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Funksjonell genomforskning og hjertesvikt: 
Fra teknologi til fysiologi 
 

Hovedmålet for prosjektet var å identifisere molekylære mekanismer assosiert med 
økning av hjertestørrelse (hypertrofi) som følge av sykdom. Dette ble oppnådd ved 
blant annet å utvikle, etablere og benytte DNA mikromatriseteknologi og tilhørende 
dataanalysemetoder. Mikromatriseanalyser gjør det i prinsippet mulig å måle 
mengden mRNA (genutrykk) for alle genene i et genom (en organismes totale 
arvemasse) samtidig, i ett enkelt forsøk. 
Hjerteprøver fra pasienter med hjertesvikt på grunn av koronar hjerte sykdom 
(blokkering av kransarterie som blant annet gir hjerteinfarkt) og sykdom i selve 
hjertemuskelen (kardiomyopati) ble undersøkt. Mikromatriseresultatene viste 
sykdomsspesifikke mønster, i hovedsak knyttet til stoffskifteprosesser, nedbryting og 
regulering av signalmolekyler. Det ble videre utviklet klassifikatorer (et sett med 
regler), basert på genuttrykks data fra mikromatriseanalysene. Klassifikatorene ble så 
brukt for å kunne forutsi om en ”ukjent” prøve kom fra en pasient med koronar hjerte 
sykdom eller fra en pasient med kardiomyopati. Disse forsøkene viser at i fremtiden 
vil slike metoder og teknologi muligens kunne bli brukt ved diagnostikk av 
hjertesykdom. I eksperimentelle rottemodeller, ble det så identifisert hittil ukjente og 
allerede kjente molekylære mekanismer assosiert med hjertehypertrofi indusert ved 
trening og hypertrofi indusert ved koronar hjertesykdom. Resultatene viste blant annet 
at ved sykdomsindusert hypertrofi blir gener assosiert med fettsyrestoffskiftet i 
hovedsak nedregulert. Dette skjer imidlertid ikke ved treningsindusert hypertrofi, noe 
som ser ut til å være en viktig forskjell mellom disse typene hypertrofirespons. 
Treningsindusert hypertrofi ble videre assosiert med mindre endringer på 
genuttrykksnivå, enn ved hva som ble observert ved koronar hjertesykdom. Dette 
indikerer at regulering på andre nivåer enn transkripsjon og genregulering, for 
eksempel fosforylering på protein nivå, kan være en viktig faktor ved treningsindusert 
hypertrofi. En av delstudiene viste at H+/K+ ATPase (protonpumpe) er uttrykt og 
regulert på mRNA og protein nivå i både hjerteceller og hjertevev. Studier av levende 
hjerteceller indikerte videre at H+/K+ ATPase kan stå for opp mot 25% av 
kaliumopptaket over cellemembranen. Dette indikerer at proton pumpen kan være en 
viktig mekanisme for pH- og kaliumregulering. 
En viktig del av prosjektet var utvikling og bruk av programmet GeneTools, et ”alt i 
ett annoteringsverktøy”. GeneTools består av informasjon fra eksterne databaser 
(blant annet Entrez, Gene Ontology og SwissProt) samt at brukeren kan legge til og 
lagre egen definert informasjon. Videre inneholder GeneTools verktøyet eGOn, som 
tilbyr statistiske tester for å identifisere over/underrepresentasjon av sett/klasser med 
gener basert på informasjon om deres biologiske funksjon. Programmet er allerede 
blitt meget populært (>2000 brukere fra >50 land) på grunn av sin funksjonalitet og 
enkelt brukergrensesnitt. 
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Summary 
 

Genome wide gene expression in cardiac disease is incompletely characterized. The main 

purpose of this project was to increase insight into molecular mechanisms of myocardial 

hypertrophy and heart failure in experimental models and human disease. We aimed to 

establish and use microarray technology and bioinformatics tools to obtain these results. 

Finally, we sought to relate gene/protein expression to function in vitro, by functional studies 

in isolated cardiac myocytes. 

Microarray technology and methods of data analysis were established which enabled detection 

of differentially expressed genes. Combining gene expression data and functional annotations 

yielded a biologically meaningful analysis which identified potentially important molecular 

mechanisms of end-stage heart disease and physiological hypertrophy. Gene expression 

classifiers were developed to distinguish between myocardial samples from end-stage heart 

failure, originating from either coronary artery disease or dilated cardiomypathy. Gene-class 

testing analysis indicated aetiology-specific patterns in coronary artery disease and dilated 

cardiomypathy, primarily related to genes involved in catabolism and regulation of protein 

kinase activity. Serial cardiac-specific gene expression was studied during the development of 

hypertrophy in congestive heart failure and exercise training. Our results suggest that one of 

the main molecular differences could be down-regulation of fatty acid metabolism genes, 

which was observed in pathological hypertrophy but not in exercise-induced hypertrophy. 

Congestive heart failure was associated with more comprehensive changes in gene expression 

than exercise training. This indicates that post-transcriptional and post-translational regulation 

may be important in physiological hypertrophy. All gene/protein annotations and gene-class 

analyses were generated by GeneTools, a program that was developed in our group during the 

project as an “all in one” annotation tool. 

In isolated rat ventricular cardiomyocytes, we showed that H+/K+-adenosine triphosphatase 

was expressed and regulated both at the transcript and protein level. Functional in vitro studies 

indicated that the H+/K+-ATPase may account for up to about 25% of the K+-uptake across the 

ventricular sarcolemma. 
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1. Introduction 
 

1.1 Cardiovascular disease 

Heart failure is a common end stage of cardiovascular disease and a leading cause of death 

worldwide [1]. However, in the recent years the “omics” technologies have resulted in new 

knowledge in cellular and molecular biology and have improved the understanding of the 

mechanisms of the disease and the possibility to design highly specific efficient drugs and 

other treatment strategies. In this way detailed knowledge of the basic mechanisms of heart 

failure has been and will be of vital importance and an important field of intensive research. 

 

1.1.1 Heart failure pathophysiology 

When a person is diagnosed with heart failure (HF), it does not mean the heart has stopped 

working, but rather that it is not working as efficiently as it should [2]. HF may occur 

suddenly, or it may develop gradually. When heart function deteriorates over years, one or 

more conditions may exist. The strength of muscle contractions is reduced, and the ability of 

the heart chambers to fill with blood may be limited by mechanical problems, resulting in less 

blood to pump out to tissues in the body. Conversely, the pumping chambers may enlarge and 

fill with too much blood when the heart muscle is not strong enough to pump out all the blood 

it receives [3]. In terms of histology, four features define the failing heart: myocyte 

hypertrophy, fibrosis, “slippage” of the previously orderly aligned myocytes which 

presumably leads to inefficient contraction, and apoptosis of myocytes. Together these 

processes are termed “remodeling” [4]. 

 

1.1.2 Causes 

Several different issues can cause HF. The main cause is coronary artery heart disease (CAD) 

causing insufficient blood supply to the myocardium. CAD is usually caused by 

atherosclerosis, which is associated with the aggregation of lipids or plaque on the walls of the 

arteries. Then the heart’s ability to perform decreases, because ischemia results in the delivery 

of less oxygen and nutrients to the heart muscle [5]. 

Cardiomyopathies are primary or secondary disorders of cardiac muscle associated with 

abnormal cardiac wall thickness, chamber size, contraction, relaxation, conduction, and 

rhythm. They are a major cause of morbidity and mortality at all ages and, like acquired forms 

of cardiovascular disease, often result in HF. There are three major types of cardiomyopathy, 
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dilated cardiomyopathy (DCM), hypertrophic cardiomyopathy (HCM), and restrictive 

cardiomyopathy (RCM) [6]. Causes of cardiomyopathy include infection, alcohol abuse, and 

cocaine abuse. However, cardiomyopathies are frequently hereditary and therefore subject to 

genetic studies. DCM can e.g. be caused by mutations at 25 chromosome loci where genes 

encoding contractile, cytoskeletal, and calcium regulatory proteins have been identified [7]. 

Long-standing high blood pressure (hypertension) is another common cause of HF and results 

in an increased heart muscle mass, especially of the left ventricle. In this way, left ventricular 

hypertrophy (LVH) is the most potent predictor of adverse cardiovascular outcomes in the 

hypertensive population, and an independent risk factor for coronary heart disease, sudden 

death, heart failure and stroke [8]. 

 

1.1.3 Treatment 

Whenever possible, the best treatment of HF is one of prevention. This includes diagnosing 

and treating high blood pressure and attempting to prevent atherosclerosis [9,10]. A prudent 

diet, regular exercise, and weight control are also important [11]. When a patient is diagnosed 

as having HF, the first treatment is often restriction of dietary sodium. Diuretics help the 

kidneys to get rid of excess water and sodium, thereby reducing blood volume and working 

load of the heart [10]. Drugs for the treatment of HF include vasodilators, which cause the 

peripheral arteries to dilate. Standard vasodilators used for HF are the angiotensin-converting 

enzyme (ACE) inhibitors. ACE inhibitors block the production of angiotensin II (ANG II), a 

potent constrictor of blood vessels. Several landmark studies have demonstrated the 

effectiveness of long term treatment with ACE inhibitors in reducing the risk of death [12-14]. 

Other drugs used in the treatment of HF include beta blockers, which slow the heart. In the 

1970s and 1980s beta blockers were commonly used on patients with HF, but mixed effects 

were shown. However, studies in the 1990s and later showed reduce risk of death with use of 

β-receptor antagonists, and combined treatment with ACE-inhibitors reduces mortality even 

more [15,16]. In addition to prevention and drugs, sometimes surgery proves effective. For 

example when HF is due to valvular disease, surgical implantation of an artificial heart valve 

or valve repair may relieve the problem [17]. Coronary artery bypass graft surgery [18] and 

coronary catheterization using balloon dilatation [19] are among the therapeutic techniques 

used to prevent and treat HF caused by blocked arteries. Heart transplants are a last resort in 

treating severe HF caused by diseased heart muscle. However, the cost of the operation and 

the shortage of donor organs make it impractical except as a last resort [20]. 
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A new treatment of HF in the future might be cardiac stem cell therapy, which recently has 

raised many hopes. However, neither the ideal source and type of stem cell nor the critical cell 

number and mode of application have been defined so far [21]. 

 

1.1.4 Cardiac hypertrophy 

Cardiac hypertrophy is an adaptive physiological response to increases in blood pressure that 

preserves myocardial wall stress, chamber size and contractile function. Despite these initial 

advantages, cardiac hypertrophy is also an independent risk factor for cardiovascular disease 

and, if left untreated, it frequently progresses to HF. In broad terms, there are three types of 

cardiac hypertrophy: normal growth, growth induced by physical conditioning (physiological 

hypertrophy), and growth induced by pathologic stimuli (pathological hypertrophy). 

 

1.1.4.1 Relation of cardiac hypertrophy and heart failure 

Clinically, the term “pathological” hypertrophy is used and referred to as an abnormal increase 

in cardiac mass, usually by an increase in the size of cardiac myocytes and an increase in the 

number of the fibroblasts and other cells. Precisely defined, hypertrophy exclusively refers to 

an increase in the volume of cardiac muscle cells. 

Pathologic hypertrophy of cardiac myocytes is often a precursor of HF, and therefore research 

on the molecular pathways leading to hypertrophy can be considered as research into the 

initial step of HF [22,23]. It is also important to note that the molecular composition of the 

failing heart is relatively uniform and largely independent of the initiating injury or disease, as 

also described in Study II and IV. 

The two major pathological stimuli for hypertrophy are mechanical stress and neural/humoral 

factors, which activate intracellular signaling pathways resulting in altered gene expression 

and protein synthesis, leading to an enlarged heart [24]. It has long been thought that 

“pathological hypertrophy” with fibrosis, occurring in hypertension and HF, is a useful 

adaptation of the heart to increased load, by analogy to the situation in athletes, who have 

“physiological hypertrophy” without fibrosis. This view has recently been changed and today 

it has been postulated that it is not hypertrophy per se that is detrimental but rather the balance 

of different signal pathways [25]. However, it remains true that pathological hypertrophy in 

humans is a frequent precursor to HF [26]. 
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1.1.4.2 Physiological hypertrophy induced by exercise 

Chronic exercise training can cause cardiac hypertrophy and is commonly referred to as “the 

athlete’s heart” [27]. The athlete’s heart is a physiological cardiac hypertrophy that is 

characterized by increases in left ventricle (LV) chamber size, wall thickness, and mass. 

Because the ratio of LV wall thickness to radius is unchanged, the athlete’s heart is classified 

as eccentric LV hypertrophy. These adaptations can enhance cardiac function (e.g. LV 

diastolic filling) in the resting condition and help meet the increased cardiac demands during 

exercise [28]. On the other hand, pathologic cardiac hypertrophy is characterized by 

predominantly increased LV wall thickness with unchanged LV chamber size, which is known 

to be a precursor of heart failure [22,23]. Moreover, the athlete’s heart does not result in 

dysfunction or heart failure, but is rather associated with sustained or improved contractile 

function. Since both athlete’s heart and pathologic hypertrophy associate with cardiac growth, 

there may be similarities in the molecular mechanisms underlying pathologic LV hypertrophy 

and exercise training-induced physiological LV hypertrophy [29]. However, research on the 

molecular mechanism behind athlete’s heart has so far been limited, but it is believed that the 

number and extent of such studies will increase in the near future, and the results may be 

important in understanding the differences in pathologic and physiological hypertrophy that 

can be important in treatment of heart disease. 

 

1.1.5 Molecular mechanism in heart failure 

The understanding of cardiovascular disease has evolved through the years by extensive 

studies emphasizing the identification of molecular and physiological mechanisms involved in 

normal and disease states. Major discoveries have been made along the way, e.g. it has long 

been known that HF is characterized by activation of the renin-angiotensin-aldosterone system 

(RAAS), catecholamine secretion and elevated cytokines in blood. This neuronal endocrine 

activation leads to progressive fluid retention as well as to increased peripheral vascular 

resistance. Most of the current standard treatment for HF (beta blockers and inhibitors of 

RAAS or of ANG II receptors) is based on this paradigm [30]. However, the majority of the 

work to find and explore the molecular mechanisms of HF has focused on specific genes or 

pathways rather than integrative approaches. 

The microarray technology dramatically accelerated the speed of discoveries by giving us the 

ability to simultaneously study thousands of genes in a single experiment. Novel molecular 

mechanisms have been identified, known pathways are seen under new light, disease 
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subgroups begin to emerge, and the effects of various drugs are molecularly dissected. Many 

of the proteins of hypertrophied cardiac myocytes show quantitative alterations that are 

proportional to the increase in size of the cell. This is a result of an increase in translation 

efficiency [31]. In addition, a significant number of the ~10 000 genes expressed in cardiac 

myocytes are either newly expressed or show changes out of proportion with the degree of 

hypertrophy [32]. These expressed genes, related to multiple biological processes and 

pathways are responsible for transducing mechanical and hormonal stimuli in the process of 

HF. However, common for many of the microarray studies of HF, e.g. those reviewed by 

Kittelson et al. [33], is that a significant amount of the regulated genes mainly belong to 

functional categories of cell growth and maintenance, cytoskeleton/sarcomere, metabolism 

and signal transduction, which correlates with what we found in Study II and IV. 

 

1.1.5.1 Metabolism 

The metabolism of the failing heart is altered. Under normal circumstances, fatty acids are the 

principal energy source of the heart, but in pathological hypertrophy, metabolism is switched 

to glucose utilization [34]. This can also be clearly seen from the results of our Study IV. 

Acetyl-CoA derived from FA and glucose oxidation is further oxidized in the tricarboxylic 

acid cycle (TCA) to generate NADH and FADH2, which enter the electron transport/oxidative 

phosphorylation pathway and drive ATP synthesis. Genes encoding enzymes involved at 

multiple steps of these metabolic pathways (i.e. uptake, esterification, mitochondrial transport, 

and oxidation) are regulated by the Peroxisome proliferator-activated receptor gamma 

(PPARγ) coactivator-1 (PGC-1α) with its nuclear receptor partners, including Peroxisome 

proliferator-activated receptors (PPARs) and Estrogen-related receptors (ERRs). It has been 

shown that PPARs also function as nuclear receptors for lipids and other metabolic substrates, 

and that they play a prominent role in this process [35]. Glucose uptake/oxidation and electron 

transport/oxidation phosphorylation pathways are also regulated by PGC-1α via other 

transcription factors, such as MEF-2 and NRF-1. It is therefore hypothesized that one of the 

key mechanisms in the energy substrate switch, in the hypertrophied failing heart, involves 

deactivation of the PGC-1α/PPARα complex at both transcriptional and posttranscriptional 

levels [36]. Changes in gene expression in the failing hearts include down-regulation of 

mitochondrial fatty acid oxidation and glucose metabolism enzymes and together this is 

consistent with observed metabolic alterations [37], as also detected in Study II and IV. 
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1.1.5.2 Structure/contractile proteins 

In HF several contractile proteins (e.g. Myosin, Actin, Tropomyosin, Troponins and Titin) are 

impacted by transcriptional changes, and this causes a change in the composition of the 

myosin subunit. It is known that in hemodynamic overload in rodents, there is a shift from the 

α-myosin heavy chain (α-MHC) towards β-MHC. This switch leads to altered cross-bridge 

cycling kinetics, resulting in an increase in the economy of muscle contraction [38]. The 

importance of accurate expression of contractile proteins, and their exact alignment in 

sarcomeres, is underlined by the fact that mutations in sarcomeric proteins and e.g. Titin can 

cause cardiomyopathy [39-41]. It is also well known that the cytoskeleton is important in 

cardiac hypertrophy and HF. It is believed that accumulation of Tubulin, Desmin and several 

other membrane-associated proteins are compensatory mechanisms typical of HF, independent 

of the underlying cardiac disease [42]. Such increase in cytoskeletal proteins accompanied by 

a loss of contractile filaments and sarcomeric skeleton components may be regarded as the 

morphological basis of contractile and diastolic dysfunction in the failing heart. 

In reaction to myocardial hypertrophy, an intricate series of changes in cellular and 

extracellular components are altered by changes in the extracellular matrix (ECM). The 

cardiac ECM is composed of 1) structural proteins, such as Collagen and Elastin; 2) adhesive 

proteins such as Laminin and Fibronectin; 3) anti-adhesive proteins such as Tenascin, 

Thrombospondin and Osteopontin, and 4) Proteoglycans [43]. Collagen and adhesive proteins 

bind to the cellular membrane through transmembrane receptors, such as the integrins. The 

interaction between adhesion proteins and cell membrane receptors ensure communication 

between the extracellular and intracellular environments [44]. Proteoglycans contribute to the 

architecture of the ECM, bind growth factors that participate in the paracrine cell to cell cross-

talk, and promote tissue remodeling and cell migration [45]. Normally, ECM synthesis and 

degradation are tightly regulated, but during myocardial remodeling, ECM synthesis increases 

and/or degradation decreases to yield an increase in ECM, leading to fibrosis. 

Matrix metalloproteinases (MMPs) are Ca2+- dependent endopeptidases that maintain 

homeostasis of cardiac structure by digesting the ECM. The MMP family consists of more 

than 20 proteins and they have different substrates, which include collagenases (such as MMP-

1 and MMP-13), gelatinases (MMP-2 and MMP-9), Stromelysin (MMP-3) and membranous 

type MMP (such as MT1-MMP). Most MMPs are inactive, secreted enzymes that act 

extracellularly after activation. However, the MMPS are regulated by a class of proteins called 

tissue inhibitors of metalloproteinases (TIMPs) and dysregulation of MMPs and TIMPs is 
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associated with various cardiovascular diseases and has been shown to be involved in 

hypertension and HF [46]. 

Increasing evidence suggests that binding of growth factors to the ECM is a major mechanism 

regulating growth factor activity. The ECM provides the architecture for multicellularity, 

whereas growth factors link ECM structures and molecules to the regulation of cell 

proliferation and differentiation. Growth factor signaling is not only genetically regulated 

inside the cell, but can also be modulated outside of cells by ECM proteins and enzymes. 

 

1.1.5.3 Cell growth and maintenance 

At the cellular level, pathological hypertrophy is accompanied by an increase in 

cardiomyocyte size, enhanced protein synthesis, reduced organization of sarcomeres, and re-

induction of a fetal cardiac gene program that ultimately weakens cardiac performance. 

Numerous extracellular agonists and, in particular, those that act through G-protein-coupled 

receptors, such as α- and β-adrenergic agonists, endothelin, angiotensin, and 5-

hydroxytryptamine, promote cardiac hypertrophy [47]. In addition, the complex molecular 

processes that lead to cardiomyocyte growth involve membrane receptors, second messengers, 

and transcription factors. The common final pathway of all these intracellular substances is 

gene expression, whose variations are now being revealed in increasing detail. 

Currently, growth promoting factors such as Angiotensin (Ang-II), Endothelin (ET-1), 

members of the Interleukin-6 (IL-6) family of proteins, Insulin-like growth factor-1 (IGF-1), 

Nitric oxide (NO) and others have been identified as direct triggers of a hypertrophic response 

at the level of the cardiomyocyte [47]. Atrial natriuretic peptide (ANP) and Brain natriuretic 

peptide (BNP) oppose the hemodynamic actions of the renin-angiotensin-aldosterone system 

(RAAS) by enhancing renal electrolyte and water excretion. Normally expression of these 

peptides is up-regulated in cardiac ventricles in response to pathological hypertrophy. 

Circulating levels of both ANP and BNP positively correlate with ventricular dysfunction, 

with plasma levels of BNP better reflecting the severity of heart failure [48]. Both ANP and 

BNP also oppose the hypertrophic effect of Ang II and Aldosterone on cardiomyocytes via the 

Guanylyl cyclase-A (GC-A) receptor and Cyclic guanosine monophosphate (cGMP) 

generation [49]. 

The cardiac interstitium constitutes a reservoir of growth factors, locally synthesized and 

released by different cell types in the myocardium, under the effect of mechanical, hormonal 

and electrical stimulation. Growth hormone (GH) and growth factors like IGF-1 also play a 



 - 16 -

role in the development, growth and function of the cardiovascular system. It is believed that 

GH and IGF-1 activate several mechanisms that protect against the development of heart 

failure in the short term. On the other hand, a condition of GH excess can cause cardiac 

dysfunction, but these functions are not yet completely understood [50]. In addition, it is 

known that among growth factors, the Fibroblast growth factor (FGF) family, including FGF-1 

and FGF-2, the Epidermal growth factor (EGF), the Vascular endothelial growth factor 

(VEGF), and IGF-1 are involved in hypertrophic effects of cardiac myocytes via autocrine and 

paracrine mechanisms. It is also known that other growth factors, such as Transforming 

growth factor β (TGF-β) and Platelet-derived growth factor (PDGF), modulate cardiac 

myocyte hypertrophy [51]. 

 

1.1.5.4 Cell signaling/communication 

Recent evidence suggests that normal (and exercise-induced) cardiac growth is regulated in 

large part by the growth hormone/IGF axis via signaling through the Phosphoinositide 3-

kinases (PI3K/Akt) pathway. In contrast, pathological or reactive cardiac growth is triggered 

by autocrine and paracrine neurohormonal factors released during biomechanical stress that 

signals through the Gq/phospholipase C pathway, leading to an increase in cytosolic calcium, 

activation of Protein kinase C (PKC), induction of immediate-early genes, re-expression of 

embryonic genes, and increased synthesis of contractile proteins [52]. In addition, a complex 

web of signaling pathways has been implicated in the transmission of stress signals leading to 

cardiac hypertrophy. Our Study II indicates differences in relation to these pathways in CAD 

and DCM. 

 

1.1.5.4.1 Kinase signaling 

Cardiac eutrophy and physiological hypertrophy are largely mediated by signaling through the 

peptide growth factors IGF-1 and GH. GH acts predominantly via increased production of 

IGF-1 [53]. When IGF-1, insulin, and other growth factors bind to their membrane tyrosine 

kinase receptors, the PI3K subgroup Iα is activated and phosphorylates membrane 

phospholipid phosphatidylinositol 4,5 bisphosphate [54]. This leads to recruitment of the 

protein kinase Akt (also known as protein kinase b) and its activator, 3-phosphoinositide-

dependent protein kinase-1 (PDK-1), to the cell membrane via interactions between kinase 

pleckstrin homology domains and the 3′-phosphorylated lipid [55]. Accumulated data suggest 

that PI3K/Akt signaling transduces adaptive cardiac hypertrophy; e.g., a central role of the 
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p110α pathway in IGF-1 induced growth and normal and exercise-induced hypertrophy was 

demonstrated utilizing mice expressing constitutively active or dominant-negative mutants of 

PI3K specifically in the heart [56]. Strikingly, the adaptive hypertrophy seen with constitutive 

activation of cardiomyocyte PI3K does not progress into a maladaptive hypertrophy. Further, 

supporting a critical role for the PI3K/PDK1/Akt pathway in regulating normal heart growth is 

the finding that cardiac-specific inactivation of PDK1 leads to reduced cardiac growth and a 

cardiomyopathic outcome [57]. Finally, cardiac-specific inactivation of Phosphatase and 

tensin homolog on chromosome 10 (PTEN), a tumor-suppressor phosphatase that negatively 

regulates the PI3K/Akt pathway by dephosphorylating 3′-phosphorylated phosphoinositides, 

resulted in cardiac hypertrophy [58,59]. 

As noted above, a major kinase effector of PI3K signal is Akt, which is at a signaling cascade 

branch point. While its effects on cell death/survival are directly mediated via phosphorylation 

of the Forkhead box, sub-group O (FOXO) family of transcription factors and other regulators 

of apoptosis [55], it is the two signaling branches downstream of Akt, not Akt itself, that 

largely determine the nature of a given hypertrophic response. One branch leads to 

mammalian target of Rapamycin (mTOR) and the protein synthetic machinery, which is 

essential for all forms of hypertrophy [60]. The other branch leads to Glycogen synthase 

kinase-3 (GSK-3), which also regulates the general protein translational machinery as well as 

specific transcription factor targets implicated in both normal and pathologic cardiac growth 

[61]. In addition, activity of both of these branches can also be regulated by stress activated, 

Gq-dependent mechanism that are independent of Akt. 

The heterotrimeric G-proteins Gq and G11 are functionally redundant transducers of 

phospholipase C signaling from prohypertrophic heptahelical receptors for angiotensin, 

endothelin, norepinephrine, and other neurohormones [62]. PKC- and inositol 1,4,5-

triphosphate (IP3) mediated calcium release are considered to be the major effectors of Gq 

signaling. However, PI3K-dependent signaling is also activated by this pathway but differs 

from physiological PI3K signaling in that the activated PI3K isoform (γ) is distinct from that 

activated by IGF-1. The mechanisms of its activation also differ, whereas p110α is activated 

via tyrosine phosphorylation by ligand-occupied growth factor receptors, p110γ is activated by 

recruitment to the sarcolemma by βγ subunits of activated Gq/G11, providing access to 

membrane phosphoinositides [54,62]. Strikingly, while p110α is required for normal or 

exercise-induced growth, but not pathologic stress-induced growth [63], p110γ is required for 

stress-induced hypertrophy, but not for normal growth [58,64]. Thus, PI3K signaling, 
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including that of Akt and both arms of its downstream signaling pathways (mTOR and GSK-

3), is activated in response to both physiological and pathologic stimuli, and either branch 

downstream of Akt can regulate adaptive and maladaptive growth. 

 

1.1.5.4.2 Calcium cycling 

It is well known that HF is characterized by a down-regulation in gene expression and activity 

of the Sarcoplasmic reticulum calcium ATPase (SERCA) [65]. Mutations in Phospholamban 

(PLN), an inhibitor of SERCA, can cause dilated cardiomyopathy in humans, by preventing 

Phospolamban phosphorylation, leading to constitutive SERCA2a inhibition [66]. In addition, 

alterations in the phosphorylation status of Sarcoplasmic reticulum (SR) calcium release 

channel (Ryanodine receptor (RyR)) are observed in failing hearts [67]. Together, these 

findings support the hypothesis that abnormalities in calcium handling play an important role 

in development of HF. The main events of calcium cycling in myocytes are illustrated in 

Figure 1. 

The sodium-calcium exchanger (NCX), which extrudes calcium from the cytosol in diastole, is 

up-regulated in HF, and is thought to be a counter regulatory process to reduction in SERCA 

[68]. In addition, the Plasma membrane calcium ATPase (PMCA), which transports calcium 

out of the cell, has been related to hypertrophy response. It is believed that in humans, SERCA 

accounts for approximately 70% of Ca2+ removal from the cytosol, NCX is responsible for 

28% and PCMA and mitochondria remove just 1-2% of cytosolic Ca2+. Its major functions are 

in the regulation of nitric oxide (NO) production in the myocardium and in leading signal 

transduction through the caveolae (structures in the cell membrane that carry a variety of 

receptors) [69]. 

The result of all these changes in Ca2+ related proteins is a reduction in peak systolic calcium, 

and an elevation and prolongation in diastolic calcium, resulting in reduced systolic 

contraction and a delay in diastolic relaxation, as well as impaired coupling of the calcium 

release. 
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Fig. 1. Role of Ca2+ ions in regulation of cardiac excitation-contraction. 
Reprinted by permission from Macmillan Publishers Ltd: Bers DM: Cardiac excitation-
contraction coupling. Nature 2002, 415: 198-205. [70], copyright 2002. 

 

1.1.5.4.3 Ion transporters 

In addition to changes in Ca2+ handling mechanisms, electrophysiological remodeling in HF is 

characterized by major changes in ion channel function and expression of several ion 

channels, pumps and exchanger proteins, which alter the electrical phenotype and predispose 

to the development of lethal HF. For example, it is well-known that cardiac Na+/H+-exchanger 

(NHE) activity is up-regulated in several in vivo and in vitro models of cardiac pathological 

hypertrophy [71,72]. Elevated NHE activity depletes the transmembrane Na+ gradient, which 

leads to increased intracellular Ca2+ mediated by the NXC (reviewed by Cingolani et al. [73]) 

and consequent activation of several signaling cascades (reviewed in Frey et al. [47]). 

Accordingly, inhibition of NHE by its specific inhibitor cariporide has been demonstrated in 

several studies [72,74-76] to "rescue" several models of cardiac hypertrophy in vivo. Because 

NHE inhibition does not appear to be associated with adverse hemodynamic consequences, 

this approach is a potentially interesting anti-hypertrophic treatment option. Several other ion 

transporting mechanism have also been suggested to be potentially novel targets in e.g. anti-

arrhythmic therapy [77]. 

 

1.1.6 pH regulation in cardiomyocytes 

It has been known for long that intracellular pH affects physiological processes profoundly 

(e.g. the contractile function), and a close control of hydrogen transport is therefore important. 

In cardiac myocytes several mechanisms maintain intracellular pH within a narrow range and 
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intracellular pH in myocardial cells is governed by the balance among four main sarcolemmal 

acid-equivalent ion transporters. The Na+/H+ exchanger (NHE) and the Na+/HCO3
- (NBC) co-

transporter act to increase intracellular pH in acidosis [78-80] and the Na+-independent Cl-

/HCO3
- exchanger (anion-exchanger, AE) and Cl--OH- exchange (CHE) reduce pH in alkalosis 

[81]. The NBC cotransporter seems to play the main role in regulation of intracellular pH 

close to normal range (7.05-7.24), whereas at more acidic conditions, the NHE is the main 

proton extruding mechanism. All these pH regulating mechanisms are known to be under 

hormonal regulation [82] and it is important to note that most neurohormones that induce a 

positive inotropic effect in the heart, in some way also affect the pH regulation system. In 

addition to the four main transporters, a third proton-extruding mechanism has been identified 

in rabbit cardiomyocytes, as a vacuolar proton ATPase (VPATPase), which is activated during 

acidosis [83]. The VPATPase probably acts to attenuate the reduction in intracellular pH in 

cardiomyocytes exposed to metabolic inhibition. It is also believed that other mechanisms are 

able to compensate for increased H+ load [83]. For example, lactate traverses the myocyte 

plasma membranes via a facilitated monocarboxylate transporter (MTC) system that functions 

as a proton symport [84] and Johannson et al. [85] showed that monocarboxylate transporter 1 

(MCT1) protein level was up-regulated in cardiomyocytes from chronic heart failure rats, 

which indicates that this system may help protecting the myocytes from acidosis. In Study I, 

we showed that H+/K+-adenosine triphosphatase (H+/K+-ATPase or proton pump) was 

expressed and regulated in rat cardiac myocytes, both at the transcript and protein level. 

Functional in vitro studies indicated that the H+/K+-ATPase may account for up to 25% of the 

K+-uptake in the ventricular cardiomyocytes. These findings indicate that the H+/K+-ATPase 

may share a pHi regulating role with the NHE1. In contrast, a recent publication by Kemi et al. 

[86] concludes that H+/K+-ATPase does not contribute significantly to pHi maintenance. 

However, the complete role of the H+/K+-ATPase in pH-regulation and/or cell volume 

regulation has not yet been determined. 
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1.2 Functional genomics 

Functional genomics is a field of molecular biology that attempts to make use of the wealth of 

data produced by genomic projects (such as genome sequencing projects) to describe gene 

(and protein) functions and interactions. Unlike genomics and proteomics, functional 

genomics focuses on the dynamic aspects such as gene transcription, translation, and protein-

protein interactions, as opposed to the static aspects of the genomic information such as DNA 

sequence or structure. Functional genomics uses high-throughput techniques mostly to 

characterize the abundance of gene products such as messenger ribonucleic acid (mRNA). 

Because of the large quantity of data produced by these techniques and the need to identify 

biologically meaningful patterns, bioinformatics is crucial to this type of analysis. 

 

1.2.1 From a single gene approach to genome wide gene expression analysis 

The sequencing of the entire human genome [87,88] has opened a new era in biomedical 

research in which gene identification and cloning is not pursued in the same scale as 

previously. The challenge is now to identify the function of the products of the genes in vivo, 

the diseases in which each gene is involved, and the therapeutic benefits to be gained from this 

information. Already, the use of gene expression analyses and gene array technology, together 

with advancements in proteomics, are beginning to be used to analyze e.g. genetically 

modified mice to determine “upstream” and “downstream” factors involved in the function 

and mechanism of action of a particular gene product. This is an important step towards the 

discovery of new diagnostic tools or novel drugs for the treatment of disease [89]. 

Microarray technologies have developed rapidly during the last decade and have changed the 

face of science. Today, microarray technology can be used for screening thousands of 

transcripts or single nucleotide polymorphisms (SNPs) or copy number variation or proteins or 

other biological components [90] in one single experiment. By conventional methods, this 

type of analysis would have taken several years. 

 

1.2.2 Microarray technology 

The history of microarrays begins more than 25 years ago with the Southern blot, which 

introduced the basic technique of anchoring nucleic acids to a solid support for analysis by 

hybridization [91]. Modern microarray analysis was for the first time introduced in 1995 by a 

Stanford research team led by Pat Brown and Ron Davis [92]. The authors described the use 

of a robotic system to spot deoxyribonucleic acid (DNA) oligonuclotides onto a glass slide in 
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ordered arrays, generating microarray slides. Only 45 oligonucleotide sequences were spotted 

on this first microarray, but the work initiated many new experiments and soon whole 

genomes of species such as yeast, bacteria, mice and humans were being spotted onto glass 

slides. In the same period of time when Brown et al. made the first microarrays at Stanford, 

Fodor et al. [93,94] invented a method for manufacturing microarrays by using 

photolithography for in situ synthesis of DNA probes on a silica wafer (commercialized by 

Affymetix Inc. (Santa Clara, CA)). This method was based on the principle that a set of 

oligonucleotide DNA probes (each approximately 25 nucleotides in length) is defined, based 

on its ability to hybridize to complementary sequences in target genomic loci or genes of 

interest. 

 

1.2.2.1 DNA microarrays 

A DNA microarray is a glass slide with attached DNA probes representing many genes 

arranged in a regular pattern. There are two major forms of DNA microarray technology: 

I. Complementary DNA (cDNA) arrays, where the probes are PCR products (200 ~ 2 000 base 

pair long) obtained from cloned cDNA libraries, printed by a robot, and immobilized on e.g. 

an aminosilane coated slide. Microarrays made from PCR-amplified cDNA clones are highly 

specific and produce strong signals because of the extended length of the cDNA. However, 

where sequence information is available, as in now often the case for most organisms, long 

oligonucleotides offer similarly strong signals and good specificity. Oligonucleotide arrays are 

now therefore replacing cDNA arrays for RNA based expression analysis. Each cDNA array is 

usually hybridized with two samples (two-color system), including an experimental and a 

control/reference sample. 

II. Oligonucleotide arrays, consists of oligonucleotide (20 ~ 80 mer oligos) probes that are 

synthesized either in situ (on chip) or by conventional synthesis, followed by immobilization 

on the array surface. This method, “historically” called DNA chip, was developed by 

Affymetrix, Inc. [93,94], but today there is a large variety of different oligonuclotide array 

formats. Each oligonucleotide array can be used with either two samples (two-color system) or 

only one sample (one-color system) (Figure 2.). 

The original DNA microarrays were used exclusively for expression analysis, but today 

oligonucleotide arrays are also used to identify sequence variations like SNPs, for genotyping 

and to resequence gene products [95]. 
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Figure 2. Overview of DNA Microarray Analysis. 

Panel A: In a two-color analysis, RNA samples from e.g. patients and control subjects are 
individually labeled with distinguishable fluorescent dyes and hybridized to a single DNA 
microarray consisting of individual gene specific probes. Relative levels of gene expression in 
the two samples are estimated by measuring the fluorescence intensity for each probe, a sample 
expression vector summarizes the level of expression of each gene in the sample obtained from a 
patient. Panel B: A single color analysis, performed with the use of Affymetrix GeneChip. 
Labeled RNA from each biological sample is hybridized to a single array in which a series of 
gene-specific probes are arrayed. Gene-expression levels are estimated by measuring the 
hybridization intensity for a series of “perfect match” probes, and the background is measured 
with the use of a corresponding set of “mismatch” probes. Gene-expression levels are reported 
for each sample as a sample expression vector that summarizes the difference between the signal 
and background for each gene. 

Reprinted by permission from Massachusetts Medical Society: Quackenbush J: Microarray 
analysis and tumor classification. N Engl J Med 2006, 354: 2463-2472. [96] (Copyright © 200x 
2006). 

 

1.2.2.2 Experimental design for DNA microarray experiments 

Good experimental design in a microarray project requires the same principles and practices 

that are part of any scientific investigation. Appropriate controls are the foundation to any 

experiment. Forethought and consultation on the correct statistical practices and procedures 

for the design are always advantageous. 

Optimizing design based on the experimental goal is an important part of a successful 

microarray experiment. One question that may be asked before designing an experiment is 

how much statistical power you wish to have to detect differentially expressed genes. This will 

determine the number of replicates needed [97]. Another question is what are the most 
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important samples, or comparisons you want to make, and how many experimental factors 

will be involved. For single-channel array experiments, it is obvious that more replicates 

should be done for samples of greater importance. For two-color array experiments, the many 

possible choices for designs pose a more complex problem which will be discussed in the 

following. 

 

1.2.2.2.1 Replication 

Replication is necessary in order to apply a statistical test and reduce variability inherent in 

microarray experiments. Replication falls into two categories; biological replicates and 

technical replicates [98]. In order to achieve results with any statistical confidence it is 

suggested that at least 3 biological replicates are used. Depending on the degree of intrinsic 

biological variation in the system, this may or may not be sufficient [99,100]. Technical 

replicates can be performed by using multiple arrays per sample. A second type of technical 

replication is dye-flip hybridizations (Figure 3.). A third type of technical replication is spot 

duplication on the slides where the conformity between the duplicate spot intensities can be 

used as a good indicator of the quality of the slides and the hybridization. However, biological 

replicates are more important than technical replicates [101]. So typically, a researcher should 

use biological replicates to validate generalization of conclusions and technical replicates to 

reduce the variability of these conclusions. 

 

1.2.2.2.2 Design alternatives 

The ability to make direct comparisons between two samples on the same microarray slide is a 

unique and powerful feature of the two-color microarray system. However, it is often 

impractical to make all possible pair-wise comparisons among the samples, because of cost or 

limitations in the amount of sample. Thus, an important step in designing an experiment is to 

decide how many technical replicates will be measured and how these will be paired together 

on arrays. The efficiency of comparisons between two samples is determined by the length 

and the number of paths connecting them [98,102]. It is most efficient to make the 

comparisons of greatest interest directly on the same array. Contrasts between samples that are 

never directly compared in an experiment are possible, provided that there is a path of 

comparisons linking them. 

A commonly used means of indirect comparison for microarray experiments is a reference 

design (Figure 3.). This design uses a common reference RNA. The intensity of hybridization 
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of a test RNA sample to a given spot is compared to the intensity of hybridization of the 

reference RNA to the same spot. An advantage of this method is that as long as the amount of 

reference sample is not limiting, the design can be extended to handle large numbers of 

samples, and in class discovery experiments samples from a new class can be added and 

analyzed at a later stage [103]. 

 

I 

 
 II 

 
Figure 3. Experimental design. 

Panel I. Experimental designs for the direct comparison of two samples. Boxes represent RNA samples 

that are labeled as varieties A or B. Subscripts indicate the number of independent biological replicates 

of the same treatment. Arrows represent hybridizations between the RNA samples and the microarray. 

The sample at the tail of the arrow is labeled with red (Cy5) dye, and the sample at the head of the arrow 

is labeled with green (Cy3) dye. The figures show a dye swap (a), a repeated dye swap (b), a replicated 

dye swap (c) and a simple loop design (d). 

Panel II. Experimental designs using a reference RNA sample. Boxes represent RNA samples, and 

arrows represent microarrays, as in panel I. Panel a: the standard reference design uses a single array to 

compare each test sample (A, B, C, and so on) to the reference RNA. Panel b: a variation, with a dye 

swap for each comparison. 

Reprinted by permission from Macmillan Publishers Ltd: Churchill GA: Fundamentals of experimental 

design for cDNA microarrays. Nat Genet 2002, 32 Suppl:490-5.: 490-495. [103], copyright 2002. 
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Other design alternatives may be loop designs (Figure 3.) or factorial designs. The simple loop 

design can be an efficient alternative to the reference design [98,104]. However, the estimation 

efficiency of a simple loop is greatly reduced by loss of just a single array [105]. The previous 

types of designs have been single factor experiments. Experiments investigating two or more 

factors require a more complex design [106]. A key premise is that it is possible to define an a 

priori number of contrasts that are of specific interest. The approach is then to design 

experiments that provide maximal information for these contrasts. 

 

1.2.2.3 RNA preparation, labeling and hybridization 
1.2.2.3.1 RNA quality 

The first and most critical step in sample preparation for DNA expression array analysis is 

isolation of total or mRNA from the experimental samples. The purified RNA should always 

be visualized by denaturating gel electrophoresis to verify the integrity of the ribosomal bands. 

This can be done by conventional gel electrophoresis [107] or by capillary electrophoresis e.g. 

with the Bioanalyzer (Agilent Inc. Palo Alto, CA) [108]. It is believed that the 18S to 28S ratio 

should be at least 1.8 and the RNA Integrity Number (RIN) [109] (obtained from the 

Bioanalyzer software) value above 7 to ensure good RNA quality [109]. In addition to gel-

electrophoresis it may be useful to measure the RNA integrity, quality and quantity by a 

spectrophotometer. The ratio absorbance at 260 and 280 nm is used to assess the purity of 

RNA. A ratio of ~2 is generally accepted as “pure” for RNA. The 260/230 ratio should 

commonly range from 1.8-2.2, and if the ratio is appreciably lower, this may indicate the 

presence of co-purified contaminants. If the RNA is degraded or contaminated, it will not be 

usable for labeling. For such analyses the NanoDrop (NanoDrop® Technologies Inc. 

Wilmington, De), a cuvette free spectrophotometer is useful. 

 

1.2.2.3.2 Labeling 

RNA extracted from biological samples is typically labeled with fluorescent dyes. The 

commercial cyanine dyes Cy3 and Cy5 are the most commonly used dyes in labeling reactions 

[110]. Fluorescence labeled samples can be prepared by several different methods including 

direct or indirect cDNA labeling [111-113] (Figure 4.). 
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Figure 4. Microarray target labeling procedures. 

The figures show a schematic representation of different experimental labeling procedures. Panel 
A: Direct labeling. Panel B: Aminoallyl indirect labeling. Panel C: Genisphere 3DNA labeling. 

Adapted and reprinted by permission from Molecular Vision: Yu J, Othman MI, Farjo R, 
Zareparsi S, MacNee SP, Yoshida S et al.: Evaluation and optimization of procedures for target 
labeling and hybridization of cDNA microarrays. Mol Vis 2002, 8:130-7.: 130-137. [111], 
copyright 2002. 

 

In the direct cDNA labeling method [114], fluorescence modified deoxynucleotides are 

incorporated during the first strand cDNA synthesis from an RNA template using reverse 

transcriptase. Although this method is relatively easy to perform, fluorescence modified 

nucleotides are bulky and Cy5- and Cy3-modified nucleotides may incorporate with different 

efficiency. In the indirect cDNA labeling method, e.g. aminoallyl-modified nucleotides are 

incorporated during reverse transcription reaction, and fluorescent dyes are subsequently 

coupled to the reactive amino groups in the cDNA. A different indirect method (3DNA by 

Genisphere Inc. Hatfield, PA) uses fluorescent dendrimer complexes to label cDNA [115]. 

After cDNA synthesis, a fluorescent dendrimer with hundreds of dye molecules per complex 

is hybridized to the cDNA. Affymetrix uses a different detection scheme than previously 

described, where mRNA is reverse transcribed into cDNA and then copied into biotinylated 

complementary RNA (cRNA) [116]. The biotin-streptavidin complex is then used to add the 

fluorescent tag. 
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1.2.2.3.3 Hybridization 

In a two color experiment, two labeled samples (unusually a “control” or a ”reference” sample 

and the sample of interest) prepared from two RNA sources are co-hybridized to the same 

DNA microarray (for some of the oligonucleotide array formats e.g. Affymetrix, only one 

sample is hybridized to each array). The conditions during this step must be optimized to 

promote specific binding of labeled samples to its target probes and to reduce background. 

Important parameters include hybridization temperature, length of hybridization, 

concentrations of salts, pH of the hybridization solution, and the presence or not of denaturants 

such as formaldehyde in the hybridization buffers [117]. During hybridization the arrays must 

be stored in a humidified, temperature controlled, dark environment. Small, affordable 

chambers that house one array work well, and can simply be placed in a standard incubator or 

water bath during the hybridization. However, today most users use automatic hybridization 

stations, where several arrays can be hybridized simultaneously and e.g. agitation can be 

applied to the samples during hybridization. Automatic hybridization stations have increased 

the quality of hybridization and post-hybridization wash and usually the specificity of the 

hybridization signal is increased and the background noise reduced. 

 

1.2.2.3.4 Scanning and image analysis 

After hybridization, arrays are typically scanned with an instrument that uses lasers as a source 

of excitation light and a photomultiplicator as detectors. This detection method allows 

determination of fluorescence from each of the labeled samples [118]. After scanning, image 

analysis must be performed to acquire target signal intensities [119]. Typically a program like 

GenePix (Axon Inc., Sunnyvale, CA) is used for image analysis of microarray data. Many 

image processing approaches have been developed [120-124], among which the main 

differences relate to procedures for spot segmentation (how to distinguish foreground from 

background intensities) [125,126]. Further analysis includes procedures like filtering, 

normalization and statistical analysis for finding differentially expressed genes or methods for 

clustering the genes or samples with similar expression patterns/profiles. 

 

1.2.2.4 Reporting microarray results 

Microarray studies generate large amounts of data which can not be published in journals. 

However, these data may be valuable to other researchers, so microarray data should be made 

publicly available. There are two main public repositories for microarray data: ArrayExpress 
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[127] at European Bioinformatics Institute (EBI) and Gene Expression Omnibus (GEO) [128] 

at National Center for Biotechnology Information (NCBI). These two and the proprietary 

repository Center for Information Biology gene Expression (CIBEX) [129] are recommended 

by the Microarray Gene Expression Data (MGED) society [130]. 

To compare data across experiments performed at different times and in different laboratories, 

all information related to the microarray experiments must be reported in a common way, 

using a widely accepted form. Such a form is called Minimum Information About Microarray 

Experiments (MIAME). The MIAME standard outlines the minimum information that should 

be reported about microarray experiment to enable its unambiguous interpretation and 

reproduction [131]. The MIAME includes a detailed description of the following six sections: 

experimental design, array design, samples, hybridization, measurements (raw expression 

data), controls [131]. Today most journals require microarray data to be MIAME compliant 

and that the raw data are submitted to a public repository [132,133]. 

 

1.2.3 Data collection and data analysis 
1.2.3.1 Data pre-processing and normalization 

Before it is possible to extract knowledge from microarray data, the raw data must be pre-

processed and normalized. The data extracted by image analysis must be pre-processed to 

exclude poor-quality spots and normalized to remove systematic errors before downstream 

analysis. 

Some commonly used methods for calculating normalization factor include: global 

normalization that uses all genes on the array, non-linear normalization method (lowess)[134] 

and internal controls normalization that uses known amounts of exogenous control genes 

added during hybridization [135-138]. In most cases the non-linear normalization method 

which corrects for dye basis of gene intensity and spatial information, is believed to be 

superior to the other methods. In addition, if there is a significant difference in the distribution 

of log-ratios among the print-tips, suggesting a possible spatial effect, print-tip group lowess 

normalization should be considered [137]. Apart from within a single array, the distribution of 

gene expression ratios from replicate experiments might have different distribution of log 

ratios. Therefore scaling adjustment may be necessary to standardize the distribution of log-

ratios across replicate experiments to prevent any particular experiment from becoming 

dominant and affecting downstream statistical analysis [135]. 



 - 30 -

For global and lowess normalization a comparable global gene expression is expected between 

the two samples. If there is a global shift between the samples these normalization methods 

will bias the results. In such cases normalization by internal controls (spikes) is a good 

solution [139-141]. External spike mRNAs may be added to the samples in predefined ratios 

and the normalization can be done by adjusting the observed ratios compared to the theoretical 

ratios [142-144]. 

 

1.2.3.2 Finding differentially expressed genes 

Fold change (FC) was the first method used to evaluate whether genes are differentially 

expressed, and is a reasonable measure of effect size. However, it is widely considered to be 

an inadequate test statistics because it does not incorporate variance and offers no associated 

level of confidence [145]. Another method of identifying differentially expressed genes it the 

use of a two-sample t-test (or one of its nonparametric equivalents, e.g., Mann-Whitney U test) 

to calculate p-values [146]. Basically, this step involves statistical hypothesis testing where a 

null hypothesis (the nonexistence of differential expression) is contrasted to an alternative 

hypothesis (the existence of a differential expression). The calculated p-value represents a 

threshold for which the null hypothesis is rejected (the alternative hypothesis is accepted), and 

therefore observed differences in gene expression are statistically significant. In addition, 

identifying genes that are differentially expressed across more than two samples can be 

achieved in a way similar to what was described above, but using different tests, for example, 

ANOVA (analysis of variance) or equivalent nonparametric tests such as Kruskal-Wallis 

analysis of ranks [146]. ANOVA is common tool for studying data from experiments with 

multiple categorical factors [147]. The ANOVA model accounts for multiple sources of 

variation in microarray experiments. Significance analysis of microarrays (SAM) [148] is 

another approach that has been used in many studies. SAM identifies genes with statistically 

significant changes in expression by identifying a set of gene-specific statistics (similar to the 

t-test, thus taking into account both magnitude of change and variability of expression) and a 

corresponding false discovery rate (similar to a P value adjusted for multiple comparisons). 

Several other methods based on e.g. regression modeling [149], the empirical Bayes method 

[150], and the mixture model [151] have also been used for finding differentially expressed 

genes from microarray experiments. 
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1.2.4 Knowledge discovery 
1.2.4.1 Learning 

Soon after microarrays were introduced, many researchers realized that learning techniques 

could be used to discover new subclasses in disease states [152,153], to identify biomarkers 

associated with disease and even that the expression patterns of the genes could be used to 

distinguish subclasses of disease [154-156]. 

Many different learning algorithms are today extensively used in microarray research. The 

different algorithms are used either to discover new categories within a data set (class 

discovery; unsupervised learning) or assign cases to a given category (class prediction; 

supervised learning/classification) [157]. 

 

 
Figure 5: Unsupervised versus supervised learning. In unsupervised learning multiple samples 
are clustered into groups based on overall similarity of their gene expression profiles. This 
approach is useful for discovering previously unappreciated relationships. In supervised learning 
multiple samples from different known classes are used to train a model capable of classifying 
unknown samples. This model is then applied to a test set for class label assignment. 
Reprinted by permission from the American Society of Clinical Oncology: Ramaswamy S, 
Golub TR: DNA microarrays in clinical oncology. J Clin Oncol 2002, 20: 1932-1941 [157], 
copyright 2002. 
 

1.2.4.1.1 Unsupervised learning 

Algorithms for unsupervised learning or cluster analysis group objects on the basis of some 

sort of similarity metric that is computed for one or more “features” or variables. For example, 

genes can be grouped into classes on the basis of the similarity in their expression profiles 

across tissues, cases or conditions. Hierarchical cluster analysis graphically presents results in 
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a tree diagram (dendrogram), and is probably the most common unsupervised learning 

algorithm in microarray analysis [158]. Its popularity is understandable because no hypotheses 

and almost no data assumptions are required, but the researcher is quite certain to obtain a 

clustering of samples or genes, irrespective of sample size, data quality or experimental design 

or indeed any biological validity that is associated with the clustering. 

Non-hierarchical clustering methods divide the cases (samples or genes) into a predetermined 

number of groups in a manner that maximizes a specific function (for example, the ratio of 

variability between and within clusters) [159]. 

 

1.2.4.1.2 Supervised learning 

In supervised learning (often called “classification”, “class assignment”, “class prediction” or 

“class discrimination”), the aim is to obtain a function or rule that uses expression data to 

predict whether a case is of one type or another (for example, drug-resistant versus non-drug-

resistant). For example, a rough set algorithm finds the rule that best classifies a set of 

available cases for which the correct type is known [160]. First the samples are divided into 

groups based on e.g. a clinically relevant parameter such as disease aetiology, prognosis, or 

response to therapy. Then a molecular signature is created by choosing genes whose 

expression is solidly associated with the parameter in question, by weighting genes based on 

their individual predictive strengths. 

Algorithms are typically developed on a “training” data set and evaluated on an independent 

“test” data set. The requirement for both the “training” and “test” data set is that the categories 

to which objects belong are known. Many supervised classification algorithms are available. 

The great challenge is to determine the optimal degree of model complexity that a given data 

set can support. A common misconception is that the set of the most differentially expressed 

genes will necessarily give the best predictive accuracy. The gene list that is obtained from 

hypothesis testing does not necessarily give the best prediction. No one method for 

constructing prediction algorithms is widely accepted as superior or optimal. However, 

experience suggests that with the sample sizes that are typically available in microarray 

studies, simpler methods might out-perform more complex approaches. 

 

1.2.4.2 Gene annotation 

A “gene annotation” is a “comment” attached to a gene or gene product, which can be a 

protein. The comments can, for example, be a DNA or peptide sequence, describe the 
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biological functions of the protein, its interactions with other genes/proteins, and the metabolic 

pathways in which the protein is active. In microarray experiments, after the genes of interest 

have been identified using statistical tools, their annotations should be acquired, in order to 

make inferences about the validity and biological interpretations of the findings, and to 

generate new hypotheses. 

 

1.2.4.2.1 Retrieving annotations from public databases 

The meta-analysis of microarray data sets largely depends on rapid access to previously 

described annotations of the genes being studied. Today, diverse publicly available resources 

exist that catalog various attributes of genes, ranging from their mapped coordinates within the 

genome to the enzymatic function of the proteins they encode. These include GenBank [161], 

UniGene [162], Entrez (LocusLink) [163], SwissProt [164], Online Mendelian Inheritance in 

Man (OMIM) [165], PubMed [162], as well as many others. Although these resources are 

highly informative individually, the collection of available content is of higher value when 

provided in a unified and indexed in a robust manner. Several web-based database tools like, 

SOURCE [166], GeneCards [167], GeneCruicer [168], NetAffx [169] and GeneTools [170] 

(Study III) are now available. These tools are designed to bring together annotation 

information from a broad range of resources, and provide it in a manner particularly useful for 

genome-scale analyses, which means that lists of gene reporters can be submitted and the user 

receives annotation information for all these in one query. 

 

1.2.4.2.2 Gene ontology 

The Gene Ontology (GO) project was founded to advance the development and utilization of 

bio-ontologies and semantic standards for molecular biology [171]. The GO is divided into 

three sub-ontologies: molecular function (MF), biological process (BP), and cellular 

component (CC), to describe attributes of gene products or gene product groups. Briefly, MF 

describes what a gene product does at the biochemical level. BP describes a broad biological 

objective. CC describes the location of a gene product, within cellular structures and within 

macromolecular complexes [171]. 

The GO ontologies are structured vocabularies in the form of directed acyclic graphs (DAGs) 

that represent a network in which each term may be a “child” of one or more than one 

“parent”. Relationships of child to parent can be of the “is a” type or the “part of” type. The 

“is a” type refers to when a child is an instance of the parent. For example, nuclear 
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chromosome “is a” chromosome. “Part of” is slightly more complex. For example, A “part of” 

B means that whenever A is present, it is always a part of B, but A does not always have to be 

present. An example can be nucleus “part of” cell. Nuclei are always part of a cell, but not all 

cells have nuclei. 

The annotations of gene products to the GO vocabularies are attributed to a source, which may 

be a literature reference, another database, or a computational analysis. The annotations 

include not only the source attribution, but also an indication of the evidence on which the 

annotation is based. A simple controlled vocabulary (evidence codes) is used to describe the 

evidence supporting the attribution, such as “traceable author statement” or “inferred from 

direct assay”. Referencing each annotation with both experimental method and citation is 

intended to help researchers evaluate the reliability of an annotation and is critically important 

to the future evaluation and use of these annotations [172]. The ontologies and annotations are 

provided publicly as part of the GO database resource (http://www.geneontology.org/). 

 

1.2.4.3 Gene-class testing 

Among the most widespread applications of GO data is the use of GO terms and gene product 

annotations to help interpret the results of microarray experiments. Correlation between the 

functional information captured by GO and the expression patterns of a set of genes (gene-

class testing) can help to highlight underlying biological phenomena. Comparisons of gene 

lists are important in order to answer questions such as “are genes involved in process P 

overrepresented among the total of differentially expressed genes in an experiment” or “does 

treatment A induce more genes involved in process P than treatment B?”. 

Several software tools have been developed to facilitate the analysis of gene expression data 

using GO (www.geneontology.org/GO.tools.microarray.shtml), and some papers reviewing 

the relative merits of a subset of these tools have recently been published [173-175]. These 

tools are suited for analysis of the GO hierarchy and for statistical evaluation of GO category 

representations between gene lists [176]. Several different statistical tests are offered through 

the different tools, and suit different situations/questions. 
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2. Objectives 
The main purpose of this project was to investigate molecular mechanisms of myocardial 

hypertrophy and heart failure in experimental models and clinical samples. We aimed to 

establish and use microarray technology and bioinformatics tools to obtain these results. 

 

The specific objectives of the studies were 

 

Study I 

To explore the presence and localization of H+/K+-ATPase gene and protein expression in the 

rat heart, and to investigate whether the enzyme could contribute to potassium transport across 

the sarcolemma. 

 

Study II 

To use gene expression profiling, gene-class testing methods built on functional annotations 

(GO) and supervised classification to identify aetiology-specific biological processes and 

potential molecular markers (classifiers) for different aetiologies of end-stage heart failure. 

 

Study III 

To develop a general gene annotation tool that could handle information from microarray 

studies. Important features should be user friendliness, recent updates of annotations, options 

to add user-defined annotations, and procedures for statistical hypothesis testing. 

 

Study IV 

To identify genes and gene-classes related to biological processes that are differentially 

regulated during hypertrophy development and genes whose expression differ between 

pathological and physiological hypertrophy. 
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3. Methodical considerations 
 
3.1 Animal models 

Due to limited availability of human cardiac tissue, we chose animal models for cellular and 

molecular analyses of heart failure and hypertrophy mechanisms in Studies I and IV. 

 

3.1.1 Rat myocardial infarction and heart failure model 

The rat was chosen because the species has been extensively studied in cardiovascular disease 

and many of the similarities and differences to human physiology and pathophysiology are 

known. Adult female Sprague-Dawley rats were used to minimize physiological growth 

throughout the study period. In Study I and IV, infarctions were induced by ligation of the left 

coronary artery. This method is well established in our laboratory [75,177,178]. 

To verify myocardial infarction and to assess the extent of heart failure, left ventricle (LV) 

pressure and infarct size were measured by echocardiography. The myocardial infarction 

model is an established heart failure (HF) model with high prevalence of severe HF dependent 

on infarct size [179-181]. It has many similarities to human post-infarction HF and the 

coronary artery ligation induces a transmural myocardial infarction in the free wall, with 

infarction size dependent on the ligature positioning. Within few days the infarct area is 

macroscopically demarcated to the non-infarcted tissue. LV remodeling occurs in the rat 

model similarly to the human, except that scar formation is complete earlier (3 weeks vs. 4-5 

weeks). After large myocardial infarctions, LV remodeling and cardiomyocyte hypertrophy is 

progressive and contractile function and calcium handling is impaired [182,183]. 

Dissimilarities between experimentally induced pathology and disease are usually marked. HF 

due to one large, well defined transmural infarction after permanent coronary artery ligation 

may differ significantly from clinical ischemic HF. Patients usually have diffuse CAD with 

recurrent infarctions and modern interventions frequently result in reperfusion of the infarcted 

area. 

In Study I, we used LV pressure measurements to detect differences in contractile functions 

between sham operated animals and infarcted rats. It has been established that the maximum 

rate of rise of left ventricular pressure, dP/dtmax, is a sensitive measurement of acute changes in 

LV contractile function. LV dP/dtmax also correlates with basal contractility in failing and non 

failing hearts but is affected by pre-load, heart rate and hypertrophy [184]. Interpretation of 

dP/dtmax must therefore be done with these limitations in mind. 
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3.1.2 Rat exercise training program 

To maximize cardiovascular adaptation and induce physiological hypertrophy in Study IV, we 

chose to use a custom made inclined treadmill running model, which allows us to have close 

control of exercise intensities and training adaptation. This model has been extensively 

characterized and used in our laboratory and described in detail by Wisloff et al. [185]. In this 

running model, the exercise sessions were carried out for 1.5 h/day, 5 days/week, in intervals 

of 8 min at 85-90% of maximal oxygen uptake (VO2max). To reduce the speed, uphill treadmill 

running was performed. This results in a full body exercise that taxes the cardiovascular 

system maximally, and mimics physiological adaptations in humans [186,187]. Several studies 

from our laboratory confirm that hypertrophy is induced after 4 weeks with this training 

program by increased LV and RV weights and myocyte length [185,187,188]. In contrast to 

pathologic hypertrophy, our model of exercise training-induced hypertrophy is associated with 

improved contractile function and calcium handling in the cardiac myocytes [187,188]. Due to 

these characteristics, this rat treadmill exercise program serves as a good model for 

physiological hypertrophy. 

 

3.2 Human samples 

In Study II, tissue samples from transplant and normal hearts were used. Compared to e.g. the 

rat myocardial infarction model, the human infarcted myocardium samples were much more 

inhomogeneous. Typically, more scar tissue was included in the samples. For the RNA 

isolation we tried to avoid these areas of the tissue samples as much as possible. Among other 

factors, differences in age and degree of failure introduce more variability in the data 

generated in this study than for the rat model. 

A second difference compared to the rat model is that the non-failing human subjects were 

significantly younger than the patients with failing hearts and most of the non-failing patients 

were females whereas the failing patients were males. However, this did not seem to influence 

the results and we were not able to connect the pattern of differentially expressed genes to 

gender. Despite this biological variation in the samples we were able to find expression 

patterns that were significantly different between failing and non-failing hearts, and between 

different aetiologies, such as CAD and DCM. 
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3.3 Gene expression measurements 
3.3.1 Competitive rt-PCR 

For the competitive reverse transcriptase polymerase chain reaction (rt-PCR), we cloned two 

PCR products; one from the rt-PCR and one from a PCR of genomic H+/K+-ATPase 

(competitor). These clones were purified, quantified and used as a standard curve and a 

competitor for each sample that were tested. In the rt-PCR reactions, we always included the 

“genomic” competitor and after gel electrophoresis the expression bands were related to the 

standard curve and corrected for the competitor. In this way we were able to assess RNA 

expression in a semi quantitative manner. This method did not allow us to measure the 

accurate number of transcripts expressed, but it was good enough to distinguish between 

different groups of samples compared. Several other studies in our group and elsewhere have 

used this method with success [75,177]. 

A limitation of this method is that we were not able to correct for different amounts of input 

RNA, but this could have been tested by using a “house keeping” gene as control. To 

compensate for this, we used several biological and technical replicates that give statistical 

power. In addition, we established a second assay for Nppa (ANF) expression where we, for 

these samples, confirmed known expression patterns. A second limitation of this competitive 

rt-PCR method is that a genomic competitor was used. By using an RNA competitor we would 

have been able to control every step from the cDNA synthesis and we think this would have 

increased the possibility to quantify the exact amount of expressed transcripts. However, this 

is not usually the main focus for researchers, who often need to have a method that can 

distinguish gene expression between groups of samples. 

 

3.3.2 Real time PCR 

In Study II we used real time PCR (RT-PCR) for verification of microarray results. RT-PCR is 

a more sensitive and easier method to perform, than competitive rt-PCR. 

Several algorithms have been developed to calculate absolute quantitative measurements, but 

how good these really are is still debatable. We chose to use TaqMan chemistry for the RT-

PCR reactions and for relative quantification we used a modified ∆∆CT equation [189]. For 

these assays we chose to use Beta-actin to normalize the RT-PCR expression ratios for each 

individual sample. What genes that can act as “house keeping” genes in a heart is not well 

known. Several studies have found that most genes commonly known as “house keeping” 

genes may be differentially expressed in different cardiovascular settings. We tested Beta-
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actin in heart failure samples vs. non-failing samples and in different aetiologies of heart 

failure, and did not find any significant differences in gene expression between the biological 

samples. Moreover, these analyses showed a close correlation with the microarray results for a 

sub-set of genes. 

Today, most reviewers of microarray manuscripts require RT-PCR verification of the 

microarray results. Several studies have been done and most of them conclude that microarray 

results and real time data correlate very well. Since these two methods measure gene 

expression at the same biological level, it has been concluded [101] that in some situations this 

type of verification is unnecessary. Functional verifications with enzymatic assays or protein 

measurements may therefore be more relevant. However, the reason that many reviewers still 

require verification is that in the early days of microarry technology, the gene probe quality 

was poor and the user could not be sure that he was looking at the gene he though the clone 

represented. This problem will be discussed in the next chapter. 

 

3.3.3 DNA microarray analysis 
3.3.3.1 cDNA microarrays 

Only cDNA microarrys were available when the studies of the present project were performed. 

We used glass microarrays with cDNA probes (200-2.000 nucleotides in length) printed by the 

Norwegian Microarray Consortium (NMC). The clones for the cDNA probes were purchased 

from the IMAGE consortium [190]. Errors in the IMAGE collections of clones have been 

reported, and additional errors may have occurred during production. As a response to this, 

NMC resequenced a large proportion of the printed PCR products from both the human and 

rat libraries. They found that ~70-80% of the human clones and ~60-70% of the rat clones 

could be verified. Among the remaining 20-40% of clones, not all are likely to be “wrong”. 

Some could be classified as “not verified” as a result of e.g. lack of successful sequence 

reactions. Uncertainty of the exact nature of probes is a general concern with cDNA 

microarrays and a strong argument for verification of microarray data with other methods. In 

Study II, we resequenced the most significant genes and all were found to be correct. In 

addition, we focused less on single genes, but more on functional groups (e.g. GO-classes) of 

genes that were differentially expressed between the studied groups. These strategies are well 

suited to increase reliability of our interpretations. 

A second concern when using cDNA microarrays is cross-hybridization of the labeled sample 

to non-target homologous probe sequences on the microarray [191,192]. This cross-
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hybridization is mainly due to hybridization between the poly(A)-tail of the sample mRNA 

and the cDNA probes which also contain poly dA/dT sequences. Different blocking solutions 

are used in order to prevent this unspecific cross-hybridization. We used standard oligo dT and 

cot-1 blocking. A new alternative is the LNA dT blocker from Genisphere. The potential 

problem with the use of dT blockers is that the concentration of PCR products on the array and 

between batches of arrays may vary. Therefore, it is difficult to find the optimal concentration 

of blocking reagents to use. However, methods for solving this have been developed (Bruland 

et al. paper submitted). 

At the time of our first microarray experiments, we did not have full knowledge of this 

potential problem and just standard amounts of blocking reagents were used. Moreover, the 

variable length of the PCR product printed on the microarrays makes it difficult to find an 

optimal hybridization and washing temperature. We think this is the main reason for the 

observation of compressed expression ratios, compared to e.g. RT-PCR experiments. 

Important issues are still the choice of microarray platform, labeling method and quality 

control, but it is now believed that most platforms individually work well (in good hands and 

with standardized protocols) and produce similar results (at least according to the 

representation of the function to the genes found), so local experience with the technology is 

essential [193-195]. However, there are still many problems to solve. Shields [196] has 

discussed some of those in a recent paper and suggest that it is time to go beyond MIAME to 

reach the desired level of confidence. What is needed is a proper evaluation of microarrays 

(including sample extraction and work-up, data handling and analysis) and an understanding 

of what is important to achieve consistent, accurate and reproducible results across 

laboratories. However, recently both US and European projects have been established to work 

with such issues. 

 

3.3.3.2 Labeling methods 

In the present studies (Study II and IV) we used a microarray labeling and hybridization 

protocol that enables the use of small amounts (1-5 µg) of RNA without amplification [115]. 

The 3DNA labeling system (Gensiphere INC.) provides a more predictable and consistent 

signal than direct labeling and than several of the other indirect labeling methods. There are 

two main reasons for this: First, the fluorescent dyes are a part of a 3DNA dendrimer, and it 

does not have to be incorporated during the sample cDNA synthesis. This avoids ineffective 

cDNA synthesis and unequal incorporation of the two dyes (e.g. Cy5 and Cy3), which can be 
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a problem in direct labeling methods. Second, because each 3DNA molecule contains the 

same number of fluorophores (approximately 350 for the Genisphere 350 3DNA kit), the 

signal generated from each sample cDNA molecule will be largely independent of base 

composition or length of the transcript. In contrast, the signal from direct and most indirect 

labeling methods will vary depending on the base composition and length of the sample cDNA 

generated during labeling. 

In our studies (Study II and IV) and in other early microarray studies using the 3DNA method, 

compressed ratios are observed. In addition to possible unspecific binding, this appears to be a 

result of low dynamic range of the fluorescence signals obtained. Studies comparing different 

labeling methods confirm this [112,197]. Despite these limitations, we and others 

[143,198,199] have shown that the 3DNA method can identify differentially expressed genes, 

since we have obtained good results using external spikes, and since the RT-PCR verification 

results fit well with the obtained microarray results. After our Study I was finished, the 3DNA 

protocols were improved and new equipment has been made available. Among the 

improvements of the protocols is the introduction of a “two-step” hybridization (used in the 

exercise part of Study IV), where the sample cDNA first is hybridized to the array and then the 

fluorescent dendrimers are hybridized to the target sequences in a second hybridization before 

wash and scanning. In addition, Gensisphere has introduced the LNA blocking solution 

(described in section 3.3.3.1) which works well on cDNA arrays. Today most laboratories 

have automatic hybridization stations that ensure good mixing of the cDNA, constant and 

precise temperature under the hybridization, and stringent and equal wash conditions. 

Together, these improvements result in better signal to noise ratios, and an increased dynamic 

range of the signals. 

 

3.3.3.3 Quality control 

There is a mounting call for standards and quality control (QC) of microarray experiments. In 

every step, from sample preparation to data analysis, there is QC that can be performed. 

However, still good systems are missing for assessment of technical quality of the microarray 

experiments. Two characteristics of performance are very important, accuracy and precision. 

The assessment of these factors can be either for the purpose of technology optimalization or 

for the evaluation of individual hybridizations. Whereas accuracy refers to how close a 

measurement is to the real value, precision indicates how often a measurement yields the same 

result. When microarrays are discussed, the focus is often on precision, which relates to 
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reproducibility rather than accuracy. This is due to the fact that reproducibility is relatively 

easy to assess by performing repeated measurements. However, as discussed below, several 

types of external controls can be used for accuracy assessments of microrray data. 

A very useful tool is external spike controls. Spike controls consist of exogenous RNA 

transcripts, which are added to the RNA samples prior to reverse transcription and labeling. 

For Study IV we used a commercial SpotReport Array Validation System (Stratagene, La 

Jolla, CA) to measure hybridization quality. To use this system, the arrays were spotted with 

probes for the exogenous transcripts. Different amounts of each exogenous transcript were 

added to the test and control sample to generate pre-defined ratios (10 different ratios) 

between the fluorescence signals for the two samples compared on a slide. In this way we 

were able to mimic differentially expressed genes. This information can be used to evaluate 

the reverse transcription, labeling and hybridization procedures, as well for assessing the 

dynamic range of the signal intensities. An extended spike set up can increase the value of 

using spikes as a QC method. An ideal set up may include 20-30 different spikes which are 

printed in all sub arrays. A wide distribution in the signal intensities (with log2 ratio 0, 

normalization controls), that covers the entire range of mRNA levels, will allow normalization 

using the spikes. This may be very important in analysis of microarray data if a global shift in 

gene expression is observed [200]. In addition, it is advantageous to include spikes at ratio 

levels that are both higher and lower than the range that is strictly required. So, in addition to 

include non-differential (normalization) controls, spikes designed to measure both low (two 

fold) and high (ten fold) differentials in a single experiment are useful. 

 

3.3.4 Learning 

Right from the beginning of microarray history, clustering and classification have been 

popular analysis methods. However, it is believed that unsupervised learning (class discovery) 

is overused. First, little information is available about the absolute validity or relative merits of 

clustering procedures [201,202]. Second, the evidence indicates that the clusters that are 

produced with typical sample sizes (<50) are generally not reproducible [203]. Third, and 

most importantly, unsupervised learning rarely seems to address the questions that are asked 

by biologists, who usually are interested in identifying differential expression. However, it is 

important to note that there might be cases where clustering is warranted, e.g., if the goal is to 

simply obtain a general description of how genes co-vary with respect to their gene expression 

levels within a population. 
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In supervised learning (class prediction), the aim is to obtain a function or rule that uses 

expression data to predict whether a case is of one type or another (for example, coronary 

artery disease vs. dilated cardiomyopathy as described in Study II). For example, a rough set 

algorithm finds the rule that best classifies a set of available cases for which the correct type is 

known. Because of this attempted optimization, over-fitting might be a concern. To estimate 

how well the rule will perform on fresh data, one should cross validate it on test data that are 

completely independent of the data from which the classification rule was derived, and there 

are many approaches to this [204]. One key point is the need to avoid selection bias. This 

requires cross-validation procedures that separate the validation data from all aspects of the 

rule derivation process, including the selection of initial transcripts to include in the model 

[205-207]. Early microarray papers failed to account for selection bias and thereby radically 

overestimated prediction accuracy. Effective cross validation requires an adequate sample 

size, and methods for estimating sample sizes for supervised learning studies have been 

developed [208-210]. 

A limitation of our study (Study II) where we used supervised learning to obtain classifiers 

that could distinguish between CAD and DCM samples was that the pool of samples was 

small (approximately 10 different individuals in each group), so it was not possible to use a 

subgroup of the samples as a test set for cross-validation. However, we used a “leave one out” 

algorithm for cross-validation to reduce overfitting. Future studies should ensure that a large 

population of samples is available, to facilitate the use of a stringent learning set/test set 

method. Admittedly, for some diseases and probably especially for cardiovascular research 

and diagnostics, this may be difficult to obtain. Possibly, in some cases, animal models can be 

used to explore molecular patterns that could classify different cardiovascular diseases or 

states of disease. 

 

3.4 Gene annotation 
3.4.1 Annotation databases 

Microarray analysis generates lists of gene reporters that need to be connected to annotation 

data. To perform this individually for each gene is very time-consuming. Therefore, tools that 

allow batch searches have increased the usability of such tools. Tools for meta-analysis may 

be more useful and powerful if more types of data are integrated in a coherent way. Further, a 

dedicated annotation database that integrates various types of data from various sources is 

potentially better than any single database. However, not many such tools are available. The 
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main problems in building such an integrated database is difficulties in design and the need to 

update every time any one of its source databases is updated. This places a heavy burden on 

the team maintaining it. Given this, it is understandable that most tools available today use 

only one of the available annotation databases. In the future, at least in the context of the 

development of systems biology, databases that offer information from several sources will be 

essential. 

However, there are still limitations even with the current annotation databases. First, the 

existing databases are incomplete. For virtually all sequenced organisms, only subsets of 

known genes are functionally annotated. Furthermore, most annotation databases are built by 

curators who manually review the existing literature. It is therefore possible that certain known 

facts might get temporarily overlooked. However, even more commonly, recent annotations 

are not in the databases yet because of the time lag necessary for the manual curation process. 

In this context we hope that our GO Annotation Tool [170](part of GeneTools, study III) can 

be a valuable tool. Until today most of the annotations have been performed by small groups 

of scientists, but now “regular” users can add annotations to their genes and choose to share 

these with the scientific community (export to GOA [211]). Hopefully, this can contribute to 

increasing the number of annotated genes and to speed up the annotation process. 

A second problem with the annotation databases today is how genes are “named”. Each 

resource often uses its own type of identifiers. For instance, GenBank uses accession numbers, 

UniGene uses cluster identifiers etc. Furthermore, genes are also represented by various 

company specific gene IDs. Various resources try to address this problem by maintaining 

different types of IDs together. For instance, beside its own gene names, EntrezGene database 

[163] also contains UniGene cluster IDs, and Affymetrix's NetAffx [169] provides RefSeq and 

GenBank accession numbers, beside its own array specific probe IDs. The burden of mapping 

various types of IDs to each other is left entirely to the researchers, who often have to revert to 

cutting and pasting lists of IDs from one database to another. The name space issue 

(connection between a specific sequence e.g. a probe and a gene) becomes crucial when trying 

to translate from lists of differentially expressed genes to functional profiles because the 

mapping from one type of identifier to another is not one to one. Consequently, the type of IDs 

used to specify the list of differentially regulated genes can potentially affect the results of the 

analysis [176,212], so the name space problem has yet to be solved. However, we recommend 

using primary IDs like e.g. GenBank accession numbers to decrease this problem. 
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Today, GeneTools is one of the largest sources that offer gene/protein annotations from 

several database sources. However, more annotations, through import of additional external 

databases should be added. A potential expansion may be to include information from 

Ensembl (genome browser) [213], the HapMap Project [214] and Kyoto Encyclopedia of 

Genes and Genomes (KEGG) [215]. To facilitate utilization of systems biology approaches, it 

would be advantageous if gene expression data were available. Finally, to ensure a good 

accessibility, the export formats can be extended e.g. by offering export in SBML (the systems 

biology markup language) [216] format. 

 

3.4.2 Gene ontology 

As mentioned earlier, the meta-analysis of microarray datasets largely depends on rapid access 

to previously described features/annotations of the genes being studied. Today, various 

publicly available resources exist that catalog various attributes of genes. However, most of 

this information is just text descriptions and not built on a common “language”, so a common 

understanding of e.g. a description of a gene function or a pathway is difficult to find. 

However, some controlled vocabularies have been developed to address this problem. For 

example, GO represents a viable, and possibly long term, solution to the problem of 

inconsistent vocabulary. At least today GO is the most developed and used vocabulary for 

gene annotation, but other vocabularies like KEGG [215] are useful and has been popular, in 

the sense of analysing gene function. 

Further, the current GO structure may not be the final answer. It is evident that there also are 

biological relationships between terms of the different subontologies (MF, BP and CC). A 

recent software named GO Annotation Toolbox (GOAT) [217], connects the three 

subontologies to enable GO to cover more biological knowledge, which also enables a more 

consistent use of GO, and therefore provides new opportunities for biological reasoning. 

Most of the available GO tools use GO annotation data from a single public database. This has 

the advantage that the data is always as up to date as the database used. The disadvantage is 

that no single database offers a complete picture. For primary GO annotation data, the GO 

database (provided by the GO consortium [218]) is a comprehensive and up to date source 

since the contributing databases submit their data directly there. Other sources such as 

EntrezGene [163], derive their data from the GO database. In addition, EntrezGene curates 

these annotations, which in some situations may be useful. Our GeneTools database (Study 

III) obtains the GO annotations from EntrezGene, which we think is a good solution. 
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However, we also believe that using the GO database as the primary database can be a good 

solution if a “source” filter is available so that the users can choose which information from 

the GO database they want to use. A second problem is that certain pieces of information may 

also be imprecise or incorrect. For example, a large amount of the rat GO annotation 

associations are inferred exclusively from electronic annotations (i.e. without any expert 

human involvement). The vast majority of such electronic annotations are reasonably accurate. 

However, many such annotations are often made at a very high-level GO term which limits 

their usefulness. Furthermore, some of these inferences are incorrect. In our eGOn tool (Study 

III) we have implemented an “evidence” filter to solve this potential problem. To our 

knowledge, this is the only tool that offers this. A second potential solution can be to allow 

any type of weighting by quality of evidence in these GO tools, which is a limitation since 

experimentally derived annotations are more trustworthy than electronically inferred ones. 

 

3.4.3 Gene-class testing 

From microarray experiments, the investigators are often left with a large amount of 

unorganized findings. In response to the dual need to increase power to detect differential 

expression and to reduce the interpretive challenge that is posed by a long list of differentially 

expressed genes, gene-class testing has become a popular and widely accepted analytical tool. 

Gene classes are usually based on GO categories. Several gene-class testing methods and 

software packages are available, most of which use statistical tests to compare the number of 

genes in a class that are significant with the number that are expected under a particular null 

hypothesis. Several statistical tests for gene-class testing are offered in different GO tools. In 

our Study III (GeneTools [170]), we describe three different situations (master-target situation, 

mutually exclusive target-target situation and intersecting target-target situation), where 

different tests are used. 

Tests for the master-target situation are offered in almost all tools and the Fisher's exact test is 

what most tools use. However, just a few tools offer tests for the mutually exclusive target-

target situation, which we think is convenient when we want to look for differences between 

the representations of up- vs. down-regulated genes. In addition, to our knowledge we are the 

first to implement a test for the intersecting target-target situation. Such a test can be used to 

compare two gene reporter lists where a number of gene reporters are represented on both 

lists. In this way the intersecting target-target test can be used to investigate whether the GO 



 - 48 -

categories represented by these genes are over- or under-represented in the experiments behind 

the two lists. 

Studies II and IV show how such tests can be used in different situations and how the results 

can be used in further hypothesis generation. However, a general cautionary remark on the 

statistical tests for association between two gene reporter lists is that they are based only on 

the gene lists submitted to the tool, and the raw data underlying the statistical analyses 

producing the gene reporter lists are not submitted to most tools. This means that e.g. eGOn 

does not offer permutation based methods for addressing the dependence structure between the 

genes. The statistical tests in eGOn are thus based on the assumption that under the null 

hypothesis the genes on the lists (or subsets of the lists in the intersecting target-target 

situation) act independently, as is also commonly assumed in other GO-tools. 

A second important consideration when identifying statistically significant GO terms is the 

choice of the reference list of genes against which the P-values for each GO term in the results 

are calculated. Several tools (such as GOToolBox, GOstat, GoMiner, FatiGO, and GOTM) 

use the total set of genes in a genome as the reference or the total set of genes with GO 

annotations. Either of these may be an inappropriate choice when the input list of genes to 

these tools is a list of differentially expressed genes obtained from a microarray experiment, 

since the genes that are not present on a microarray do not have a chance of being selected as 

differentially regulated. The fundamental idea is to assign significance to various functional 

categories by comparing the observed number of genes in a specific category with the number 

of genes that might appear in the same category if a selection performed from the same pool 

were completely random. If the whole genome is considered as the reference, the pool 

considered when calculating the random choice includes all genes in the genome. At the same 

time, the pool available when actually selecting differentially regulated genes includes only 

the genes represented on the array used, since a gene that is not on the array can not be found 

to be differentially regulated. This represents an obvious contradiction of the assumptions of 

the statistical models used. Thus, in our GO tool eGOn, we use a master list (all reporters on 

array) as a reference list in the Master-Target test. 

 

3.5 86Rb+-uptake 

In Study I we used 86Rb+ to measure potential K+ uptake through the H+/K+-ATPase in cardiac 

myocytes. A sample of the cell suspension, containing 105 myocytes, was incubated at 37 C 

for 15 min (which was shown to be in the linear phase of 86Rb+-uptake) with 86Rb+. 86Rb+-
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uptake was measured in the absence and presence of Na+/K+-ATPase inhibitor ouabain and 

H+/K+-ATPase inhibitor SCH28080 which were added simultaneously with the 86Rb+. Most 

H+/K+-ATPase inhibitor are just active in an acidic environment. However, in this experiment 

we chose to use SCH28080 because it is active at neutral pH. 

In a control experiment the interaction of ouabain and SCH28080 on the 86Rb+-uptake was 

tested at concentrations giving submaximal inhibitions both separately and combined. We 

showed that the selective Na+/K+-ATPase inhibitor ouabain maximally reduced the 86Rb+-

uptake by about 70%, which agreed with previous results by Viko et al. [219]. In addition, we 

found that the H+/K+-ATPase specific blocker SCH28080 reduced 86Rb+-uptake by up to 70%. 

These observations suggest that at high concentrations, these agents directly or indirectly 

inhibit some common uptake mechanisms. At 1.0 X 10-4 M, however, SCH28080 did not 

interfere significantly with the 3H-ouabain binding to the Na+/K+-ATPase, which is in contrast 

with the marked effect of unlabelled ouabain. Thus, at concentrations up to 1.0 X 10-4 M, 

SCH28080 seems to selectively inhibit the H+/K+-ATPase without significantly inhibiting the 

Na+/K+-ATPase. At this concentration, the 86Rb+-uptake was reduced by about 25%, 

indicating that the H+/K+-ATPase may account for this fraction of the K+-uptake. However, we 

tested the interaction between SCH28080 and ouabain at 1.0 X 10-4 and 0.5 X 10-4 M, 

respectively, in order to minimize interaction of these two agents on 86Rb+-uptake 

mechanisms. Their inhibitory effects on the 86Rb+-uptake were almost exactly additive, 

indicating that at these concentrations SCH28080 and ouabain act on different uptake 

mechanisms. Thus these results are compatible with a contribution from the H+/K+-ATPase to 

the total 86Rb+-uptake. However, an accurate quantitative estimation of this contribution would 

depend upon a more exact knowledge of the selectivity of SCH28080 for the H+/K+-ATPase 

vs. the Na+/K+-ATPase than we obtained in this study. 
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4. Summary of results 
 

Study I 

- H+/K+-ATPase gene and protein expression was detected in heart tissue and localized 

to cardiac myocytes, by sequencing, rt-PCR, Western blotting, and immuno-

cytochemistry. 

- Competitive rt-PCR analysis indicated a significant up-regulation of the myocardial 

H+/K+-ATPase in heart failure after myocardial infarction, and the level of gene 

expression was related to infarction size. 

- Both ouabain and the selective H+/K+-ATPase inhibitor Schering 28080 reduced 86Rb+-

uptake at maximum specific inhibition, by 70 and 25%, respectively; the effects were 

additive. 

 

Study II 

- We identified differential expression of 153 and 147 genes, respectively, in coronary 

artery disease (CAD) or dilated cardiomyopathy (DCM) versus non-failing hearts. 

- Gene-class testing analysis of gene ontology (GO) biological process annotations 

indicated aetiology-specific patterns between CAD and DCM, primarily related to 

genes involved in catabolism and in regulation of protein kinase activity. 

- Gene expression classifiers were developed and used for class prediction of random 

samples of CAD and DCM hearts. Most confident discrimination was obtained when 

the classifier included up to seven genes with the highest t-statistics (corresponding to 

p<0.001). 

- The best classifier based on the AUC (0.89) measures correctly predicted group 

assignment in 16 of 20 samples, resulting in a test sensitivity of 0.750 and a specificity 

of 0.833. 

- The best classifiers frequently included Matrix metalloproteinase 3, Fibulin 1, ATP-

binding cassette, sub-family B member 1, and Iroquois homeobox protein 5. 

 

Study III 

- GeneTools is a web-service, providing access to a database that brings together 

information from a broad range of resources of gene information. 

- GeneTools provides three different tools: 
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I. NMC Annotation Tool, which offers annotations from several databases like 

UniGene, Entrez Gene, SwissProt and GeneOntology, in both single- and batch 

search mode. 

II. GO Annotator Tool, where users can add new gene ontology (GO) annotations to 

genes of interest. Such user-defined GO annotations can be used in further 

analysis or exported for public distribution. 

III. eGOn, which is a tool for visualization and statistical hypothesis testing of GO 

category representation. 

- As the first GO tool, eGOn supports hypothesis testing for three different situations 

(Master-Target situation, Mutually Exclusive Target-Target situation, and Intersecting 

Target-Target situation). 

- An important additional function is an evidence-code filter that allows users to select 

the GO annotations for the analysis. 

 

Study IV 

- At all time points, three genes; Natriuretic peptide-precursor A, Interferon regulatory 

factor 3 (Irf3), and D-serine modulator-1, were up-regulated in CHF, and one gene, 

RAD23a homolog, in response to exercise. 

- Irf3 may be a potential drug target, since it is likely to mediate the effects of 

peroxisome proliferator-activated receptors, which control fatty-acid oxidation in 

cardiac hypertrophy. 

- Genes involved in fatty-acid metabolism were down-regulated in CHF, but not in 

response to exercise. 

- Physiological hypertrophy was associated with less comprehensive changes in gene 

expression, indicating that post-transcriptional and post-translational regulation may be 

more important than in pathological hypertrophy. 
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5. Results and discussion 
 

5.1 Functional genomics in cardiovascular research 

Since human cardiac tissue is less accessible than e.g. tumor material, expression profiling has 

been performed to a lesser extent in human cardiac disease. The first cardiac expression 

profiles were based on analyses of expressed sequence tags (ESTs) obtained from cDNA 

libraries, leading to catalogues of genes expressed in normal or hypertrophied hearts [220-

222]. These studies were followed by microarray analyses identifying genes (gene discovery) 

with differential expression levels in failing hearts. More recently, attempts were conducted to 

classify groups (supervised or unsupervised methods) of patients with end-stage heart failure 

based on their expression profile. In relation to all this, our Studies II and IV are natural 

further developments of what is previously done in this field of cardiovascular functional 

genomics. 

 

5.2 Heart failure and gene expression 

Researchers have long been interested in the development, progression and treatment of HF. 

Mouse and rat models of HF and cardiovascular disease have been created to enable studies of 

the disease mechanisms, devices to assist the heart in its pumping activity have been designed, 

and drugs to boost heart function have been developed. However, as of yet, the underlying 

mechanisms of heart disease remain uncertain and the therapies to treat it are still imperfect. 

Seeking to gain a better understanding of HF and find new ways to diagnose and treat it, we 

(by the studies in this thesis) and several others have examined the activity of genes in failing 

hearts. We aimed at studying both the causes and effects of heart failure, and one of the ways 

to do that is to look at changes in gene expression. For example, in Study I, we used standard 

rt-PCR and competitive rt-PCR to detect regulation of expression of H+/K+ in relation to heart 

infarction and during development. However, the more recent development of the DNA 

microarray technology enabled us and others to simultaneously study gene expression of tens 

of thousands of gene at once. One of our main aims in Study II and IV was to look for gene 

expression patterns in “normal” hearts versus diseased hearts, compare “acute” versus 

“chronic” phase and look for aetiology specific differences. 

Like in most other studies we found that a set of genes and the molecular functions that they 

contribute to are regulated in the same way in different forms of HF diseases, reflecting a 

reaction to the pathological stimuli. For example, a high proportion of the differentially 
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expressed genes in the HF samples we measured in Study II and IV were related to e.g. cell 

communication, signal transduction, metabolism, transcription and development. Among the 

genes differentially expressed in HF we found an over representation of differentially 

expressed genes related to e.g. response to stress, defense response and inflammatory 

response, indicating that these processes are important in defining the HF specific response. 

Several other reports have shown similar patterns. For example, Yang et al. [223] was one of 

the first to publish gene discovery results from microarray data. They used high-density 

oligonucleotide arrays to explore changes in expression of ~7000 genes in 2 non failing and 2 

failing human hearts with diagnoses of end-stage ischemic and dilated cardiomyopathy, 

respectively. They reported altered expression of cytoskeletal and myofibrillar genes, genes 

responsible for degradation and disassembly of myocardial proteins, genes involved in 

metabolism, genes responsible for protein synthesis, and genes encoding stress proteins. Like 

in this work, many authors have published “lists” of genes with altered expression in HF of 

e.g. CAD and DCM [37,224-230], where most studies involved small sample sizes and binary 

comparisons such as failing and non failing hearts. In addition, several papers have described 

the same global gene expression pattern in rodent models of HF [29,231-234]. Common for all 

these and our studies of HF, is an observed general change in expression levels of genes 

encoding cytoskeletal and extracellular matrix (ECM) proteins, as well as proteins involved in 

apoptosis and intracellular signaling, energy and lipid metabolism, cell communication and 

calcium-handling pathways. Together these studies, using genome wide gene expression 

arrays and making “lists” of differentially expressed genes which is a relatively easy but 

“rough” method to create general hypotheses, provided insights into novel genetic pathways 

and therapeutic targets. This may serve as the basis for studies involving molecular signature 

analysis. However, we believe that more sophisticated data analysis methods will be used to 

extract information from microarray data in the future. Such methods may be classification 

(e.g. supervised learning or PCA), connection to functional information (e.g. GO or KEGG), 

and modeling by systems biology approaches. The extended use of GO information in gene-

class testing using statistical hypothesis testing has been very popular, but not many groups 

working with cardiovascular systems have published work using such methods and few 

attempts have been made to characterize genome-wide differences in gene expression patterns 

between e.g. CAD and DCM hearts. In our Study II and IV we extensively used such methods 

and this will be discussed in the next chapters. 
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5.2.1 Pathological and physiological hypertrophy signals 

Cardiac hypertrophy responses can be found both in a physiological and pathologic setting, 

but the hypertrophy responses are not homogenous as shown in Study IV. Whereas 

physiological hypertrophy is characterized by eccentric growth, pathologic remodeling may be 

of either eccentric or concentric nature, depending on whether it is in response to pressure or 

volume overload [22]. Although the pathologic hypertrophy process is initially compensatory 

to an increased workload, it frequently progresses into detrimental remodeling and cardiac 

dysfunction, heart failure, arrhythmia and sudden death [235]. For example, in our MI model 

(Study IV) we measured that LV weight had increased by 45% at day 7 (p<0.01), and further 

to 53% (p<0.01) after 92 days, compared to sham animals. In addition previous studies in our 

laboratory have shown increased diastolic LV diameter, LV pressure and reduced peak dP/dt, 

peak –dP/dt and peak-systolic pressures already one week after coronary artery ligation. 

Together, this indicates a hypertrophy response already after 1 week [75,177,178]. On the 

other hand, cardiac hypertrophy induced by exercise training is considered a favorable 

adaptive response of the heart to regular physical activity and increase in bodily demands 

[236], and is characterized by increases in left ventricular (LV) chamber size, wall thickness 

and mass [237]. Several studies in our laboratory have demonstrated that the described 

exercise program elicits cardiac hypertrophy, both at the organ and cellular level 

[185,187,188,238,239]. LV weights increased by ~10% and 20-30%, whereas LV cardiac 

myocyte lengths increased ~6% and 10-15%, after 4 and 8 weeks of exercise, respectively, 

while a single exercise bout does not elicit any detectable increase in LV mass or myocyte 

size. Moreover, the cardiac growth in this exercise model is also associated with improved 

contractile function and Ca2+ handling by the cardiac myocytes [187,188,238,239]. Thus, it is 

an established, well verified and good model to study physiological hypertrophy of the heart. 

The fact that physiological hypertrophy does not associate with dysfunction, but rather with 

sustained or improved function, leads to the question of what differentiates physiological from 

pathologic cardiac hypertrophy. It has been suggested that stimuli-specific hypertrophy 

responses may be associated with distinct molecular signatures [240,241]. 

In Study IV, we compared gene expression pattern from physiological (exercise training) and 

pathological (MI) hypertrophy models. One of the striking results was that a significantly 

lower number of differentially expressed genes was found in response to physiological 

compared to pathological hypertrophy. In addition there were no large differences in the 

numbers of differentially expressed genes during the studied time period in response to 
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physiological hypertrophy as compared to pathological hypertrophy where a significantly 

higher number of genes were differentially expressed in the acute phase vs. the chronic phase. 

This corresponds with other studies [29] and may be explained by the physiological stimulus 

being weaker than the pathological stimulus. Moreover, with the fact that relatively few genes 

are differentially expressed in response to physiological hypertrophy, our results (Study IV) 

indicate that post transcriptional processes, including translation regulation are important in 

development of physiological hypertrophy. Recently, it has been shown that activation of the 

IGF-1/ Phosphoinositide 3-kinase/Akt pathway is important for induction of physiologic, but 

not pathologic hypertrophy of the heart. The action of this pathway is mainly to increase 

ribosomal activity and protein synthesis without inducing a greater expression of hypertrophy-

related genes; thus, improving translational efficiency [63]. Moreover, our observation in 

Study IV that genes related to protein amino acid dephosphorylation were over represented 

among the differentially expressed genes in response to physiological hypertrophy, supports 

the hypothesis that other factors than mRNA abundance may be important. 

In Study IV the hypertrophy marker gene Natriuretic peptide precursor A (Nppa/ANF) was 

found to be up-regulated at all time points in response to MI. This correlates well with 

previous data obtained in our lab from the same rat MI model [177] using competitive rt-PCR 

for detection of gene expression. We found the hypertrophy marker Nppa/ANF to be up-

regulated at the first two time points (1 and 4 hours after a single exercise bout), but not later 

in the hypertrophy process. Increased mRNA Nppa/ANF levels have also been found in 

response to some “chronic” training models, for example rats subjected to swimming 

[242,243], dogs subjected to a treadmill training program [244], and mice subjected to a wheel 

running program [245]. However, similarly to our study, in rats subjected to weeks of regular 

treadmill running [244,246,247] no induction of mRNA Nppa/ANF levels were found. 

Together, these results indicate that increased ANF expression is mediated at the 

transcriptional level as an early response to exercise and therefore the main signal may be the 

acute mechanical stretching of cardiac myocytes and not the hypertrophy itself. 

To further identify biological processes differently represented between physiological and 

pathological hypertrophy, we looked for functional clusters among the differentially expressed 

genes, at different time points after MI and exercise training. The main finding was that genes 

related to fatty acid metabolism were down-regulated at all stages of MI, suggesting a switch 

in metabolism to carbohydrate metabolism. This was not seen in response to physiological 

hypertrophy. The switch in metabolism is a well known response to heart disease, however in 
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this study we show that it is a very early response to MI and that it continues during the whole 

disease process until HF is reached. It has been suggested that PPARs constitute the main 

control mechanism for myocardial metabolism by transcriptionally regulating genes encoding 

enzymes involved in fatty acid and glucose utilization [248], but a recent study [249] indicates 

a dissociation between gene and protein expression related to these processes. However, it is 

still a rationale for metabolic therapy to remedy cardiac hypertrophy and dysfunction in 

cardiac disease [250]. The possible role of the PPARs in the control of cardiac energy 

metabolism makes these regulatory pathways attractive targets for metabolic therapy. 

Interestingly, in addition to Nppa we found Interferon regulatory factor 3 (Irf3) to be 

overexpressed at all time points after MI (Study IV). Irf3 is a key player in the initial 

triggering of interferon gene transcription [251]. Moreover, it has been suggested that Irf3 may 

mediate the pro-apoptotic and anti-proliferative effects of peroxisome proliferator-activated 

receptors (PPARs) [252]. Little is still known about Irf3 in cardiac hypertrophy, but our results 

indicate a potentially important function. This should be further explored, and may be a 

subject for a follow up study. 

 

5.2.2 Aetiology specific expression patterns 

In our Study II we detected CAD and DCM aetiology-specific patterns by linking results from 

the gene expression analysis to GO annotations. First, for both groups of samples we found an 

over-representation of differentially expressed genes involved in cell communication, response 

to stress, response to external biotic stimulus, defense response, immune response and 

inflammatory response. However, some biological processes were over-represented in either 

CAD or in DCM and our main findings were that significantly more genes involved in 

catabolism were differentially expressed in CAD compared to DCM, which is consistent with 

catabolic/anabolic imbalance in CAD [253]. Moreover, a separate comparison of up-regulated 

and down-regulated genes was performed. A significantly higher number of genes involved in 

catabolism were up-regulated in CAD hearts compared to DCM hearts. Among 12 genes 

exclusively up-regulated in CAD, we found a sub-cluster of four genes involved in lipid 

catabolism, apolipoprotein C-II, (APOC2), lipoprotein lipase (LPL), phospholipase C, beta 1 

(PLCB1) and phospholipase C, gamma 2 (PLCG2). In contrast, lipase, member H (LIPH) and 

phospholipase C, delta 1 (PLCD1) were down-regulated only in DCM. This indicates that 

lipid catabolism and lipid signaling is stimulated in end-stage CAD but not in DCM. This 

correlates with the results from Study IV, where we found an overrepresentation of genes 
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related to fatty acid metabolism (almost all down-regulated) in response to heart infarction, 

indicating a switch from lipid to carbohydrate metabolism. 

During development of hypertrophy, phospholipase C (PLC) is increased, and in the failing 

heart PLC isozymes are decreased [254]. Normal, exercise-induced cardiac growth is mainly 

regulated by the growth hormone/IGF axis through the PI3K/Akt pathway. In contrast, 

pathological cardiac growth is triggered by autocrine and paracrine neurohormonal factors that 

signal through the Gq/phospholipase C pathway, leading to increased cytosolic calcium and 

PKC activation. In Study II we found IGF1 up-regulated in CAD, but not in DCM hearts, 

suggesting activation of a compensatory effect through the growth hormone/IGF pathway in 

end-stage CAD. However, this signal seems to be attenuated by an activation (up-regulation in 

both groups) of the phosphatase and tensin homolog (TPEN), which blocks signaling 

downstream of this pathway. Hence, our results indicate that the PLC pathway is activated in 

end-stage CAD, but not in DCM. These results are supported by the functional clustering, 

which shows that more genes regulating protein kinase activity are differentially expressed in 

DCM than CAD hearts. Among the genes regulating protein kinase activity that were 

differentially expressed in DCM but not in CAD, we found a sub-group of up-regulated genes, 

which inhibit protein kinase activity or cell division. Thus, an alternative to the 

Gq/phospholipase C pathway for hypertrophy may be active in end-stage DCM. 

In this way Study II and IV have shown how it is possible to use gene-class testing methods 

and GO information to generate new hypotheses. Not many authors have yet described the use 

of such methods in cardiovascular research, but some good examples exist. For example, 

Barth et al. [255] used FatiGO [256] to look for regional gene expression patterns and 

significant associations of Gene Ontology terms within groups of genes expressed in left 

ventricular (LV) versus expression in right ventricular (RV) myocardium of human and 

mouse. Among other results they found that with respect to biological processes, functional 

groups related to cell-cell communication and response to external stimuli were more 

abundant in RV, while metabolic and energy-driving processes were over-represented in LV. 

Another example is a study published by Kong et al. [29] who used the ErmineJ software 

[257] to identify enriched GO classes in different rat models of physiological (exercise) and 

pathological (Dahl salt-sensitive rats) hypertrophy and heart failure. They found that during 

pathological hypertrophy, genes associated with the apoptosis pathway showed statistically 

significant over representation. In addition the authors suggested that gene clusters associated 

with glucose/insulin signaling, protein biosynthesis, and epidermal growth factor (EGF) 
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signaling pathways may be involved predominately during physiological hypertrophy. All 

together these results fit with what we found in Study II and IV. 

 

5.2.3 Classification of heart disease using microarray data 

In the past, supervised learning methods have mainly been used to predict cancer subtypes 

prognosis and treatment outcome [258-261], and just a few examples on heart failure are 

known. Kittleson et al. [262] were the first to use application of supervised learning analysis in 

cardiovascular disease. They identified a gene expression profile (best classifier included 90 

genes) that differentiates the two major forms of cardiomyopathy, ischemic and non ischemic. 

A 16-sample training set was used to develop a prediction rule which was then tested in nine 

independent samples, including seven from a different institution. Their results showed that 

the aetiology signature performed perfectly in non ischemic samples (specificity 100%) but 

only identified one of three ischemic samples correctly (sensitivity 33%). In our Study II we 

obtained classifiers (consisting of 7 genes) using methods based on rough sets, to predict 

random samples of coronary artery diseased and dilated cardiomyopathic hearts. Like 

Kittelson et al. we were not able to predict all the samples to the correct group. Our best 

classifier predicted 16 of 20 samples correctly which gives a sensitivity of 0.750, a specificity 

of 0.833 and an AUC value of 0.89. This is not perfect and we believe the main reason for this 

is the limited number of samples. Another possible limitation is the biological variation 

between the samples in the groups, and the difficulty to obtain good quality RNA from human 

heart tissue samples. Similar studies on classification of cancer samples have given even better 

results [258,263,264], but in the some case of cancer much larger populations of samples are 

available and the samples may be more similar within each group. 

However, taking this limitation in account, both studies indicate that microarray gene 

expression analysis may become an important complement to current standard methods, by 

providing more precise molecular diagnoses, and by sub-grouping existing disease categories 

into clusters with more accurate predictions of prognosis and response to treatment. For HF 

patients, the clinical benefit of expression profiling may not lie within classification at end-

stage, but earlier in the course of the disease, where treatment strategies need to be improved. 

Further, microarray data may be incomplete and variable across platforms and between 

laboratories, if standardized protocols for hybridization and data acquisition are not used 

[193]. However, a central question is whether the predictive microarray data set can be used to 

extract a limited number of relevant genes whose expression levels convey the same 
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information as the whole set. Recently, Lossos et al. [264] evaluated a 6-gene-set QRT-PCR 

assay against original microarray data which predicted the clinical course of large-B-cell 

lymphoma and found that this 6-gene set was sufficient to predict survival. Thus, our 

assumptions for the future is that whole genome microarrays will be used to establish 

classifiers for prediction of e.g. disease or disease states, but for clinical use “focused” 

microarrays in e.g. microtiter plates, with just a limited numbers of probes, or a set of RT-PCR 

assays may be preferred. 

In contrast to our approaches in Study II where the number of genes is reduced, unsupervised 

learning methods usually uses all data points for the experiments. The popularity of clustering 

and unsupervised analysis is also reflected in papers describing microarray experiments on 

HF, and recently some attempts have been made to characterize small groups of patients with 

end-stage HF based on hierarchical clustering of gene expression profiles. It is also possible to 

find attempts to use unsupervised methods to “classify” CAD and DCM. For example, 

Steenman et al. [229] were able to make distinct clusters of patients who were awaiting urgent 

cardiac transplantation, by hierarchical clustering analysis, but they were unable to identify 

specific clusters for the different aetiologies. A similar approach was used by Barrands et al. 

[224] where DCM hearts were successfully clustered against non failing hearts. Together these 

findings suggest that gene expression can be correlated to clinically relevant parameters in 

patients with HF. However, since the studies were focused on clustering (gene discovery), the 

observations could not be applied prospectively to identify and validate a gene expression 

signature with the intention to distinguish subjects based on relevant clinical parameters. This 

emphasizes the need for studies focused on molecular signature analysis. In contrast, our 

classifiers (Study II) selected a small number of genes whose expression levels distinguish 

between CAD and DCM, thus demonstrating, at least in this case, the feasibility of using 

microarray data and class prediction for studying HF pathobiology as compared to class 

discovery methods. 

In relation to the results obtained in our Study II, a potentially clinically relevant follow-up 

study could be to classify different aetiologies of cardiomyopathy. This can help in the process 

of early diagnosis and correct selection of treatment. Another follow-up study may be to 

genotype different sub groups of cardiomyopathy patients with genome wide SNP microarray 

(arrays with up to 500K are now available). It is already known that genetic variation is 

involved in cardiomyopathy and arrhytmias [265,266]. 
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5.3 H+/K+-ATPase activity and function in myocytes 

During experiments on uptake of potassium and intracellular alkalization Falck et al. 

suggested that proton transport during hyperosmolal stress may be potassium dependent 

[267,268]. We thus anticipated that there might be another mechanism than the Na+/K+-

ATPase and the Na+/K+/2Cl- co-transporter that could translocate K+ into the cardiac 

myocytes. In previous studies, only Northern blot and cytochemical analysis had indicated 

presence of the gastric H+/K+-ATPase in rat myocardial tissue [269] and atrial myocytes 

[270,271], and there was no other report of similar findings at both RNA, protein and 

functional levels, in the left ventricle. 

A study (Study I) to further investigate these indications was thus started. For the first time we 

have been able to show the presence of functional protein and gene expression of the gastric 

H+/K+-ATPase in rat heart and myocytes. We also showed regulation during development and 

in heart failure, indicating that the H+/K+-ATPase may play a crucial role in the mechanical 

and electrophysiological properties of the rat heart. Moreover and most importantly, we 

investigated whether the H+/K+-ATPase could account for a significant part of the 86Rb+-

uptake in cardiac ventricular myocytes. Our study suggests a contribution from the H+/K+-

ATPase of about 25% of total 86Rb+-uptake. Although its relative role cannot easily be 

translated into in vivo K+-influxes, our data suggest that the gastric H+/K+-ATPase could 

contribute significantly to the regulation of myocardial K+ and H+ homeostasis. This may be 

particularly important in myocardial ischaemia and acidosis, provided that the H+/K+-ATPase 

activity is regulated as in vascular smooth muscle cells, where McCabe & Young [272] 

demonstrated that inhibitors of H+/K+-ATPase caused a rapid and marked decline in pHi and a 

marked depression in K+ content. Their observations suggested a significant potential for 

maintenance of H+ and K+ gradients in vascular smooth muscle cells, which according to our 

results, also may be true in cardiac myocytes. However, in a recent publication, Yenisehiril et 

al. [273] investigated the effects of three specific H+/K+-ATPase inhibitors (Omeprazole, 

lansoprazole and SCH28080) on the contractile and chronotropic properties of isolated rat 

atrium. The possible changes in atrial action potential configuration were also studied. 

Yenisehiril et al. found that all three different H+/K+-ATPase inhibitors induced positive 

inotropic and negative chronotropic effects in the rat atria, in vitro. They also showed that 

these concentration dependent, reversible and reproducible effects seem not to be mediated by 

well known pathways that enhance contractility such as inhibition of Na+/K+-ATPase and 
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phosphodiesterase type III or activation of β-adrenoceptors. None of the pharmacological 

agents used in this study attenuated the cardiac effects of proton pump inhibitors. Therefore 

both they and we (Study I) suggest that H+/K+-ATPase accounts for K+-uptake and has a 

possible role in intracellular pH regulation of cardiomyocytes. However, intracellular 

acidification is known to reduce force of contraction in cardiac muscle cells [274] and if 

intracellular acidosis reduces force of contraction, inhibition of H+/K+-ATPase is expected to 

decrease the amplitude of atrial contractions. 

In our study (Study I) we demonstrated that SCH 28080 did not interfere significantly with the 
3H-ouabain binding to the Na+/K+-ATPase in rat cardiomyocytes and we concluded that SCH 

28080 and ouabain act on different 86Rb+-uptake mechanisms. These observations are 

compatible with the recent findings by Yenisehiril et al. [273]. They found that the cardiac 

effects of proton pump inhibitors operate through a mechanism different from Na+/K+-ATPase 

inhibition and they conclude that compounds known to inhibit H+/K+-ATPase increased 

contractility, decreased heart rate and exerted antiarrhythmic actions in isolated rat atria. 

Yenisehiril et al. also suggested that these effects appeared to be mediated by inhibition of 

myocardial H+/K+-ATPase and seem to be a result of prolongation of action potential duration. 

Moreover, a recent publication by Kemi et al. [86] concludes that H+/K+-ATPase does not 

contribute significantly to pHi maintenance. However, the complete role of the H+/K+-ATPase 

in pH-regulation and/or cell volume regulation has not yet been completely determined, and 

may be a subject to a potential follow up study. 

 

5.4 Gene expression versus protein expression and molecular function 

In our Studies II and IV, we have measured gene expression and made hypotheses of on the 

biological processes in the myocardial cells. However, it is not necessarily true that gene 

expression results in active protein. Translation of individual mRNA species into their 

encoded proteins is regulated at multiple levels: transcriptional control, RNA processing 

control, RNA transport control, translation control, mRNA degradation control and protein 

activity control, introducing possible discrepancies between mRNA and protein levels. As 

discussed earlier (regarding Study IV), this may be an important difference between the 

pathological and physiological hypertrophy response. However, as mRNA is eventually 

translated into protein, one might assume that there can be some sort of correlation between 

the level of mRNA and that of protein [275]. Attempts to correlate protein abundance with 

mRNA expression have had variable success, but several studies show a positive correlation in 
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the range from r = 0.48-0.76 [260,276]. This implies that there, at least in general, is a 

correlation between mRNA and protein abundance. In our Study I we show that gene 

expression and protein expression correlated at least for one gene and protein (H+/K+-

ATPase). A wide assessment of protein function in experimental situations like this is, 

however, not possible with today’s technical limitations. In the future proteomics may become 

more important and comparisons more informative, as larger datasets of both mRNA and 

proteomic measurements are obtained. It is also possible that other applications like tissue 

arrays and cell arrays (e.g. si RNA) will be available for the verification of hypotheses 

generated from genomic approaches and help to obtain a more complete understanding of how 

a cell works. 

 

5.5 From genomes to systems 

The present studies are examples of how research in functional genomics can be performed, 

switching between detailed functional studies of single genes/protein and high-throughput 

analysis and extensive use of bioinformatics tools. However, recent advances in the “omics” 

technologies, scientific computing, and mathematical modeling of biological processes will 

start to fundamentally impact the way we approach cardiovascular diseases and research. 

During the recent years we have witnessed the development of genome-scale functional 

screens, protein microarrays, databases and algorithms for “data-mining” and “text-mining”. 

Altogether, this enables unprecedented descriptions of complex biological systems, which are 

testable by mathematical modeling and simulation. While the methods and tools are 

advancing, it is their iterative and combinatorial application that defines the systems biology 

approach [277], which now is the new “hype” in biology and medicine. Systems biology deals 

with understanding and depicting the complex and dynamic processes inside cells or organs. 

The wealth of data on different cell elements or functions, which were gathered at different 

levels of the life processes (genome, proteome, metabolome) may be put in a meaningful 

overall context and modelled on a computer, so that simulations and predictions may reduce 

the use of laboratory experiments. Through contextual understanding of the molecular 

mechanisms of disease, a systems approach may facilitate the identification and validation of 

therapeutic modulation of regulatory and metabolic networks, and hence help identify targets 

and biomarkers, as well as “off-target” effects and side effects of new drugs. In cardiovascular 

research, models of heart cells are becoming highly sophisticated and have benefited from four 

decades of interaction between experimental and simulation approaches [278]. Biological 
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simulation in cardiovascular research is now being applied over a wide range of pathways, 

cells and systems. The role of in silico biology in cardiovascular and pharmaceutical research 

is likely to become increasingly prominent as a result of the exploration of data generated 

through genomics and proteomic approaches. 
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6. Conclusions 

- Gene expression classifiers could be used for class prediction of random clinical 

samples of CAD and DCM hearts. Best classifiers frequently included Matrix 

metalloproteinase 3, Fibulin 1, ATP-binding cassette, sub-family B member 1 and 

Iroquois homeobox protein 5. 

- Analyzing gene expression at the level of gene ontology (GO) instead of at the level of 

single genes, detected the involvement of several biological processes e.g. 

transcription, metabolism, catabolism, muscle contraction, neurophysiological 

processes, defense response, and signal transduction, in myocardial hypertrophy and 

congestive heart failure. 

- Gene-class testing analysis of GO biological process annotations indicated aetiology-

specific patterns between CAD and DCM, primarily related to genes involved in 

catabolism and in regulation of protein kinase activity. 

- A main difference in gene expression patterns between the models of pathological and 

physiological hypertrophy was the down-regulation of genes involved in fatty-acid 

metabolism in response to CHF, but not to exercise training. 

- Physiological hypertrophy is associated with less comprehensive changes in gene 

expression than pathological hypertrophy, indicating that post-transcriptional and post-

translational regulation may be more important. 

- GeneTools is an “all in one” annotation tool, where the users can rapidly extract gene 

annotation data for thousands of genes or clones. eGOn includes tools for gene class 

comparison, that can perform hypothesis testing base on the representation of GO 

categories between gene reporter lists. 

- H+/K+-ATPase is expressed in cardiac myocytes and accounts for 25% of the K+-

uptake in isolated ventricular cardiomyocytes, suggesting a role in the regulation of 

intracellular pH. 
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