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PREFACE 

The work of this thesis has been carried out at the Department of Circulation and Medical 

Imaging, Faculty of Medicine, Norwegian University of Science and Technology during the 

years 2002-2006. The working hypothesis of the studies was that diverging aerobic capacity, 

either inherited or acquired, correlates with metabolic and cardiovascular adaptations both in 

the sedentary state and in response to exercise.  

 

I. Wisloff U, Najjar SM, Ellingsen O, Haram PM, Swoap S, Al-Share Q, Fernstrom 

M, Rezaei K, Lee SJ, Koch LG, Britton SL. Cardiovascular risk factors emerge 

after artificial selection for low aerobic capacity. Science. 2005:21;307:418-20. 

 

II. Haram PM, Lee SJ, Al-Share’ QY, Bendheim MØ, Pierre S, Kemi OJ, Waldum H, 

Bakke I, McInerney MF, Koch LG, Britton SL, Najjar SM, Wisløff U. Endurance 

training ameliorates the metabolic syndrome in rats artificially selected for low 

aerobic capacity. Submitted. 

 

III. Kemi OJ*, Haram PM*, Wisloff U, Ellingsen Ø. Aerobic fitness is associated with 

cardiomyocyte contractile capacity and endothelial function in exercise training 

and detraining. Circulation. 2004:15;109:2897-904. 

 

IV. Haram PM, Adams V, Kemi OJ, Brubakk AO, Hambrecht R MD, Ellingsen Ø, 

Wisløff U. Time-course of endothelial adaptation following acute and regular 

exercise. In Press, Eur J Cardiovasc Prev Rehabil. 
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DEFINITIONS 

Artificial selection: In a genetically isolated population, random mating is prevented and 

mating is limited to those individuals who exhibit desired characteristics. 

 

Inbreeding: Mating closely related individuals to facilitate the weeding-out of undesired 

characteristics and the fixation of desired traits. 

 

Maximal oxygen uptake:  The highest oxygen uptake the individual can attain during 

exercise engaging large muscle groups dynamically while breathing air at sea level. It is 

probably the best indicator of cardiorespiratory performance. 

 

Endothelial function: This includes several functions of the endothelium, in this thesis it is 

indicated by acetylcholine-induced nitric oxide mediated vasodilation. 

 

Metabolic syndrome: Complex clustering of cardiovascular risk factors defined by the 

International Diabetes Federation as: Central obesity including any two of the following four 

factors: a) raised triglyceride levels or specific treatment for this lipid abnormality, b) 

decreased high-density lipoprotein levels or specific treatment for this lipid abnormality, c) 

raised blood pressure: systolic Bp ≥ 130 mm Hg or diastolic Bp ≥ 85 mm Hg, or treatment for 

previously diagnosed hypertension, d) raised fasting plasma glucose > 100 mg/dL (5.6 

mmol/L) or previously diagnosed type 2 diabetes.   

 

Detraining: Complete withdrawal of physical activity after a prolonged exercise period. 

 

Fractional shortening: The decrease in cardiomyocyte length from end-diastole to end-

systole divided by end-diastolic length; defines the degree of shortening. 

 

Intracellular calcium concentration ([Ca2+]i) transient: The transient increase and decay of 

[Ca2+]I during a contraction-relaxation cycle of the cardiomyocyte; denotes the cytosolic Ca2+ 

changes that induce contraction and relaxation. 
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BACKGROUND 

Exercise and health 

The human genome was selected through natural selection to maximize fitness in the early 

ancestral environment, a time in which physical activity was obligatory for survival. Our 

genome has not changed much the last 100 000 years, and exercise still remains essential for 

optimal gene expression and avoidance of disease24,25,30. Indeed, physical inactivity is now 

established as an independent risk factor for cardiovascular morbidity and mortality, an effect 

that is similar to that of high blood pressure, high levels of blood lipids and smoking 

combined5. The human body is therefore not ideally suited for modern Western lifestyle, 

where inactivity is the norm with a daily energy expenditure corresponding to 38% of what 

our Paleolithic ancestors had24,25,30. An inactive lifestyle will therefore alter gene expression 

and perturb homeostasis in several organ systems towards an un-physiological range and lead 

to complex disease scenarios such as the metabolic syndrome. 

 

The metabolic syndrome 

In 1979, Kannel and McGee92 discovered increased incidence of cardiovascular disease in 

patients with diabetes. Almost a decade later, Reaven151 described the Metabolic Syndrome 

consisting of 3 or more of the following criteria; central obesity, atherogenic dyslipidemia, 

raised blood pressure, insulin resistance or glucose intolerance, prothrombotic state, and 

proinflammatory state. According to the International Diabetes Foundation 

(http://www.idf.org) the new consensus worldwide definition of the metabolic syndrome, for 

a person to be defined as having the metabolic syndrome they must have: central obesity plus 

any two of the following four factors: raised triglyceride level, reduced HDL cholesterol, 

raised blood pressure, raised fasting plasma glucose or previously diagnosed type 2 diabetes. 

The metabolic syndrome is now present in at least 25 % of the US population (American 

Heart Association). The metabolic syndrome is a multifactorial disease caused by interactions 

between multiple genetic and environmental factors, and several studies link impaired aerobic 

metabolism to the pathogenesis of the metabolic syndrome in humans124,141. A limitation in 

studies indicating a cause-effect relationship between the metabolic syndrome and aerobic 

metabolism in humans is that one cannot exclude the possibility that the observed impairment 

in metabolism may be caused by other health behaviours not measured. An animal model 

therefore seems to be the only suitable model to test whether there is a cause-effect 
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relationship between impaired aerobic metabolism and occurrence of the metabolic syndrome. 

At the start of the project, it is not known whether animals selected on the basis of low versus 

high intrinsic exercise performance would also differ in maximal oxygen uptake, 

mitochondrial oxidative pathways, and cardiovascular risk factors linked to the metabolic 

syndrome.  

Aerobic capacity 

Aerobic capacity consists of maximal oxygen uptake (VO2max), anaerobic threshold (Than) and 

work economy217.  

 

Most previous work regards maximal oxygen uptake (VO2max) as the single best indicator of 

an individual’s cardiorespiratory endurance capacity217. Although traditionally related to 

endurance performance such as cross country skiing and running, VO2max has been established 

as a strong predictor of cardiovascular morbidity and mortality127. Improved VO2max can be 

acquired through endurance training and is associated with salutary adaptations in multiple 

organ systems. A determination of VO2max offers a precise measure of the capacity to 

transport and utilize oxygen; that is the functional capacities of the lungs, cardiovascular 

system, and muscle mitochondria combined. At maximal aerobic exercise, the majority of 

evidence demonstrate a VO2max that is supply limited154,155,156,166,167. This appears to be 

evident in highly trained athletes145 and in average fit humans101. Consequently cardiac output 

and more precisely stroke volume, as maximal heart rate is inborn, has a major influence on 

VO2max
125,166,167,200. This conclusion is based on the observation that the capacity of skeletal 

muscle to consume oxygen markedly surpasses the capacity of the heart to supply oxygen. It 

is estimated that only one third of the muscle mass of man can fully utilize the capacity of the 

heart166,167,200. If a larger muscle mass is intensely engaged in the exercise, sympathetic 

vasoconstriction occurs in the arterioles of the exercising limbs to avoid a reduction in blood 

pressure155,156. Blood flow in healthy arteries is therefore indirectly restricted by cardiac 

output, and not by the ability of arteries to dilate. The capacity of the muscle capillary 

network is never reached at maximum exercise14,155,156,200, but a denser capillary network 

exists in endurance athletes. This might  prolong the transit time of erythrocytes to allow for 

increased extraction rates of oxygen and substrate exchange70. At the skeletal muscle level, 

the oxidative capacity of mitochondria could restrict VO2max not only through restrictions in 

the systemic supply of oxygen, but also by limitations in extraction of oxygen, diffusive 

oxygen transport from the muscle capillary to the mitochondrial cytochrome. Approximately 
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98% of the oxygen we metabolize is handled by our mitochondria, and exercise training 

increases mitochondrial density, size, and enzyme activity161. Two important metabolic 

effects of enhanced mitochondrial enzyme activity include 1) increased capacity to oxidize fat 

at a higher rate (thus sparing muscle glycogen and blood glucose) and 2) a decreased lactate 

production during submaximal exercise98,179,197. These muscle adaptations are important in 

explaining the improvement in endurance performance that occurs with training137 since 

metabolic adaptations in skeletal muscle are critical for improving submaximal endurance 

performance. There also exists evidence that untrained humans are demand-limited and 

improvement in VO2max early in the training period is  produced by peripheral factors76,126,200. 

 

Than determines the fraction of VO2max that may be sustained for an extended period of 

time187,217, and represents the highest intensity during dynamic exercise with large muscle 

groups, in which production and clearance of lactic acid are approximately the same during a 

steady rate work condition135,187,217. The factors determining Than are not well known, but 

muscle fiber type distribution, the potential for fat metabolism, and skeletal muscle lactic 

dehydrogenase isoenzyme distribution may be important determinants135,187,217. 

 

Work economy is referred to as the ratio between work intensity and oxygen 

consumption36,78,169. At a given work intensity, oxygen uptake may vary considerably between 

subjects with similar VO2max. This is evident both in highly trained36 and in untrained 

subjects15. In elite endurance athletes with a relatively narrow range in VO2max, work 

economy has been found to differ as much as 20 %182 and to correlate with performance36,78. 

The causes of intra-individual variations in gross oxygen cost of activity at a standard work 

intensity are not well understood, but it seems likely that anatomical traits, mechanical skill, 

neuromuscular skill, and storage of elastic energy are important78,135.  

Endothelial function 

Furchgott and Zawadzki61 discovered the importance of the endothelium, the innermost cell 

layer lining the cardiovascular system, in the regulation of vascular tone. It has since been 

acknowledged as an organ with important autocrine and paracrine functions. A large number 

of vasoconstrictive and vasodilating substances are produced in endothelial cells to act on the 

underlying vascular smooth muscle cells. Nitric oxide (NO), probably the most important 

endothelial-derived relaxing factor, is produced by the endothelial isoform of nitric oxide 

synthase (eNOS). In addition to relaxing vascular smooth muscle, NO counteracts the 
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formation of atherosclerosis through inhibition of leukocyte adhesion and invasion, smooth 

muscle cell proliferation, platelet aggregation, and inflammation43. Abnormalities in one or 

more of the pathways that ultimately regulate the availability of NO (See figure 1) may lead 

to endothelial dysfunction, which is characteristic of cardiovascular disease and is found in 

patients with coronary risk factors including hypertension, hypercholesterolemia, cigarette 

smoking, diabetes mellitus, and obesity. Importantly, endothelial dysfunction, as defined by 

impaired endothelial-dependent vasorelaxation, has been identified as an independent risk 

factor and a strong prognostic marker of long term cardiovascular morbidity and mortality in 

latent and manifest cardiovascular disease56,172. Endothelial dysfunction plays an important 

role in the early pathogenesis of atherosclerosis43 and impaired endothelial function has been 

observed several years ahead of traditional markers of cardiovascular disease43,172. Thus, the 

preservation of endothelial NO-production and bioavailability should be a major therapeutic 

goal.  

Production of NO 

NO is synthesized from l-arginine by eNOS following stimulation by either shear stress or 

endothelial agonists such as bradykinin or acetylcholine. Agonist occupation leads to 

increased endothelial [Ca2+] which activates AMP-activated protein kinase (AMPK) and 

CaM-dependent kinase II (CaMKII) leading to phosphorylation of eNOS at SER-1177. 

Phosphorylation of the same residue can also occur independently of Ca2+ during mechanical 

stimulation with shear stress as a consequence of the sequential activation of 

phosphatidylinositol 3-kinase (PI3K)119 (See figure 1). Furthermore, a complex reaction 

occurs involving the transfer of electrons from nicotinamide-adenine dinucleotide phosphate 

(NADPH), via flavins in the carboxy-terminal reductase domain, to the heme in the amino-

terminal oxygenase domain, where the substrate l-arginine is oxidised to l-citrulline and NO8. 

Besides eNOS there exist two other NO-synthase isoforms; inducible and neuronal; where 

eNOS and the latter exist in the endothelium. NOS functions as a dimer consisting of two 

single monomers, each with a separate C-terminal reductase domain and an N-oxidase domain 

and a calmodulin site responsible for Ca2+-activation.  For appropriate function of the enzyme, 

the monomers are connected depending upon heme and tetrahydrobiopterin (BH4). High 

abundance of BH4 and also the eNOS associated protein heat shock protein 9013,62 (Hsp 90) 

makes the NOS a pure NO-synthesizer, while decreasing availability of BH4 and Hsp 90 

ultimately transforms NOS into a producer of superoxide anions (O2
-)178. 
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Figure 1: Some factors influencing the NO-bioavailability in the endothelium, arrows define 

stimulating pathways, while bars define inhibitory pathways. See text for further details. 

AMPK, AMP-activated protein kinase; CamKII, Calmodulin-dependent protein kinase II; TK, 

tyrosine kinase; HDL, high density lipoprotein; PI3K, phosphatidylinositol 3-kinase; ADMA, 

asymmetric dimethylarginine; SOD, super oxide dismutase; O2
-, superoxide anion; MAPk, 

mitogen activated protein kinase; eNOS, endothelial nitric oxide synthase; AGE, advanced 

glycosylation end products; NO, nitric oxide; GTP, guanosine tri-phosphate; sGC, soluble 

guanosine cyclase; cGMP, cyclic guanylyl mono-phosphate.      
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Regulation of eNOS expression 

Both shear stress and regular exercise have been shown to upregulate eNOS expression, and a 

shear stress responsive increase in eNOS-mRNA in bovine aortic endothelial cells has been 

shown to be dependent upon Ca2+ 210 and G-proteins117. Other stimuli known to upregulate 

eNOS are: hypoxia11, vascular endothelial growth factor81, HMG-CoA reductase inhibitors108, 

and hyperthyroidism35. eNOS can also be downregulated by factors such as TNF-α4, oxidized 

low density lipoprotein22, hypothyreosis35, hypertension39 and by distortions in lipid-

metabolism160,209. Furthermore, partial deletion of the eNOS gene increases susceptibility to 

high-fat diet-mediated arterial hypertension37, while mice with double knock-out of the eNOS 

gene produces a phenotype that mimics the metabolic syndrome including insulin resistance, 

hyperinsulinemia, dyslipidemia, and hypertension38,53. Also caloric restriction increased 

mitochondrial biogenesis in wild type but not eNOS null mice130. This suggests that lower 

abundance of eNOS is a molecular link between cardiovascular and metabolic diseases. The 

cause-effect relationship in this process is not clear, but it has been suggested that perturbation 

of lipid metabolism causes early abnormalities in acetylcholine-dependent relaxation and 

decreased eNOS expression in arteries160,209. 

Oxidative stress and bioavailability of nitric oxide  

Endothelial function is dependent upon the balance of oxidant and antioxidant mechanisms. 

An imbalance in redox state where pro-oxidants overwhelm anti-oxidant capacity results in 

oxidative stress33. Superoxide anions (O2
-) will then decrease the function of eNOS and 

reduce the half-life of NO by increasing the production of peroxynitrite from NO and O2
-. 

This reaction is associated with pathological conditions; while in normal conditions, O2
- is 

quenched by super-oxide dismutase (SOD). Reactive oxygen species (ROS) also regulate 

vascular function by modulating cell growth, apoptosis, migration, inflammation, secretion, 

and extracellular matrix protein production75. Oxidative stress and associated oxidative 

damage are mediators of vascular injury and inflammation in many cardiovascular diseases, 

especially when complicated with hypertension, hyperlipidemia, and diabetes. The major 

source of oxidative stress in the artery wall is NADPH oxidase. In addition, xanthine oxidase, 

uncoupled nitric oxide synthase, and mitochondrial leakage of ROS during oxidative reactions 

can also produce stress. Obesity and the metabolic syndrome is associated with raised 

oxidative stress, and recent studies have revealed that inflammatory and stress-response genes 

are among the most abundantly regulated genes in adipose tissue of obese animals203. 
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Vessels and shear stress 

Blood vessels are different depending upon the task which they perform. From the left 

ventricle, pressure-compliant large conducting arteries rich in elastin, divide into more 

muscular arteries capable of controlling blood flow and pressure. The blood flows into the 

capillaries and from there over in the thin-walled venous system before entering the right 

atrium. The layer closest to the bloodstream, the endothelium, remains largely unchanged 

throughout the cardiovascular system. The endothelium is constantly exposed to 

hemodynamic forces varying in magnitude and direction depending upon the anatomy of the 

blood vessel and of the viscous drag from the blood flowing through it. Forces acting on an 

artery due to blood flow can be divided into two principal vectors. One is perpendicular to the 

wall and the other acts parallel to the wall to create a frictional force which together exert 

shear stress at the surface of the endothelium45,46,131. This is an important physiological 

stimulator of the endothelium, and it is involved in stimulation of NO-production, vascular 

remodelling and blood vessel formation153. Vascular shear stress increases during exercise 

and applying shear stress to cultured endothelial cells have been an important technique in the 

discovery of how exercise-mediated shear stress may affect endothelial cells45,46,153 .  

Sensing of shear stress and intercellular signalling  

The mechanotransduction pathways transforming mechanical shear stress into alterations in 

gene expression are unknown, but many pathways have been proposed45,46. A central 

hypothesis concerns the numerous 50-100 nm invaginations of the endothelial plasma 

membrane called caveolae. Caveolae consist of the governing protein caveolin-1 together 

with phospholipids, sphingolipids, and cholesterol, and may be central in regulating the NO-

production176,177. Proposed functions of caveolae are vesicular transport and contributors to 

cholesterol homeostasis, but in recent years, the “Caveolae signaling hypothesis”168,180 stated 

caveolaes importance in signal transduction, suggesting caveolins serve as oligomeric docking 

sites for organizing and concentrating signalling molecules within caveolae membranes150. 

This is also true for the endothelial isoform of NO-synthase (eNOS) which is bound to and 

inhibited by caveolin-1 in the caveolae. Lessons from the caveolin (-/-) mice52,149 further 

supports this by exhibiting unstable basal vessel tone and vigorous acetylcholine mediated 

NO production which indicates a lack of inhibiting caveolin-1. Chronic shear stress stimulates 

caveolae formation by translocating caveolin-1 from the Golgi-apparatus to the luminal 

plasma membrane29 which leads to enhanced sensitivity to shear stress with an increased 

phosphorylation of eNOS159. Shear stress44,148 is also associated with a rapid upregulation of 

 14



eNOS protein and mRNA. The serine/threonine protein kinase, Akt, has been shown to be up-

regulated in cultured endothelial cells submitted to shear stress, and it works independently of 

an increase in Ca2+ 51. Hambrecht71 found double and triple enhanced expression of eNOS and 

eNOS phosphorylated at Ser1177 (peNOS), respectively, in the left mammary artery of patients 

with atherosclerotic disease who underwent regular exercise. The total expression of Akt was 

not upregulated, but the level of phosphorylated Akt (pAkt) was upregulated by 90 %, and 

there was a close correlation between pAkt and peNOS, accounting for involvement of this 

pathway in exercise. The output of NO is however only 1/3 when exposed to shear stress 

versus agonist mediated production, but the shear stress mediated output is maintained for 

hours versus minutes in the agonist mediated production57. 

Athletes arteries? 

It is accepted that there exists a close link between VO2max, regular endurance training, and 

endothelial function in humans68,71,72. It is widely held that the endothelial benefits from 

exercise are most pronounced in (and perhaps even limited to) subjects with pre-existing 

endothelial dysfunction63. For example, exercise has been shown to improve endothelial 

function in humans and rats with metabolic syndrome12,73 and chronic heart failure83,115. In 

contrast, studies in healthy subjects reveal conflicting data with some showing improved100, 

unaltered184 or even depressed16 endothelial function. Furthermore, it seems that endothelial 

function is well preserved in young, healthy women and men163, and that a high aerobic 

training status does not increase the dilating capacity. Nevertheless, athletes have larger 

diameter arteries compared to untrained counterparts, and thus have a larger functional 

capacity (i.e., blood transporting capacity) of their vessels87,173. A large resting brachial artery 

has been shown to be an independent predictor of significant coronary arterial disease82. 

However in athletes with a high cardiac output, shear stress and endothelial function is 

preserved despite the larger arterial diameter163. This may be an analogue to physiological 

hypertrophy of the athlete’s heart with improved function vs. the pathological hypertrophy 

(i.e. observed in patients with heart failure) with impaired function. Increased arterial 

diameter on the basis of an exaggerated stimulated production of NO in athletes163 can 

suggest that a structural enlargement of the artery has taken place in athletes. The mechanisms 

responsible for mediating vascular structural enlargement are not fully understood, but there is 

strong evidence that NO plays an important part and that shear stress is the trigging factor196.  
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Cardiac function 

 

Athletes heart 

Endurance training is often associated with functional and morphological changes in the heart, 

such as increased left ventricular chamber size, wall thickness, and mass138,143. Furthermore, 

the athletes heart is associated with increased maximal cardiac output with enhancement in 

both the diastolic filling and ventricular ejection rate9,55,186. 

Cardiomyocyte dimension and contractile function 

Since myocardial tissue from trained humans is not easily available, most data on the cellular 

level are from experimental models. Several animal models of endurance exercise have been 

shown to mimic important aspects of human physiology and could help determine the cellular 

and molecular mechanisms of training induced improvements of cardiac function96,97,205,206,207. 

In a rat model of endurance training, increased dimensions and improved left ventricle 

contraction and relaxation can be observed in isolated cardiomyocytes. This demonstrates that 

improved intrinsic (i.e., without influence of the neuro-hormonal system) cardiomyocyte 

function can contribute to both the systolic and diastolic improvements that occur in the 

athletes heart. 

Training-induced elongation of left ventricular cardiomyocytes occurs in the absence of 

changes in sarcomere length123 and the changes in cardiac contractile function induced by 

endurance training are due in part to cardiomyocyte length-independent changes in contractile 

function. Several lines of evidence support this notion. Schaible and Scheuer170,171 

demonstrated that treadmill training increased end-diastolic volume, stroke work, ejection 

fraction, and midwall fractional shortening in the absence of changes in end-diastolic wall 

stress in perfused working rat hearts. Furthermore, isometric force development by rat left 

ventricular papillary muscle maintained at optimal length is increased by endurance 

training122,192,194. Recently Diffee and Chung48 showed that training increased the velocity of 

loaded shortening and increased peak power output in the single permeabilized cardiomyocyte 

preparation. At slow stimulation frequencies (0.067-0.2 Hz) and low temperatures (23-29° C) 

there is little evidence of training-induced improvement in the shortening characteristics of 

cardiomyocytes111,123. However, training-induced adaptations, such as increased degree of 

fractional shortening and reduced re-lengthening time, become more evident as both the 

stimulation frequency and temperatures approach in vivo conditions205,214,215. For the rat this 

is 300 to 600 beats per minute at 37° C. There seems to be a progressive increase in  
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Figure 2. The main mechanisms that contribute to the excitation-contraction coupling and 

removal of Ca2+ from the cytosol after contraction. VSRM, voltage sensitive release 

mechanism; ATP, adenosine triphosphate; NCX, sodium-Ca2+ exchanger; SERCA, 

sarcoplasmatic reticulum Ca2+ ATPase; ICa
2+

,L, inward Ca2+ flux via L-type channels; PLB, 

phospholamban; RyR, ryanodine receptor. For details, see text. Modified from Bers18. 

 

cardiomyocyte contractility in response to regular exercise training until a plateau of training 

effects has been reached. This coincides with the maximal increase in VO2max and 

cardiomyocyte hypertrophy205,206. 

Intracellular calcium transients 

In cardiac muscle, the force of contraction depends on the peak intracellular calcium (Ca2+) 

concentration during systole, the sarcomere length, and the responsiveness of the 

myofilaments to Ca2+ 18. Impairment of Ca2+ handling is a major cause of both contractile 

dysfunction and arrhythmias in pathophysiological conditions21,144. A brief increase in 

cytoplasmic Ca2+ concentration allows Ca2+ to bind to the myofilament protein troponin C, 

which activates the myofilaments. This is often called the Ca2+ transient and this transduces 

the chemical signal and energy (ATP) into cardiomyocyte shortening in a Ca2+-dependent 

manner. During the action potential Ca2+ ions enter the cells mainly via voltage-activated Ca2+ 
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channels (dihydropyridine receptors or L-type Ca2+ channels) as an inward Ca2+ current (i 

Ca2+). 

 

L-type Ca2+ channels are located primarily at sarcolemmal-sarcoplasmatic reticulum (SR) 

junctions where the SR Ca2+ release channels (the ryanodine receptors) exist. In addition, the 

sodium (Na+) - Ca2+  exchanger contributes to Ca2+  influx and efflux with a stoichiometry of 

three Na+ to one Ca2+  that produce an ionic current either inward (forward mode: during high 

intracellular Ca2+  concentrations) or outward (reverse mode: during positive membrane 

potentials and high intracellular Na+). The Ca2+  entering the cardiomyocyte from the outside 

contributes directly only to a minor degree to myofilament activation, and its main effect is to 

stimulate Ca2+  release from the intracellular pool of Ca2+: the SR. This is normally termed 

Ca2+ -induced Ca2+ release. For relaxation and filling of the heart to occur, the intracellular 

Ca2+ concentration must decline. This requires Ca2+ transport out of the cytosol by four 

pathways involving SR Ca2+-ATPase (SERCA2), sarcolemmal Na+-Ca2+ exchange, 

sarcolemmal Ca2+-ATPase, and mitochondrial Ca2+ uniport18. The SERCA2 and Na+-Ca2+ 

exchange are most important quantitatively. In rat ventricular cardiomyocytes, the SERCA2 

removes about 92% of the activator Ca2+ from the cytosol, whereas the Na+-Ca2+ exchange 

removes 7%, with only about 1% each for the sarcolemmal Ca2+-ATPase and mitochondrial 

Ca2+ uniporter. In heart failure the expression of SERCA2 is normally reduced and Na+-Ca2+ 

exchange increased, and both changes tend to reduce the Ca2+ content in SR, limiting SR Ca2+ 

release, which may be a central cause of systolic deficit in heart failure18,144.  

 

Cardiomyocyte shortening in healthy endurance-trained rats is associated with lower peak 

systolic and diastolic intracellular Ca2+ 123,,206,207 and reduced time for the Ca2+  decay from 

systole123,206,207. Gene analysis demonstrates a marked up-regulation of SERCA2 and Na+-

Ca2+ exchanger in trained hearts188,189,193,206,207. Chronically elevated Na+-Ca2+ exchanger 

levels are known to reduce systolic Ca2+ 190 and may contribute to the reduced peak systolic 

Ca2+  observed in cardiomyocytes from endurance-trained rats. Furthermore, increased Ca2+ 

uptake capacity of the SR due to increased SERCA2 expression could account for the 

increased rate of decay of the Ca2+ transient observed after regular exercise training206.  

Myofilament calcium sensitivity 

An additional mechanism for the increased contractile force in the cardiomyocyte is that 

exercise training may result in an increase in the sensitivity of the myofilaments to activation 
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by Ca2+. An increase in Ca2+ sensitivity would result in a greater level of isometric tension 

generation at the same intracellular Ca2+ level. In healthy rats, treadmill running induces an 

increased cardiomyocyte sensitivity to Ca2+, both in intact cardiomyocytes123,207, and in 

permeabilized cardiomyocytes48,50,207, with more pronounced changes in endocardial 

compared to epicardial cardimyocytes49. There are also indications that permeabilized 

cardiomyocytes from trained hearts are less affected by low pH at constant Ca2+ than 

sedentary counterparts206,207. As previously reported2, low pH decreases and alkaline pH 

increases myofilament shortening in cardiomyocytes from sedentary and trained 

cardiomyocytes. In an analogous way to intracellular Ca2+, this indicates that a component of 

the enhanced cardiomyocyte contractility could be attributed to the more alkaline intracellular 

pH in the trained cardiomyocytes at high stimulus frequencies.     
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AIMS OF THE STUDY 

1. To determine  

a) whether rats selected on the basis of low versus high intrinsic exercise 

performance also differ in maximal oxygen uptake, mitochondrial oxidative 

pathways, and cardiovascular risk factors linked to the metabolic syndrome 

To compare 

b) the cardiomyocyte and endothelial function in rats with intrinsic high- and low 

aerobic capacity 

 

2. To determine whether endurance training can ameliorate the cardiovascular risk 

profile in rats with inborn metabolic syndrome 

 

3. To determine  

a) the time-dependent adaptation and decay of maximal oxygen uptake, 

cardiomyocyte contractility and endothelial function in response to training 

and de-training 

 

b) in detail the time-dependent increase and decay of endothelial function 

following a single bout of exercise 

 

c) in-depth analysis of the time course of endothelial function following cessation 

of an extended exercise period 
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METHODOLOGICAL CONSIDERATIONS 

Animal models 

To study cellular and molecular adaptations to exercise we used rodent models as delineated 

in each paper; all studies were approved by the Norwegian Council for Animal Research and 

conformed to international guidelines for animal research. For the two first papers (I and II), 

we used rats selectively bred for high or low aerobic capacity, and they were subsequently 

termed high capacity or low capacity runners, i.e. HCR and LCR, respectively. It has been 

shown that aerobic phenotype is a complement of genes that determine intrinsic exercise 

capacity27 and an additional set of genes that dictate the adaptational response to exercise26,28. 

Based on this theoretical background, artificial selection for high or low intrinsic aerobic 

treadmill-running capacity started in 1996. To provide enough variance for intrinsic aerobic 

capacity, the genetically heterogeneous N:NIH stock of rats was used as the founder 

population (n = 168)102. Selection for low and high capacity was based upon distance run to 

exhaustion on a motorized treadmill using a velocity-ramped running protocol. The 13 lowest 

and 13 highest capacity rats of each sex were selected from the founder population and 

randomly paired for mating. For subsequent generations, one female and one male offspring 

were selected from each family and became parents for the next generation. At each 

generation, within-family selection was practiced using 13 families for both the low and high 

lines. A rotational breeding paradigm maintained the coefficient of inbreeding at less than 1% 

per generation102. After 11 generations, HCR and LCR differed by 347 % in distance to 

exhaustion, and after 15 generations by 500%. For the two last papers (paper III and IV), we 

used female Sprague-Dawley rats, which is well characterized from previous studies of 

similar nature in our laboratory96,97,116,205,206,207. 

Exercise training and testing of maximal oxygen uptake 

Based upon experience in our laboratory, as well as clinical trials, it appears evident that 

cardiovascular adaptations rely on the exercise intensity during long-term regular training 

programs. A high aerobic intensity is required for optimal outcome of the training program, 

and a key feature to improve VO2max is to improve the cardiovascular capacity to supply 

oxygen and metabolites to working skeletal muscles167. After it was demonstrated that stroke 

volume in well-trained athletes increases continuously up to maximal levels at VO2max, the 

importance of high exercise intensity became evident89,216. Indeed, recent clinical trials show 

that high aerobic intensity is necessary and more beneficial than low-to-moderate intensity to 
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gain full effect of a training program even in untrained subjects1,112,162. Thus, to maximize 

VO2max, we chose the custom-made treadmill running model as our preferred model of 

exercise205. All exercise sessions throughout the investigations were carried out at 85-90% of 

VO2max, interspersed by short periods of milder intensity. Training protocols are detailed in 

each paper. Moreover, uphill treadmill running is a full-body exercise that taxes the 

cardiovascular system and oxygen uptake system substantially, while concordantly reducing 

the running speed, which otherwise would have the potential to restrict the animal from 

reaching satisfactory exercise-intensity during each exercise-bout and VO2max during the tests. 

The physiological adaptations to this exercise model largely mimic those found in humans, 

i.e. physiological hypertrophy (of the athlete’s heart) and improved function in the 

heart9,55,138,143,186, as well as increased VO2max
163. To maintain the desired relative exercise 

intensity, VO2max was measured at the start of every training week, and running speed was 

adjusted accordingly. Thus, a close control of training intensity was achieved. Running 

economy, i.e. oxygen uptake at a given submaximal running velocity was measured after the 

warm-up, but before testing VO2max, to avoid accumulation of excess lactic acid. The test 

protocols are detailed in a paper from our laboratory205. 

Ex-vivo endothelial  experiments 

In intact animals, many external factors that we are not able to control affect the homeostasis 

of the vascular system. Hormonal and nervous influence, the rate of flow through the vessel, 

and blood pressure are examples of this. Therefore, to assess the intrinsic properties of the 

vascular system, we used an isolated organ bath model. This is a standard method used to 

study local pharmacological mechanisms and signaling pathways in isolated vessels and 

allows the exclusion of any influence from higher regulatory systems. We investigated the 

mechanical properties related to increase/decrease of vessel diameter in segments 2-4 mm 

long, by mounting the segments onto two L-shaped stainless steel holders. Segments were 

unavoidably stretched into a non-circular cross-section whose morphology is non-existent in 

vivo. The holders were connected to a force-displacement transducer and during experimental 

procedures the vessel diameter was held constant, while the active force was measured 

isometrically. Optimal resting tension had been determined in preliminary experiments in our 

laboratory. More detailed procedures concerning organ bath experiments are detailed 

specifically in each paper.  
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Cardiomyocytes in experimental studies  

The use of isolated cells has been established in many lines of basic cardiological research. In 

electrophysiology, ionic currents can be characterized more accurately than in intact tissue 

where extracellular resistance pathways can complicate measurements. The transport of 

metabolites across the sarcolemma can be studied independently of the influence of other 

types of cells and transport barriers. However, most reports about metabolism deal with 

quiescent cells, which obviously have a very low metabolic rate, provided they are intact, and 

their oxidative phosphorylation is not uncoupled. Thus, their application as a model of a 

working heart appears to be restricted. However, using electrical stimulation, the metabolic 

activity of the cells can be gradually enhanced up to those values observed in beating hearts. 

In this case, the measurement of mechanical parameters during the response of myocytes to 

the electrical stimulation is of interest. The advantages of using isolated living cells from heart 

tissue instead of whole tissue is that the cells are fully differentiated and morphologically 

similar to cells in intact heart but lack interstitial tissue and other cell types which can 

complicate measurements in intact tissues41. Isolated cardiomyocytes can be studied in a well-

defined environment without interaction of unwanted neurohormonal factors seen in the intact 

heart. Using isolated cells also has the advantage that experiments can often be performed 

with several parallel measurements from the same animal, which is more effective and 

reduces the number of animals that have to be sacrificed. This model also has some 

disadvantages. The cells are separated from contact with other cells and the intercellular 

matrix, and they are quiescent, as there is no contact with any pacemaker tissue. The cells 

could also be modified during the cell isolation procedure, which may affect the physiological 

reliability of the isolated cell model. In order to reduce this problem we always 

simultaneously isolated cells from trained and untrained groups each day.  

 

Collection of blood pressure data 

It is accepted that endothelial dysfunction is associated with hypertension. Both acute and 

chronic exercise in hypertensive individuals is known to reduce blood pressure by 5-7 mm 

Hg74. In paper IV, we discovered that the acute effects of one bout of exercise upon the 

endothelium was evident 24 hours post-exercise, but non-significant after 48 hours. To avoid 

this effect of acute exercise upon the endothelium and possibly also on the blood pressure, 

blood pressures were measured 48 hours after the last exercise session in the last week of the 

training period in paper II. We used a non-invasive tail-cuff monitor to measure blood 
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pressure in paper II. In paper I, blood-pressure was measured invasively in the abdominal 

aorta from chronically implanted transducers.  

Anesthesia  

The normal routine for sacrificing animals was diethyl ether anesthesia. It provides a quick 

state of comatose, but with a stable, maintained cardiac function. Moreover, it removes the 

stress associated with subcutaneous or intraperitoneal injections of anesthesia.  

Electron microscopy and detection of caveolae 

Electron microscopy is a reliable and common used method used for the detection of 

caveolae. Glutaraldehyde fixation was used to optimize the ultrastructure of the sections, 

caveolin-1 staining was not performed, something which would confirm the presence of 

caveolae. Instead, distinct flask-shaped vesicles (50-100 nm in diameter) were counted as 

caveolae, which also has been done by others174. 

Choice of arteries 

In paper I and III, we used the common carotid artery, while in paper II and IV we used the 

abdominal aorta inferior to the branching of the renal arteries. Both vessels were used because 

of their clinical relevance in the systemic circulation and their susceptibility to atherosclerosis. 

For the further investigations we have planned in our lab, more organ specific vessels like the 

popliteal artery supplying the soleus muscle, and the coronary arteries supplying the heart will 

be used as the current equipment did not support vessels of this size. 

Allometric Scaling 

Since all of the studies involved a long-term follow-up, it had to be considered that body mass 

might influence the results. Thus, allometric dimensional scaling was undertaken to 

appropriately normalize VO2max, and cardiac and skeletal muscle weights to body size. 

Traditionally, one usually relates data to blank body mass; however, it is now well established 

that this may be misleading42 and underestimates VO2max in heavier subjects183. We scaled 

VO2max to body mass raised to the power of 0.75, which is in line with empirical studies. 

Gene Expression 

Gene expression may be measured at the level of specific mRNA or protein. Depending on 

the gene and stimuli studied, mRNA and protein might be differentially or similarly regulated. 

Changes in mRNA expression are detected more proximally after inducing the stimuli and 
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probably reflect the response to stimuli more directly than protein expression. Presumably the 

amount of protein is more representative of functional effects of gene expression. 

Quantification of mRNA 

De novo synthesis of proteins starts with the transcription of the DNA gene to mRNA. The 

information from mRNA is then translated into protein by the ribosomal machinery in the 

cytoplasm. In general, the number of mRNA copies correlates with the amount of translated 

protein. The quantification of mRNA is thus an indirect measure of de novo protein synthesis 

in the tissue. Amplification of mRNA molecules to study gene expression was achieved by a 

method that combines two sequential enzymatic steps: the synthesis of DNA from the RNA 

template by reverse transcriptase followed by quantitative PCR using a heat stabile DNA 

polymerase.  

Immunoblotting 

Blotting analysis provides a means to identify a molecular species by size without having to 

physically isolate it. The principle of the technique is simple: The mixture of molecules to be 

analyzed is subjected to gel electrophoresis, which separates different species of molecules by 

their size, and to some extent, their electrical charge. The gel matrix routinely used in blotting 

is formed in a slab, with wells at one end, into which the molecular samples are loaded. The 

gel is submerged in a buffer and subjected to an electrical current. The molecules migrate 

across the gel in the electrical field. Since both DNA and RNA carry a net negative charge, 

nucleic acid samples migrate toward the positive pole of the electrical field. The size 

limitations of the matrix hinder larger molecules that eventually segregate according to size. 

Once the electrophoretic separation is complete, the gel is removed from the buffer and nylon 

filter is placed over it; dry absorbent material is placed over the nylon. With a weight placed 

on the top, the buffer in the gel is blotted up into the absorbent material, carrying with it the 

separated molecules, which come to rest on the filter. The filter is then treated to fix the 

molecules permanently on its surface, producing a mirror image of the original configuration 

of molecules in the gel. The filter is subjected to probing with a tagged molecule that 

recognizes the particular molecule of interest. In blotting analysis of proteins (Western Blots) 

as used in paper I and II, the probe consists of a tagged antibody that recognizes the desired 

protein. Once the probing process is complete, the nylon filter is washed to remove excess 

probe and is analyzed, usually by autoradiography. The molecule identified in this way is 
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visualized as a band, reflecting the shape of the well in the lane where it was originally 

loaded. 

Statistical procedures 

 As each study operates with a limited number of animals per group, assuming distributional 

assumptions were not reasonable. Thus, data were analyzed with non-parametric procedures 

and complemented with one-way and repeated measures ANOVA where appropriate, as 

outlined in each paper. We investigated which factors best corresponded to integrative 

adaptations, in our case VO2max and endothelial function, as this could ultimately indicate 

which factor targets govern the overall clinical outcome. Such attempts were performed by 

simple and multiple linear regression analyses, which analyze how one variable is influenced 

by several others working in concert, as described in the respective papers. Although this 

approach singled out several features, one should not discard those that did not reach 

statistical significance, as they likely still are important for the biology. The backward 

stepwise model was chosen to include all independent variables and then remove insignificant 

ones one at a time until a final model with only significant cellular contributors was achieved. 

However, no differences occurred when using the forward stepwise model. 
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RESULTS AND DISCUSSION 

This thesis demonstrates that the level of VO2max, whether inherited or acquired, is closely 

related to cellular structure and function in the cardiovascular system. Furthermore, it 

documents that endurance training improves cardiovascular health even in individuals with 

genetically derived metabolic syndrome.  

Inherited maximal oxygen uptake and cardiovascular risk profile 

A specific aim of the present study was to determine whether rats selected on the basis of low 

versus high intrinsic exercise performance also differed in maximal oxygen uptake, 

mitochondrial oxidative pathways, and cardiovascular risk factors linked to the metabolic 

syndrome. After eleven generations of selective breeding based upon aerobic treadmill 

running, we obtained contrasting rat lines of Low Capacity Runners (LCR) and High Capacity 

Runners (HCR). HCR were superior to the LCR for distance run to exhaustion (347%) and 

VO2max (60%). LCR demonstrated a cluster of risk factors for cardiovascular disease; higher 

body mass, visceral adiposity, blood pressure, insulin, glucose, free fatty acids, and 

triglycerides.  HCR were higher for economy of running, five measures of heart function, 

adaptation to exercise, and nitric oxide-induced vascular dilation. The low aerobic capacity in 

LCR was associated with decreased amounts of transcription factors required for 

mitochondrial biogenesis and in the amounts of oxidative enzymes in skeletal muscle. 

Impairment of mitochondrial function may link reduced fitness to cardiovascular and 

metabolic disease. Although several lines of evidence have demonstrated strong associations 

between physical fitness and major cardiovascular risk factors127, our experiments clearly 

indicate that low aerobic capacity constitutes a physiological basis which predisposes subjects 

to clinical manifestations of disease such as the metabolic syndrome (Paper I).  

Intrinsic maximal oxygen uptake 

A central hypothesis of the present work was that diverging aerobic capacity represents a 

continuum between health and disease. Untrained female LCR rats of generation 11 had 

VO2max levels of approximately 45 mL · kg-0.75 · min-1 (Paper I and II) similar to that observed 

in rats with post-infarction heart failure206. Furthermore, their HCR counterparts had a supra-

normal VO2max of ~ 70 mL · kg-0.75 · min-1 whilst VO2max of normal Sprague Dawley rats was 

~ 60 mL · kg-0.75 · min-1 (paper III and IV).  Although LCR males and females weighed 39 % 

and 24 % more than HCR males and females, respectively, multiple regression analysis 
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revealed that body weight did not account for more than 7% and 14-20 % of the variations in 

distance run in females and males (paper I).  

Previous work in HCR/LCR rats, at generation 7, showed a 12 % (p < 0.05) difference in 

VO2max between the two strains. Although a significantly smaller stroke volume was found in 

the LCR at hypoxic, but not normoxic conditions, the major determinant of endurance 

capacity was found to be a higher capacity of  oxygen transfer at the tissue level79 in line with 

increased capillary density, citrate synthase, and beta-hydroxyacyl-CoA dehydrogenase in 

skeletal muscle of HCR. These data suggest that most of the genetic adaptations for improved 

oxygen utilization in HCR are due to “peripheral factors” in the skeletal muscle and not in 

differences in heart or lung function85. These findings are consistent with increased proteins 

important for mitochondrial function in soleus muscle of HCR (paper I and II) and the fact 

that VO2max in untrained individuals is mainly limited by “peripheral factors”, whereas in 

trained individuals, there is a supply limitation of oxygen from the heart166. However, using 

HCR/LCR rats from generation 11 (paper I), we also found substantial differences in 

cardiomyocyte morphology, contractility, and Ca2+-handling, as well as differences in 

endothelial function between HCR and LCR, which are all major determinants of 

cardiovascular health and VO2max. Reduced cardiac and endothelial function might also be 

responsible for the reduced VO2max seen in LCR. 

Exercise-induced improvements in VO2max

A specific aim of the present thesis was to test whether genetically derived metabolic 

syndrome and low VO2max could be ameliorated. We subjected HCR/LCR rats to a training 

regimen that has been shown to improve VO2max by 37-55% in normal rats (paper III and IV 

and 205,207) and 38% in rats with post-infarction heart failure206. In response to endurance 

training, VO2max increased by 43 % and 44 % in HCR and by 38 % and 46 % in LCR in paper 

I and II, respectively. Importantly, in LCR, endurance training improved the mitochondrial 

biogenesis, indicated by a 3-fold increase of PGC-1α in the soleus muscle (paper II) along 

with salutary changes in cardiomyocyte morphology and function, as well as in endothelial 

function (discussed below). In contrast to most studies58,65,170,171 we found that exercise 

training induced a substantial increase in VO2max. This likely results from the high aerobic 

intensity of the training regimen where VO2max increased on average 10 % per week until it 

levelled off at weeks 5-6. Differences in training response reported in the literature are 

probably due to different training regimens used and/or insufficient control of relative 

exercise intensity. The load required to produce a training effect has to increase as the 
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performance improves in the course of training217. The training load should, therefore, be set 

relative to the level of fitness of the individual. Christensen32 demonstrated, in humans, the 

need for a gradual increase in training load with improved performance, in the case of the 

effect on heart rate, as early as in 1931. He observed that regular endurance training at a given 

exercise rate gradually lowered the heart rate and that after a period of training at a higher 

load, a standard submaximal work load could then be performed with even lower heart rate. 

The following general principle of training is apparent in a number of parameters, among 

them VO2max: After adaptation to a given work load is reached, the absolute exercise intensity 

required  to achieve further improvement, has to be increased217. A similar training regimen as 

used in the present thesis has been applied to patients with established cardiovascular 

disease162,208 and in patients with metabolic syndrome195. Rognmo et al162 determined the 

effect of moderate- and high-intensity aerobic interval training in patients with coronary 

artery disease (CAD) upon peak oxygen uptake, where they equated training volume so that 

only exercise-intensity differed between the exercise-groups (i.e. the two groups had similar 

energy expenditure at each exercise session). They found that high intensity interval training 

for CAD patients was twice as effective in improving VO2max as compared to the CAD 

patients that trained with moderate intensity. Similar results were found in patients with post-

infarction heart failure exercising with intervals at 90-95% of their peak heart rate208 as well 

as in patients with the metabolic syndrome195. Thus, it seems like this type of interval training 

is also highly effective for improving VO2max in humans with cardiovascular disease. 

Interestingly, the level of VO2max rapidly decreased when rats stopped the exercise program, 

losing half of its exercise-induced increase in VO2max in 2 weeks. This indicates that the 

substantial improvements in VO2max in rats over several weeks are quickly lost when 

subjected to an inactive life-style. The number of exercise sessions necessary to maintain 

VO2max levels is uncertain, but cutting down from 6 to 2 sessions per week is not sufficient to 

maintain VO2max
80. Future studies should determine the amount and intensity required to 

maintain the gain in VO2max achieved after high intensity interval training.  

Plasma metabolites, adipokines, and insulin action 

In paper I, we found that male LCR rats were insulin resistant compared to the HCR rats, 

demonstrated by a 131 % (p < 0.002) higher level of insulin and 20 % (p < 0.0007) higher 

fasting glucose levels. C-peptide levels were normal in LCR rats, indicating that insulin 

secretion was preserved. The C-peptide/insulin ratio, however, was reduced in the LCR rats, 

indicating decreased insulin clearance. Furthermore, consistent with the notion that female 
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rats are not as likely to develop diabetes as their male counterparts113, fasting blood glucose 

levels were similar in untrained female HCR and LCR (paper II) and were not changed by 

exercise. However, oral glucose challenge increased blood glucose level by 17% (p < 0.05) in 

untrained, but not trained LCR, suggesting glucose intolerance in sedentary LCR females.  

 

Insulin action was reduced in female LCR liver and adipose tissue but not in soleus muscle, as 

assessed by the ability of insulin to induce tyrosine phosphorylation (pTyr) in the insulin 

receptor’s β-subunit (IRβ) (paper II). Endurance training increased, but did not completely 

restore insulin receptor phosphorylation and signalling in the liver and fat of LCR, suggesting 

persistent insulin resistance in these tissues. This was supported by persistently elevated levels 

of fatty acid synthase (FAS) in liver and adipose tissue, and of fatty acid transport protein 

(FATP-1) in adipose tissue, as insulin promotes the storage of substrates in adipose tissue, 

liver, and muscle by stimulating lipogenesis, protein, and glycogen synthesis and inhibiting 

lipolysis, glycogenolysis, and protein breakdown165. The slight increase in insulin action was 

associated with a modest reduction in the plasma triglyceride level of LCR rats, which could 

be related to the insignificant effect of exercise on hepatic carcinoembryonic antigen-related 

cell adhesion molecule (CEACAM1) levels40,128. In contrast, endurance training markedly 

reduced plasma FFAs in LCR by 63 % and fully restored FFA levels to that of sedentary 

HCR. Likewise, exercise also normalized visceral adiposity in LCR to HCR levels, unlike in 

sedentary LCR which have a 4-fold (p < 0.01) increase in visceral adiposity compared to 

HCR. This is consistent with the decreased FFA supply from the less developed adipose 

tissue and normal FFA uptake into soleus muscle, as indicated by intact insulin receptor 

phosphorylation and normal FATP-1 level in this tissue. 

 

Visceral adiposity also contributes to the pathogenesis of the metabolic syndrome via 

increased production and secretion of adipokines and inflammatory factors175, such as leptin, 

TNF-α, fatty acids, adiponectins, and angiotensinogen. In paper II, we investigated the level 

of TNF-α, amongst other effects which will be discussed later, increased TNF-α has been 

found to have adverse effect on insulin action84. The adipose tissue exhibited higher mRNA 

levels of TNF-α (by ~ 4- to 5-fold) in sedentary LCR than found in HCR. Whereas endurance 

training reduced TNF-α mRNA in HCR by ~3-fold, it did not significantly reduce TNF-α 

mRNA levels in LCR. Because of the negative effect of TNF-α on insulin action, it is possible 

that this contributes to sustained insulin resistance in the adipose tissue in addition to 

endothelial dysfunction in the LCR.  
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Endothelial Function 

Functional adaptations 

Individuals with endothelial dysfunction have an impaired ability to carry out maximal 

exercise, in that VO2max is reduced by at least 20% compared with that in control subjects of 

similar age and physical activity level133,152. In contrast, highly trained endurance athletes may 

have VO2max and cardiac output more than 80 mL · kg · min-1 and 40 L ⋅ min , respectively, 

and this challenges the arteries transporting the blood to the active skeletal muscles . These 

observations suggest that arterial dimension and endothelial function may play an important 

role in determining an individual’s exercise capacity. 

-1

217

 

Endothelial function was increased by daily exercise in close concert with improvements in 

cardiac function and VO2max both in HCR/LCR rats and in normal Sprague Dawley rats 

(papers I-IV). The regular increase in shear stress exerted by increased cardiac output during 

each exercise bout is thought to be the main mediator of improved endothelial function63. 

Interestingly, we showed that a single bout of exercise was followed by a brief period of 

reduced endothelial function (figure 3, panel A). Improvement was present, however, 12-24 

hours after exertion, followed by a rapid decrease reaching baseline values 48-hours post-

exercise.  The reduced endothelial function following one bout of exercise was prevented by 

incubating the vessels with the superoxide scavenger superoxide dismutase (SOD), suggesting 

that oxidative radicals produced during strenuous exercise decrease the half life of NO and 

therefore the bioavailability of NO immediately after exercise. Chronic exercise induced a 

more pronounced improvement in endothelial function, which might be due to a stronger and 

more efficient eNOS-NO-cGMP pathway, as discussed later (figure 1), endothelial function 

was reduced to baseline levels by a week of inactivity (figure 3, panel B) (paper IV). 

Although detraining for one month has been shown to decrease endothelial function in 

humans with recent myocardial infarctions199, detraining athletes for one week had no effect 

upon endothelial function64. 

 

Exercise-induced improvement in endothelial function is mainly due to increased NO-

availability47,71,72. We confirmed this in trained healthy rats and in rats diverging in inherited 

VO2max, by showing that the exercise-induced improvement in acetylcholine-mediated 

vasodilation was inhibited by L-NAME, which is in line with previous work71,72,110,209. In the 

carotid artery segments used in paper I and III, we saw an increase in the magnitude of relaxation 
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in the exercised rats and in the HCR vs. LCR rats, respectively, in line with other studies12. This 

was, however, not evident in the abdominal aorta of the corresponding rats in paper II and IV, 

and contrasts with previous studies47. These discrepancies may be due to differences of eNOS 

expression in different parts of the arterial tree110,111. Furthermore, the response to exogenous NO 

induced similar vasorelaxations and maximal dilations in vessels from all groups in the current 

thesis, in line with most studies of healthy subjects as well as in patients with cardiovascular 

disease41,71,72 indicating intact sensitivity of smooth muscle to NO.  However, increased 

sensitivity of smooth muscle to NO has been reported to be enhanced in coronary arteries of 

ultradistance runners77 and in rats exercised for 22 weeks12. The reason for these differences may 

be due to different exercise regimens, as an increase in vascular smooth muscle sensitivity has 

only been reported after prolonged exercise periods12,77. 

Exercise intensity and endothelial function 

It has been suggested that it is necessary to maintain a high exercise-intensity in order to 

enhance endothelial function in healthy humans. Whereas, in persons with endothelial 

dysfunction, a lower intensity exercise regime may be satisfactory63. In the present thesis, we 

used a relatively high aerobic exercise-intensity, which has been shown to have detrimental 

effect upon endothelial function in some studies67 but positive effects in others71,72,97. Paper 

IV indicates that this may be a matter of when the measurements are being done in relation to 

the last exercise bout. We observed a biphasic response in endothelial function after both 

acute and chronic exercise. Interestingly, we have recently shown in humans with the 

metabolic syndrome that a single bout of high intensity interval training, as used in paper IV, 

but not moderate-intensity exercise, induces improvement in flow-mediated endothelial 

function that lasts up to a week195 (figure 3, panel C). The fact that a single bout of exercise is 

able to initiate a substantially improved endothelium-dependent vasodilatation may change 

the way we look upon exercise as a tool in prevention and rehabilitation of cardiovascular 

disease. The knowledge that the benefits of exercise start after one bout of exercise can be 

very motivating for individuals starting a rehabilitation program and also for the physicians 

recommending it. Furthermore, the data suggest that even in highly trained individuals it is 

not possible to “store” exercise-induced improvements in endothelial function for a long 

period of time, as a week of inactivity is enough to abolish the effect of 6 weeks of endurance 

training. Thus, regular exercise is necessary for long term preservation of endothelial 

function. Future studies should determine the optimal intensity and frequency necessary for 

 32



improved endothelial function, both in rats for in-depth study of the cellular and molecular 

mechanisms and in humans for clinical relevance.  
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Figure 3. Endothelial function determined by acetylcholine induced vasodilation in rat (panel 

A and B) and by flow mediated dilation in humans (panel C and D). After one bout of exercise 

in rat (panel A) a transient decrease was followed by a rapid increase in endothelial function 

also evident in humans (panel C). Chronic high intensity exercise in rat (panel B) and humans 

(panel D) also showed increased absolute relaxation. 

 

Regulation of eNOS-content and expression 

In rats with low inherited VO2max (LCR), arterial eNOS expression was markedly decreased, 

in line with the impaired NO-mediated vasorelaxation. Although exercise improved 

endothelial function in LCR up to the level of sedentary HCR, the eNOS expression was not 

up-regulated to the same extent. This strongly suggests that exercise promoted 

countermeasures (as discussed later) that restored endothelial function rather than reversing a 
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primary defect in eNOS of LCR. Failure to increase eNOS levels is consistent with the notion 

that exercise does not always increase eNOS levels103, and that when it does, it exerts its 

effect in conjunction with restoration of lipid metabolism209. Endurance training did not fully 

restore triglyceride levels, and whether this underlies the failure of exercise to restore eNOS 

levels remains to be determined. One might also speculate that one or more shear stress 

responsive elements responsible for the transcription of the eNOS sequence are 

dysfunctional44 and that the eNOS mRNA was unstable in the LCR. Additionally, as we 

measured the endothelial function in the distal part of the abdominal aorta, we measured the 

eNOS level in the proximal abdominal aorta, and we cannot exclude the possibility that this 

may be the cause of the mismatch between vasorelaxation and eNOS content since the level 

of eNOS is known to vary in the vascular system110. However, we do believe that this is 

unlikely since the distance between the segments of the abdominal aorta used for functional 

and molecular measurements were overlapping and the samples used for western blotting 

were pooled. 

 

Hsp 90 was down-regulated in LCR as compared to HCR, but exercise restored it up to the 

levels of HCR, in line with improvements in endothelial function. Hsp 90 has a positive role 

in the regulation of signal tranduction with eNOS13,62. Hsp 90 binds directly to eNOS, 

augmenting NO production by inducing conformational adaptation of eNOS that renders it 

more readily phosphorylated by Akt59. Decreased Hsp 90 is on the other hand associated with 

a shift from NO to O2
- and hydrogen peroxide production146. However, other possible 

molecular improvements that upregulate the bioavailability of NO after a single bout or long-

term exercise are numerous. Long-term as well as one bout of exercise can upregulate the 

antioxidant defence, thus increasing the production and half life of NO60. Interestingly, the 

level of tetrahydrobiopterin, a protein that makes eNOS a NO producer instead of a O2
- 

producer, was elevated after one bout of exhaustive exercise121. Also, augmentation of 

endothelial function following exercise training was associated with increased L-arginine 

transport in human heart failure134. 

  

Caveola density and caveolin-1 

Regulation of NO production by shear stress is proposed to act through mechanotransducers 

such as integrins, ion channels, G proteins, and caveolae176,177. Activation of eNOS is a 

multifactorial process involving a balance of stimulatory and inhibitory protein/protein 
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interactions and phosphorylations in caveolae membrane compartments. eNOS is sequestered 

in these caveolae membrane compartments with agonist receptors such as acetylcholine-

receptor, Ca2+ players, and signalling proteins10,66,69,104,120,176. Disruption of the caveola 

system profoundly impairs acetylcholine mediated relaxation52,149. Disturbances of the 

caveolae system have also been linked to the metabolic paradigm in vascular diseases such as 

atherosclerosis, leading to a failure of acetylcholine-mediated vasorelaxation similar to the 

one we reported in LCR22,41,176,177. Since decreased VO2max is closely linked to decreased 

cardiac output and therefore also decreased shear stress45,46,217, we hypothesized that 

decreased VO2max would be associated with less shear stress responsive elements, such as 

caveolae. Consistently, we observed a decrease in the density of caveolae in LCR along with a 

2-fold decrease in caveolin-1 (paper II). Exposing cultured endothelial cells to shear stress has 

been shown to increase the density of caveolae as well as the level of eNOS and NO29,159. 

Thus, we hypothesized that the arterial shear stress developed during exercise, would increase 

the caveolae density along with improvements in endothelial function. In accordance with 

this, exercise induced an increase in caveolae density along with an increase in caveolin-1, 

indicating that this pathway was a key element in the exercise-induced improvement of 

endothelial function in LCR.  

 

A low level of caveolin-1 in aorta was associated with a relative endothelial dysfunction that 

was reversed by regular exercise training. Interestingly, caveolin-1 inhibits eNOS, which is 

clearly seen in the vigorous NO-mediated relaxation of acetylcholine stimulated arterial 

segments of Caveolin-1 (-/-) mice52,149. Previous work have shown no effect of exercise or 

chronic heart failure on the expression of caveolin-1 in aortic tissue209, but an increase after 

administrating a high fat diet191, in experiments involving  aortacaval shunts106 and exposing 

shear stress on endothelial cell cultures29,159. Since the augmentation of caveolin-1 was 

associated with an increased density of caveolae and improved endothelial function, one can 

speculate that the sequestration of eNOS in caveolae together with the muscarinic cholinergic 

receptor and the other members of its regulatory pathway may be the critical point necessary 

to restore the response to acetylcholine as the dissociation of caveolin-1 and eNOS is 

augmented during agonist mediated increase in Ca2+- concentration176,177. 

Metabolic distortions and endothelial function 

From earlier work we know that distortions of lipid metabolism, either primary160,209 or 

secondary to diabetes12, induce early perturbation of acetylcholine-dependant relaxation and 
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decrease eNOS expression in arteries. Although we did not measure cholesterol in our work, 

we know that oxidized low density lipoprotein (ox-LDL) decreases the level of eNOS114 and 

it has been shown that LDL decreases the level of eNOS mRNA and protein in a 

concentration dependent manner198. In LCR, elevation in plasma triglyceride and free fatty 

acids (FFA) levels occurred in conjunction with endothelial dysfunction at an early age (paper 

I), supporting the hypothesis that this might cause decreased eNOS. Furthermore, the adipose 

derived cytokine TNF-α has detrimental actions upon the endothelium158 and was up-

regulated in adipose tissue of LCR.  TNF-α has previously been shown to downregulate 

eNOS mRNA, protein, and activity in bovine and human arterial endothelial cells4,107 along 

with destabilization of eNOS mRNA212. The failure to downregulate this adipokine by means 

of exercise, might cause the eNOS levels to remain at a low level (paper II). Interestingly, 

partial and full deletion of the eNOS gene increases susceptibility for high-fat diet-mediated 

arterial hypertension37 and a phenotype of the metabolic syndrome38,53, respectively. This 

suggests that a lower abundance of eNOS can be a molecular link between cardiovascular and 

metabolic disease, which is also consistent with the relative cardiovascular and metabolic 

distortions in untrained LCR as compared to HCR, where the eNOS level was 1/5 of HCR. 

However, whether the downregulation of eNOS is constitutive or due to transcriptional or 

posttranscriptional alterations, remains to be determined. Furthermore, early impairment of 

endothelial function is associated with only posttranslational changes of eNOS activity91, and 

the eNOS level has been found to be downregulated in clinically relevant human 

atherosclerosis95, indicating that the LCR may have progressed further into atherosclerosis, as 

compared to HCR. This is further supported by the fact that PPARγ, which is highly 

expressed in atherosclerotic lesions157, was more evident in the endothelium of LCR. Exercise 

training did not change the immunoreactivity for PPARγ in the carotid artery of either strain 

of rats. This suggests that LCR are predisposed to atherosclerosis and this risk is not 

modifiable by 8 weeks of endurance exercise.    

 

Hyperglycemia can induce superoxide anion generation in endothelial cells185,211 that can lead 

to decreases in eNOS expression and activity, eventually reducing the production and half-life 

of NO. This might be the case for the male rats (paper I), but the lack of overt basal 

hyperglycemia in the female rats (paper II) suggests that the modest changes in blood glucose 

were unlikely to explain the alterations of endothelial function. However, hyperglycemia can 

be ameliorated by exercise217, along with increased levels of SOD, a protein which will 

quench reactive oxygen species and increase the half life of NO75. 
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Insulin’s ability to vasodilate is well known, but whether this is initiated in the endothelium or 

smooth muscle, remains unclear34. Even though insulin levels were increased 2-fold (paper I) 

in LCR rats and insulin resistance was evident (paper II), they had hypertension and relative 

endothelial dysfunction compared to HCR rats. An imbalance between the pressor 

(sympathetic nerve stimulation, antinatriuresis, vascular hypertrophy) and vasodilator actions 

of insulin has been proposed as a link between insulin resistance and hypertension. According 

to this hypothesis there is a resistance to the actions of insulin on glucose uptake and 

vasodilation, but not to its pressor activities7. Although insulin-resistance was only marginally 

improved by exercise, the mean arterial blood pressure decreased 10 mmHg. However, this 

reduction in blood pressure can be explained by the improved endothelial function which 

results in decreased total peripheral resistance and afterload72. 

 

Cardiac function 

Evidence of the Athlete’s Heart 

The athlete’s heart is a hypertrophied heart with an increase in left ventricle volumes and 

enhanced pumping capacity. A high level of both intrinsic and acquired level of VO2max was 

associated with the athlete’s heart. Left ventricular weights scaled appropriately to body mass 

were 19 % higher in HCR vs. LCR (paper I). In both HCR and LCR, endurance exercise 

increased left ventricular weights and cardiomyocyte length significantly, but the increase is 

significantly more in HCR than in LCR. In normal Sprague Dawley rats, endurance training 

induced increases in left ventricular mass, cardiomyocyte length, and width (paper III). It is 

apparent from the present study and others123 that longitudinal cardiomyocyte growth is 

sufficient to account for the effect of training on myocardial mass and provides a cellular 

mechanism to explain the eccentric ventricular hypertrophy that is often elicited by programs 

of aerobic exercise in humans and animal models of exercise. In figure 4, the relationship 

between VO2max and left ventricular hypertrophy has an exponential form. This fits with 

Wagner’s hypothesis that untrained subjects are demand-limited and that improvement in 

VO2max early in a training period is due to peripheral factors, whereas fit subjects seems to be 

supply limited, i.e. most improvement in VO2max is therefore due to increased maximal 

cardiac output. In healthy subjects183, 8 weeks of endurance training improved VO2max by 18 

%, which was associated with increased stroke volume and enhanced contractility. Detraining 

athletes for 12 weeks however, led to a 20 % decrease in VO2max along with decrease in stroke 

volume and left ventricular end diastolic dimensions118. We demonstrated a close correlation 
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between physiological hypertrophy and contractile function in isolated cardiomyocytes (paper 

I and III) (figure 5). Cessation of exercise led to a decrease in heart weights, reaching 

sedentary values after 2 to 4 weeks of inactivity. Despite this, cell-length remained 

significantly above that observed in controls after 4 week of inactivity, and this was the 

measure that was most closely correlated with the changes in VO2max  (paper III). Although no 

human data exist on exercised cardiomyocytes, significant reduction in cavity size and 

normalization of wall thickness has also been observed in detrained athletes139, suggesting 

that the athlete’s heart is also sensitive to training/detraining. 
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Figure 4. Relationship between increases in VO2max (%) and left ventricular hypertrophy 

(%). Data are presented as mean ± SD from 100 rats. LCR; low capacity runners, HCR; high 

capacity runners. Data are from paper I and previous studies in our laboratory116,205. 

 

During the last 10-15 years, detailed studies of transcriptional, translational, and post-

translational regulation have characterized a host of molecular mechanisms and signalling 

pathways associated with cardiomyocyte growth. A detailed description of these molecular 

mechanisms is beyond the scope of this work and is described thoroughly elsewhere86.  

Cardiomyocyte contractility  

The level of VO2max was closely related to cardiomyocyte contractile function. 

Cardiomyocytes from rats with a high VO2max, both intrinsic and acquired, showed a greater 

degree of fractional shortening and had shorter relengthening time compared to those with a 

low VO2max. These data are in line with Moore et al123  and previous studies in our 

laboratory204,205 showing an increased amplitude of shortening in cardiomyocytes from trained 
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animals, but differs with those of Laughlin111 reporting no effect of training. Differences in 

training protocol, stimulation frequencies, and temperature used when stimulating the 

cardiomyocytes might explain these contrasting results.  
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Figure 5. Time dependent increase in cardiomyocyte length and maximal extent of shortening 

in cardiomyocytes isolated from endurance trained and sedentary rats. Each data point 

represents mean ± SD of 60 cells, 9 ± 3 in each rat (n=6). In each cell data were calculated 

as the mean of 10 consecutive contractions after stabilization at 7 Hz. T; trained, HCR; high 

capacity runner, LCR; low capacity runner. Data are from paper I and previous studies in 

our laboratory116,205.  

 

Previously it has been shown that training-induced elongation of left ventricular 

cardiomyocytes occurs in the absence of changes in sarcomere length123. Also, it appears that 

the changes in contractile function produced by endurance training are due in part to 

cardiomyocyte length-independent changes in contractile function. Several lines of evidence 

support this assumption. Schaible et al171 demonstrated that endurance training elicited 

increases in end-diastolic volume, stroke work, ejection fraction, and mid-wall fractional 

shortening in the absence of changes in end-diastolic wall stress in perfused working rat 

hearts. Additionally, isometric force development by rat left ventricular papillary muscle is 

increased by endurance training193. Despite that, cell length remained significantly above what 

was observed in controls after 4 week of inactivity. Exercise-induced improvement in 

cardiomyocyte shortening regressed completely within 2 to 4 weeks of detraining (paper III). 
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Cardiomyocyte calcium handling  

In line with increased rate of cardiomyocyte shortening and re-lengthening, we found an 

increased rate of Ca2+ release in systole and Ca2+ removal in diastole in trained normal 

Sprague Dawley rats (paper III). However, despite increased fractional shortening in normal 

healthy Sprague Dawley rats, the Ca2+ amplitude remained unchanged. These data suggest 

that training induced an increase in the Ca2+ sensitivity of the contractile element. Previously, 

it was shown that the increased Ca2+ sensitivity can be attributed to a higher intracellular pH 

observed at physiological stimulation frequencies206,207. Furthermore, permeabilized cells 

from trained rats shorten to a greater extent than sedentary cardiomyocytes in the presence of 

a constant buffered pH. These results indicate that the contractile proteins of the 

cardiomyocytes from trained rats have an increased intrinsic Ca2+ sensitivity compared to 

sedentary cardiomyocytes. The cellular basis for these changes is not known, but multiple 

biochemical alterations of the contractile proteins, including changes in the expression of 

troponin I and T isoforms, and increased alpha- myosin heavy chain expression 6,90,202. 

Furthermore, Diffee et al48,49 reports increased Ca2+ sensitivity in conjunction with increased 

expression of atrial myosin-light chain-1. Atrial myosin-light chain-1 has previously been 

shown to increase in human cardiac hypertrophy and has been associated with increased Ca2+ 

sensitivity to tension and increased power output.  

 

A somewhat different pattern of Ca2+ handling was observed in isolated left ventricular 

cardiomyocytes from HCR and LCR rats. Intrinsically high VO2max was associated with a 

similar adaptation in Ca2+ kinetics (time to peak and decay of Ca2+) as in trained normal rats. 

HCR had a lowering of the diastolic and an increased systolic Ca2+; thus HCR had an 

increased Ca2+ amplitude and more Ca2+ available for contractile work compared to that 

observed in cardiomyocytes from LCR rats. Furthermore, in this study (paper I), the increased 

cardiomyocyte shortening in both trained HCR and LCR was associated with a lowering of 

peak systolic and diastolic Ca2+. Lower peak systolic Ca2+ transients have been reported 

earlier by Moore et al123 and Wisløff et al206,207, but not by others111. The reduction in peak 

systolic Ca2+ concentration in trained cardiomyocytes could be due to: (i) reduced Ca2+ 

released into cytosol via sarcolemma and SR; (ii) dilution of released Ca2+ into the sarcoplasm 

due to increased average cardiomyocyte volume; (iii) increased intracellular Ca2+ buffering 

capacity. The first two possibilities are unlikely since reduced Ca2+ influx or diluted cytosolic 

calcium concentration ([Ca2+]) would reduce the Ca2+ binding to myofilaments and reduce 

contractility. The final possibility is feasible since only a small fraction of Ca2+ that is 
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released into and removed from the sarcoplasm during an excitation-contraction coupling 

cycle exists as free Ca2+ 181. This adaptation to training is consistent with lower diastolic and 

systolic [Ca2+] in trained cardiomyocytes. Tibbits et al192,193 have demonstrated that Ca2+ 

binding sites increased by about 65 % in papillary muscle from trained rats. Penpargkul et 

al140 reported enhanced Ca2+-binding by cardiac SR from trained rats. Lower diastolic [Ca2+] 

in trained cardiomyocytes could also result from enhanced sarcolemma ATP-dependent Ca2+ 

extrusion142 and/or mitochondrial metabolism20, thus effectively lowering the set point for 

Ca2+ regulation31 in trained cardiomyocytes. Changes in myofilament Ca2+ affinity can 

dramatically affect amplitude and time course of the Ca2+ transient.  The cardiotonic agent 

sulmazole increases myofilament Ca2+ binding affinity and peak myocardial force 

development, reduces peak systolic Ca2+ 23, and increases Ca2+ transient decay. Similarly, 

intracellular alkalosis increases cardiomyocyte shortening by increasing myofilament Ca2+ 

sensitivity. The accompanying Ca2+ transient is smaller in amplitude and shorter in duration3. 

We previously showed that trained cardiomyocytes have a significantly less acidic 

intracellular pH at high stimulus rates (>2 Hz)207. It is possible that the lower systolic [Ca2+] 

after training is due to higher intracellular pH. However, this explanation is insufficient since 

intracellular pH is comparable below 2 Hz, yet trained cardiomyocytes shorten to a greater 

extent207. Without data on intracellular Ca2+ buffering capacities or Ca2+ flux, free [Ca2+] 

cannot be directly related to the amount of Ca2+ released into the cytosol. Ca2+-transient time 

courses were back to baseline values within 2 to 4 weeks of detraining and explain the 

regression of cardiomyocyte shortening in the same time period (paper III). 

 

Although not measured in the present studies it is fair to speculate that the increased rate of 

Ca2+ removal can be explained by increased expression of SERCA2 as observed in previous 

studies in rats in our laboratory206. Thus, increased Ca2+ uptake capacity of the SR caused by 

increased SERCA2 expression could account for the increased rate of decay of the Ca2+ 

transient. In line with this, Ellingsen et al54 demonstrated that differences in contractility and 

relaxation between exercise-trained and untrained hearts were significantly reduced by 

selective protein kinase inhibition. This is consistent with the notion that exercise-induced 

activation of Akt enhances cardiomyocyte contractility and relaxation by phosphorylation of 

proteins involved in Ca2+ handling, either directly or via interaction with other protein 

kinases.  Exactly how this happens has not been fully investigated; compelling evidence 

includes increased channel function or phosphorylation in the presence of similar myocardial 

protein levels of L-type Ca2+ channels and ryanodine receptors, respectively98,162. Cardiac 
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specific over-expression of nuclear targeted Akt increased Ser-16 phosphorylation of 

phospholamban, corresponding to a larger phosphorylation of PKA, which also has Ser-16 as 

a target162.  
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MAIN CONCLUSIONS 

1. Diverging aerobic capacity, either inherited or acquired, correlates with improved 

metabolic risk profile and beneficial cardiovascular adaptations, both in the sedentary 

state and in response to exercise.  

 

2. Selection for low versus high intrinsic aerobic capacity generated a different load of 

metabolic and cardiovascular risk factors constituting the metabolic syndrome. Our 

data clearly indicate that low aerobic capacity constitutes the physiological basis 

which predisposes the subject to clinical manifestations of disease such as the 

metabolic syndrome. 

 

3. The current studies demonstrate that even in rats with inherited low aerobic capacity 

and metabolic syndrome, endurance training reduced cardiovascular risks insofar as it 

restored cardiomyocyte function, mitochondrial biogenesis in skeletal muscle, 

endothelial dysfunction, and visceral adiposity. However, it failed to reverse 

hypertriglyceridemia and lipogenesis in liver and fat tissue. 

 

4. Cardiovascular adaptation to acute and regular exercise is highly dynamic. Upon 

detraining, most of the exercise-induced gain in VO2max and cardiomyocyte function 

acquired over 8-12 weeks is lost within 4 weeks, whereas improvement in endothelial 

function was lost after a week of detraining. Furthermore, a single bout of exercise 

improved endothelial function for about 2 days with peak effect after 24 hours. 
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