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Abstract 15 

Life Cycle Assessment (LCA) methods for land use take both occupation and transformation impacts 16 

into account. However, for wetlands and impacts from water consumption, it is so far not possible to 17 

account for transformation impacts. It is our goal to close this research gap, by determining wetland 18 

recovery times and developing characterization factors for transformation. To do this, we conducted a 19 
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meta-analysis of 59 studies analyzing biodiversity recovery in wetlands subject to passive and active 20 

restoration. Generalized linear models were fitted to the biodiversity data and age, along with other 21 

wetland characteristics (such as elevation, latitude or climate class), were used as predictor variables. 22 

The results indicate that elevation, latitude, type of wetland and restoration method have the strongest 23 

effect on recovery speed. Recovery times vary from less than one year to a maximum of 107 years with 24 

passive restoration and 105 years with active restoration. Corresponding transformation 25 

characterization factors vary between 10-14 and 10-2 species-eq·year2/m3. Finally, recognizing the 26 

relevance of this work to real-world policy issues beyond LCA, we discuss the implications of our 27 

estimated restoration times on the feasibility of “biodiversity offsetting”. Offsetting utilizes restoration 28 

to replace biodiversity value lost due to development impacts. Our work can help stakeholders make 29 

informed decisions on whether offsetting represent a legitimate policy options in a particular context. 30 

TOC ART 31 

 32 

Introduction 33 

Wetlands are, amongst others, defined as water bodies (including e.g. marshes) that can be both 34 

natural and human-made and can be either lotic (flowing) or lentic (stagnant). The water can be fresh, 35 

brackish or saline.1 Wetlands supply numerous ecosystem services, such as retention of freshwater, 36 

regulation of hydrological flows and prevention of erosion.2 Nonetheless, it has been estimated that 37 
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more than 50% of all wetland areas were lost during the 20th century,3 mainly because of drainage and 38 

land conversion, and because of freshwater withdrawals for agriculture. It has consequently become 39 

essential to understand and quantify the impacts of such activities on wetland biodiversity, in order to 40 

avoid the most damaging practices and delimit biodiversity loss. 41 

Life Cycle Assessment (LCA) is a tool for quantifying the environmental impacts that a certain process 42 

(or product) entails within its life cycle,4 and it can therefore be applied when evaluating the impacts of 43 

human actions on ecosystems.5 Life Cycle Impact Assessment (LCIA) methods for estimating the effects 44 

of water consumption on ecosystems6,7 include one method that takes wetlands specifically into 45 

account.8 Characterization factors (CFs) for 1184 Ramsar wetlands (wetlands of international 46 

importance) quantify the number of species-equivalents lost per m3/year of water consumed; 47 

distinguishing between birds, mammals, amphibians and reptiles. This corresponds to an “occupation 48 

impact”. Occupation CFs measure the reduction in biodiversity in a wetland while it is being drained.  49 

Once drainage ceases, it takes time for functional, structural and compositional elements of biodiversity 50 

to recover in the disrupted ecosystems (if at all). During the recovery period, wetlands still suffer from 51 

the negative effects of previous disturbances, and it is consequently necessary to quantify such impacts 52 

using transformation characterization factors. No methodology is currently available to take 53 

transformation or permanent impacts on wetlands into account. The time interval needed for wetlands 54 

to fully recover their biodiversity is key for the calculation of transformation CFs. 55 

For terrestrial ecosystems, a methodology exists to assess the time-scales of biodiversity recovery9 and 56 

the results suggest that complete recovery may result in very long time lags. CFs for transformation are 57 

typically calculated applying equation (1) 10, where ‘treg’ [years] represents the “time required for full 58 

regeneration of ecosystem quality” and ‘CFOcc’ [species-eq·year/m3] is the corresponding occupation 59 
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CF. In the case of wetlands, the unit indicates the loss of species because of the extraction of 1 m3 of 60 

water during one year. 61 

(1) 62 

𝐶𝐶𝐶𝐶𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 =
1
2
∙ 𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟 ∙ 𝐶𝐶𝐶𝐶𝑂𝑂𝑂𝑂𝑂𝑂 63 

The above equation assumes a linear recovery of biodiversity in time, however Curran et al.9 adopted 64 

a logarithmic recovery trajectory for the analysis of terrestrial ecosystems based on empirical 65 

relationships documented in the terrestrial recovery literature. Likewise, the review of Moreno-Mateos 66 

et al.11 suggest that recovery of restored wetlands is also non-linear and better approximated with a 67 

log-relationship. 68 

Ecosystem quality in an LCA context is defined as “the capability of an ecosystem (or a mix of ecosystems 69 

at the landscape scale) to sustain biodiversity and to deliver services to the human society”.10 A clear 70 

definition of ecosystem restoration is provided by the Society for Ecological Restoration (SER) as “the 71 

process of assisting the recovery of an ecosystem that has been degraded, damaged, or destroyed”.12 72 

The aim of restoration is to approximate a reference system that represents a realistic target based on 73 

a set of key indicators. For wetland restoration different techniques can be implemented. Passive 74 

restoration involves putting an end to environmental stressors (e.g. groundwater pumping) and letting 75 

nature take its course to re-establish the affected area on its own. Active restoration includes 76 

management activities that assist the ecosystem to rebuild its diversity, such as the planting of specific 77 

vegetation, assisted seed dispersal or re-introduction of aquatic species.13  Wetland creation is not a 78 

form of restoration because it entails the establishment of an aquatic ecosystem where this was not 79 

previously present. 80 
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Recent studies have analyzed the factors (e.g. restoration methods) that influence the speed of 81 

ecosystem recovery and have concluded that, in created wetlands, biodiversity recovers fastest,14 while 82 

active restoration is to be preferred to passive restoration in order to achieve a more rapid recovery.9 83 

Warm climates,11 low elevations15 and high hydrologic exchanges11 (lotic compared to lentic wetlands) 84 

are other factors that can speed up restoration processes. These and other wetland characteristics were 85 

examined in this study to evaluate their effect on wetland recovery. The main underlying hypothesis 86 

was that biodiversity shows an increase once the ecosystem is no longer subjected to disturbance.9,11  87 

Knowing which ecosystem characteristics affect biodiversity loss in wetlands can help increase 88 

awareness and prevent their further destruction. Wetland restoration is commonly employed as part 89 

of broader environmental policies to compensate the loss of wetland habitat due to development (i.e. 90 

“biodiversity offsets”). The problem with such a strategy is that, while habitat destruction is certain to 91 

take place, full biodiversity recovery in the offset site may be inhibited, making no net loss of 92 

biodiversity hard to obtain.16 Such difficulties have been demonstrated in reviews of wetland mitigation 93 

policies in the USA (e.g. ref17). Therefore, there is a strong impetus to understand the extent of damage 94 

caused by wetland development, whether impacts are permanent or temporary, and whether they can 95 

be compensated through restoration/creation. 96 

The objectives of this study were to (1) understand the temporal trajectory of recovery, (2) develop a 97 

model to estimate wetland recovery times, (3) identify which wetland characteristics lead to a faster 98 

recovery compared to other features, (4) quantify success and failure rates of wetland remediation, 99 

and (5) develop a methodology (applicable in LCA) to assess wetland transformation impacts. 100 
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Methods 101 

Literature search 102 

We built a database with results of peer-reviewed papers and reports in which restoration or creation 103 

of aquatic habitats was carried out in different parts of the world. Two existing databases2,11 were 104 

investigated and a literature search was carried out on Google Scholar (June 2015) with the words: 105 

“(biodiversity OR aquatic ecosystem) AND (ecological compensation OR habitat banking OR offsets OR 106 

recovery OR ecosystem rehabilitation OR restoration ecology OR secondary growth)”. In order to be 107 

selected, the studies had to meet the following criteria: 108 

- Availability of biodiversity measures from an ecosystem that was being restored, and from an 109 

undisturbed (reference) ecosystem, to enable a direct comparison. Reference ecosystems were 110 

those with no signs of major anthropogenic disturbance either at the time of the study, or 111 

through its known history. 112 

- Measured ecological responses at known time intervals since the beginning of restoration, both 113 

in the ecosystem being restored and in the reference system.  114 

- Spatial independence of biodiversity measurements to fulfill the assumptions of the statistical 115 

tests applied. To consider samples to be spatially independent they had to be a minimum 116 

distance apart. This minimum distance was dependent on the species class and was maintained 117 

throughout the different studies, e.g. plants had to be at least 50 meters apart in order to be 118 

considered independent samples (for all minimum distances, see Supporting Information (SI1), 119 

section S1). If these criteria were not met, data were aggregated or taken from only one of the 120 

sites. 121 
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Response ratio 122 

The biodiversity indicators used in this study to evaluate whether restoration was successful included 123 

richness, evenness and diversity (see SI1, section S2 for the list of indicators). Biodiversity values, 124 

measured at the same time in the restored and reference habitats, were used for the calculation of a 125 

response ratio (RR), defined as the ratio between a measured quantity in an experimental group (in our 126 

case the restored habitat) and one in a control group (the reference habitat). As the measured quantity 127 

we used one of the biodiversity indicators. It is advisable to use the logarithm of the RR when carrying 128 

out statistical analyses (eq 2),18 because deviations in the numerator are treated in the same way as 129 

deviations in the denominator, but the simple ratio is affected more by changes in the denominator. 130 

𝑙𝑙𝑙𝑙 (𝑅𝑅𝑅𝑅𝑖𝑖) = 𝑙𝑙𝑙𝑙 �
𝑥𝑥𝑖𝑖,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
𝑥𝑥𝑖𝑖,𝑟𝑟𝑟𝑟𝑟𝑟

� 131 

(2) 132 

‘xi, rest’ is the biodiversity value measured at time ‘i’ in the restored wetland, and ‘xi, ref’ is the one of the 133 

corresponding reference habitat. 134 

Negative values of ‘ln(RRi)’ indicate that, between restored and reference habitat, biodiversity is lower 135 

in the ecosystem which is being restored. Positive values indicate higher biodiversity in the wetland 136 

which is being restored. A value of ln(RRi)=0 means that biodiversity is equal both in restored and 137 

reference habitat. The time interval between the start of the restoration and when the zero value is 138 

reached represents the time needed for complete biodiversity recovery. Complete biodiversity 139 

recovery means that the biodiversity indicators of the restored wetland equal those of the reference 140 

wetland. Background changes in the reference system towards alternate states are taken into account 141 

during the construction of the response ratio. 142 
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The biodiversity RRs, together with their corresponding time of measurement (after cessation of 143 

disturbance), were used to compute recovery trajectories for each wetland. For all ecosystems that (1) 144 

had more than 3 biodiversity measurements in time and (2) showed an overall increase in biodiversity, 145 

linear and logarithmic trajectories were interpolated to the data and their R-squared (R2) values were 146 

used to evaluate which type of trend line had the best goodness-of-fit. 147 

Model predictors 148 

In addition to biodiversity measurements in time, other wetland characteristics with a potential 149 

influence on the RR were extracted from the literature and included as model predictors (independent 150 

variables):9,11 climate class (A - equatorial; B - arid; C - warm temperate; D - snow), wetland type 151 

(coastal; lentic; lotic), taxon (plants; aquatic species – including crustaceans, invertebrates, mollusks 152 

and fish; terrestrial species – including birds and amphibians; others – including micro-organisms), 153 

restoration type (active; passive; creation), latitude (between 34.89°S and 65.5°N), biodiversity metric 154 

(richness; abundance/evenness; diversity), the time elapsed since the beginning of restoration 155 

(referred to as ‘age’ hereinafter), and elevation (between sea level and 2,348 m.a.s.l.; our database did 156 

not include wetlands located in the interval 1,200 - 2,300 m.a.s.l. due to unavailability of data). Except 157 

for age, all variables were modeled as categorical predictors. Elevation was divided into 9 categories, 158 

while latitude was taken as its absolute value and divided into 6 categories. A category was defined as 159 

having at least 20 and a maximum of 200 data points. 160 

An example of the database structure is presented in the SI1, section S3. 161 

 162 
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Implementation of Generalized Linear Models (GLMs) 163 

The information contained in our database was used to build a linear model with the purpose of 164 

predicting ecosystem recovery times (eq 3). 165 

𝑦𝑦 = 𝑎𝑎 + 𝑏𝑏 ∙ 𝑥𝑥1 + 𝑐𝑐 ∙ 𝑥𝑥2 + ⋯+ 𝑛𝑛 ∙ 𝑥𝑥𝑛𝑛 166 

(3) 167 

Variable ‘y’ is the logarithm of the biodiversity RR (ln(RR)) and ‘x1…xn’ are the different predictors. Factor 168 

“a” - the intercept of the model - and factors ‘b…n’ - the coefficients of the predictors - were obtained 169 

from the statistical analysis described in the following paragraph. By using the inverse of equation (3), 170 

it was possible to understand whether wetlands could reach reference levels of biodiversity or not, and 171 

at what speed such recovery took place (see SI1 section S4 for more details). 172 

The statistical analysis of the database was carried out using R and the R-Studio environment.19,20 We 173 

used the “corrgrams” package21 to test the correlation amongst all predictors. The statistical modelling 174 

included four main phases: 1) resampling of the data points, 2) fitting of generalized linear models 175 

(GLMs), 3) model selection based on the Akaike Information Criterion (AIC) and 4) model averaging. The 176 

outputs of these different steps were the coefficients of the linear model and the importance values 177 

for each predictor. 178 

One data point (i.e., one row of the database) of each study was randomly selected and inserted into a 179 

set. Sample size of the set equalled the number of studies taken into account, i.e. each set had 59 data 180 

points. This procedure was repeated 10,000 times (resulting in 10,000 sets) in order to avoid pseudo-181 

replication and bias caused by the clustering of data within single studies22. A GLM, including all 182 

predictor variables (referred to as ‘full GLM’), was fitted to each one of the 10,000 resampled data sets. 183 
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The resulting coefficients (one for each predictor category) and the deviance explained (DE) were 184 

recorded for each of the 10,000 sets. In each iteration, if the coefficient estimate of the ‘age’ predictor 185 

was negative, the coefficients of all other predictors of the same iteration were taken out of the results. 186 

This was done because the coefficients of these runs would result in models in which biodiversity would 187 

not converge to reference values and, as such, they were considered to be an indication of restoration 188 

failure.9 Coefficient estimates of iterations that showed a poor predictive ability, defined as having a 189 

value of the deviance explained lower than 10%, were also excluded. 190 

As a last step, estimates of the coefficients resulting from the GLM fitting were averaged across the 191 

iterations that had positive age coefficients and an explained deviance above 10%, obtaining one 192 

unique coefficient value for each category of the predictors. 193 

Importance values of the predictors 194 

Importance values were calculated for the independent variables using the ‘glmulti’ package23 in R and  195 

can be interpreted as the probability that each predictor is a component of the model that best 196 

represents the data. For each of the 10,000 iterations, the full GLM formulas were broken up into a 197 

series of simpler formulas by excluding one or more predictors each time, and such simplified GLMs 198 

were then fitted to the corresponding data set of the original full GLM. The ‘glmulti’ package uses a 199 

genetic algorithm (GA) to find the best of these simpler models without having to try all possible 200 

combinations of the predictors. The corrected Akaike Information Criterion (AICc) was used to compare 201 

complexity and explanatory power of the generated models, which were then ranked according to its 202 

value: the lower the AICc value, the better the model and the higher its ranking. The GA stops when 203 

improvements in the AICc value of the last generation of models are below a certain target. Once all 204 

models were ranked, the deviance explained of the best model for each iteration was recorded. The 205 
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AICc values were then implemented by ‘glmulti’ to define the relative evidence weights (wi) of each of 206 

the i-th simpler models: wi = exp(-(AICci– AICcbest)), where the AICc value of the best-performing model 207 

is subtracted from the AICc value of each i-th generated model, resulting in the fact that, the smaller 208 

the difference, the closer wi is to 1. The relative evidence weights were normalized so that their sum 209 

added up to one. The importance values of the predictors were computed, per iteration, as the sum of 210 

the normalized evidence weights of all the best 100 models in which such a predictor appeared. The 211 

10,000 values were then averaged across iterations using the same method as the one used for the 212 

coefficient estimates. A 15% threshold for importance values was applied: all predictors with a higher 213 

percentage (importance value > 0.15) should be maintained in the model, while those with a lower 214 

value (importance value < 0.15) should be discarded. This cut-off point was selected arbitrarily. A 215 

scheme of the steps carried out as part of the statistical analysis is presented in the SI1, section S5. 216 

Validation 217 

In order to check how well the model was able to reproduce observed recovery trajectories, 20% of the 218 

data points were taken out of the database, and the statistical analysis was carried out using the 219 

remaining 80% of the database. The studies excluded from the model fitting phase were selected to be 220 

representative of each predictor category. Random selection was not possible because of data scarcity 221 

regarding some categories of the predictors. Only two validation steps were performed, i.e. two sets of 222 

data points were excluded. R-squared and the Nash-Sutcliffe coefficient were used as indicators of 223 

model performance.  224 
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Transformation CFs 225 

Having estimated the model coefficients, it was possible to back-calculate recovery times by imposing 226 

equal biodiversity between restored and reference habitat, i.e. ln(RR)=0. Transformation 227 

characterization factors were then calculated for 1184 Ramsar wetlands, using equation 228 

(1) and existing wetland occupation CFs8 for birds and amphibians. Transformation CFs were also 229 

calculated assuming a logarithmic recovery trajectory. This was achieved using equation (4). 230 

𝐶𝐶𝐶𝐶𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = 𝐶𝐶𝐶𝐶𝑂𝑂𝑂𝑂𝑂𝑂 · �𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 · 0.9 · 𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟1.11� 231 

(4) 232 

 ‘treg’ [years] represents the “time required for full regeneration of ecosystem quality” and ‘CFOcc’ 233 

[species-eq·year/m3] is the corresponding occupation CF. The value of “const” is wetland-specific and 234 

was derived following the methodology presented in the SI1, section S6, part B. 235 

The unit for transformation CFs of wetlands is [species-eq∙year2/m3]. When the transformation CF is 236 

multiplied by the flow of water [m3/year] going to the wetland once occupation has ceased, the result 237 

is the transformation impact [species-eq∙year], which is compatible with transformation impacts in the 238 

land use impact category.24 The flow of water in m3/year indicates the amount of water flowing back 239 

to the wetland and transforming it to a more natural state, once water is no longer consumed or 240 

extracted. 241 

Results 242 

Database characteristics 243 

Of the studies present in the database2, 12 met the selection criteria, while 27 studies were selected 244 

from ref11. In addition, 20 papers were added from our literature search (see SI1, section S7). It was 245 
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often the case that more than one restored/created ecosystem was compared with the same reference 246 

ecosystem, resulting in 307 restored/created habitats versus 259 reference habitats. The entire 247 

database (see Supporting Information 2) consists of 500 data points. 319 of the biodiversity 248 

measurements were taken in the first five years after cessation of disturbance, the longest time span 249 

between a measurement and cessation of disturbance was 55 years. Measurements of richness were 250 

the most common (266 data points), followed by diversity (146 data points) and abundance/evenness 251 

(88 data points). The majority of data points came from coastal wetlands (271 data points), followed by 252 

lotic (121 data points) and lentic ecosystems (108 data points) (for details see also SI1, section S8). Two 253 

categories of the elevation predictor (900-1,200 m.a.s.l. and 2,300-2,400 m.a.s.l.) did not reach the 254 

minimum number of 20 data points, but were kept because they represented the behaviour of 255 

ecosystems at high elevations, necessary for verifying the hypothesis that recovery times are longer at 256 

higher altitudes. 257 

When analyzing the biodiversity recovery trajectories in time, logarithmic interpolations showed a 258 

higher R2 value in 60% of the wetlands, compared to linear interpolation. Consequently, it was deemed 259 

appropriate to use ‘ln(age)’ as a predictor (instead of ‘age’) in order to obtain estimated trajectories 260 

with a logarithmic trend (see SI1, section S9 for examples of goodness-of-fit).  261 

Model coefficients 262 

Of the 10,000 GLM models, 8,658 models showed a positive age coefficient, meaning that restoration 263 

was successful and induced a positive biodiversity response with time. None of the models had values 264 

of the deviance explained lower than 10%, and the average DE out of the 10,000 runs was 55%. 265 

The validation step resulted in a Nash-Sutcliffe coefficient of 0.042, and an R2 value of 25%. Most of the 266 

times the observed data points did not all lie within the confidence interval (SI1, section S10). However, 267 
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the model did well for predicting the time to reach full biodiversity recovery, given that there was a 268 

clear recovery trajectory. In general, these results indicate that the model is precise in the estimation 269 

of the term ‘treg’, but not in resembling the recovery trajectory. 270 

Figure 1 shows the average coefficient values of models with a positive age effect.  271 

 272 

Figure 1– Coefficient estimates of all predictor categories together with their 95% confidence interval. All coefficient values 273 

of the categorical predictors are presented relative to the reference category of such predictor, which, by default, has a 274 
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coefficient value equal to 0. Reference categories (not present in the figure) are: Restoration Type: Active; Elevation [m.a.s.l.]: 275 

0-10; Climate class: A; Latitude [°]: 0-20; Biodiversity Metric: Abundance/Evenness; Taxon: Aquatic; Wetland Type: Coastal. 276 

If a category has a positive coefficient, this means that it recovers faster than the reference category, the opposite if the 277 

coefficient is negative. 278 

Below each predictor, in brackets, is the importance value. Importance values of the predictors represent the probability of 279 

each predictor of being included in the model that best represents the data. The intercept has an importance value equal to 280 

1 because it is present in every model, so its probability of being part of the best model is 100%. Predictors in the figure were 281 

ordered according to their importance value. Within the categories of the same predictor, the larger the coefficient estimate 282 

of a category, the smaller the corresponding recovery time. 283 

  284 
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The application of the coefficients for the estimation of the recovery times and of the trajectories is 285 

illustrated here using the example of Sand Lake Wetland (South Dakota, USA, Figure 2). 286 

 287 

Figure 2– Recovery trajectory of Sand Lake (South Dakota, USA). The recovery trajectory was approximated by applying the 288 

coefficients reported in Figure 1. The characteristics of the wetland were the following: Climate class = D; Wetland type = 289 

Lentic; Elevation = 300-400 [m.a.s.l.]; Latitude = 40-50 [°]; Taxon = Terrestrial; Biodiversity metric = Diversity; Restoration 290 

type = Active. The last characteristic was hypothesized for demonstration purposes, because it was assumed that, should the 291 

wetland be disturbed, it would be restored actively. The initial recovery is very fast because of the logarithmic hypothesis 292 

made when building the model. 293 

Relevant predictors 294 

In order to evaluate the influence of each predictor category on the full recovery time, predictors were 295 

selected and changed one at a time. This allows for an assessment of the effect of each category, 296 

independently of the value of other predictors. The variability of the recovery times, according to the 297 

different predictor categories, is shown in the SI1, section S11.  298 
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The information used to understand the relevance of predictors for the model consisted of the 299 

importance values with a threshold equal to 0.15 and in the difference in recovery times (calculated 300 

using the coefficient estimates) amongst categories of the same predictor. If the confidence intervals 301 

of the recovery times of two categories of the same predictor overlapped and if the CI of the difference 302 

between their average values contained zero, then it was concluded that there was no statistically 303 

significant difference (α = 0.05) amongst the average recovery times of such categories. 304 

The coefficient estimates of the ‘Wetland type’ categories suggest that, when compared to coastal 305 

wetlands, both lentic and lotic ecosystems have a faster recovery. There is 17.6% possibility that such 306 

a variable is part of the linear model that best describes the data (importance value of 0.176). For 307 

‘Elevation’ the highest coefficient is the one for the category ‘2,300 – 2,400 m.a.s.l.’. Since the 308 

coefficient is negative this is the elevation interval in which wetlands take longest to recover. Except 309 

for elevations between 400 m.a.s.l. and 1,200 m.a.s.l., recovery times increase with elevation. 310 

‘Restoration type’ is the predictor with the highest importance value (0.455). The negative and large 311 

coefficient estimate of the ‘Passive’ category shows that wetlands restored with such practice take 312 

longer to recover than created or actively restored wetlands. The recovery time is two orders of 313 

magnitude larger than for active restoration. The difference between actively restored and created 314 

wetlands is not statistically significant. 315 

The two latitude regions in which recovery times are the longest are the ones between 20° and 30° 316 

(mainly arid regions) and between 50° and 60° (cool temperate regions). Recovery is fastest in 317 

equatorial regions (0°-20°), where full recovery happens three orders of magnitude faster than in the 318 

50°-60° region. Differences in recovery times in the temperate region (35°-40° and 40°-50°) are not 319 

statistically significant. Latitude is kept as a predictor of the model (importance value 0.224).  320 
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In the climate class A category (equatorial climates) wetlands take the most time to recover. This is in 321 

contrast to the coefficients of the ‘Latitude’ predictor, which showed that regions between 0° and 20° 322 

have a low recovery time compared to all other regions. Such a result may be an artefact of collinearity. 323 

The correlation matrix amongst predictor categories (see SI1, section S12) shows climate class A and 324 

latitude to be strongly collinear, i.e. correlation coefficient greater than the common threshold of 0.7, 325 

where model distortion may occur.25 This is because 90% of the data points belonging to the climate 326 

class A category have a corresponding (absolute) latitude which is below 10°. For this reason, the results 327 

regarding the influence of this particular climate class on the recovery times, compared to the other 328 

climate classes, should be interpreted with caution. The importance value of climate was 0.29, so it 329 

should be kept as a model predictor. 330 

The confidence intervals of the recovery times of all taxa overlap and there is no statistically significant 331 

difference amongst their average recovery times. ‘Taxon’ is not a key predictor for the model 332 

(importance value 0.061). Richness and diversity recover faster than the reference category ‘evenness’, 333 

but the differences amongst the average recovery times of the three categories are not statistically 334 

significant ( importance value 0.164). Given that recovery times are very similar between metrics, this 335 

predictor can be left out of the model. 336 

For the logarithm of age, its coefficient estimate is positive (meaning that biodiversity increases with 337 

time) and the confidence interval does not overlap zero. Its importance value was the second highest 338 

out of all predictors (0.363).The time elapsed since the beginning of restoration is therefore a variable 339 

that must be taken into consideration. 340 
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Overview of wetland recovery times 341 

We computed recovery times for all the Ramsar wetlands analyzed in ref8, with the hypotheses of active 342 

restoration (in order to evaluate wetland response with human interventions) and passive restoration. 343 

The values of full recovery varied from below 1 year to up to 105 years, in case of active restoration, and 344 

up to 107 in case of passive restoration (Table 1). 345 

Table 1 - Orders of magnitude of Ramsar wetlands‘ recovery times. Percentages do not add up to 100% because of 346 

rounding. 347 

Years to full recovery Active restoration Passive restoration 

 # wetlands % of total # wetlands % of total 
< 1 445 38% 3 0.25% 
1 - 10 290 24% 62 5% 
10 - 100 309 26% 148 13% 
100– 1,000 53 4% 356 30% 
1,000– 10,000 41 3% 295 25% 
> 10,000 46 4% 320 27% 

 1184  1184  

    
A recovery time of less than one year is a small time span compared with results for terrestrial habitats9. 348 

Recovery times reported in the literature for wetlands are also higher, in the order of at least decades11. 349 

The wetlands that had recovery times closer to the ones of the mentioned studies9,11 (10 - 1,000 years) 350 

were 30% of the total for active restoration. The recovery times in case of passive restoration were 351 

more in line with refs9,11, with 43% of wetlands having a recovery time between 10 and 1,000 years. 352 

Global transformation CFs 353 

Occupation CFs were available for different taxa (birds, mammals, reptiles and amphibians) and 354 

according to whether wetlands were surface water or groundwater fed.8 Transformation CFs were 355 

computed for birds and amphibians, but not for mammals and reptiles because their response to 356 
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restoration was not included in our database. Transformation CFs were computed using modelled 357 

recovery times of passively restored wetlands, in order to have a transformation impact based on 358 

natural recovery rates (Figure 3 and SI1, section S13).  359 

 360 

 361 

Figure 3- Global transformation characterization factors for birds for 1033 surface water-fed wetlands, assuming logarithmic 362 

recovery (eq. 4) and passive restoration. As described in ref8, the CFs are valid for the whole, individually calculated catchment 363 

that is feeding the wetland with surface water. Underlying country map adapted from ESRI26 364 

The CFs for birds in surface water-fed wetlands (Figure 3) vary from 10-14 to 10-2 species-eq∙year2/m3. 365 

The five regions with highest transformation CFs are characterized by high elevations (Himalayan 366 

region, Andes and Rocky Mountains) and/or high latitudes (Kolyma Range, Russian Far East).  367 

Discussion 368 

When focusing on wetland characteristics that affect recovery times the most, wetland type, 369 

restoration type, latitude and elevation were the model predictors that had the strongest impact on 370 
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recovery. Correlations between predictors were assumed to be causal. Indicators of biodiversity were 371 

expected to show a positive ‘age relationship’, meaning that biodiversity increases with time and 372 

eventually reaches the values of natural reference habitats. The studies by Curran et al.9 and Moreno-373 

Mateos et al.11 showed that biodiversity increases with time after cessation of the disturbance. The 374 

same result was obtained in this study. 375 

Active restoration measures result in faster recovery processes with respect to those achieved through 376 

passive restoration measures9 and created wetlands have even faster recovery times.14 According to 377 

the results of this study, the recovery times of passively restored wetlands are two orders of magnitude 378 

bigger than in case of active restoration. The difference in recovery times between actively restored 379 

ecosystems and created wetlands is, however, not statistically significant, so the hypothesis based on 380 

the results of Korfel et al.14 is not supported. Warmer climates were expected to increase the speed of 381 

recovery, because of higher biological activities.11 Indeed, our results show that wetlands in the warm 382 

temperate region recover faster than those in ‘arid’ and ‘snow’ regions. When looking at the results of 383 

the ‘Latitude’ predictor, it was expected that the recovery time in the 30°-35° region (arid 384 

environments) would be of the same order of magnitude as the 20°-30° interval, but it resulted in being 385 

2 orders of magnitude lower. A possible explanation is that 55% of the data points coming from the 386 

30°-35° region were located at an elevation below 100 m.a.s.l., which is where recovery times are 387 

shortest. It is therefore possible that recovery times might have been biased by the fact that not all 388 

elevation categories were present at such latitudes. 389 

Elevation is expected to slow down restoration processes because ecosystems located at higher 390 

altitudes are generally more fragile and less resilient to disturbance.15 Except for elevations between 391 

400 m.a.s.l. and 1,200 m.a.s.l., our results confirm that recovery times increase with elevation. A 392 
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scarcity of data points could be the explanation for the decrease in recovery times in the mentioned 393 

elevation interval. Elevation is the only predictor for which the importance value does not agree with 394 

the model results: an importance value of 0.061 would suggest that elevation should be excluded from 395 

the model predictors, but the difference in recovery times at the different altitudes clearly shows that 396 

it is a crucial factor in determining the magnitude of the recovery time. Therefore, elevation was 397 

maintained as a predictor. Water availability was taken into account through two predictors: ‘Climate 398 

class’ and ‘Wetland type’. Climate classification indirectly considers both temperature and 399 

precipitation. Wetlands characterized by a higher hydrologic exchange (lotic environments) should 400 

recover faster than wetlands fed mainly by precipitation or groundwater flow (lentic environments).11 401 

Our results do not support this hypothesis because the recovery times of lentic wetlands are 3.5 times 402 

smaller than those of lotic environments. According to our results, a lotic wetland should be able to 403 

fully recover in a time interval 15 times smaller than that of a coastal wetland. As all of the wetlands 404 

included in the category ‘Coastal’ were saltwater ecosystems, freshwater wetlands seem to generally 405 

recover faster. 406 

A substantial change was made to the procedure followed in the statistical analysis by Curran et al.9 407 

where the glmulti package was used for the estimation of both the model coefficients and their 408 

importance values. Here, basic glm was used to obtain coefficient estimates and glmulti was 409 

implemented only for the evaluation of importance values. The reason was that, when using the model 410 

coefficients obtained from the glm fitting, the validation step gave much better results than when using 411 

the glmulti-averaged model coefficients. 412 

In this study we corrected for pseudo-replication using the method of Curran et al.9 There are other 413 

suitable approaches for structured data analysis, such as hierarchical multilevel models27 (MLMs) or 414 
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generalized linear mixed models.28 Both use hierarchical analyses to deal with within-cluster variation 415 

and associated problems of pseudo-replication. Our approach was based on multi-model (MM) 416 

averaging and inference, which has a history of application in ecological research29,30,31. The MM 417 

approach is somewhat similar to MLMs using bootstrapping for parameter estimation,27 in that both 418 

approaches use hierarchical analysis. The resampling algorithms in MM estimate parameters through 419 

random subsampling of study data points and construction of subservient models, which are averaged 420 

to derive a global model (with uncertainty distributions). 421 

One of the biggest limitations of the study is that the observed recovery trajectories used to build the 422 

database were recorded only for a maximum of 55 years after restoration had begun. Given that a high 423 

percentage of the predicted recovery times were in the order of 102 - 103 years or above, it would be 424 

useful to include studies in which trajectories had been recorded for longer periods. In the absence of 425 

such long-term investigations, this and other studies assumed that the trends observed in the first 50 426 

years of restoration are also indicative for the long-term development.9 427 

By analyzing in more detail the characteristics of the wetlands with recovery times of less than 1 year, 428 

we observed that elevation and latitude were the most relevant factors, in particular category 0°-20° 429 

for latitude, and elevations below 100 m.a.s.l.. This is not surprising because, out of all predictors, such 430 

categories are those whose recovery times show the greatest variation, when shifting from one 431 

category to another. In the case of active restoration, 173 of the 1184 investigated wetlands showed a 432 

recovery time of less than a month, which is a very short time frame compared to the results of the 433 

study carried out by Moreno Mateos et al.11 and probably the result of an artefact. In the case of passive 434 

restoration, only three wetlands showed a recovery time that lasted less than one year (between 320 435 

and 365 days). When looking at the original database, of the 60 data points measured in the first year 436 



24 
 

after cessation of disturbance, approximately 40% showed complete recovery (RR > 1). Low elevations 437 

were the recurring characteristics of these wetlands, which had all undergone active restoration.  438 

As mentioned previously, the database did not contain information regarding wetlands situated 439 

between 1,200 and 2,300 m.a.s.l., or above 2,400 m.a.s.l.. However, some of the Ramsar wetlands 440 

presented these characteristics, so their recovery times were predicted using the coefficients of 441 

elevation categories, which were closest to their actual altitude. The most problematic aspect behind 442 

this is that, for example, the recovery times of wetlands at 1,800 m.a.s.l. and at 4,000 m.a.s.l. were 443 

calculated using the same model coefficients, introducing considerable uncertainty. A possible solution 444 

to this would be to consider elevation as a continuous predictor, which was initially done in this study 445 

for both elevation and latitude, but this particular database gave better results in the validation phase 446 

(higher values of Nash-Sutcliffe coefficient and R-squared) when using elevation and latitude as 447 

categorical predictors.  Such a result may be interpreted by looking at the influence of the predictor 448 

categories on the recovery times (SI1, section S11). If we had modelled latitude as a continuous variable, 449 

the coldest (high latitude) and warmest (low latitude) areas of the planet would necessarily have 450 

different recovery times. Our results suggest that this is not the case and that recovery times of non-451 

adjacent latitude categories may be similar. Arid (20°-30°) and cool (50°-60°) regions both have recovery 452 

times in the order of thousands of years; while equatorial (0°-20°) and arid (20°-30°) regions, that are 453 

adjacent in terms of latitude category, have a difference in recovery time of 3 orders of magnitude. 454 

According to the previously mentioned results regarding elevation, to conclusively establish whether it 455 

should be modelled as a categorical or a continuous variable, we would need to fill the data gap for 456 

high elevations. 457 
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Occupation CFs were calculated by Verones et al.8 considering drainage, and consequently area loss, as 458 

the main disturbance to wetlands. Our database included observations from sites that had been 459 

affected by land use change and biological, physical and hydrological disturbances. This last category 460 

included drainage, so recovery times observed from hydrologically disturbed wetlands, together with 461 

those observed from wetlands affected by land use change, were the most appropriate ones when 462 

calculating transformation CFs. Nonetheless, recovery trajectories (and consequently transformation 463 

CFs) were computed considering all types of disturbances because it would not have been possible to 464 

build the linear model only using data coming from wetlands that had been subjected to drainage and 465 

land use change. 466 

Our development of transformation CFs for wetlands allows an analogous treatment of aquatic and 467 

terrestrial ecosystems. For land use, occupation and transformation CFs already exist, each with their 468 

distinct inventory flows. For wetlands and impacts from water consumption, only occupation CFs were 469 

so far available. However, in order for both occupation and transformation CFs to be used for water 470 

consumption, inventories need to be adapted too. While the occupation impact requires the amount 471 

of water consumed (in m3), transformation impacts require the flow of water (m3/yr). In this paper, the 472 

proxy measure of “ecosystem quality” for quantifying the recovery time was species richness, evenness 473 

and diversity. If the biodiversity indicators were the same in two restored wetlands, the same level of 474 

ecosystem quality was assumed. The magnitude of the transformation CFs will depend on the 475 

occupation CF and the recovery time, thus shorter recovery times translate into a smaller 476 

transformation impact. 477 

The findings of this study suggest that wetland recovery times vary over several orders of magnitude: 478 

from less than one year to 105 and 107 years, in case of active and passive restoration, respectively.  This 479 
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large range influences the magnitude of transformation CFs. As in previous studies on restoration (e.g. 480 

ref9), the predicted results lie beyond any range of meaningful prediction, because the calibration data 481 

from the actual studies only extends to 55 years. Additionally, these values are almost certainly an 482 

underestimate of the actual recovery process, because the available data only concerned metrics of 483 

richness, diversity, abundance and evenness. None of these metrics adequately reflect compositional 484 

change (i.e. beta diversity) of the ecological community (e.g. species similarity metrics). Compositional 485 

recovery is known to take longer than simple richness/diversity (e.g. ca. 1 order of magnitude longer in 486 

ref9). For application to LCA, this is acceptable, because the established indicator of ecosystem quality 487 

is based on species richness. However, to apply our findings to other policies and practices involving 488 

ecosystem restoration (e.g. biodiversity offsetting), a measure of caution is required.  489 

If the recover times are interpreted in relative terms (i.e. low to high) a useful picture of ecosystem 490 

vulnerability emerges for future research (i.e. areas where wetland are more likely to suffer long-lasting 491 

or permanent damage). For example, our model indicates that wetland diversity is most vulnerable in 492 

areas of high elevations or at latitudes between 20°-30° and 50°-60°, such as the Andes, the Rocky 493 

Mountains, the Gobi Desert, the Himalayan region and  the Kolyma Range. These are areas of high 494 

species diversity and long predicted recovery times. Future research could focus on these areas (and 495 

suitable control regions) to validate our model predictions with local sampling. In the meantime, our 496 

model already provides an immediate indication of the magnitude and likelihood of permanent damage 497 

in such areas that can be integrated into policy tools such as LCA. 498 
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Supporting information: SI1: contains information on the database and more details and results on the 501 

calculation of recovery times, as well as world maps of CFs. SI2: Excel file with the database. Both are 502 

available on the ACS publication webpage.  503 
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