could rely on feelings of relative trace
strength or familiarity (Yonelinas and Levy, 2002; Hintzman,
2005). Familiarity judgments are most likely mediated by para-
hippocampal structures, in particular the perirhinal cortex
(Brown and Aggleton, 2001; Eichenbaum et al., 2007). This in-
terpretation is supported by observations of more parahip-
pocampal than hippocampal activation during recency judg-
ments (Rekkas et al., 2005; Dudukovic and Wagner, 2007; St.
Jacques et al., 2008). Prefrontal involvement in recency judg-
ments may reflect familiarity monitoring (Henson et al., 1999;
Rajah and McIntosh, 2006), temporal integration (Fuster, 2001),
or logical ordering (Knutson et al., 2004).

The HF is proposed to selectively support associative memory,
like recollection (Davachi, 2006; Eichenbaum et al., 2007; but see
Squire et al., 2007), and appears to be preferentially active when
recency judgments involve retrieval of temporal relationships,
rather than item familiarity (Konishi et al., 2006). Sequence recall
represents a special case of temporal order memory which likely
depends in particular on hippocampal function. Remembering
the temporal order within a series of related events increases the
demand for relational processing and may involve reactivation of
“order codes” (Friedman, 1993). Recent functional magnetic res-
onance imaging (fMRI) experiments have demonstrated hip-
pocampal contributions to temporal order mismatch detection
and disambiguation of overlapping sequences during sequential
exposure to unrelated, single items (Kumaran and Maguire,
2006a,b, 2007).

The aim of the present study was to assess the contribution of
subregions in the human MTL to recall of the temporal sequence
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of related events. Unique to our study is the use of naturalistic and
meaningfully related stimuli that resemble real-life event se-
quences in episodic memory. We let subjects watch a novel movie
and later, during fMRI, presented sets of four scenes from the
movie and asked subjects to rearrange these in correct order.
Based on previous work, we expected this task to specifically
activate HF, as opposed to parahippocampal structures.

Materials and Methods
Subjects
Twenty-three healthy females (23–29 years; all right handed according to
self-report) without a history of neurological or psychiatric disease par-
ticipated in this study. The subjects were recruited among students and
staff at the Norwegian University of Science and Technology and St.
Olavs Hospital in Trondheim, Norway. Two subjects were excluded from
the analysis because of excessive head motion, and one subject was ex-
cluded because of poor task compliance, resulting in a final sample of 20
subjects. All subjects provided written informed consent before partici-
pation, and the study was approved by The National Committee for
Medical Research Ethics in Norway.

Overview of the experimental procedure
Subjects took part in two experimental sessions, organized across two
consecutive days. On day 1, subjects watched a commercial movie (en-
coding). On day 2, they were asked to remember the temporal order of
scenes from this movie (retrieval) during fMRI scanning. None of the
subjects had seen the movie before the experiment. Before encoding,
subjects were instructed to concentrate on the movie and memorize as
much of it as possible. They were made aware of the intention to test their
memory of the movie the following day; however, they were not in-
formed about what type of information they would be tested on. Before
retrieval, subjects were told that they would be shown sets of four pictures
from the movie and that their task was to indicate the temporal order of
these pictures. They were not instructed to use a particular strategy, nor
informed about our expectations regarding choice of strategy (see be-
low). Subjects received detailed task instructions with examples of the
different screen displays and familiarized themselves with using the MRI
compatible joystick. Example stimuli were not used in the fMRI experi-
ment. The total scan session lasted �60 min. Immediately after scanning,
subjects were debriefed to obtain additional information about their task
responses.

Stimuli
At encoding, subjects watched an 89-min movie from the Swedish tele-
vision series Beck (Movie 4: Øye for øye, by Kjell Sundsvall, 1997). The
movie portrays professional and personal events in the life of chief in-
spector Martin Beck and his colleagues during a murder investigation.
The events take place over a few weeks and are both of the ordinary kind
(e.g., breakfast at home, office meeting) and more exceptional (e.g., au-
topsy, knife attack). The movie depicts events in a realistic Scandinavian
environment with true-to-life characters and has a sensible plot; thus,
watching it can be viewed as mimicking “real-life” events unfolding over
time. Advantages of using cinematic material to probe episodic memory
have previously been recognized in the literature (Furman et al., 2007;
Hasson et al., 2008).

The retrieval test made use of 120 unique movie scenes pictures. The
pictures were whole-screen captures taken at different time points during
the entire movie, distinguishable by the specific action, situation, and/or
setting in which the persons and/or objects were depicted. The pictures
were grouped into 30 fixed sets of four pictures each, of which one-half
was used for Retrieve trials and the other half for Infer trials (see below,
Cognitive paradigm). On Retrieve trials, pictures were of a kind that
promoted the use of memory. There was no apparent or logical order
among the pictures, i.e., subjects were expected to retrieve temporal re-
lationships from memory to reconstruct the sequence of events (Fig. 1 A).
On Infer trials, pictures were of a kind that promoted the use of logic. The
order of the pictures could be observed as a chain of causality or a stereo-
typical script, i.e., subjects were expected to apply logical rules to infer the
correct sequence of events (Fig. 1 A). Pilot studies were conducted to

ensure that the selected pictures were easy to recognize and that the two
trial types were matched on level of difficulty. The temporal and spatial
distance among the scenes varied across trial conditions (both were typ-
ically shorter on Infer trials). The event sequences were taken at face value
to require either retrieval or inference of temporal order. The validity of
the operationalization was assessed in a separate behavioral experiment
(see below).

Cognitive paradigm
The retrieval task (Fig. 1) included one experimental condition (Retrieve
temporal order), one control condition (Infer temporal order), and one
baseline condition (Calculus). In addition, Retrieve and Infer trials were
always followed by a response condition (Retrieve-r and Infer-r) and an
evaluation condition (Evaluate). Brief periods of rest (Fixation) were
included before the onset of each Retrieve, Infer, and Calculus trial.

Retrieve. Subjects were shown four pictures of movie scenes, randomly
placed in each quadrant of the screen and with the question “Which
order?” written above. Subjects were instructed to figure out the correct
order of the scenes and to reconstruct the sequence of events in their
mind. They were told to focus on the temporal order of the pictures until
prompted to respond. Given the nature of the pictures that were used (see
above, Stimuli) (Fig. 1 A), the condition intended to measure retrieval of
temporal order information (sequence recall). All trials had a fixed du-
ration of 32 s.

Retrieve-r. This condition followed immediately after each Retrieve
trial. The four pictures remained visible, but now with the request to
“Indicate order:” written above, and with a green cross hair in the center
of the screen. Subjects used the joystick to indicate the correct order of
the pictures, moving the cross hair and clicking on each picture in turn.
This phase was included to obtain a continuous record of performance
that could be used in subsequent analyses. All trials were self-paced with
a max duration of 20 s each.

Infer. Screen layout, timing, and instructions were identical to Retrieve
trials, but a different type of pictures was used (see above, Stimuli) (Fig.
1 A). This condition intended to measure logical inference of temporal
order (sequence reasoning) and was used as a high-level control condi-
tion in the experiment. Subjects were expected to perform the task
mainly without specifically retrieving information about temporal order.
This enabled us to identify brain activation specifically related to tempo-
ral sequence recall while subtracting the impact of other cognitive oper-
ations, such as visual perception/re-encoding, scene recognition, recol-
lection of visuo-spatial details, and general ordering of information.

Infer-r. This condition followed immediately after each Infer trial but
was otherwise identical to Retrieve-r.

Evaluate. This condition followed immediately after each Retrieve-r
and Infer-r trial. First, subjects indicated the amount of cognitive effort
required by the preceding trial. The question “How much effort did you
exert?” appeared on the screen together with a five-point rating scale (1 �
very little, 5 � very much), and the subjects used the joystick to indicate
the appropriate rating. Next, subjects indicated what strategy was used on
the preceding trial. The question “How did you arrive at your answer?”
appeared on the screen together with three response alternatives: “Tried
to see a logical order,” “Tried to remember the order,” and “Other.” The
Evaluate phase was included to obtain continuous records of perceived
effort and strategy, to be used in subsequent analyses. All trials were
self-paced with a max duration of 20 s (10 s for each rating).

Calculus. Subjects were shown a series of simple sums (e.g., 3 � 6 � 9;
4 � 5 � 11) on top of four scrambled pictures, and their task was to
indicate with a right or left button press whether or not the sum was
correct. The presentation of each sum was self-paced with a max duration
of 4 s. This condition was included to measure the baseline activation
level, as a common reference for the other task conditions. All trials had
a fixed duration of 32 s.

Fixation. A white cross hair centered on a black screen was shown for a
variable duration of 0.2–2.0 s to allow synchronization with the scanner.

In total, there were 15 Retrieve trials, 15 Infer trials, and 33 Calculus
trials, equally divided across three experimental runs. A Retrieve or Infer
trial was always followed by a Calculus trial. The order of Retrieve and
Infer trials was randomized across subjects and runs. Presentation (Neu-
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robehavioral Systems) was used for stimulus presentation, response col-
lection, and logging of trial events during the fMRI experiment. Stimuli
were presented to the subjects through fiber-optic goggles (NordicNeu-
roLab AS), mounted on the head coil. Subjects responded to the task
using a fiber-optic joystick with two side buttons (Current Designs). A
SyncBox (NordicNeuroLab AS) was used to synchronize stimulus pre-
sentation with image acquisition.

Image acquisition
Scanning was performed with a 3T Siemens Trio magnet, equipped with
an eight-channel head coil for parallel imaging [GRAPPA (Generalized
Autocalibrating Partially Parallel Acquisition)] (Griswold et al., 2002). A
vacuum pillow and foam pads were used to minimize head motion.
During the retrieval task, echo planar images (EPIs) sensitive to blood
oxygen level-dependent (BOLD) contrast were acquired with a single-
shot gradient-echo pulse sequence [rectangular field of view (FoV), 96
mm; acquisition matrix, 64 � 64; 26 coronal/oblique slices; in-plane
resolution, 1.5 � 1.5 mm; slice thickness, 3.0 mm, repetition time (TR),
2.0 s; echo time (TE), 30 ms; interleaved slice acquisition; GRAPPA, 2;
410 – 474 volumes per run]. A restricted FoV (i.e., no whole-brain cov-
erage) was chosen to enable high-resolution sampling within the MTL.
This allowed a more accurate localization of activation within hippocam-
pal and parahippocampal subregions. The slices were oriented perpen-
dicular to the long axis of the hippocampus, or as close to perpendicular
as possible without shifting the phase-encoding direction (head–feet).
The most posterior slice was located just behind the tail of the hippocam-

pus, and the most anterior slice was taken through the temporal pole. For
anatomical reference, a T1-weighted three-dimensional (3D) volume
was acquired with an MPRage pulse sequence (192 slices; TE, 2.94 s; TR,
2300 ms; FoV, 256 � 256; in-plane resolution, 0.5 � 0.5 mm; slice thick-
ness, 1.0 mm). In addition, three T2-weighted images were acquired to
optimize the registration of the small FoV BOLD images to the anatom-
ical 3D volume (see below): two turbo spin-echo (TSE) scans acquired
coplanar to the EPIs (42 slices; TE, 77 ms; TR, 4270 ms; FoV, 200 � 200;
in-plane resolution, 0.78 � 0.78 mm; slice thickness, 2.0 mm) and one
sagittal reference scan [22 slices, TE, 89 ms; TR, 4500 ms; FoV, 220 � 220;
in-plane resolution, 0.69 � 0.69 mm; slice thickness, 4.0 mm (with a 1.2
mm gap)].

Postscan assessments
Immediately after scanning, we asked the subjects whether they had
failed to recognize any of the individual pictures used in the task, and if
so, to point out the critical picture(s). Next, subjects were given a ques-
tionnaire to report (1) how often they had experienced recollection of the
pictured event sequences (“mental replay”), using a scale from 1 (never)
to 5 (always), and (2) how often they had figured out the answer well
within the time limit, on a scale from 1 (never) to 5 (always). The ques-
tions were answered separately for Retrieve and Infer trials.

Data analysis
All image analyses were performed in FSL 4.0 (Smith et al., 2004) (FMRIB
Software Library, Oxford; www.fmrib.ox.ac.uk/fsl/). First, the functional

Figure 1. Outline of the cognitive paradigm used in the fMRI experiment. A, Example of stimuli used in conditions Retrieve (left) and Infer (right). B, Four conditions with fixed order of

presentation, from left to right: Retrieve/Infer (shown here, Infer), Retrieve-r/Infer-r (shown here, Infer-r), Evaluate (two separate displays for effort rating and indication of strategy), and Fixation.

C, Example of stimuli used in the baseline condition Calculus with either a correct (right) or an incorrect (left) sum. See Materials and Methods for further details. The pictures are reprinted with

permission from Filmlance International AB (Stockholm, Sweden).
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images were motion corrected, spatially smoothed (Gaussian kernel full-
width at half-maximum, 3 mm), and high-pass filtered (cutoff, 170 s).
Next, time course statistical analyses were performed using the general
linear model. The expected signal time courses were modeled with a
box-car stimulus response function, convolved with a two-gamma he-
modynamic response function (Boynton et al., 1996) and its temporal
derivative. The model included five predictors, corresponding to the
different conditions in the retrieval task (Calculus � Fixation � im-
plicit baseline). Within-subjects parameter estimates were obtained
separately for each run and then pooled across runs with a fixed
effects model of variance. Group statistics were calculated with a
mixed effects model of variance, as implemented in FLAME1 � 2
(FMRIBs local analysis of mixed effects) (Beckmann et al., 2003).
Before computing the group statistics, a mask was applied to the
functional images to exclude all non-MTL structures. The mask
was based on the Harvard–Oxford probabilistic atlases (http://
www.fmrib.ox.ac.uk/fsl/fslview/atlas-descriptions.html) and in-
cluded the left and right hippocampus, parahippocampal gyrus ante-
rior division, and parahippocampal gyrus posterior division (all with
max probability �0.25). For significance testing, individual voxels
were first thresholded at z � 3.1, and voxels that survived this thresh-
old were used to define clusters of activation. Each cluster’s signifi-
cance was then estimated based on random field theory (Friston et al.,
1994) and compared with the cluster probability threshold ( p � 0.05,
corrected for multiple comparisons). This threshold reflects the prob-
ability under the null hypothesis of obtaining a cluster of a particular
size, given the voxel z threshold. The threshold was lowered to voxel
p � 0.005 (uncorrected for multiple comparisons) and a minimum
cluster size of five voxels in exploratory analyses.

Registration of functional to anatomical images was performed by the
following procedure, using FLIRT (FMRIBs linear registration tool) (Jenkin-
son et al., 2002). First, the mean functional image (the average of all scans
within a single run) was registered to the mean of the two coplanar T2 TSE
scans. Next, the T2 TSE mean was registered to the T2 reference scan, which
in turn was registered to the T1 anatomical image. The T1 anatomical image
was registered to the Montreal Neurological Institute (MNI)-152 standard
template. Finally, the statistical maps were registered to standard space by
combining the transformation matrices obtained in the preceding steps.
Peak activations are reported in MNI coordinates. To explore potential dif-
ferences among hippocampal subregions, peak voxels were also localized
within the probabilistic maps of the Jülich histological atlas (Amunts et al.,
2005), warped to MNI152 space in FSL (http://www.fmrib.ox.ac.uk/fsl/
fslview/atlas-descriptions.html). We quantified the responses within six
regions-of-interests (ROIs), defined according to the Jülich probabilistic
maps (max probability �0.5): left and right cornu ammonis (CA), dentate
gyrus (DG), and subiculum (SUB). Subject-specific parameter estimates
were obtained from each ROI and compared at group level with repeated
measures statistics.

Behavioral data were analyzed in SPSS. Statistical comparisons were
made with t tests, or a nonparametric equivalent in cases where the data
were not normally distributed. Among the behavioral measures is a se-
quencing score that reflects the grade of accuracy on Retrieve and Infer
trials. Each correct response (i.e., picture in correct temporal position)
was awarded one point relative to each remaining response, such that the
maximum sequencing score on each trial was 6 (3 � 2 � 1 � 0). Similar
scores have been used previously with sequencing tasks (Kumaran and
Maguire, 2006b).

Results are presented as mean � SD in the text.

Behavioral experiment
A separate behavioral experiment was conducted to assess the validity of
our paradigm as a measure of temporal sequence recall. Fifteen subjects
(23–29 years, all female) were recruited from the same population as the
fMRI subjects. All subjects gave oral consent before participation. The
subjects were not shown the movie (and assured they had not seen it on
any previous occasion) yet completed the same retrieval test as the fMRI
subjects. A PC version of the paradigm was used with similar stimulus
and timing properties, except that the baseline and evaluation conditions
were not included. Subjects indicated the order of the pictures by a series

of button presses, and the critical outcome measure was the difference in
performance between Retrieve and Infer trials, tested for significance
with the Wilcoxon signed-rank test. Performance on retrieve trials was
compared with chance level performance using the exact binomial dis-
tribution of the number of correct answers by chance (0.625).

Results
Task validation
Subjects in the unexposed control group were able to identify the
correct temporal sequence on 2.60 � 1.88 of the 15 Retrieve trials
and on 10.67 � 1.84 of the 15 Infer trials (Fig. 2). Their perfor-
mance on Retrieve trials was significantly lower than on Infer
trials (Wilcoxon z, 	3.42; p � 0.001) yet significantly above
chance level (0.625; p � 0.005). Subjects in the fMRI group were
able to identify the correct temporal sequence on 10.10 � 1.86 of
the Retrieve trials and 11.35 � 1.31 of the Infer trials. This differ-
ence is (marginally) significant (Wilcoxon z, 	1.96; p � 0.050).
fMRI subjects performed significantly better than control sub-
jects on Retrieve trials (Mann–Whitney U; z, 5.03; p � 0.001) but
not on Infer trials (Mann–Whitney U; z, 1.15; p � 0.248). These
results indicate that performance on Retrieve trials relies more on
memory for temporal order than performance on Infer trials.
Still, the fact that control subjects performed above chance level
on Retrieve trials suggests that, at least on some trials, it is possible
to determine the correct temporal sequence without the retrieval
of temporal order information.

fMRI task performance
The trial-by-trial self reports obtained during the fMRI experi-
ment revealed that subjects adopted the intended strategy on the
majority of both Retrieve (Tried to remember the order, 88.67 �
9.45%) and Infer trials (Tried to see a logical order, 96.00 �
5.88%). The fMRI subjects attempted to infer a logical order on
1.33 � 2.74% of Retrieve trials and used “Other strategy” on
10.00 � 9.55%. Subjects reported attempts to retrieve the tem-
poral order on 3.33 � 5.92% of Infer trials and the use of any
Other strategy on 0.67 � 2.05%. To be able to provide an unam-

Figure 2. Performance in control versus fMRI subjects. Mean performance in control and

fMRI subjects on Retrieve and Infer trials. Performance was measured as the number of trials

(out of 15 Retrieve and 15 Infer trials in total) where subjects identified the correct temporal

sequence. Error bars indicate SEM. Means were compared with the Wilcoxon signed ranks test

(within groups) and Mann–Whitney test (between groups); *p � 0.05; ***p � 0.001; n.s., not

significant.
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biguous interpretation of our data, we decided to include only
trials where the intended strategy was used (on average, 13.0
Retrieve trials and 14.4 Infer trials per subject) in all subsequent
analyses.

Subjects were able to identify the correct temporal sequence
on 68.90 � 13.06% of Retrieve trials and 76.89 � 9.94% of Infer
trials. The difference is not significant (t(19) � 2.04; p � 0.055).
The total sequencing score was significantly higher on Infer trials
(70.10 � 7.24) than on Retrieve trials (63.70 � 10.14) (t(19) �
2.19; p � 0.041). The average rating of effort level was 2.60 � 0.46
on Retrieve trials and 2.49 � 0.53 on Infer trials, not significantly
different (t(19) � 1.24; p � 0.231).

Postscan assessments
The recognition rate of individual pictures was high for both
Retrieve trials (99.42 � 1.13%) and Infer trials (97.46 � 4.25%),
although slightly higher in the former (Wilcoxon z, 1.96; p �
0.050). Subjects reported to have “mentally replayed” the se-
quence of events more often on Retrieve trials (3.35 � 1.18) than
on Infer trials (2.80 � 0.83). The difference is significant (Wil-
coxon z, 2.67; p � 0.008). Ratings of required processing time
were similar for both types of trial (Retrieve, 3.55 � 0.61; Infer,
3.75 � 0.44; Wilcoxon z, 1.41; p � 0.157).

The behavioral data are summarized in Table 1.

fMRI data
Retrieve versus Baseline
To determine which MTL regions were engaged during sequence
recall, we first compared Retrieve trials to Baseline. Three clusters
of significantly increased activation were detected (Table 2, clus-
ters A–C; Fig. 3). Cluster A covered parts of both the HF (mainly
medial portion of the anterior half) and the parahippocampal
cortex (PHC) (throughout most of its extent) in the right hemi-
sphere. Cluster B covered parts of both the HF and PHC in the left
hemisphere and was widely similar to cluster A in localization
and extent. Cluster C covered a smaller area laterally in the head
of the left HF. For a detailed description of the cluster localiza-
tions, see the supplemental text, available at www.jneurosci.org
as supplemental material.

Retrieve trials evoke a range of mnemonic processes that are
likely to be reflected in the comparison with Baseline. To identify
irrelevant activations, we used a high-level control task (Infer)
where the order of the four scenes was not retrieved but deter-
mined through logical inference but which was otherwise similar
to the sequence recall task (Retrieve). Relative to Baseline, Infer
trials correlated with increased activation that was similar to that
in Retrieve trials but more restricted (see supplemental Table 1
and supplemental text for further details, available at www.
jneurosci.org as supplemental material).

Retrieve versus Infer
The primary aim of the present study was to identify MTL regions
that were specifically involved in the retrieval of temporal order
information. To achieve this, we compared the level of activation
in Retrieve and Infer trials directly. Three clusters of increased
activation were detected (Table 2, clusters D–F). All clusters over-
lapped with the activation observed in Retrieve � Baseline but
were more limited to specific parts of the HF and PHC (Figs. 3, 4).

Cluster D peaked in the center of the right HF body, medially
near the border toward the entorhinal cortex (EC) (Jülich histo-
logical atlas probability, 87% SUB). The cluster extended 4 mm in
the posterior direction and 5 mm in the anterior direction. At the
most posterior levels, the activation was restricted to the HF–EC
border area. At more anterior levels, the activation extended
slightly in the superior and lateral direction.

Cluster E peaked at the posterior end of the left PHC, at the
medial bank of the collateral sulcus (CS). The cluster extended 2
mm in the posterior direction and 5 mm in the anterior direction.
At all levels, the activation was confined to the medial bank of the
CS.

Cluster F peaked anteriorly in the right PHC, at the medial
bank of the CS. The cluster extended 5 mm in the posterior di-
rection and 1 mm in the anterior direction. At all levels, the
activation was confined to the medial bank of the CS.

Because we had no a priori prediction of lateralized hip-
pocampal activation, we re-examined the contrast Retrieve �
Infer with a more liberal statistical threshold ( p � 0.005, uncor-
rected; minimum cluster size � 5). With this threshold, five clus-
ters of activation were identified in the left HF (supplemental
Table 2 and supplemental text, available at www.jneurosci.org as
supplemental material), in addition to clusters at the same loca-
tions, but of larger extent, as in the initial maps. Notably, the two
largest clusters in the left HF (Fig. 4, clusters G and H) appeared
at a similar location as the activation within the right HF (cluster
D). An additional cluster (Fig. 4, cluster I) was found at a more
lateral position, primarily coinciding with the left HF activation
in Retrieve � Baseline (cluster C). The fact that the hippocampal
activations were widely similar across hemispheres but stronger
on the right is likely to reflect the nature of our stimuli. Previous
studies have suggested a right lateralization of memory for visual
(Kelley et al., 1998) and nonverbal (Golby et al., 2001) stimuli.

The contrast Infer � Retrieve yielded no significant activa-
tion, i.e., no MTL regions responded specifically to logical infer-
ence of temporal order. This implies that this function is sup-
ported by brain regions located outside the MTL, not scanned in
this experiment, most likely in the prefrontal cortex (Knutson et
al., 2004).

Correlation with behavioral performance
Because of the low number of incorrect responses and little trial-
to-trial variation in sequencing scores, we were unable to obtain a
reliable estimation of within-subject, parametric effects of per-
formance. We did analyze a subset of data where different per-
formance levels were represented within the same run and ob-
served significant activation in left and right HF (threshold p �
0.005, uncorrected; data not shown). However, having 15 trials
per subject and an average level of 69% correct leaves only five
trials for the lower levels of performance (sequencing scores
0 –5), and typically only two or three different levels were repre-
sented within a given run. Therefore, we also performed a
between-subjects analysis in selected ROIs, i.e., in clusters that
were active in Retrieve � Infer. A significant, positive correlation
was observed between the accuracy of sequence recall (sum of

Table 1. Behavioral data

Measure (units)

Condition

Retrieve Infer Retrieve versus Infer

Accuracy I (% correct) 68.90 � 13.06 76.89 � 9.94 n.s.
Accuracy II (sequencing score) 63.70 � 10.14 70.10 � 7.24 p � 0.041
Scene recognition (% hits) 99.42 � 1.13 97.46 � 4.25 p � 0.050
Effort (rating 1–5) 2.60 � 0.46 2.49 � 0.53 n.s.
Mental replay (rating 1–5) 3.35 � 1.18 2.80 � 0.83 p � 0.008
Processing time (rating 1–5) 3.55 � 0.61 3.75 � 0.44 n.s.

Mean behavioral performance in the group of fMRI subjects (n �20). Data were obtained during scanning (accuracy
and effort) or immediately afterwards (scene recognition, mental replay, and required processing time). Means
were compared with the paired samples t test (accuracy and scene recognition) and the Wilcoxon signed ranks test
(effort, mental replay, and processing time); n.s., Not significant. See Materials and Methods for further details.
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sequencing scores across all trials) and level of activation in the
right HF (cluster D, Pearson r � 0.60; p � 0.005) (Fig. 5). Acti-
vation in the left and right PHC was not related to accuracy (left
PHC: r � 	0.20, p � 0.41; right PHC: r � 0.04, p � 0.86). There
was no significant correlation between accuracy and the level of
(subthreshold) activations in the left HF.

To examine whether the performance effect was confounded
by amount of recollection or vividness, we used the rating of
mental replay obtained with the postscan questionnaire. Mental
replay was not correlated to accuracy of sequence recall (r �
	0.01; p � 0.972), nor to the level of activation in right HF (r �
0.05; p � 0.82). The correlation between the hippocampal acti-
vation and sequence accuracy remained significant after control-
ling for mental replay (r � 0.60; p � 0.007).

Comparison of activation within hippocampal subfields
To explore potential differences between hippocampal sub-
fields, we compared the peak activations (averaged across par-
ticipants) in the left and right CA, DG, and SUB, as defined by
the Jülich histological atlas (Fig. 6). In the right hemisphere,
the level of activation was significantly higher in the subicu-
lum (Wilcoxon z, 3.81; p � 0.001) and CA fields (Wilcoxon z,
3.92; p � 0.001), compared with DG. Also in the left hemi-

sphere, the level of activation was signif-
icantly higher in the subiculum (Wil-
coxon z, 3.92; p � 0.001) and CA fields
(Wilcoxon z, 3.88; p � 0.001) than in
DG. The level of activation was not sig-
nificantly different in the subiculum and
CA fields in either hemisphere.

Discussion
The aim of this study was to examine the
contribution of MTL subregions to a par-
ticular manifestation of episodic memory,
recall of the temporal sequence of past
events. We used high-resolution fMRI to
quantify levels of MTL activation while
subjects reconstructed the temporal order
of life-like events, derived from a movie
they had watched the day before. Extensive
activation was observed, and effects specif-
ically related to retrieval of temporal order
were localized bilaterally in HF and PHC.
Across subjects, the right hippocampal ac-
tivation correlated positively with perfor-
mance, whereas this was not observed in
PHC.

Sequence recall involves HF and PHC
The contrast Retrieve � Baseline revealed
that recall of temporal sequences involves

the coordinated operation of HF and PHC bilaterally. Unlike in
previous imaging studies of memory for temporal order, our
paradigm was designed to measure retrieval of complex, natural-
istic event sequences, in keeping with theoretical accounts of
MTL involvement in episodic memory (Tulving, 1983; Eichen-
baum, 2004), and our results clearly support a role for the MTL.
The activation in Retrieve � Baseline reflects several mnemonic
processes, including scene recognition, recollection of spatial
context, and retrieval of temporal order. With exception of the
latter, these processes are likely to occur also on Infer trials, which
explains the similar activation in Infer � Baseline. However, Infer
trials did not require memory for successful performance. Con-
trol subjects who had not seen the movie performed well above
chance, implying that temporal order could be inferred directly.
It is still possible that retrieval contributed to performance; how-
ever, the influence hereof would be small because we included
only trials where logic was the reported dominant strategy.

HF restores the correct order of events
The critical measure in this study was the comparison between
Retrieve and Infer trials, where temporal order was reconstructed
from memory or derived from logical rules, respectively. Impor-

Table 2. Clusters of activation during sequence recall

Contrast

Cluster

Index Size z max x y z Localization

Retrieve � Baseline A 2584 5.78 25 	21 	13 Right HF and PHC
B 2195 5.82 	29 	39 	13 Left HF and PHC
C 50 4.21 	35 	17 	18 Left HF

Retrieve � Infer D 134 4.27 21 	21 	15 Right HF
E 114 3.99 	24 	40 	15 Left PHC
F 50 4.26 27 	31 	18 Right PHC

Clusters with significant activation in the contrasts Retrieve � Baseline and Retrieve � Infer. Significance level, p � 0.001 with cluster correction for multiple comparisons (p � 0.05). Size, Number of voxels; z max, maximum z score within
cluster; x, y, z, MNI coordinates of peak voxel; localization, anatomical region covered by the cluster. The clusters are referred to in Results using the same indices as here (A–F). The clusters are shown in Figure 3 (A–F) and Figure 4 (D–F).

Figure 3. Maps of activation during sequence recall. Areas of significant activation during sequence recall. Areas in blue show

increased activation in Retrieve trials relative to Baseline and correspond to clusters A–C in Table 2. Areas in red show increased

activation in Retrieve trials relative to Infer trials and correspond to clusters D–F in Table 2. R, Right. Color bars indicate voxel z
scores. Voxels are significant at p � 0.001 with cluster correction for multiple comparisons (p � 0.05).
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tantly, the two conditions were comparable in terms of perfor-
mance and effort and used the same stimulus material to evoke
similar processes of scene recognition and context recollection.
The observed increase in right hippocampal activation during
Retrieve trials, and left hippocampal activation at a lowered sta-
tistical threshold, indicate that HF responds particularly to re-
trieval of temporal order. This result is consistent with current
theories of MTL function, suggesting that HF associates episodic
items with their spatio-temporal context (Davachi, 2006; Diana
et al., 2007).

fMRI studies of temporal order memory have generally failed
to observe hippocampal activation, most likely because of the use
of recency discrimination paradigms. For example, previous
studies that have used naturalistic stimuli, such as persons en-

countered in a virtual reality game (Ekstrom and Bookheimer,
2007), and photographs of locations that subjects visited before
scanning (St. Jacques et al., 2008), measured recency judgments
and did not observe significant HF activation specific to temporal
order retrieval. We hypothesized that sequence recall would be
more sensitive to hippocampal function, because of greater in-
volvement of associative processes. A sequence involves a series of
events, rather than a pair; hence, a higher number of temporal
associations must be determined. Also, the use of naturalistic
events that are meaningfully related may contribute to encoding
of their temporal relationship, whereby order judgments can be
based on associative rather than item-based retrieval (Friedman,
1993). Partly in support of this is the report that relational encod-
ing of words enhanced hippocampal activation during subse-

Figure 4. Activation specifically related to retrieval of temporal order (Retrieve � Infer). Areas marked in red show clusters of voxels with increased activation in the contrast Retrieve � Infer.

The clusters are referred to in Results using the same indices as here (D–I). Each cluster is shown on a separate row with one sagittal section (leftmost picture) and five coronal sections taken in the

anterior–posterior direction (from left to right). The numbers below the pictures are MNI coordinates. Clusters D–F are significant at p �0.001 with cluster correction for multiple comparisons ( p �
0.05). Clusters G–I are significant at p � 0.005, uncorrected.
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quent recency judgments (Konishi et al., 2006). Moreover, HF
participates in sequence learning and mismatch detection of se-
quences of unrelated items (Kumaran and Maguire, 2006a,b,
2007). Our study is the first to combine a complex sequencing
task with naturalistic, related stimuli, and to our knowledge, the
first to present robust evidence for HF involvement in retrieval of
temporal order.

Memory sequences enable mental replay: vivid recollection of
how past experiences unfold over time (Tulving, 1983). Previous
fMRI studies reported hippocampal activation when subjects re-
experienced autobiographical episodes (Piefke et al., 2003; Addis
et al., 2004; Steinvorth et al., 2006), and that hippocampal acti-
vation increases with ratings of vividness (Gilboa et al., 2004). In
our experiment, autobiographical experiences were mimicked

with events from a movie, and subjects were encouraged to replay
the event sequences mentally. Replay occurred most often on
Retrieve trials, which possibly contributed to stronger hippocam-
pal activation in this condition. Admittedly, mental replay not
only involves recollection of temporal but also visuo-spatial in-
formation. However, recollection of visuo-spatial details alone is
unlikely to explain the observed hippocampal activation because
we found a positive correlation between accuracy of sequence
recall and level of right HF activation that remained significant
after controlling for mental replay. This strongly suggests that HF
contributes specifically to correct retrieval of temporal order. The
lack of a similar correlation in left HF is possibly related to the
stimulus material being visuo-spatial and nonverbal.

Computational models suggest that HF codes associations
across time by strengthening synaptic connections between rep-
resentations of successive events (Levy, 1996; Wallenstein et al.,
1998). Gelbard-Sagiv et al. (2008) recently described a human
analog of sequence replay in rats (Skaggs and McNaughton, 1996;
Foster and Wilson, 2007). Single human hippocampal neurons
showed selective and sustained responses to television episodes
that later recurred during free recall. Theoretical concepts relate
the potential to code sequential information either to the pres-
ence of recurrent connections in CA3 (Levy, 1996; Lisman, 1999)
or their absence in CA1 (Eichenbaum et al., 1999; Manns and
Eichenbaum, 2005; Rolls and Kesner, 2006). It is clear, though,
that CA3 and CA1 contribute to memory in fundamentally dif-
ferent ways (Lee et al., 2004; Leutgeb et al., 2004; Hartley et al.,
2005; de Almeida et al., 2007). Compelling connectional and
functional evidence discriminates between DG and CA3 on the
one hand, and CA1 possibly together with subiculum on the
other (Witter et al., 2000; Knierim et al., 2006). Our observation
of increased activation mainly in the CA field and subiculum
argues in favor of a stronger involvement of CA1 in temporal/
sequence coding. This is consistent with animal data showing that
temporal order memory depends in particular on CA1 (Hoge and
Kesner, 2007), possibly by adding a temporal “tag” to subsequent
events (Manns et al., 2007). Although it cannot yet be excluded
that CA3 is involved (Hoang and Kesner, 2008), temporal order
memory does not require DG (Gilbert et al., 2001).

PHC reinstates visuo-spatial contexts
The contrast Retrieve � Infer also showed increased activation in
bilateral PHC, consistent with previous findings that both HF
and PHC support associative memory (Davachi et al., 2003; Dü-
zel et al., 2003; Kirwan and Stark, 2004). However, unlike the
hippocampal activation, the parahippocampal activation was not
directly related to task performance. This indicates that HF and
PHC have distinct roles during recall of past event sequences. It is
possible that PHC is involved in retrieving temporal context, as
suggested by studies of recency discrimination (Dudukovic and
Wagner, 2007; St. Jacques et al., 2008), albeit in a manner less
critical for performance than HF. A more likely interpretation,
with more support in the literature, is that the PHC activation
reflects processing of visuo-spatial information. Ample evidence
suggests specialization of PHC in perception of visuo-spatial
scenes (Epstein and Kanwisher, 1998; Bar and Aminoff, 2003;
Epstein et al., 2007) and retrieval of spatial context (Burgess et al.,
2001; Kahn et al., 2004; Ekstrom and Bookheimer, 2007; but see
Bar et al., 2008). In our experiment, Retrieve trials had higher
stimulus complexity than Infer trials, in that the scenes had larger
temporal spacing and more often depicted different settings. It is
conceivable that PHC responded to these properties and that the
increased activation during Retrieve trials reflects higher de-

Figure 5. Significant positive correlation between level of activation within the right HF

(cluster D, Results) and accuracy of sequence recall. Accuracy was measured as the sum of

sequencing scores on all Retrieve trials. Level of activation was measured as the peak voxel’s

percentage signal change in Retrieve� Infer. Each dot represents an individual subject, and the

correlation is shown with the line of best fit.

Figure 6. Activation during sequence recall in subregions of the hippocampal formation.

Subregions were defined with the probabilistic maps of the Jülich histological atlas. Activation

was measured as the peak voxel’s percentage signal change in the contrast Retrieve� Infer and

averaged across participants. Error bars indicate SEM. Means are compared with the Wilcoxon

signed ranks test; ***p � 0.001; n.s., not significant.
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mands for (re-)encoding of visuo-spatial scenes. Alternatively,
PHC may have been involved in retrieval of visuo-spatial contex-
tual details that are associated with the scenes, supporting visual
imagery and reconstruction that take place during mental replay
of past events (Hassabis and Maguire, 2007).

Visuo-spatial contextual details can be combined with general
knowledge of temporal patterns to infer the correct order of
events (Friedman, 2004). Although we included only trials where
subjects reported to have remembered the order of the events, we
cannot exclude the possibility of additional inference. This is
illustrated by the fact that control subjects performed above
chance level on Retrieve trials. However, the use of inferential
processes to reconstruct temporal order is believed to occur
mainly during recency judgments, especially when indices of rel-
ative trace strength are indistinguishable, such as when the tem-
poral distance between items is short (Friedman, 1993, 2004).
Notably, a recent fMRI study measured recency judgments under
these conditions and found significant activation in PHC but not
in HF (St. Jacques et al., 2008). Increased parahippocampal acti-
vation as observed in the present study thus most likely reflects
reinstatement of visuo-spatial contexts, not related to temporal
ordering.

Conclusion
This study provides the first fMRI data on the role of MTL struc-
tures in recall of temporal sequences. We have used naturalistic,
complex stimuli, and based on our findings, we argue that correct
sequence recall depends in particular on the hippocampal
formation.
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A specific role of the human hippocampus in recall of 
temporal sequences 

SUPPLEMENTARY MATERIAL

RESULTS 

Retrieve > Baseline

Description of cluster localizations

Cluster A peaked in the center of the left HF body, medially near the border towards the 

entorhinal cortex (EC) (Jülich histological atlas probability: 82% subiculum [SUB]). The cluster 

extended 15 mm in the anterior direction and 17 mm in the posterior direction. In the anterior 

direction, the activation extended to include most of the HF head. In the posterior direction the 

activation continued within the HF body and spread inferiorily into the PHC (collateral sulcus 

[CS] and gyral part). Within the HF, the active voxels were primarily located in the medial part, 

but extended laterally at the most anterior levels.

Cluster B peaked at the posterior end of the left PHC, at the medial bank of the CS.  The 

cluster extended 32 mm in the anterior direction and 3 mm in the posterior direction. In the 

anterior direction, the activation continued throughout most of the PHC (CS and gyral part) 

and spread into the head and body of the HF. Within the HF, the activation peaked at a 

medial location similar to that of cluster A (local maximum: x = -23, y = -21, z = -15; max z = 

5.39; 89% SUB). The active voxels were located primarily in the medial part of the HF, but 

extended laterally at the most anterior levels.
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Cluster C peaked in the lateral corner of the left HF head, at the level of the uncal recess 

(87% CA). The cluster extended 4 mm in the posterior direction and 1 mm in the anterior 

direction, and was located at the same lateral position across all levels. 

Infer > Baseline

Supplemental Table 1:  

Clusters of activation during logical inference of temporal order

contrast 

cluster

index     size    z max X Y Z      localization 

Infer >  

Baseline

1 1874 4.87 24 -38 -15     right PHC and HF 

2 821 4.78 -31 -40 -11     left PHC 

3 304 4.40 -24 -12 -17     left HF 

Clusters of activation in the contrast Infer>Baseline. Significance level: p<0.001 with cluster correction for multiple 

comparisons (p<0.05). Size = number of voxels; z max = maximum z-score within cluster; X, Y, Z = MNI coordinates 

of peak voxel localization. PHC = parahippocampal cortex; HF = hippocampal formation. The localizations of the 

clusters are described in further detail in the text below. 

Description of cluster localizations

Cluster 1 peaked at the posterior end of the right PHC, in the center of the CS. The cluster 

continued 33 mm in the posterior direction and covered most of the PHC (CS and gyral part). 

The cluster extended to include parts of the HF body and head. Within the HF, the activation 

was primarily located in the medial part (local maximum: x = 25, y = -21, z = -12, max z = 

4.85; 72% SUB), but extended laterally at the most anterior levels. 

Cluster 2 peaked at the posterior end of the left PHC, in the center of the CS. The cluster 

continued 2 mm in the posterior direction and 14 mm in the anterior direction and covered 

most the PHC (mainly CS; spread to gyral part at most anterior levels). 
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Cluster 3 peaked superiorly in the center of the left HF head (67% CA). The cluster extended 

12 mm in the posterior direction and 3 mm in the anterior direction. The active cluster was 

located at a similar position across all levels but shifted in the medial direction at the most 

posterior levels, where it spread a little into the anterior PHC.  

Retrieve>Infer: Sub-threshold activation

Supplemental Table 2:  

Activation during sequence recall in the left hippocampal formation (HF) 

contrast 

cluster

index size z max X Y Z 

Retrieve >  

Infer

G 105 4.02 -21 -22 -14

H 65 3.39 -19 -16 -20

I 47 3.49 -34 -18 -18

J 11 2.84 -32 -27 -9

K 11 2.84 -16 -10 -18

Clusters of activation in the left HF in the contrast Retrieve>Infer. Activations were revealed by a post-hoc exploratory 

analysis with a lowered significance level (voxel p<0.005 uncorr. and min. cluster size 5 voxels), without the 

additional constraint of cluster-level p<0.05 corr. that was used in the initial analyses. Size = number of voxels; z max 

= maximum z-score within cluster; X, Y, Z = MNI coordinates of peak voxel. The clusters are referred to in the text 

using the same indices as here (G-K). 

Description of cluster localizations  

Cluster G peaked in the center of the left HF body, medially near the border towards the 

entorhinal cortex (EC) (68% SUB). The cluster extended 5 mm in the posterior direction and 6 

mm in the anterior direction. At the most posterior levels the activation was restricted to the 

HF-EC border area, but at more anterior levels the activation shifted towards a more superior 

and lateral location.  
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Cluster H peaked in the center of the left HF head, medially near the border towards the EC 

(65% CA). The cluster extended 2 mm in the posterior direction and 5 mm in the anterior 

direction. The activation was located at a similar medial position across all levels.

Cluster I peaked in lateral corner of the left HF head (99% CA). The cluster extended 4 mm in 

the posterior direction and 2 mm in the anterior direction, and was located at the same lateral 

position across all levels. 

Cluster J: peaked in the posterior part of the left HF body, at a superior and lateral location 

(48% CA). The cluster extended 3 mm in the posterior direction and 1 mm in the anterior 

direction, and was located at a similar position across all levels. 

Cluster K: peaked in the center of the left HF head, at a superior and medial location near the 

border towards amygdala (50% amygdala superficial group). The cluster extended 2 mm in 

the posterior direction and 1 mm in the anterior direction, and was located at a similar position 

across all levels. 
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PATHOPHYSIOLOGICAL STUDIES ON ISOLATED STOMACS. 
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INTERVENTION IN GENERAL PRACTICE. 

152.Katarina Tunòn: ULTRASOUND AND PREDICTION OF GESTATIONAL AGE. 
153.Johannes Soma: INTERACTION BETWEEN THE LEFT VENTRICLE AND THE SYSTEMIC 

ARTERIES. 
154.Arild Aamodt: DEVELOPMENT AND PRE-CLINICAL EVALUATION OF A CUSTOM-

MADE FEMORAL STEM. 
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157.Jolanta Vanagaite Vingen: PHOTOPHOBIA AND PHONOPHOBIA IN PRIMARY 

HEADACHES 
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162.Stein Hallan: IMPLEMENTATION OF MODERN MEDICAL DECISION ANALYSIS INTO 
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164.Ole-Lars Brekke: EFFECTS OF ANTIOXIDANTS AND FATTY ACIDS ON TUMOR 
NECROSIS FACTOR-INDUCED CYTOTOXICITY. 

165.Jan Lundbom: AORTOCORONARY BYPASS SURGERY: CLINICAL ASPECTS, COST 
CONSIDERATIONS AND WORKING ABILITY. 

166.John-Anker Zwart: LUMBAR NERVE ROOT COMPRESSION, BIOCHEMICAL AND 
NEUROPHYSIOLOGICAL ASPECTS. 

167.Geir Falck: HYPEROSMOLALITY AND THE HEART. 
168.Eirik Skogvoll: CARDIAC ARREST Incidence, Intervention and Outcome. 
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CONSEQUENSES 
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181.Pål Richard Romundstad: CANCER INCIDENCE AMONG NORWEGIAN ALUMINIUM 
WORKERS 

182.Henrik Hjorth-Hansen: NOVEL CYTOKINES IN GROWTH CONTROL AND BONE 
DISEASE OF MULTIPLE MYELOMA 

183.Gunnar Morken: SEASONAL VARIATION OF HUMAN MOOD AND BEHAVIOUR 
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185.Geir Bråthen: THE CLASSIFICATION AND CLINICAL DIAGNOSIS OF ALCOHOL-
RELATED SEIZURES 

186.Knut Ivar Aasarød: RENAL INVOLVEMENT IN INFLAMMATORY RHEUMATIC 
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Syndrome  

187.Trude Helen Flo: RESEPTORS INVOLVED IN CELL ACTIVATION BY DEFINED URONIC 
ACID POLYMERS AND BACTERIAL COMPONENTS 

188.Bodil Kavli: HUMAN URACIL-DNA GLYCOSYLASES FROM THE UNG GENE: 
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189.Liv Thommesen: MOLECULAR MECHANISMS INVOLVED IN TNF- AND GASTRIN-
MEDIATED GENE REGULATION 
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TRØNDELAG HEALTH STUDY, 1995-97 

191.Øyvind Hjertner: MULTIPLE MYELOMA: INTERACTIONS BETWEEN MALIGNANT 
PLASMA CELLS AND THE BONE MICROENVIRONMENT 
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ULTRASOUND. FEASIBILITY, CLINICAL VALIDATION AND PHYSIOLOGICAL 
ASPECTS 
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194.Guanglin Cui: FUNCTIONAL ASPECTS OF THE ECL CELL IN RODENTS 
195.Ulrik Wisløff: CARDIAC EFFECTS OF AEROBIC ENDURANCE TRAINING: 
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EMPLOYMENT STATUS, CO-MORBIDITY AND GENDER 

199.Tom Ivar Lund Nilsen: PROSPECTIVE STUDIES OF CANCER RISK IN NORD-
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GROWTH 
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ADOLESCENTS 
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226.Torstein Hole: DOPPLER ECHOCARDIOGRAPHIC EVALUATION OF LEFT 
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227.Vibeke Nossum: THE EFFECT OF VASCULAR BUBBLES ON ENDOTHELIAL FUNCTION 
228.Sigurd Fasting: ROUTINE BASED RECORDING OF ADVERSE EVENTS DURING 
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229.Solfrid Romundstad: EPIDEMIOLOGICAL STUDIES OF MICROALBUMINURIA. THE 

NORD-TRØNDELAG HEALTH STUDY 1995-97 (HUNT 2) 
230.Geir Torheim: PROCESSING OF DYNAMIC DATA SETS IN MAGNETIC RESONANCE 

IMAGING 
231.Catrine Ahlén: SKIN INFECTIONS IN OCCUPATIONAL SATURATION DIVERS IN THE 

NORTH SEA AND THE IMPACT OF THE ENVIRONMENT 
232.Arnulf Langhammer: RESPIRATORY SYMPTOMS, LUNG FUNCTION AND BONE 
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SURGERY AND QUALITY ASSURANCE 
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235.Eivind Witsø: BONE GRAFT AS AN ANTIBIOTIC CARRIER 
236.Anne Mari Sund: DEVELOPMENT OF DEPRESSIVE SYMPTOMS IN EARLY 
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237.Hallvard Lærum: EVALUATION OF ELECTRONIC MEDICAL RECORDS – A CLINICAL 

TASK PERSPECTIVE  
238.Gustav Mikkelsen: ACCESSIBILITY OF INFORMATION IN ELECTRONIC PATIENT 
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PROGENITOR CELLS 
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SPINNING MR SPECTROSCOPY 

243.Per Arne Aas: MACROMOLECULAR MAINTENANCE IN HUMAN CELLS – REPAIR OF 
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246.Reidar Fossmark:  GASTRIC CANCER IN JAPANESE COTTON RATS 
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BREATHING MUSCLES AND THORAX  MOVEMENT IN CLASSICAL SINGING 

255.Marianne Fyhn:  SPATIAL MAPS IN THE HIPPOCAMPUS AND ENTORHINAL CORTEX 
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257.Erik Skaaheim Haug:  INFRARENAL ABDOMINAL  AORTIC ANEURYSMS – 
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CELLS
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262.Ole Johan Kemi:  ON THE CELLULAR BASIS OF AEROBIC FITNESS, INTENSITY-
DEPENDENCE AND TIME-COURSE OF CARDIOMYOCYTE AND ENDOTHELIAL 
ADAPTATIONS TO EXERCISE TRAINING 

263.Eszter Vanky: POLYCYSTIC OVARY SYNDROME – METFORMIN TREATMENT IN 
PREGNANCY

264.Hild Fjærtoft:  EXTENDED STROKE UNIT SERVICE AND EARLY SUPPORTED 
DISCHARGE.  SHORT AND LONG-TERM EFFECTS   

265.Grete Dyb:  POSTTRAUMATIC STRESS REACTIONS IN CHILDREN AND 
ADOLESCENTS 

266.Vidar Fykse: SOMATOSTATIN AND THE STOMACH 
267.Kirsti Berg: OXIDATIVE STRESS AND THE ISCHEMIC HEART:  A STUDY IN PATIENTS 
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268.Björn Inge Gustafsson:  THE SEROTONIN PRODUCING ENTEROCHROMAFFIN CELL, 

AND EFFECTS OF HYPERSEROTONINEMIA ON HEART AND BONE 
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269.Torstein Baade Rø:  EFFECTS OF BONE MORPHOGENETIC PROTEINS, HEPATOCYTE 
GROWTH FACTOR AND INTERLEUKIN-21 IN MULTIPLE MYELOMA 

270.May-Britt Tessem:  METABOLIC EFFECTS OF ULTRAVIOLET RADIATION ON THE 
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272.Therese Standal:  MULTIPLE MYELOMA:  THE INTERPLAY BETWEEN MALIGNANT 
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273.Ingvild Saltvedt:  TREATMENT OF ACUTELY SICK, FRAIL ELDERLY PATIENTS IN A 
GERIATRIC EVALUATION AND MANAGEMENT UNIT – RESULTS FROM A 
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274.Birger Henning Endreseth:  STRATEGIES IN RECTAL CANCER TREATMENT – FOCUS 
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275.Anne Mari Aukan Rokstad:  ALGINATE CAPSULES AS BIOREACTORS FOR CELL 
THERAPY 

276.Mansour Akbari: HUMAN BASE EXCISION REPAIR FOR PRESERVATION OF GENOMIC 
STABILITY 

277.Stein Sundstrøm:  IMPROVING TREATMENT IN PATIENTS WITH LUNG CANCER – 
RESULTS FROM TWO MULITCENTRE RANDOMISED STUDIES 
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ON HEMOSTATIC MECHANISMS, PROPHYLACTIC DRUG TREATMENT AND 
EFFECTS OF AUTOTRANSFUSION 

279.Line Merethe Oldervoll:  PHYSICAL ACTIVITY AND EXERCISE INTERVENTIONS IN 
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280.Boye Welde:  THE SIGNIFICANCE OF ENDURANCE TRAINING, RESISTANCE 
TRAINING AND MOTIVATIONAL STYLES IN ATHLETIC PERFORMANCE AMONG 
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281.Per Olav Vandvik:  IRRITABLE BOWEL SYNDROME IN NORWAY,  STUDIES OF 
PREVALENCE, DIAGNOSIS AND CHARACTERISTICS IN GENERAL PRACTICE AND 
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282.Idar Kirkeby-Garstad:  CLINICAL PHYSIOLOGY OF EARLY MOBILIZATION AFTER 
CARDIAC SURGERY 

283.Linn Getz: SUSTAINABLE AND RESPONSIBLE PREVENTIVE MEDICINE.  
CONCEPTUALISING ETHICAL DILEMMAS ARISING FROM CLINICAL 
IMPLEMENTATION OF ADVANCING MEDICAL TECHNOLOGY  

284.Eva Tegnander: DETECTION OF CONGENITAL HEART DEFECTS  IN A NON-SELECTED 
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285.Kristin Gabestad Nørsett:  GENE EXPRESSION STUDIES IN GASTROINTESTINAL
PATHOPHYSIOLOGY AND NEOPLASIA 
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CARDIOMYOCYTE  ADAPTATIONS 

287.Agneta Johansson:  GENERAL RISK FACTORS FOR GAMBLING PROBLEMS AND THE 
PREVALENCE OF PATHOLOGICAL GAMBLING IN NORWAY  

288.Svein Artur Jensen:  THE PREVALENCE OF SYMPTOMATIC ARTERIAL DISEASE OF 
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289.Charlotte Björk Ingul:  QUANITIFICATION OF REGIONAL MYOCARDIAL FUNCTION 
BY STRAIN RATE AND STRAIN FOR EVALUATION OF CORONARY ARTERY 
DISEASE.  AUTOMATED VERSUS MANUAL ANALYSIS DURING ACUTE 
MYOCARDIAL INFARCTION AND DOBUTAMINE STRESS ECHOCARDIOGRAPHY 

290.Jakob Nakling:  RESULTS AND CONSEQUENCES OF ROUTINE ULTRASOUND 
SCREENING IN PREGNANCY – A GEOGRAPHIC BASED POPULATION STUDY 

291.Anne Engum:  DEPRESSION AND ANXIETY – THEIR RELATIONS TO THYROID 
DYSFUNCTION AND DIABETES IN A LARGE EPIDEMIOLOGICAL STUDY 

292.Ottar Bjerkeset: ANXIETY AND DEPRESSION IN THE GENERAL POPULATION:  RISK 
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293.Jon Olav Drogset:  RESULTS AFTER SURGICAL TREATMENT OF ANTERIOR 
CRUCIATE LIGAMENT INJURIES – A CLINICAL STUDY  

294.Lars Fosse: MECHANICAL BEHAVIOUR OF COMPACTED MORSELLISED BONE – AN 
EXPERIMENTAL IN VITRO STUDY 

295.Gunilla Klensmeden Fosse: MENTAL HEALTH OF PSYCHIATRIC OUTPATIENTS 
BULLIED IN CHILDHOOD 

296.Paul Jarle Mork:  MUSCLE ACTIVITY IN WORK  AND LEISURE AND ITS ASSOCIATION 
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300.May Britt Drugli:  YOUNG CHILDREN TREATED BECAUSE OF ODD/CD:  CONDUCT 
PROBLEMS AND SOCIAL COMPETENCIES IN DAY-CARE AND SCHOOL SETTINGS 

301.Arne Skjold:  MAGNETIC RESONANCE KINETICS OF MANGANESE DIPYRIDOXYL 
DIPHOSPHATE (MnDPDP) IN HUMAN MYOCARDIUM.  STUDIES IN HEALTHY 
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302.Siri Malm:  LEFT VENTRICULAR SYSTOLIC FUNCTION AND MYOCARDIAL 
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ALGORITHMS FOR REAL-TIME ESTIMATION AND VISUALIZATION OF BLOOD 
FLOW VELOCITY 
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METABOLISM
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