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Feasibility of contrast enhanced MRI derived textural features to 

predict overall survival in locally advanced breast cancer  

Abstract  

Background The prognosis for women with locally advanced breast cancer (LABC) is poor, 

and there is a need for better treatment stratification. Gray level co-occurrence matrix (GLCM) 

texture analysis of magnetic resonance (MR) images has been shown to predict pathological 

response, and could become useful in stratifying patients to more targeted treatments.  

Purpose To evaluate the ability of GLCM textural features obtained prior to neoadjuvant 

chemotherapy to predict overall survival seven years post diagnosis of LABC patients. 

Material and Method This retrospective study includes data from 55 LABC patients. GLCM 

textural features were extracted from segmented tumours in pre-treatment dynamic contrast 

enhanced 3T MR images. Prediction of overall survival by GLCM textural features was 

assessed and compared to predictions using traditional clinical variables. 

Results Linear mixed-effect models showed significant differences in five GLCM features (f1, 

f2, f5, f10, f11) between survivors and non-survivors. Using discriminant analysis for prediction 

of survival, GLCM features from two minutes post-contrast images achieved a classification 

accuracy of 73% (p<0.001), whereas traditional prognostic factors resulted in a classification 

accuracy of 67% (p=0.005). Using a combination of both yielded the highest classification 

accuracy (78%, p<0.001). Median values for features f1, f2, f10 and f11 provided significantly 

different survival curves in Kaplan-Meier analysis.  
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Conclusion This study shows a clear association between textural features from post-contrast 

images obtained prior to neoadjuvant chemotherapy, and overall survival seven years post 

diagnosis. Further studies in larger cohorts should be undertaken to investigate how this 

prognostic information can be used to benefit treatment stratification. 
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Introduction 

Breast cancer is currently expected to constitute one third of all new cancer diagnoses in women 

(1). With emergence of better and more targeted treatments, mortality rates for female breast 

cancer has dropped. However, prognosis for patients diagnosed with locally advanced breast 

cancer (LABC) is still poor (2). Current treatment for LABC patients is multimodal, and 

includes chemotherapy, irradiation, endocrine therapy and surgical resection. Neoadjuvant 

chemotherapy (NAC) is often offered before surgery to down-stage tumours and improve 

operability, and to eradicate distant micro-metastases (3). NAC has been linked with improved 

long-term prognosis in patients who achieve pathological complete response (4, 5), but not all 

patients respond to treatment. Identifying prognostic factors, even before initiating NAC, 

would be beneficial for improved treatment stratification and overall survival in LABC 

patients. 

Dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) involves the 

acquisition of a baseline image and a series of images after the intravenous administration of a 

contrast agent. DCE-MRI allows three-dimensional visualisation of angiogenic properties in 

breast cancer, making it a powerful tool for detecting changes before morphological alterations 

(6). Pre-treatment MRI of the breast provides characteristics of the whole lesion and holds more 

comprehensive information on heterogeneity than biopsies, which represent only a small 

proportion of the tumour. DCE-MRI derived pharmacokinetic model parameters have been 

used in evaluating and predicting early response to NAC (7-12) as well as overall survival for 

patients treated with NAC (13). Another approach is Gray level co-occurrence matrix (GLCM) 

texture analysis, which quantifies spatial variations in gray-level intensity and provides 

information about intuitive qualities of the images, such as sharpness and homogeneity. 

Texture analysis of DCE-MRI has been used in breast cancer staging (14-19), for prediction of 
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invasive disease (20) and monitoring response to treatment (21-25), while a recent study (26) 

examined the potential to predict breast cancer survival using textural features from pre-

treatment DCE-MRI along with shape features and traditional survival factors. 

The main aim of this study was to assess the feasibility of GLCM features for prediction of 7-

year overall survival in LABC patients, using the whole DCE time-series.  

Materials and Methods 

Patients and treatment 

This retrospective study includes 56 Caucasian women with LABC treated with NAC, with 

available status for overall survival at least seven years after diagnosis. The study was approved 

by [anonymised – to be inserted later], and written informed consent was obtained from all 

patients. Patients were treated at [anonymised – to be inserted later] in the period 2007-2010 

according to national guidelines (24). In brief, patients received four cycles of FEC, followed 

by four cycles of docetaxel, every 3 weeks. After the fourth cycle of FEC, the response to NAC 

was evaluated; if a decrease in the tumour longest diameter ≥80% was achieved, the cycles of 

docetaxel were either cancelled or replaced by two cycles of FEC. After the last cycle of NAC, 

patients were appointed for mastectomy and axillary lymph node dissection with post-operative 

treatment according to national guidelines (24). Histopathological analysis of the resected 

breast mass and axillary nodes provided pathological response status. The hormone receptor 

status of the tumours were determined from the diagnostic biopsy obtained prior to onset of 

neoadjuvant chemotherapy, and classified as estrogen (ER) positive or progesterone (PgR) 

positive if ≥10% of the cells stained positive. Human epidermal growth factor receptor 2 (HER-

2) status was defined as positive by immunohistochemistry (score 3+) or by in situ 
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hybridization (gene amplification ratio>2) (24). We followed REporting recommendations for 

tumor MARKer (REMARK) prognostic criteria (27).  

Imaging acquisition and processing 

Patients were imaged prior to NAC on a 3T MR scanner (Siemens Tim Trio, Erlangen, 

Germany, software platform VB13A and VB15A) using a dedicated four-channel bilateral 

breast coil. The MRI acquisition and texture analysis are previously described [reference 

removed – to be inserted later]. In brief; T1-weighted DCE-MR images were acquired using a 

3D radiofrequency-spoiled gradient echo sequence. One baseline image was acquired before 

administration of contrast (0.1mmol/kg) (Omniscan, GE Healthcare, Norway (47 patients), 

Magnevist, Bayer Healthcare Pharmaceuticals, USA (9 patients)). Seven post-contrast images 

were acquired with a temporal resolution of 1 minute. The imaging protocol changed after 

scanning 17 patients due to scanner software platform upgrade; larger flip angle (from 6° to 

10°) and shorter repetition time (from 3.50 to 3.22 ms). All images were acquired with in-plane 

resolution of 1.1 mm2 and slice thickness 1.1-1.5 mm. Images were corrected for motion 

artefacts (FSL package, Oxford FMRIB Centre, University of Oxford, Oxford, UK). The 

tumours were manually segmented on motion-corrected subtraction-images. Texture analysis 

was performed on the segmented tumours from all the slices containing tumour, from the 

baseline and post-contrast images, using two-dimensional GLCMs. Textural features from all 

slices were averaged, resulting in 16 GLCM features (f1 through f16) per patient per image. 

Processing of the images is described in detail in [reference removed – to be inserted later]. 

Representative MR images are shown in Fig. 1.  

 

Statistical analysis  

Linear mixed-effects models (LMM) were used to assess time-related changes in individual 

GLCM features related to overall survival, considering all post-contrast time points 
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simultaneously. LMM (28) were built by random-intercept models (R 3.1.1, function lme; 

‘nlme’ package (29)) employing restricted maximum likelihood. Log-transformed GLCM 

features (individually for f1-f16) from post-contrast images were used as response variables, 

while patient id was modelled as a random effect. Fixed effects included survival status, log-

transformed pre-contrast GLCM features, MR protocol used (1 or 2), and time-point (minutes 

post contrast). Multiple testing correction was performed using the Benjamini-Hochberg 

method. 

Multivariate analysis was performed by principal component analysis (PCA) and 

orthogonalized partial least squares discriminant analysis (OPLSDA) (PLS toolbox version 

8.2.1, Eigenvector Research, Inc., Washington, USA) in MATLAB (MathWorks, Natick, MA, 

USA). PCA of autoscaled data was used to assess natural clusters of the data and to search for 

possible outliers. The benefit of applying OPLSDA is its capability to handle data sets with 

large numbers of variables compared to samples, and data sets where variables are correlated 

(collinearity), typical characteristics of variables derived from texture analysis. For 

discriminating survivors from non-survivors, separate OPLSDA models were built using 

GLCM features from the different time-points as input.  Models were also built based on 

clinical prognostic factors alone, and on the combination of clinical prognostic factors and 

GLCM features from 2-minutes post-contrast images (the time-point which was found to best 

discriminate survivors/non-survivors by OPLSDA based on GLCM features alone). Clinical 

prognostic factors included were age at diagnosis, largest tumour diameter (measured by 

calliper prior to treatment), TNM stage, ER and PgR receptor status, HER2 status, type 

(invasive ductal carcinoma, invasive lobular carcinoma or other) and histological grade. For all 

models, the response variable was 7-year survival status. GLCM features and clinical 

prognostic factors were auto-scaled prior to modelling. Models were validated by 10-fold 

cross-validation, where the data set was split into 10 random subsets that were each kept out of 
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model-building and used for validation. The whole procedure was repeated with 20 iterations, 

with average classification results presented. The significance of the resulting model was 

evaluated using permutation testing with 1000 permutations; models with p-values (pperm) 

<0.05 were considered significant. OPLSDA loading plots were coloured according to the 

variable’s importance in the projection scores (VIP), reflecting the variable’s influence on the 

classification. T-tests were used to assess if classification accuracies of OPLSDA models built 

using GLCM features only, clinical variables only, and a combination of both were 

significantly different, by comparing the distribution of classification accuracies from the 20 

iterations. 

The mean values of the individual GLCM features at the time-point that best discriminated 

between survivors and non-survivors (2 minutes post-contrast) were calculated. Differences in 

GLCM features between survivors/non-survivors at 2 minutes post-contrast were assessed by 

multiple linear regressions, correcting for the use of two acquisition sequences for DCE-MRI 

(MATLAB, MathWorks, Natick, MA, USA). GLCM features were log transformed prior to 

analysis to conform to normality.  

Kaplan-Meier analysis (MATLAB, MathWorks, Natick, MA, USA) was used to depict 

differences in overall survival among patients with GLCM values above or below median 

derived from 2 minutes post-contrast images. GLCM features tested were significant in LMM 

analysis and/or important in OPLSDA analysis (VIP score>1.5); angular second moment (f1), 

contrast (f2), correlation (f3), inverse difference moment (f5), entropy (f9), difference variance 

(f10),difference entropy (f11), and information measure of correlation 1 (f12).  Log-rank tests 

were performed to assess if the survival curves were significantly different.  

To assess correlations between GLCM features, Pearson’s correlation coefficients were 

calculated. A heat-map was established to visualize the correlations.  
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Results 

Patient characteristics 

One patient with multiple small and diffuse lesions was an outlier with high residual variation 

in PCA of GLCM features was excluded (Suppl. Fig. 1), resulting in a final cohort of 55 

patients. Of these, 38 patients were survivors, while 17 patients were deceased within 7 years 

and classified as non-survivors. Table 1 presents clinical characteristics for the patient cohort. 

Median follow-up time was 106 months for survivors and 41 months for non-survivors.  

Characteristics of textural features 

Mean values and SD from 2 minutes post contrast are shown in Suppl. Table 1. A heat-map 

visualizing Pearson’s correlation coefficients between the individual GLCM features at 2 

minutes post-contrast is shown in Fig. 2. A strong and positive correlation was observed of 

GLCM textural features f1 and f5, and of f2 and f9, f10 and f11. Simultaneously, f1 and f5 

were negatively correlated with f2, f9, f10 and f11. 

 

Differences in GLCM values according to survival status 

Table 2 shows the calculated p-values from LMM analysis assessing differences in GLCM 

values between survivors and non-survivors. LMM included GLCM textural features from all 

time-points simultaneously for assessment of significant differences using the whole DCE 

time-series. The GLCM features angular second moment (f1), contrast (f2), inverse difference 

moment (f5), difference variance (f10), and difference entropy (f11) were significantly different 

between survivors and non-survivors before but not after multiple testing correction. 

Additionally, entropy (f9) and cluster shade (f15) approached significance. The change in the 
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MR protocol was found to significantly impact two of the textural features; variance (f4) and 

cluster shade (f15). 

 

Textural features show added value to clinical prognostic factors in predicting 

overall survival. 

Classification accuracies for survival based on multivariate analysis of GLCM textural features 

from different time-points post-contrast are shown in Fig. 3. Textural features provided 

classification accuracies ranging from 60-73%, with the highest accuracy (73.1%) obtained 2 

minutes post contrast (sensitivity 65.3%, specificity 80.8%, pperm<0.001). Scores and loadings 

from the OPLSDA model for predicting survival status from 2 minutes post-contrast images 

are shown in Fig. 4. Higher levels of features representing correlation (f3) and inverse 

difference moment (f5), and lower levels of features representing contrast (f2), entropy (f9), 

difference variance (f10), difference entropy (f11), and information measure of correlation 1 (f12) 

from 2 minutes post-contrast in non-survivors were the most important differentiators. Clinical 

parameters provided a classification accuracy for prediction of survival of 67.2% (sensitivity 

82.8%, specificity=51.7%, pperm=0.005). The combination of clinical prognostic factors and 

GLCM features from 2 minutes post-contrast yielded a significantly higher (p<0.001) 

classification accuracy for survival compared to clinical parameters alone (accuracy 77.8%, 

sensitivity 79.0%, specificity 76.7%, pperm<0.001). 

 

Kaplan-Meier analysis shows correlation between GLCM textural features and 

survival. 

Survival curves for f1, f2, f9, f10 and f11 were significantly different when dividing the patients 

in two groups using median values for GLCM textural features from 2 minutes post-contrast 

images as cut-off (p-values 0.015, 0.001, 0.041, 0.007, and 0.0015, respectively). Survival 
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curves for f1, f2, f10, and f11 remained significant after multiple testing corrections (q-values 

< 0.05, Fig. 5).  

 

Discussion 

In this paper, we have demonstrated the possibility to assess patient prognosis from pre-

treatment DCE-MRI using GLCM textural features. Five out of 16 GLCM textural features 

were significantly different (prior to multiple testing) between survivors and non-survivors at 

7 years of follow-up using LMM; angular second moment (f1), contrast (f2), inverse difference 

moment (f5), difference variance (f10) and difference entropy (f11), while entropy (f9) 

approached significance. Importantly, OPLSDA provided significant classification of survival 

status from 2 minutes post-contrast images, with the same GLCM textural features in addition 

to correlation (f3) and information measure of correlation 1 (f12) being the most important 

variables. GLCM textural features predicted overall survival by OPLSDA with accuracy 

comparable to clinical prognostic factors. Interestingly, while classification using clinical 

prognostic factors provided high sensitivity, GLCM textural features provided classification 

with high specificity. Combining GLCM features and clinical parameters provided the most 

accurate classification of survival, with both sensitivity and specificity approaching 80%.  

Grouping patients based on high and low values of textural features resulted in significant 

Kaplan-Meier survival curves for four of the same features, even when correcting for multiple 

testing. 

Describing the underlying physiology that GLCM textural features represent is challenging. 

The highly positively correlated textural features f1 and f5 (Fig. 2) are in general associated 

with uniformity of gray-levels, with higher levels indicating a more homogeneous signal 

distribution within the tumour. In our cohort, non-survivors were associated with higher 
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uniformity. The textural features f9, f10 and f11, also positively correlated, are associated with 

heterogeneity, and the non-survivors were associated with lower values of these features. In 

terms of physiology, this could point towards a fast, high and uniform uptake of contrast in the 

more aggressive tumours, resulting in more uniform signal distribution.  

A few studies have assessed prognostic outcomes in breast cancer using pre-treatment DCE 

MRI data (13, 26, 30, 31). A strength of the current study is the 7-years follow-up, which allows 

the assessment of long-term outcomes. Our results are in accordance with the study of Kim et 

al. (31), who found that patients with breast cancers that appeared with less heterogeneity 

(lower entropy) on contrast enhanced T1-weighted subtraction images exhibited poorer 

outcomes. Further, Pickles et al. (26) evaluated the prognostic values of pre-treatment DCE-

MRI-based parameters for breast cancer patients, including the same textural features as 

explored in our study. GLCM textural features representing heterogeneity of contrast 

enhancement; sum variance (f7) and sum entropy (f8), and symmetry of contrast enhancement; 

cluster shade (f15) and cluster prominence (f16), were consistently higher in patients with shorter 

survival (26). None of these features appeared as significantly different between the patient 

groups in our study, however, cluster shade (f15) was found to be significantly affected by the 

change in the MR protocol, which could mask differences. Interestingly, one of the features 

with most significant association to survival in our cohort, f10, (also related to heterogeneity) 

was previously shown to correlate with treatment response in the same dataset, with lower 

values reported for the non-responders [reference removed – to be inserted later]. An 

association between f10 and treatment response was also detected in an independent patient 

cohort (21), but then with higher values for the non-responders reported.  

Several factors related to acquisition parameters and image processing can affect the 

robustness, reproducibility and reliability of textural features (32-34). This may explain why 
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studies report different textural features as important for similar classification purposes. 

Statistical analysis (LMM) showed differences by MR protocol in two of the features (Table 

2), but these had limited importance in the classification of survival. This is supported by 

previous research showing that textural features are increasingly sensitive to acquisition 

parameters variation with increasing spatial resolution, but that the effect on pattern 

discrimination still is minimal provided sufficiently high spatial resolution (35). However, 

software platform upgrades are natural and necessary events in maintaining clinical scan 

protocols. Identifying robust features less affected by such changes could improve clinical 

translation of texture analysis. A different contrast agent was used for nine of the patients 

[reference removed – to be inserted later]. However, differences in image contrast due to 

different contrast agents have been found to be negligible (36), and we assumed this difference 

had no significant impact on the texture feature values. Prior to the extraction of textural 

features, we performed histogram equalization to minimize the effects of the differences in 

acquisition protocol. A previous study by Sikiö et al. (37) has shown some textural features to 

depend on the size of the segmented area used for the analysis. Larger tumour size is associated 

with a poorer prognosis in breast cancer, and the largest tumour diameter was significantly 

higher in the non-survivors of our cohort. However, none of the textural features correlated to 

tumour size in our study (results not shown). 

Our study is based on a small patient cohort (N=55). A larger patient cohort would allow to 

construct more robust models, including validation using independent data. However, this 

study still demonstrates the feasibility of predicting patient prognosis in LABC using texture 

analysis of baseline DCE-MRI, before all clinical prognostic factors can be determined. Our 

results should be verified using larger cohorts and reproducibility of the textural features should 

be assessed, preferably using data from a multi-centre cohort to address the impact from 

differences in acquisition parameters. 
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A strength of our study is that the use of LMMs allowed information from the whole 

enhancement time-curve to be included in the analysis. However, the most significant 

associations for textural features and survival were still observed in the 2 minutes post-contrast 

images (Fig. 3), as also reported when associating textural features to treatment response (21, 

24) demonstrating the clinical importance of using the textural features from the time-point 

where the contrast-uptake is at its peak. Also previous studies pinpoint the potential of the 

enhancement curve type to predict survival (30), where tumours with a high proportion of the 

aggressive curve type III voxels (38) were associated with a poorer prognosis. The fast and 

high contrast up-take in addition to the rapid wash out is the major features of this curve type.  

In conclusion, textural features derived from contrast enhanced MRI prior to neoadjuvant 

chemotherapy in breast cancer patients are associated with 7-years survival outcome. 

Furthermore, the textural features show added value to the clinical prognostic factors in the 

prediction of long-term survival. This is in accordance with previous studies, where textural 

features have been associated with long-term outcome and treatment response, and shows a 

valuable potential to obtain more personalized treatment for breast cancer patients. However, 

our results need validation in a larger, independent cohort. 
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Table 1 Description of the patient cohort. Clinical characteristics before administration of 

neoadjuvant chemotherapy for survivors (N=38) and non-survivors (N=17) of locally 

advanced breast cancer.  

 

 Survivors (N = 38) Non-survivors (N =17) p 

Mean age (range) at diagnosis (years) 56 (35-82) 52 (35-73) 0.239 d 

Largest tumour dimension (millimeters) 62 (30-100) 70 (30-100) 0.010 d 

Clinical stage a   < 0.001 e 

IIB (T3 N0 M0) 

IIIA (T2-3 N1-2 M0) 

IIIB (T4a-d N0-2 M0) 

IIIC (T1-2 N3 M0) 

IV (T3-4c N1-2 M1) 

17 (45%) 

12 (32%) 

9 (23%) 

0 

0 

5 (30%) 

2 (11%) 

3 (18%) 

1 (6%) 

6 (35%) 

 

T   0.069 e 

2 1 (3%) 1 (6%)  

3 28 (74%) 10 (59%)  

4 9 (23%) 6 (35%)  

N   0.008 e 

0 21 (55%) 6 (35%)  

1 13 (34%) 6 (35%)  

2 4 (11%) 4 (24%)  

3 0 1 (6%)  

M   < 0.001 e 

0 38 (100%) 11 (65%)  

1 0 6 (35%)  

Receptor status b    

ER+ 25 (66%) 13 (76%) 0.749 e 

PgR+ 17 (45%) 7 (41%) 0.777 e 

HER2+ 14 (37%) 3 (18%) 0.209 e 
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Unknown 1 (3%) 0  

Histopathological type of breast cancer c   0.784 e 

IDC 35 (92%) 15 (88%)  

ILC 2 (5%) 1 (6%)  

Mucinous carcinoma 1 (3%) 1 (6%)  

Grade of breast cancer   0.127 e 

Grade 1 3 (8%) 1 (6%)  

Grade 2 19 (50%) 4 (23%)  

Grade 3 16 (42%) 12 (71%)  

Response to treatment   0.543 e 

Stable disease 13 (34%) 5 (30%)  

Partial response 12 (32%) 8 (47%)  

Complete response 13 (34%) 4 (23%)  

Presence of lymph node metastasis 17 (45%) 11 (65%) 0.245 e 

a  

  T2: Tumour is more than 2 cm but no more than 5 cm across. 

  T3: Tumour is bigger than 5 cm across. 

  T4: Tumour has either spread to the skin, the chest wall or both, or inflammatory carcinoma is present. 

  N0: No nearby lymph node metastasis. 

  N1-2: Metastasis to movable/fixed ipsilateral axillary nodes 

  N3: Metastasis to ipsilateral internal mammary lymph nodes 

  M0: There is no distant metastasis. 

  M1: Distant metastasis is present. 

b ER+: Estrogen receptor negative  

PgR+: Progesterone receptor positiveHER2+: Herceptin receptor  positive c IDC = invasive ductal carcinoma, 

ILC = invasive lobular carcinoma 

d p-value was calculated using independent t-test for two variables. 

e p-value was calculated using Fisher’s exact test. 
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Table 2 GLCM textural features with significantly different levels between survivors 

and non-survivors. Linear mixed-effects model p-values for the relationship of grey level 

co-occurrence matrix features from all time-points to survival in locally advanced breast 

cancer patients are shown. p-values below 0.05 are presented in bold. No features were 

significant after Benjamini-Hochberg correction for multiple testing.  

 

Feature p-value 

Angular second moment (f1) 0.008 

Contrast (f2) 0.034 

Correlation (f3) 0.308 

Variance (f4) 0.787† 

Inverse difference moment (f5) 0.008 

Sum average (f6) 0.122 

Sum variance (f7) 0.470 

Sum entropy (f8) 0.366 

Entropy (f9) 0.050 

Difference variance (f10) 0.024 

Difference entropy (f11) 0.018 

Information measure of correlation 1 (f12) 0.347 

Information measure of correlation 2 (f13) 0.777 

Maximal correlation coefficient (f14) 0.358 

Cluster shade (f15) 0.087† 

Cluster prominence (f16) 0.477 

† Feature affected by change in MR protocol 
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Figure legends 

Fig. 1 MR image examples. 2 minutes post-contrast dynamic contrast-enhanced MR images of 

(A) a survivor and (B) a non-survivor of locally advanced breast cancer. The tumor region is 

outlined in red. While the segmentation was performed on the subtracted images, the figure 

shows the tumour volume in non-subtracted 2 minutes post-contrast images for better 

visualization.  

 

Fig. 2 Heat-map of correlations between textural features. The heat-map based on Pearson 

correlations between the textural features illustrates correlations, ranging from strong 

negative (-1) to strong positive (+1), between grey level co-occurrence matrix features f1 to 

f16 obtained from 2 minutes post-contrast images. 

Fig. 3 Classification accuracy for the prediction of survival using orthogonalized partial least 

squares discriminant analysis at each timepoint. Classification accuracy by partial least squares 

discriminant analysis using all grey level co-occurrence matrix (GLCM) features obtained from 

post-contrast images of locally advanced breast cancer patients (N=55) at each time-point (0 to 

7 minutes post-contrast). The circle marks the maximum classification accuracy, which is at 2 

minutes post-contrast. 

Fig. 4 Scores and loadings from orthogonalized partial least squares discriminant analysis 

(OPLSDA) for overall survival. Scores (A) and loadings (B) on latent variable (LV) 1 from 

OPLSDA predicting survival using as input all grey level co-occurrence matrix (GLCM) 

features obtained from 2 minutes post-contrast images of locally advanced breast cancer 

patients (N=55). In the loadings, variables are coloured according to their importance for 

projection (VIP) score, reflecting the variable’s importance for the classification. For this 
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cohort, OPLSDA classified survivors and non-survivors with an accuracy of 73.1% 

(pperm<0.001). 

Figure 5 Kaplan Meier survival curves for patients with high and low values of selected grey 

level co-occurrence matrix (GLCM) features. The recurrence-free proportions are plotted 

against overall survival time for GLCM features dichotomized to above or below median 

values. Only survival curves for features that f1, f2, f10, and f11 remained significant after 

multiple testing corrections are shown (f1, f2, f10, and f11) 

 

Supporting information captions 

Supplementary Figure 1 Scores from principal component analysis indicate the outlier. 

Scores from principal component (PC) analysis of grey level co-occurrence matrix features 

obtained from 2 min post-contrast images. The outlier is shown in red. This patient was 

characterized with multiple small and diffuse lesions, and was excluded from the further 

analysis. 

Supplementary Table 1 Mean and standard deviation of 16 GLCM feature values from 2 min 

post-contrast images comparing survivors and non-survivors. p-values were calculated using 

multiple linear regression. Significant results at 0.05 significance are shown in bold. No p-

values were significant after Benjamini-Hochberg correction.  
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Figure 2 
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Figure 3 

 

 

 

 

 

 

 

 

 

 

 



28 
 

 

 

Figure 4 
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Figure 5 
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Supplementary Table 1 Mean and standard deviation of 16 GLCM feature values from 2 min 

post-contrast images comparing survivors and non-survivors. p-values were calculated using 

multiple linear regression. Significant results at 0.05 significance are shown in bold. No p-

values were significant after Benjamini-Hochberg correction for multiple testing.  
  Overall survival (N=55) 

Feature  2-minutes post-contrast p 

Angular second moment (f1) 
Survivors 0.007 ± 0.003 

0.022 
Non-survivors 0.009 ± 0.002 

Contrast (f2) 
Survivors 18.37 ± 6.57 

0.006 
Non-survivors 13.65 ± 4.33 

Correlation (f3) 
Survivors 0.48 ± 0.11 

0.010 
Non-survivors 0.56 ± 0.10 

Variance (f4) 
Survivors 8.28 ± 2.75 

0.300 
Non-survivors 8.99 ± 2.86 

Inverse difference moment (f5) 
Survivors 0.29 ± 0.05 

0.005 
Non-survivors 0.34 ± 0.05 

Sum average (f6) 
Survivors 37.63 ± 3.59 

0.293 
Non-survivors 36.52 ± 5.43 

Sum variance (f7) 
Survivors 51.58 ± 13.66 

0.703 
Non-survivors 49.66 ± 12.05 

Sum entropy (f8) 
Survivors 4.82 ± 0.18 

0.466 
Non-survivors 4.78 ± 0.19 

Entropy (f9) 
Survivors 7.71 ± 0.37 

0.021 
Non-survivors 7.46 ± 0.32 

Difference variance (f10) 
Survivors 7.87 ± 2.48 

0.009 
Non-survivors 6.12 ± 1.67 

Difference entropy (f11) 
Survivors 3.18 ± 0.25 

0.007 
Non-survivors 2.98 ± 0.20 

Information measure of correlation 1 (f12) 
Survivors -0.09 ± 0.03 

0.015 
Non-survivors -0.12 ± 0.04 

Information measure of correlation 2 (f13) 
Survivors 0.70 ± 0.09 

0.044 
Non-survivors 0.76 ± 0.09 

Maximal correlation coefficient (f14) 
Survivors 0.96 ± 0.13 

0.474 
Non-survivors 0.99 ± 0.09 

Cluster shade (f15) 
Survivors -56.8 ± 140.3 

0.575 
Non-survivors -35.0 ± 186.4 

Cluster prominence (f16) 
Survivors 7972.5 ± 3411.9 

0.826 
Non-survivors 8011.5 ± 3052.0 
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