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Abstract. In frequency-domain (FD) models of floating wind turbines (FWT), it is common to
regard the interaction between nacelle motions and thrust by means of a constant aerodynamic
damping coefficient. This approach is effective at higher motions frequencies, but does not
consider interactions between nacelle motions and the blade pitch control system. As a result,
the motions and loads at frequencies closer to the controller bandwidth may be underpredicted.
A remedy for this problem is to include the linearized thrust expression in the FD model,
such that the dynamic effects related to control are considered. In this paper, these dynamic
effects are related to frequency-dependent damping and inertia terms. Expressions for damping
and inertia coefficients are obtained with two different methods, and then included in the FD
model. The resulting responses are compared to those obtained with the constant damping
coefficient method, and also with coupled time-domain simulations of a semi-submersible 10
MW FWT. The better performance of the FD model with frequency-dependent inertia and
damping coefficients encourages the adoption of the linearized thrust approach for representing
the interaction between nacelle motions, thrust and control system.

1. Introduction
Frequency-domain (FD) methods can be helpful in the design of floating wind turbines (FWTs),
providing responses for a large number of loading conditions with relatively low computational
time. Previous work has indicated that the response of FWTs in moderate environmental
conditions may be estimated reasonably well using FD models [1, 2, 3]. However, their reliability
depends on an accurate prediction of loads and interactions with linearized models.

An especially interesting interaction takes place between nacelle motions and the rotor thrust.
Fluctuations in the nacelle’s horizontal velocity provoke changes in the flow through the rotor,
leading to oscillations in the rotor speed and thrust. An aerodynamic damping effect results from
this interaction, and is normally included in FD models by means of a constant aerodynamic
damping coefficient. This coefficient may be obtained from the thrust derivative w.r.t. the
relative wind speed [1, 3, 4], or by means of decay simulations of the FWT under different
incident wind speeds [2].

This method is convenient to implement due to its relative simplicity, and is normally adopted
in combination with the frequency-dependent thrust obtained for a fixed wind turbine, installed
on the top of the tower. A disadvantage of this approach is that the interactions of the nacelle
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motions with the blade pitch control system are not considered, an effect that is known to reduce
the damping or even render it negative [5, 6, 7], besides introducing an inertia effect [8]. As a
consequence, the damping effect can be significantly overpredicted at frequencies close to the
controller bandwidth, if the constant coefficient is used.

Control system effects can be included in an FD model by means of linearization of the
thrust and torque. The rotor speed is then included as an additional degree of freedom, and the
blade-pitch controller can be written in terms of the system states [9].

The objective of the present work is to relate the linearized thrust equations to the above-
mentioned inertia and damping effects, providing a visualization of how those effects vary with
wind speed and frequency for a given control system.

The aerodynamic inertia and damping coefficients are calculated both from the linearized
thrust equations and from simulations where the nacelle is forced to oscillate with different
frequencies, under uniform wind. The obtained coefficients are then included in an FD model
of a semi-submersible 10 MW FWT. The responses predicted with the different methods for
obtaining the coefficients are compared to coupled time-domain simulations, where the thrust
is calculated with the blade element momentum (BEM) theory.

Section 2 presents the frequency domain model for the FWT; Section 3 introduces the thrust
linearization procedure and provides formulations for the frequency-dependent aerodynamic
inertia and damping coefficients; the time-domain simulations are explained in Section 4, and
the results are presented in Section 5; final discussions and conclusions are provided in Section 6.

2. Frequency-domain analysis of FWT
The frequency domain model used in the present work consists of three degrees-of-freedom
(DOFs), namely surge, heave, and pitch. The potential-theory hydrodynamic model is the same
as the one adopted in the time-domain simulations, presented in Section 4. Viscous excitation
is neglected, but viscous damping on the platform is added using stochastic linearization of the
drag term in Morison’s equation, where the standard deviation of the velocity along the length
of the columns and pontoons is found using an iteration scheme.

The stiffness matrix includes both hydrostatic restoring and linearized mooring forces. The
mooring stiffness matrix is a function of the mean offset, based on static equilibrium between
mooring forces and mean thrust.

Transfer functions from wind speed to thrust force, FUT (ω), are obtained for each mean wind
speed as the squared root of the ratio between the spectrum of thrust time series, obtained from
simulations with turbulent wind on a fixed turbine, and the incoming wind spectrum. The wind
force vector is then found as

FU (ω) = [FUT (ω) 0 zhubFUT (ω)]> , (1)

where zhub is the hub height above still water level (SWL). Transfer functions from wave and
wind input to platform response, HζX(ω) and HUX(ω) respectively, are expressed as

HζX(ω) = HFX(ω)Fζ(ω), HUX(ω) = HFX(ω)FU (ω) , (2)

where
HFX(ω) =

[
−ω2(M + A(ω)) + iωB(ω) + K

]−1
(3)

is the frequency response function matrix. After solving for the platform motions, the tower
base bending moment response is found by considering dynamic equilibrium.

Using the wind and wave spectra, the response spectrum for an arbitrary response parameter
ξ is then expressed as

Sξ(ω) = |Hζξ(ω)|2Sζ(ω) + |HUξ(ω)|2SU (ω) . (4)
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3. Aerodynamic damping and inertia effects
The FD model described in Section 2 neglects the variations in the thrust caused by the FWT
motions. The interactions between thrust and FWT motions are often represented by a constant
damping coefficient, which is added to the matrix B in equation (3). This approach neglects
the controller action. When the controller is included, its effect results in frequency-dependent
damping and inertia coefficients, as shown further below.

3.1. Thrust linearization without controller
A common way to calculate the aerodynamic damping in FD models [1, 4, 3] is to linearize the
thrust with respect to the relative wind speed at hub height, v, at different mean incoming wind
speeds, Uw, considering no change in the blade pitch angle or rotor speed. Using a first order
Taylor series expansion, the thrust is then expressed as

T = T0 +
∂T

∂v
∆v . (5)

Let the nacelle dynamics be represented by an 1-DOF, 1st-order system:

mẍ+ cẋ+ kx = T . (6)

Uniform, non-turbulent wind is assumed for now. Recalling that v = Uw − ẋ, it is noted that
∆v = v − Uw = −ẋ. Replacing (5) in (6), the damping effect becomes clear:

mẍ+

(
c+

∂T

∂v

)
ẋ+ kx = T0 , (7)

and the coefficient, baer, can be expressed as

baer =
∂T

∂v
. (8)

The damping effect estimated with this method considers the change in the steady-state
thrust for a small perturbation in the uniform wind speed seen by the rotor, while neglecting
the effect of the control system and rotor dynamics. Different coefficients are obtained for
each incident wind velocity, but they are constant with respect to the nacelle frequency of
oscillation. This method is relatively simple to use and normally provides satisfactory results
when the turbine oscillates in a frequency range distant from the controller bandwidth. For
lower frequencies of oscillation, interaction with the control system takes place and the damping
coefficient dependence on frequency becomes more important.

3.2. Thrust linearization including controller
A more comprehensive method, which captures effects from the wind turbine controller, may be
used by including the rotor speed DOF and control system in the FD model, and also linearizing
the thrust with respect to rotor speed, Ω, and blade pitch angle, β:

T = T0 + Tv∆v + TΩ∆Ω + Tβ∆β , (9)

where the index indicates partial derivative w.r.t. the indicated variable, i.e., AB = ∂A
∂B . In order

to find the damping coefficient, Equation (9) must be written in terms of ẋ only. First, the
aerodynamic torque, Q, is also given in its linearized version:

Q = Q0 +Qv∆v +QΩ∆Ω +Qβ∆β , (10)
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In addition, the rotor dynamics are given by

IdΩ̇ = Q−NgE , (11)

where Id is the drivetrain inertia, Ng is the gear ratio and E is the electrical (generator) torque,
here assumed as constant above rated wind speed. In equilibrium, Q0 = NgE, so replacing (10)
in (11):

IdΩ̇ = Qv∆v +QΩ∆Ω +Qβ∆β . (12)

It is assumed that a PI controller commands the blade pitch angle, i.e.,

∆β = Kp∆Ω +Ki

∫
∆Ωdt , (13)

where Kp and Ki are the proportional and integral controller gains. Equations (9) and (12) are

now rewritten replacing ∆β as given in (13), and noting that ∆Ω = φ̇, where φ is the rotor
azimuth angle:

T = T0 − Tvẋ+ (TΩ +KpTβ) φ̇+KiTβφ , (14)

Idφ̈− (QΩ +KpQβ) φ̇−KiQβφ = −Qvẋ . (15)

Assuming harmonic oscillation, Equation (15) can be written in the frequency domain, and the
following transfer function between x(ω) and φ(ω) is obtained:

φ(ω) =
iωQv

Idω2 + (QΩ +KpQβ) iω +KiQβ
x(ω) = C(ω)x(ω) . (16)

The nacelle dynamics (Equation 6) are now written in terms of T as given in (14), and also
expressed in the frequency domain, with φ(ω) as given in (16):−mω2 + iωc+ k + iωTv − [(TΩ +KpTβ) iω +KiTβ]C(ω)︸ ︷︷ ︸

−ω2aaer(ω)+iωbaer(ω)

x(ω) = T0 . (17)

Based on the assumption that T responds harmonically to harmonic oscillations of the nacelle,
the thrust can be written as a combination of terms proportional to the nacelle acceleration and
velocity [8]. This assumption is further discussed in Section 3.3, but an immediate consequence
is the definition of frequency-dependent, aerodynamic inertia and damping coefficients:

aaer(ω) = − 1

ω2
Re {iωTv − [(TΩ +KpTβ) iω +KiTβ]C(ω)} (18)

baer(ω) =
1

ω
Im {iωTv − [(TΩ +KpTβ) iω +KiTβ]C(ω)} (19)

3.3. Forced oscillations
The thrust and torque derivatives in Section 3 can be calculated analytically, based on the BEM
equations, or numerically, using e.g. the central differences method. Both techniques assume
that the thrust and torque respond immediately to changes in v, Ω and β, while in reality
the time constants associated with rotor dynamics, aerodynamics, and control system, can be
relevant when the nacelle moves at frequencies close to the controller bandwidth.

An alternative method to find the aaer(ω) and baer(ω) coefficients is through simulations
of forced nacelle oscillations, with aerodynamics calculated nonlinearly and under influence of
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Figure 1: Thrust response to oscillations of the DTU 10 MW wind turbine, under constant
incident wind speed of 13.0 m/s and period of oscillation of 100.0 s.

the control system. When the turbine oscillates harmonically, the thrust also oscillates nearly
harmonically, but with a phase relative to the nacelle velocity. This can be seen in Figure 1,
where the DTU 10 MW wind turbine is forced to oscillate with period 100.0 s and under constant
incident wind speed of 13.0 m/s. The thrust can then be assumed to be composed of a mean
plus an oscillating component:

T = T0 + Tosc(Uw, ω) . (20)

Writing the nacelle velocity ẋ as

ẋ = v0 cos(ωt) , (21)

the oscillating part of the thrust can then be assumed to be given by [8]

Tosc = f0v0 cos(ωt+ α)

= f0 [v0 cos(ωt) cos(α)− v0 sin(ωt) sin(α)]

= f0 cos(α)ẋ+
f0 sin(α)

ω
ẍ .

(22)

The amplifying factor f0 and the phase α between nacelle velocity and thrust depend on
the dynamic effects mentioned above, and are not straightforward to determine analytically.
However, for a given turbine and control system they vary with the incident wind speed and
frequency of oscillation, while motion amplitude does not seem to have a significant influence.
They can therefore be obtained from forced oscillations covering the ranges of interest for both
parameters. Fast Fourier transforms (FFTs) of the nacelle velocity and thrust are calculated,
and f0 and α can be directly obtained from the ratio between amplitudes or phases of both FFTs
at the period of interest. Formulations for the aerodynamic inertia and damping coefficients are
then directly determined from equation (23):

aaer(Uw, ω) = −f0 sin(α)

ω
, baer(Uw, ω) = −f0 cos(α) , (23)

3.4. Coefficients calculation and comparison
The aerodynamic inertia and damping coefficients were obtained both from the linearized thrust
and the forced oscillations method. For the former case, the thrust and torque derivatives were
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obtained from the linearized BEM equations. For the latter, forced oscillations of the DTU
10 MW wind turbine were performed with a simulator which obtains aerodynamic loads from
AeroDyn [10], updates the blade pitch angle based on the same controller strategy presented
in Section 4, and updates the rotor speed based on the rotor dynamics as in Equation (11).
Oscillation periods varied from 20.0 s to 130.0 s, and uniform wind with the three velocities in
Table 3 was considered. The BEM formulation with dynamic stall is adopted for the AeroDyn
calculations.

The coefficients obtained with both approaches are shown in Figures 2 and 3. In spite of the
oscillatory character of the curves obtained with the oscillation method, the agreement between
both methods looks satisfactory, especially for higher wind velocities. The inertia effect is of
the order of 1% of the mass of typical FWTs, resulting in negligible consequences for the surge
dynamics. The contribution to the moment of inertia in pitch is however considerable, due to
the nacelle height. Important changes in the pitch natural period can then result, as shown
in [8]. The constant damping coefficients as obtained in equation (5) are also plotted in Fig.
3, showing that the discrepancy w.r.t. the frequency-dependent coefficients is larger for lower
frequencies and higher wind velocities.

3.5. The aerodynamic inertia and damping effects on the FWT dynamics
It was already shown that the fluctuations in the aerodynamic thrust resulting from the nacelle
motions may be treated as frequency-dependent inertia and damping effects. The derivation
assumed non-turbulent wind, under the hypothesis that the fluctuations in the apparent wind
flow in the rotor due to turbulence can be decoupled from those caused by the nacelle motions.

Under the same assumption, the fluctuations in the thrust due to nacelle oscillations can now
be added to the FD model presented in Section 2. This is done by noting that, from Equations
(22) and (23), the oscillating component of the thrust can be written as

Tosc = −aaerẍ− baerẋ . (24)

The following aerodynamic and damping matrices, Aaer and Baer, are then defined:

Aaer(ω) =

 aaer(ω) 0 aaer(ω)zhub
0 0 0

aaer(ω)zhub 0 aaer(ω)z2
hub

 , Baer(ω) =

 baer(ω) 0 baer(ω)zhub
0 0 0

baer(ω)zhub 0 baer(ω)z2
hub

 .
(25)

Aaer and Baer are now summed to A and B in equation (3), which includes the effect of nacelle
motion in the FD analysis.

4. Simulations
The platform considered is the OO-Star 10 MW [11], a semi-submersible concept designed for
the LIFES50+ project. The main properties are summarized in Table 1. The potential-theory
hydrodynamic loads are generated with WADAM, and viscosity is added in form of the Morison
drag term. The platform is installed at a water depth of 130.0 m, and the mooring system
consists on a simplified 3-catenary line arrangement, which differs from the original of taut lines
with clump weights.

The DTU 10 MW turbine (Table 2) is installed at the top of the tower, at a height of 118.4 m.
The blade-pitch controller corresponds to the PI formulation of Equation (13), i.e., the power
error contribution of the original controller [12] is not included. The controller gains are tuned
such that its bandwidth is below the pitch natural period, and a gain scheduling strategy corrects
the gains according to the current blade pitch angle.

The time-domain simulations were performed with SIMA, a workbench which allows for
coupled analyses between floating bodies and slender elements [14, 15]. The platform, nacelle
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Figure 2: Aerodynamic inertia coefficients, calculated with the linearized approach or obtained
from the forced oscillations method.

Draft, D (m) 22.0
Total mass, mtot (kg) 2.36× 107

Center of gravity, V CG (m) -7.9
Surge nat. per., T1 (s) 181.8
Pitch nat. per., T5 (s) 31.3

Table 1: Main properties of the OO-Star 10 MW FWT [11].

and hub are modeled as rigid bodies, while the blades, tower and mooring lines are modeled as
flexible structures, with finite elements. The aerodynamics are based on the BEM theory, with
dynamic stall and dynamic wake effects based on Øye’s models [16]. Hub and tip losses are
modeled with the Prandtl factor, and Glauerts correction is applied for high induction factors.
The environmental conditions are listed in Table 3. Turbulent wind was generated with TurbSim
[17], using the IEC Kaimal spectrum with turbulence characteristic B (moderate). A JONSWAP
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Figure 3: Aerodynamic damping coefficients, calculated with the linearized approach (both
constant and frequency-dependent) or obtained from the forced oscillations method.

Rotor radius, R (m) 89.2
Rated rotor speed, Ω0 (rad/s) 1.0
Drivetrain inertia, Id (kg.m2) 1.6× 108

Gear ratio, Ng (-) 50
Rotor-nacelle assemble mass, mRNA (kg) 6.7× 105

Proportional controller gain, Kp (s) 0.1794
Integral controller gain, Ki (-) 0.0165

Table 2: Main properties of the DTU 10MW wind turbine [13]. The controller gains refer to
β = 0◦.

wave spectrum with a γ factor of 3.3 was used to describe the sea state. The simulations lasted
for one hour, which showed to provide a sufficient number of LF oscillations for the analysis.
Only one realization of each condition was considered.
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Uw (m/s) Hs (m) Tp (s)

C1 13.0 2.7 10.3
C2 19.0 4.0 11.1
C3 25.0 5.8 12.1

Table 3: Environmental conditions.

5. Results
Figure 4 shows the frequency-domain pitch response for the three conditions in Table 3, obtained
with time-domain simulations in SIMA; and with the FD model from Section 2, using the
different approaches for including the aerodynamic damping and inertia effects, as presented in
Section 3. When the constant damping coefficient from Equation (8) is adopted, the method
is referred to as FD constant ; with the frequency-dependent inertia and damping coefficients
as given by Equations (18) and (19), the approach is named FD calculated ; and when the
coefficients are obtained from the forced harmonic oscillations, as in Equation (23), the FD
forced identifier is adopted.

The curves indicate that the adoption of a constant damping coefficient overestimates the
damping effect at lower frequencies, resulting in significantly underpredicted resonant response
for frequencies below 0.05 Hz. When frequency-dependent coefficients are adopted, however,
the situation is the opposite: the damping effect is underestimated, resulting in higher response
for lower frequencies. Using the coefficients based on the forced oscillations leads to improved
results in comparison with those obtained from the linearized thrust equations, in terms of
the pitch motion standard deviation (Table 4). All three methods perform equivalently in the
wave-frequency range (0.05-0.15 Hz), where the response is underpredicted due to the absence
of viscous excitation in the FD model.

Similar conclusions can be obtained regarding the tower-base bending moment (Figure 5).
The most remarkable difference in comparison with the plots for the pitch response is for Uw =
13.0 m/s (Figure 5a), which shows a persistent underprediction for all the three FD models
for frequencies above 0.04 Hz. The errors in predicted tower base bending moment, shown in
Table 4, are in general lower than for the pitch motion, since wave-frequency and 3p loads also
influence the tower-base bending moment, and are less affected by the damping dependence of
frequency. The accuracy is satisfactory for calculated and, especially, forced methods.

Figure 6 compares the low-frequency responses in pitch, for Uw = 19.0 m/s, when the inertia
effect is included or disregarded. The FD model with damping coefficient obtained from forced
oscillations is adopted, but only the blue curve includes the inertia coefficient – resulting in a
peak period about 2.5 s longer then when the inertia effect is not considered.

6. Conclusion
A method was developed to illustrate the importance of including the interaction between
the nacelle motions and thrust in the frequency-domain representation of a FWT. The thrust
fluctuations resulting from nacelle motions can be interpreted as frequency-dependent inertia and
damping effects, which challenges the traditional approach of adopting a constant aerodynamic
damping coefficient.

Expressions were derived for the respective coefficients based both on a linearized expression
for the thrust and on forced oscillations of a wind turbine in the time domain. The obtained
coefficients were included in a 3 DOF FD model of the OOstar semi-submersible FWT.
Comparisons were made between the models using a constant aerodynamic damping coefficient,
the frequency-dependent inertia and damping coefficients obtained in two different ways, and
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Figure 4: Frequency-domain platform pitch response – comparison between SIMA simulations
and frequency-domain analyses with different approaches for calculating the aerodynamic inertia
and damping.

time-domain simulations. Both platform pitch motion and tower base bending moment were
analyzed. It was observed that the constant damping coefficient underestimates the responses
in the frequency range of the FWT surge and pitch natural frequencies.

The frequency-dependent coefficients, on the other hand, overestimated the response in the
same frequency range, but are closer to the time-domain predictions. The aerodynamic inertia
was shown to increase the pitch natural period by about 2.5 s, for a mean incident wind speed
of 19.0 m/s. The differences between using coefficients based on the linearized thrust or on the
forced oscillations were not very significant, but a slightly better agreement of the LF responses
with the time-domain simulations was attained with the latter.

The introduction of inertia and damping coefficients was chosen for its didactic interest, but
the adoption of a linearized thrust as in Equation (9) in a FD model is a simpler and equivalent
approach to include the interaction between nacelle motion and thrust, with due consideration
of controller and rotor dynamic effects.

In any case, a better agreement of the LF response should still be pursued. Other linearization
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Condition FD constant (%) FD calculated (%) FD forced (%)
C1 -0.2 +23.7 +21.8
C2 -24.8 +38.0 +20.0
C3 -29.6 +55.0 +30.6

Table 4: Error in pitch standard deviation compared to time domain simulations.
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(a) Uw = 13.0 m/s.
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(b) Uw = 19.0 m/s.
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(c) Uw = 25.0 m/s.

Figure 5: Frequency-domain tower base bending moment – comparison between SIMA
simulations and frequency-domain analyses with different approaches for calculating the
aerodynamic inertia and damping.

methods could be attempted, trying to preserve effects other than those obtained with the partial
derivatives of thrust and torque w.r.t. relative wind velocity, rotor speed and blade-pitch angle.
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Condition FD constant (%) FD calculated (%) FD forced (%)
C1 -7.1 +13.0 +10.7
C2 -29.8 +15.1 +2.9
C3 -33.0 +19.2 +5.3

Table 5: Error in tower base bending moment standard deviation compared to time domain
simulations.
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Figure 6: Pitch response estimated in the frequency domain for Uw = 19.0 m/s, with
aerodynamic damping estimated using the forced oscillations method and with/without
considering the aerodynamic inertia effect.
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