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Abstract

Background: In breast cancer, activation of bone morphogenetic protein (BMP) signaling and elevated levels of
BMP-antagonists have been linked to tumor progression and metastasis. However, the simultaneous upregulation
of BMPs and their antagonist, and the fact that both promote tumor aggressiveness seems contradictory and is not
fully understood.

Methods: We analyzed the transcriptomes of the metastatic 66cl4 and the non-metastatic 67NR cell lines of the
4T1 mouse mammary tumor model to search for factors that promote metastasis. CRISPR/Cas9 gene editing was
used for mechanistic studies in the same cell lines. Furthermore, we analyzed gene expression patterns in human
breast cancer biopsies obtained from public datasets to evaluate co-expression and possible relations to clinical
outcome.

Results: We found that mRNA levels of the BMP-antagonist Grem1, encoding gremlin1, and the ligand Bmp4 were
both significantly upregulated in cells and primary tumors of 66cl4 compared to 67NR. Depletion of gremlin1 in
66¢l4 could impair metastasis to the lungs in this model. Furthermore, we found that expression of Grem]
correlated with upregulation of several stem cell markers in 66cl4 cells compared to 67NR cells. Both in the mouse
model and in patients, expression of GREMI associated with extracellular matrix organization, and formation,
biosynthesis and modification of collagen. Importantly, high expression of GREMI predicted poor prognosis in
estrogen receptor negative breast cancer patients. Analyses of large patient cohorts revealed that amplification of
genes encoding BMP-antagonists and elevation of the corresponding transcripts is evident in biopsies from more
than half of the patients and much more frequent for the secreted BMP-antagonists than the intracellular inhibitors
of SMAD signaling.

Conclusion: In conclusion, our results show that GREM1 is associated with metastasis and predicts poor prognosis
in ER-negative breast cancer patients. Gremlin1 could represent a novel target for therapy.
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Background
Members of the transforming growth factor p (TGE-p)
family, including the TGF-fs, activins, nodal, bone
morphogenetic proteins (BMPs), and growth and differ-
entiation factors (GDFs), play important roles in tumor
progression and formation of metastases [1]. However,
these signaling molecules have pleiotropic effects in
cancer, as seen with TGF-p signaling, which has been
linked to both tumor suppression and tumor promotion
depending on the tumor stage [2, 3]. After binding of
the TGF-Bs to transmembrane receptors, SMAD2 and
SMAD3 become phosphorylated and bind to SMAD4;
subsequent translocation of this complex to the nucleus
result in the expression of TGF-B controlled genes. In
contrast, BMP signaling primarily occurs via SMAD1/
5/8 instead of SMAD2/3. Receptor activation by TGF-f3
family ligands can also result in induction of non-
SMAD pathways, including mitogen-activated protein
kinases (MAPK), and PI3K-Akt-mTOR pathways [4].
Like TGF-Bs, BMPs have been implicated in both
tumor suppression and tumor progression [5]. Under-
standing the role of TGF-B family members in cancer
and the development of TGF-p targeted therapies have
been hampered by the complex interplay of these sig-
naling molecules with intracellular SMAD-inhibitors
and extracellular BMP-antagonists. The expression of
intracellular inhibitory SMADs, ie. SMAD6 and
SMAD?7, is induced in response to several TGF-p li-
gands and form a negative feedback loop. Extracellular
BMP-antagonists, like noggin, gremlinl, Dand5, and
follistatin, bind to BMPs and prevent binding of the
BMPs to their respective receptor [6, 7]. Like BMPs and
TGEF-Bs, also BMP-antagonists can have a tumor-
promoting role. For instance, Dand5, also known as
Coco, facilitated formation of lung metastases in the
4T1 mammary tumor model by blocking lung-derived
BMPs [8], whereas gremlinl promoted stem cell main-
tenance in both glioma [9] and colorectal cancer [10].

Metastasis is a complex multi-step process, includ-
ing local invasion, intravasation of tumor cells into
the circulation, tumor cell dissemination, extravasa-
tion at metastatic site, survival at secondary site, and
finally proliferation and formation of metastases [11].
To metastasize, cancer cells of epithelial origin have
to acquire new properties such as increased motility,
anchorage-independent growth and the ability to
adapt to a foreign microenvironment. Only cancer
cells that display a high degree of phenotypic plasti-
city and thus are able to adapt to stressful conditions
and changing environments, will survive. For example,
migratory tumor cells require stem cell-like properties
including a low differentiation status [12].

The immunocompetent mouse model for metastatic
mammary carcinoma called 4T1 consists of several cell
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lines isolated from the same spontaneously formed
tumor [13, 14]. All the cell lines form primary tumors
when injected into the fat pad of BALB/c mice, but they
differ widely in their ability to form distant metastasis.
Here, we focused on 67NR, which does not metastasize,
and 66c¢l4, which metastasizes to the lungs. We hypoth-
esized that their different metastatic propensity relates
to differences in the secretome of the two cell lines,
since cancer cell-derived factors influence the pheno-
type of the cancer cells and/or the stroma cells. We
therefore performed transcriptome analysis of 66c¢l4
and 67NR cells from in vitro culture and grown as tu-
mors in BALB/c nude mice and focused on differen-
tially expressed mRNAs encoding secreted proteins.
Expression of the BMP-antagonist Greml was signifi-
cantly upregulated in 66cl4 compared to 67NR both in
cell culture and primary tumors. Gremlinl binds and
inhibits BMP2, BMP4, and BMP7 [15], which play
important roles during cellular differentiation [1]. In
line with the elevated expression of Greml in 66cl4,
several stem cell markers were upregulated in the 66cl4
cells. Interestingly, compared to the non-metastatic
67NR cells, the metastatic 66cl4 cells also expressed
significantly elevated levels of Bmp4. Consistent with a
role of these secreted proteins in metastasis, we found
that high GREM1 expression correlated with reduced
relapse-free survival (RFS) in estrogen receptor (ER)-
negative breast cancer patients and that the association
with poor prognosis remains, even with elevated co-
expression of a BMP in the tumor.

Methods

For information about Transcriptome analysis; Quantita-
tive real-time PCR; Immunoblotting; Harvest of condi-
tioned medium; ELISA; In vitro extravasation assay; Cell
proliferation assay; Soft-agar assay; Flow cytometry; see
Additional file 1: Supplementary Methods.

Cell culture and generation of stable cell lines

The mouse mammary tumor cell lines 67NR and 66cl4
cell lines were obtained from Barbara Ann Karmanos
Cancer Institute, Detroit, MI, USA. The cells were cul-
tured in DMEM (Lonza, BioWhittaker, BE12- 604F)
supplemented with 10% fetal calf serum (FCS, Thermo
Fischer Scientific, #10270-106), 2 mM L-Glutamine
(Lonza Group, De-17-605E) and 50 U/ml penicillin-
streptomycin ~ (ThermoFischer  Scientific,  Gibco,
#15070-063). Primary umbilical vein endothelial cells,
normal, human (HUVEC) were obtained from ATCC
(ATCC-PCS-100-010). The cells were cultured in
Medium 200 (Gibco, M200500) supplemented with low
serum growth supplement (LSGS) (Gibco, S00310). All
cells were incubated at 37 °C with 5% COs.
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CRISPR/Cas9-GREM1 knockouts and CRISPR/Cas9
vector control cell lines were generated by viral transduc-
tion. The mouse lentiviral particles were purchased from
Sigma Aldrich (CRISPR/Cas9-GREM1 MmO0000325632
and MmO0000325634; CRISPR/Cas9-NT, CRISPRI2V-
1EA). 6h after seeding, 66cl4 cells were infected with
lentiviral particles (MOI 0.1) in medium containing hexa-
dimethrine bromide (8 pg/ml). After 24 h cells were split
1:17. Starting 48 h after infection, cells were selected with
puromycin (3.25 pg/ml) for 1 week. The selection medium
was replaced every 2-3days. Single cell colonies were
picked using cloning cylinders and tested for gremlinl
expression levels by western blot. The CRISPR/Cas9 NT_
mix was generated by trypsinizing a plate containing thou-
sands of puromycin resistant colonies.

Orthotopic mouse tumors and in vivo lung colonization
assay

For all experiments, female mice (8—11 weeks old, Jan-
vier Labs, France) were used. For orthotopic tumors,
mice were anaesthetized and injected with 5 x 10° viable
cells resuspended in PBS into the fourth mammary fat
pad. When palpable, tumor size was measured twice
weekly using electronic calipers. Tumor volume was cal-
culated: Vt = (length x width?) / 2. NT controls and
gremlinl depleted cell lines were injected into nude mice
(BALB/cAnNRj-Foxn1™"™), n=10 per cell line. Mice
were sacrificed after 21 days, unless otherwise stated.
Weight of primary tumors and lungs was recorded. For
the in vivo lung colonization assay female mice were
anaesthetized and injected with 5 x 10° cells/100 ul PBS
in the lateral tail vein. Mice were monitored daily and
sacrificed 15days after injection. Entire lungs were
weighed.

Zebrafish xenograft model

The transgenic fish line Tg(flil:GFP) was used [16, 17].
The tumor cell lines were fluorescently labelled with
mCherry using plv-mCherry lentiviruses. G418 was used
as selection marker. Embryo preparation and tumor cell
implantation was done as previously described [18].
Briefly, Tg(flil:GFP) zebrafish embryos were dechorio-
nated 2 days post fertilization. Single cell suspensions of
66¢l4 wildtype cells and variants were re-suspended in
PBS and kept at 4 °C until transplantation. Cell suspen-
sions were loaded into borosilicate glass capillary needles
(Imm O.D.x0.78 mm LD.; Harvard Apparatus) and
injected into the duct of Cuvier (DoC) using a Pneu-
matic Picopump and a manipulator (WPI, Stevenage,
UK). After injection of approximately 400 cells, zebrafish
embryos were maintained at 33 °C. Invasive clusters were
quantified 6 days post-implantation (dpi). Zebrafish em-
bryos were fixated with 4% paraformaldehyde at 4°C
overnight and were imaged in PBS using a Leica SP5
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STED confocal microscope. Confocal stacks were proc-
essed for maximum intensity projections with Image J.
Brightness and contrast of images were adjusted with
Adobe Photoshop CS6. For each cell line, at least fifty
embryos were analyzed.

Gene co-expression network analysis

RNA-seq data were downloaded from the study by Cir-
iello et al. in Cell, 2015 [19] from The Cancer Genome
Atlas (TCGA; http://cancergenome.nih.gov). The co-
hort consists of 817 cases of breast cancer with 17,214
genes, normalized within samples to the median gene
expression. Due to missing values, only 421 cases and
16,749 genes were available for download and analysis.
To assess the association between GREMI and other
genes, an ego-centric network with GREM]1 in the cen-
ter was created using sample Pearson correlation. The
sample Pearson correlation represents the similarity be-
tween GREM1I and the corresponding gene, in terms of
linear correlation. The correlations range from -1 to 1,
where a value of 1 represents a total positive linear cor-
relation, e.g. similar expression values of GREMI and
the corresponding gene, — 1 represents a total negative
linear correlation, e.g. opposite expression values of
GREM]1 and the corresponding gene. A value near zero
represents no linear correlation, e.g. no linear associ-
ation between the expression values of GREM1 and the
corresponding gene.

KM plotter

KM plotter (http://kmplot.com/analysis/) is an online
tool for examining prognostic markers in breast cancer
subtypes, which utilizes data from multiple cDNA
microarray experiments [20, 21]. Survival analysis (RFS
or OS) was done using the KM plotter database 2017
version. High and low expression were defined as above
(hazard ratio (HR)>1.2, p-value <0.05) and below
(HR < 0.83, p-value < 0.05) median, except for the OS
analysis where best cutoff was used.

cBioPortal

cBioPortal (http://www.cbioportal.org/) is an open-
access database that allows visualization and analysis of
large-scale cancer genomics data sets [22, 23]. Our ana-
lyses utilize the OncoPrints visualization to identify ge-
nomic alterations, including somatic mutations, mRNA
expression and amplifications across a set of cases. This
visualization shows the genes as rows, while individual
cases are shown as columns. For this analysis we used
the TCGA Provisional data set for invasive breast car-
cinoma, and selected mutations, putative copy-number
alterations and mRNA expression as genomic profiles.
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Gene enrichment analysis

Gene enrichment analyses were done with the online tools
Enrichr (http://amp.pharm.mssm.edu/Enrichr/) [24, 25] for
the 66cl4/67NR transcriptome data (Fig. 2b) and Reactome
(https://reactome.org/) [26] for the TCGA cohort (Fig. 3b).

Co-expression analysis

Gene co-expression analysis was performed using the
online gene co-expression search engine SEEK (Search-
Based Exploration of Expression Compendium [Hu-
man]) (http://seek.princeton.edu/) [27] searching 331
breast cancer patient data sets. In addition, both Expres-
sion Atlas (https://www.ebi.ac.uk/gxa) [28] and CCLE
(Broad Institute Cancer Cell Line Encyclopedia, https://
portals.broadinstitute.org/ccle) [29] was used for gene
expression analysis in human breast cancer cell lines.

Statistics

Statistical analyses were performed in GraphPad Prism
7. Values are expressed as mean + standard deviation
(SD), or mean * standard error of the mean (SEM). Stat-
istical analyses were performed by paired 2-tailed Stu-
dent’s t-test after log-transformation (*0.01 <P <0.05,
*#0.001 < P<0.01, *** P <0.001).

Results

Grem1 is highly expressed in the metastatic 66cl4 cells
and elevated GREM1 in tumor biopsies correlates with
reduced relapse-free survival in patients

Cancer cells’ ability to metastasize may be affected by
factors that are secreted by the cancer cells (autocrine)
or by factors secreted by cells in the tumor microenvir-
onment (TME) (paracrine). In search of factors that pro-
mote metastasis, we therefore compared the expression
of genes affecting the TME in the non-metastatic 67NR
and the metastatic 66cl4 cells from the 4T1 mouse
model. Using RNA-sequencing (RNA-seq), we compared
the transcriptomes of cells grown in culture and isolated
from primary tumors in mice and we focused on tran-
scripts encoding matrisome-associated extracellular
matrix (ECM) affiliated proteins (164 genes) and se-
creted factors (363 genes) as defined by Naba et al. [30].
We detected 220 of these transcripts in either cell cul-
tures or primary tumors of 66cl4 or 67NR (cut-off: 1
fragment per kilobase of mRNA per million mapped
reads [FPKM]). Of these, 28 genes were significantly
overexpressed in both cells and primary tumors in 66cl4
compared to 67NR (cut-off: fold-change >1.5, p-value
<0.05) (Fig. 1a). We then analyzed if increased mRNA
expression levels of any of these 28 secreted factors cor-
related with reduced RFS in breast cancer patients.
Using KM plotter [20, 21], we found that high expres-
sion of GREM1I correlated with RFS in all breast cancer
cases (HR =1.32 (1.18-1.47), p-value = 6.9¢” %) and ER-
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negative subtype (HR=1.51 (1.2-1.9), p-value-=
0.00037), whereas in the ER-positive subtype there was a
significant correlation with RFS, but the HR was just
below cut-off (HR=1.19 (1.01-1.4), p-value =0.035)
(Fig. 1b). Of note, a poorer overall survival (OS) was also
seen in the patients with the highest levels of GREM1I
mRNA in tumor biopsies (Additional file 2: Figure S1).
We confirmed overexpression of Greml mRNA levels in
66¢l4 by quantitative PCR (Q-PCR) (Fig. 1c). Moreover,
western blot and ELISA analysis showed that gremlinl
was also highly expressed on protein level and was se-
creted by 66cl4, but not 67NR (Fig. 1d and e). Surpris-
ingly, Bmp4, which is one of the three preferred ligands
that gremlinl binds and inhibits, was also among the 28
upregulated secreted factors in the metastatic 66cl4 cells
compared to the non-metastatic 67NR cells (Fig. 1a).
Overexpression of Bmp4 in 66cl4 was validated by Q-
PCR (Fig. 1f) and western blot (Fig. 1g). However, be-
sides GREM1, high mRNA levels of BMP4 or any of the
other 28 secreted factors that were upregulated in the
metastatic 66cl4 cells did not correlate with reduced RFS
(Additional file 3: Table S1). On the contrary, a reduced
RES correlated with low mRNA levels for some of these
genes. We therefore wanted to study the role of grem-
linl in aggressive tumor development and metastasis
more carefully.

Genetic alterations in BMP-antagonists are common in
invasive breast cancer

Increased gremlinl activity has been shown to promote
epithelial-to-mesenchymal transition (EMT) and main-
tenance of stem cell-like properties in glioma and
colorectal cancer cells [9, 10, 31]. In addition, other
BMP-antagonists, including Dand5 [8] and noggin [32],
have been linked to tumor progression and metastasis.
The RNA-seq analysis revealed that also other BMP-
antagonists were expressed (> 1 FPKM) and significantly
upregulated either in cell culture or primary tumors in
66¢l4 compared to 67NR (Fig. 2a and Additional file 4:
Table S2). Furthermore, the RNA-seq analysis showed a
significant upregulation of the two inhibitory SMADs,
Smad6 and Smad?7, in 66cl4 (Fig. 2a). Thus, BMP activ-
ity may be more repressed in the metastatic 66cl4 cells
than the non-metastatic 67NR cells, both by extracellu-
lar antagonists and intracellular inhibitors. Consistently,
we found increased SMAD4-related gene expression in
67NR by gene enrichment analysis (Enrichr [24, 25]) of
the 1252 transcripts that were significantly upregulated
in the 67NR cells and primary tumors compared with
66¢l4 (Fig. 2b). To assess if our finding in the mouse
model could have clinical relevance, we searched the
TCGA provisional data set for invasive breast carcinoma
in the online tool cBioPortal [22, 23] for gene alterations
in BMP-antagonists and SMADs in invasive breast
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Fig. 1 (See legend on next page.)
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(See figure on previous page.)

Fig. 1 Grem1 is highly expressed in 66cl4 and GREM1 correlates with RFS in breast cancer patients. (a) Scatter plot of in vivo versus in vitro
differential expression of mMRNAs encoding secreted proteins in 66cl4 and 67NR. A positive number indicates higher expression in 66¢l4, whereas
a negative number indicates higher expression in 67NR. The 28 factors were significantly overexpressed in both 66cl4 cells and 66cl4 primary
tumors (cut-off: fold-change 21.5, p-value <0.05) are indicated by name. (b) Relationship between GREMT gene expression and RFS in breast
cancer patients using KM plotter. High and low expression were defined as above and below median. (c) Q-PCR analysis of GremT mRNA
expression in 67NR and 66cl4 cell lines in vitro (n = 3). Fold change is relative to Actb and Tbp. Results are shown as mean + SEM. Student’s t-test,
*¥0.001 < P< 0.01. (d) Representative gremlin1 immunoblot (n = 4) of whole lysates of the 67NR and 66cl4 cell lines without or with PTI for 6 h. (e)
Levels of gremlinT in conditioned medium from 67NR and 66¢l4 (n = 3) measured by ELISA. Results are shown as mean + SEM. (f) Q-PCR analysis
of Bmp4 mRNA expression in 67NR and 66cl4 cell lines in vitro (n = 3). Fold change is relative to Actb and Tbp. Results are shown as mean + SEM.
Student's t-test, **0.001 < P < 0.01. (g) Representative BMP4 immunoblot (n =4) of whole lysates of the 67NR and 66cl4 cell lines without or with

PTI for 6 h

cancer patient samples. Since there is no complete list of
existing BMP-antagonists, we chose to include the most
recognized extracellular antagonists, as well as the two
membrane-bound antagonists, BAMBI and CRIMI, in
this comparison [7, 33]. Interestingly, we found genetic
changes (mutations, amplifications, deletions or altered
mRNA levels) in the selected genes in as much as 62%
(53% if the SMADs are omitted) of the 960 samples
analyzed (Fig. 2c). The data indicate that deregulation of
BMP-antagonists in patients can happen via different
mechanisms. For instance, GREM2 is commonly ampli-
fied in breast cancer patients, indicating that elevated
levels of GREM?2 origins from the cancer cells and not
the surrounding tissue. In comparison, increased levels
of GREM1 mRNA (found in 6% of the tumor biopsies)
are rarely caused by amplifications. Thus, elevated
GREM!1 in breast cancer tumors may either originate
from normal cells in the tumor microenvironment or
from the tumor cells themselves.

We then asked if any of the extracellular antagonists be-
sides GREM 1, or inhibitory SMADs, could predict prog-
nosis of breast cancer patients. In all breast cancer cases,
elevated levels of GREMI and SMAD6 correlated with
poor prognosis (Fig. 1b and Additional file 5: Table S3). In
contrast, low mRNA levels of six BMP-antagonists (CERI,
CHRD, CHRDLI1, CRIMI1, DANDS5, and FST) correlated
with reduced RFS. Moreover, low mRNA levels of
BMPER, CHRDLI, CRIMI and SOSTDCI correlated with
reduced RFS in ER-positive breast cancer patients and
high mRNA levels of CRIM1, GREM1 and SMAD6 corre-
lated with reduced RFS in ER-negative breast cancer pa-
tients. In summary, these data indicate that in contrast to
other BMP-antagonists, high GREMI expression is par-
ticularly relevant for aggressive tumor development in
breast cancer patients.

Gene co-expression network analysis identifies genes
involved in collagen formation and ECM organization
associated with GREM1

A feature of metastatic cells is the ability to undergo
EMT, a process where the tumor cells lose their epi-
thelial characteristics and gain a mesenchymal

phenotype. This phenotype is associated with expres-
sion of genes that modulate ECM and allows for
tumor cell motility and invasion [34]. We hypothe-
sized that gremlinl is involved in modulation of ECM
and that GREMI expression correlates with expres-
sion of genes known to be involved in this process in
patients. To test this, we performed a co-expression
network analysis of RNA-seq data of 421 breast
cancer cases from TCGA (study by Ciriello et al,
Cell, 2015) [19]. The correlation values between the
16,749 genes tested and GREMI were in the range
-0.32 - 0.72. An ego-centric network was made by the
50 top-scoring transcripts with positive correlations [range
0.59-0.72], meaning that these genes and GREMI have
similar expression patterns across samples (Fig. 3a). The
location of the genes in the network represents the
strength of association, where the ones closest to GREM1
correlate best. Gene enrichment analysis of the same 50
top-scoring genes using the Reactome pathway database
[26] demonstrated that genes involved in ECM
organization, collagen formation, and collagen biosyn-
thesis and modification were enriched (Fig. 3b). These
results were confirmed by the gene co-expression search
engine SEEK [27], searching 331 breast cancer data sets
(Additional file 6: Table S4 and Additional file 7: Table
S5). Combined, the data suggest that gremlinl may be
involved in ECM modification, which favor tumor cell
migration and intravasation, leading to increased metasta-
sis and consequently poor prognosis.

Grem1 depletion might impair 66cl4’s ability to form
metastases in the lungs

To determine if gremlinl expression is important for
tumor formation and progression, we used CRISPR/
Cas9 to generate gremlinl depleted 66cl4 cells. Pro-
tein expression levels were assessed by immunoblot
analyses (Fig. 4a). Five clones were selected for fur-
ther studies that all displayed an 80-100% reduction
in gremlinl protein levels compared to cells harboring
a non-targeting (NT) guide sequence. The gremlinl
depleted clones showed no consistent change in
growth rate or ability to form colonies in soft agar
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samples from The Cancer Genome Atlas (TCGA) provisional data set for invasive breast carcinoma
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as BMP2, BMP4 and BMP7 were analyzed using cBioPortal in 960 patient

compared to the pooled 66¢l4 NT control cells
(Additional file 8: Figure S2A and B). Next, we ana-
lyzed the ability of two randomly selected clones to
form primary tumors and lung metastases after injec-
tion into the fat pad and tail vein of nude mice,
respectively. Unfortunately, none of the Cas9 express-
ing clones could form primary tumors in immuno-
competent BALB/c mice, irrespective of gene editing.

However, all cell lines formed tumors in immuno-
compromised, nude mice. Compared to control cells,
the Grem1 depleted clones Greml_1.3 and Greml_2.1
formed smaller primary tumors and lost their ability
to metastasize to the lungs (Fig. 4b-d). In addition to
the non-target cell line NT_mix, two control single cell
clones (NT_1 and NT_2) were analyzed in vivo. Surpris-
ingly, these two control sub-clones did not behave like
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Fig. 3 (See legend on next page.)
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(See figure on previous page.)

Fig. 3 GREM1 expression is associated with genes involved in collagen formation and extracellular matrix (ECM) organization. Co-expression
analysis was done on RNA-seq data from 421 breast cancer cases downloaded from the TCGA (study by Ciriello et al,, Cell, 2015) using Pearson
correlation coefficient. (a) Depicts the 50-top scoring genes in an ego-centric network and (b) shows the results of the gene enrichment analysis

of these genes using the Reactome pathway database

66cl4 wildtype or the NT_mix control cells, but rather dis-
played impaired primary tumor growth and metastases
formation in the lungs similar to the gremlinl depleted
clones. From this, it is apparent that sub-clones origi-
nating from single 66cl4 cells have different ability to form
primary and secondary tumors without any further

manipulation. Nonetheless, gremlinl is overexpressed in
the metastatic 66cl4 versus the non-metastatic 67NR cells.
This, and the finding that GREMI is frequently over-
expressed in breast cancers and correlates with poor
prognosis, merge on the notion that gremlinl is important
for aggressive breast cancer development.

-
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Fig. 4 Gremlin1 depletion impairs metastases formation in the lungs. (a) Analysis of CRISPR/Cas9-mediated knockout efficiency in 66cl4.
Representative immunoblot of gremlin1 of whole lysates of 66cl4 non-target controls and gremlin1 knockout clones. (b-c) In vivo analysis of
6614 non-target control and two gremlin1 knockout clones (10 mice per group). Tumor cells were injected into the fat-pad of nude mice. (b)
The size of the primary tumors was measured regularly during the 21 days of experiment and (c) tumor weight was recorded after the mice had
been sacrificed. The line indicates mean tumor weight. Student’s t-test, *0.01 < P < 0.05. (d) Tumor cells were injected into the tail vein of nude
mice. After 15 days the mice were sacrificed and the lung weight was recorded. The line indicates mean lung weight. Student’s t-test,
*¥0.001 <P <001, *** P<0.001
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66c¢l4 displayed increased expression of stem cell markers
The first step in metastasis is invasion of tumor cells into
the surrounding stroma. Cancer cells of epithelial origin
acquire the ability to invade as a part of the EMT, during
which they reverse to an undifferentiated, stem cell-like
state [12]. Since BMP-antagonists, such as gremlinl, can
interfere with differentiation, we were interested in the dif-
ferentiation status of the metastatic 66¢cl4 and the non-
metastatic 67NR cells in the initial RNA-seq experiment.
Analyzing the transcripts of 13 expressed stem cell
markers, we found that four markers were significantly
upregulated in 66¢l4 cells and primary tumors (Cd24a,
Krt8, Itgh4 and Esrl), compared to 67NR cells and 67NR
tumors (Fig. 5a and Additional file 9: Table S6). On the
other side, none of the stem cell markers analyzed were
significantly upregulated in 67NR compared to 66cl4. In
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breast cancer, a mesenchymal CD44"CD24'°" phenotype
is suggested to characterize the cancer stem cells [34].
However, of the stem cell markers analyzed in 66cl4,
Cd24a was the most clearly elevated. Flow cytometry ana-
lysis of CD24 expression on 66cl4 and 67NR in vitro cul-
tured cells confirmed the results of the RNA-seq analysis
(Fig. 5b). Cd44, on the other hand, showed significantly
lower expression in 66cl4 compared to 67NR (Fig. 5a and
Additional File 9: Table S6). Thus, the expression of these
two markers indicate the opposite of expected for a classic
stem cell-like metastatic phenotype (CD44MCD24'°Y) in
66cl4. This is consistent with previous studies showing
that the metastatic potential of the 4T1 cell line is much
stronger than the non-metastatic 67NR, even though 4T1
is characterized by an epithelial phenotype and the 67NR
cells are more differentiated towards a mesenchymal
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Fig. 5 High Grem1 levels correlates with high expression of stem cell markers in 66¢l4. (@) Heat-map showing the RNA-Seq expression levels of
13 known stem cell markers (cut-off: expression level = 1 in either cells or tumors of 67NR and 66cl4). Values are given in fragments per kilobase
of transcripts per million fragments mapped (FPKM). (b) Representative histogram of 67NR and 66¢l4 in vitro cultured cells stained with CD24
anti-mouse antibody. (c) Relationship between CD24 gene expression and RFS in breast cancer patients using KM plotter. (d) Relationship
between combined CD24 and GREM1 expression and RFS in breast cancer patients using KM plotter )
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phenotype [35]. It was also proposed that the 66cl4 cells
display a poorer ability to invade and migrate in vitro
compared to the 67NR cells, although 66cl4 metastasizes
to lungs in vivo [36]. To get a better overview of the
phenotypic profile, we used ChIP-X enrichment analysis
(ChEA) in the Enrichr database to analyze the 1270 genes
significantly upregulated in both 66cl4 cells and 66cl4 tu-
mors. The analysis showed activation of several signaling
pathways that are essential for stem cell maintenance, in-
cluding Oct4, Sox2, Sox9, and Nanog (Additional file 10:
Figure S3). Taken together, although the expression of
commonly used breast cancer stem cell markers showed
opposite expression than what would be expected, we
found increased expression of several stem cell markers in
66cl4 compared to 67NR, supporting a metastatic stem
cell-like phenotype. Since increased GREMI mRNA
expression levels in tumors correlated with reduced RFS,
we asked if high CD24 mRNA levels also could predict
poor prognosis. Similar to GREM1, CD24 correlated with
reduced RES in all breast cancer cases when highly
expressed (Fig. 5c). Of note, combining the expression
levels for GREM1 and CD24 did not give any additive
effect in prediction value, suggesting that their functions
are closely related (Fig. 5d).

Extravasation capacity is only marginally affected by
gremlin1 depletion

Since gremlinl depletion might impair the metastatic
potential of 66cl4, we next asked if 66cl4 and 67NR also
display a different ability to extravasate and if gremlinl
has a role in controlling such differences. We first took
advantage of an in vitro approach, where the cancer cells
were scored for their ability to interfere with the integ-
rity of a confluent layer of human umbilical vein endo-
thelial cells (HUVECs) measured real time using
impedance [37]. After seeding the HUVECsS, the imped-
ance increased until it reached a plateau. Visual inspec-
tion of the wells verified that the HUVECs had adhered
and that the cultures were confluent. A small volume of
culture medium containing the same number of 67NR
or 66cl4 cells was added to the respective wells and im-
pedance measured. The same volume of conditioned
medium (CM) from the two cell lines was used as a
negative control. Presence of 66cl4 cells caused a rapid
loss in impedance (Fig. 6a). In contrast, adding the same
number of 67NR cells resulted in a less prominent effect.
These data suggest that the metastatic, gremlinl-
expressing 66¢l4 cells are better in penetrating an endo-
thelial layer than 67NR. Interestingly, we did not see any
change in impedance when adding conditioned medium
of 66¢l4 and 67NR to the HUVEC monolayer (Fig. 6b),
indicating that changes in the endothelial cell monolayer
are caused by direct interactions of the tumor cells with
the HUVECs.
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To test if the impaired metastatic potential of 66cl4
GREM1_1.3 and GREM1_2.1 in vivo was due to a re-
duced capability to extravasate, we repeated the in vitro
extravasation assay with these two gremlinl depleted cell
lines. We found that both clones had a slightly reduced
ability to penetrate the HUVEC monolayer compared to
the NT control cells (Fig. 6¢). In summary, these data
suggest that the metastatic 66cl4 cells are more able to
penetrate an endothelial layer than the non-metastatic
67NR cells. However, depletion of gremlinl in 66cl4
only marginally affected the extravasation ability. As an
alternative and more invasion relevant approach, we
employed a xenograft model using the transgenic zebra-
fish line Tg(flil:GFP) [16-18]. After injecting fluores-
cently labelled cancer cells in the duct of Cuvier (DoC)
of zebrafish embryos at 48 h post fertilization, the move-
ment of cancer cells into the avascular tail fin area,
which is a measure for invasion, was documented using
a fluorescent microscope. Consistent with the findings of
the in vitro extravasation assay, 66cl4 wildtype cells and
NT_mix cells displayed similar numbers of invasion
clusters, whereas 66cl4 Grem1_1.3 formed fewer clusters
in the avascular tail fin area (Fig. 6d and e).

Co-expression of GREM1 and BMPs does not annul the
prognostic value of GREM1 in ER-negative breast cancer
patients

The finding that Bmp4 and its antagonist Grem.I were co-
expressed in the 66cl4 metastatic cell line puzzled us. We
therefore looked for co-expression of GREM1 and its pre-
ferred BMPs, BMP2, BMP4 or BMP7, in human breast
cancer cell lines using Expression Atlas [28]. Interestingly,
all the 13 breast cancer cell lines that expressed GREM1
co-expressed at least one of the three BMPs, with BMP4
being most commonly co-expressed (Additional file 11:
Figure S4). To explore the clinical significance of these
findings, we used the TCGA provisional data set for in-
vasive breast carcinoma in cBioPortal to analyze if BMP-
antagonists were co-expressed with either BMP2, BMP4,
or BMP7. We found that many of the biopsies with a
BMP amplification, also had an amplification of a gene en-
coding one of the BMP-antagonists (Fig. 2c). For BMP7,
several amplifications were also seen without a concomi-
tant amplification of any known antagonist.

Since deregulated BMP activity has been linked to
invasion and metastasis [38], we wanted to explore the
clinical significance of elevated BMP levels for survival
in breast cancer patients. However, we found no corre-
lation between high expression level of BMP2, BMP4 or
BMP7 and prognosis, irrespective of sub-grouping (all
breast cancer cases, ER-positive subtype, or ER-negative
subtype (Table 1). Based on our findings that elevated
BMP expression does not correlate with reduced RFS,
whereas high GREM 1 expression is associated with poor
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Fig. 6 Gremlin1 depletion may affect 66cl4's ability to extravasate. (a-c) Analysis of the tumor cells ability to penetrate a confluent monolayer of
human umbilical vein-endothelial cells (HUVECs) using the xCELLigence Real-Time Cell Analysis (RTCA) Systems. Representative graphs depicting
the change in normalized cell index after addition of tumor cells or conditioned medium. Pure growth medium was used as a control. (@) 67NR
and 66cl4. (b) Conditioned medium of 67NR and 66¢l4. (c) 66cl4 non-target control and two Grem1 knockout clones. Results are shown as
mean + SD (A-Q). (d) Representative image of 6 dpi zebrafish larvae showing the invasion of 66cl4 wildtype cells, non-target control (NT_mix) and
Grem1_1.3 (red). The vasculature is shown in green. (e) Quantification of invasive cluster numbers in 66cl4 injected zebrafish larvae. Probability
represents the percentage of zebrafish larvae in which tumor cell extravasation was observed. Results are shown as mean + SEM. The line
indicates mean cluster number. Student’s t-test, *0.01 < P < 0.05

prognosis in breast cancer, we hypothesized that com-
bining the expression levels of BMPs and GREM I annuls
the observed correlation of GREM1 with RFS. Surpris-
ingly, this was not the case. We found that in ER-
negative breast cancer cases combining high expression
level of GREM1I with high expression of BMP2, BMP4 or
BMP7 showed a slightly poorer prognosis compared to
GREM]1 alone (Table 1). Combined, these data demon-
strate that breast cancer cells may co-express BMPs and
GREM1, and that co-expression of BMP and GREM]1 in
breast cancer biopsies does not reduce GREMI’s value
as a predictor of poor outcome.

Increased levels of GREMT mRNA are associated with lack
of estrogen receptor expression

The prognostic value of GREM1 in ER-negative breast
cancers made us ask if there could be a link between
GREM1 and ER-signaling. We therefore analyzed cell
line data available from the Cancer Cell Line
Encyclopedia (Broad Institute). We found that 10% (6
out of 60) breast cancer cell lines expressed elevated
GREM1 mRNA levels compared to the average of > 1000
different cell lines (Fig. 7a). The expression of GREMI
mRNA was not caused by copy number alterations in
the gene, and interestingly, all the GREMI1 expressing
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Table 1 Combined elevated GREMT and BMP expression level improves prognostic value in ER-negative breast cancer patients.
Analysis of RFS in breast cancer patients using KM plotter. High and low expression were defined as above and below median

Gene(s) Gene ID all BC patients ER+ BC patients ER- BC patients

HR p-value HR p-value HR p-value
GREM1 218469_at 1.32 (1.18-147) 6.90E-07 1.19 (1.0 0.035 1.51 (1.2-1.9) 0.00037
BMP2 205289_at 0.88 (0.79-0.98) 0.02 0.88 (0.75-1.04) 0.13 1.01 (0.81-1.26) 0.94
BMP4 211518_s_at 0.9 (0.81-1) 0.058 0.98 (0.83-1.16) 083 1.16 (0.93-1.46) 0.19
BMP7 209590_at 0.88 (0.79-0.98) 0.023 1.08 (0.92-1.27) 036 0.92 (0.73-1.15) 045
BMP2/GREM1 205289_at / 218469_at 3011 48) 3.70E-07 1.21 (1.03-142) 0.022 1.64 (1.31-2.07) 1.80E-05
BMP4/GREM1 211518_s_at / 218469_at 1.28 (1.15-143) 7.30E-06 1.2 (1.02-142) 0.026 1.63 (1.3-2.06) 2.30E-05
BMP7/GREM1 209590_at / 218469_at 1.29 (1.16-1.44) 4.10E-06 1.19 (1.01-14) 0.04 1.63 (1.3-2.06) 2.30E-05

cell lines lacked expression of estrogen receptor, ESRI,
mRNA (Fig. 7b). Moreover, in the TCGA provisional
dataset (cBioportal) there was no overlap between breast
cancer biopsies overexpressing GREMI (n=61) or ESRI
(n=44) mRNA (data not shown), further supporting a
functional link between GREM1 expression and lack of
ER-signaling.

Discussion

Both activated BMP signaling [39-42] and elevated
levels of SMAD-inhibitors [43, 44] and BMP-antagonists
[8-10, 31, 32] have been linked to tumor progression
and metastasis. Moreover, amplification and/or upregula-
tion of BMPs as well as BMP-antagonists, including NOG,
GREM 1, GREM2, and CHRD have been reported in breast
cancer [39, 45]. Yet, the simultaneous upregulation of
BMPs and their antagonists, and the fact that both pro-
mote tumor aggressiveness appears contradictory. In the
present study, we found that high expression of the BMP-
antagonist GREM1 correlates strongly with reduced RFS
in ER-negative breast cancer.

Analyzing the metastatic 66cl4 and non-metastatic
67NR cell lines of the 4T1 mouse mammary tumor
model, we found that GremlI was upregulated in 66cl4
cells and primary tumors. Consistent with the role of
gremlinl as an antagonist of BMP-induced differen-
tiation, RNA-seq revealed that 66¢l4 cells have elevated
expression of several stem cell markers compared to
67NR. In line with Goa et al. [8], who found that over-
expression of Dand5 in the 4TO7 mouse mammary
tumor cell line inhibits lung-derived BMPs and thereby
promotes metastases in the lungs, we observed a reduc-
tion in lung metastases after injection of 66cld Greml
depleted cells into the tail vein of nude mice. However,
high levels of DANDS in patients did not predict survival
and may be less relevant than GREMI in breast cancer
development. Interestingly, of the BMP-antagonists
tested here, only elevated expression of GREMI and
CRIM!1 correlated with poor prognosis in patients with
ER-negative tumors.

The clinical relevance of our findings in the 4T1
mouse mammary tumor model is supported by several
observations. Most importantly, high GREM1 expression
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correlated with reduced relapse-free survival in ER-
negative breast cancer patients. Using publicly available
databases, we found that GREMI is also expressed on
mRNA level by various human breast cancer cell lines
and that GREM1 is significantly upregulated in primary
tumor biopsies of breast cancer patients compared to
normal tissue samples. However, it remains unclear
which cells are the source of GREMI in the tumor bi-
opsies. The gene alteration data (Fig. 2c) shows that
GREMI mRNA is elevated in approximately 6% of the
breast cancer biopsies, and that amplifications are not
common for this gene. It was recently shown that
GREM1I can be produced by cancer-associated fibro-
blasts (CAFs) in breast cancer patients and that CAFs
are the main source of GREMI in colorectal cancer tis-
sue [46, 47]. Of note, GREM1 was one of eight elevated
genes shown in cancer cells laser-dissected from inva-
sive breast carcinoma patients compared with cancer
cells from ductal carcinoma in situ patients [48], sup-
porting that GREM1I could be expressed by the trans-
formed cancer cells themselves and associated with an
invasive phenotype. Taken together, the elevated
GREM1 mRNA found in breast cancer biopsies could
either come from the cancer cells themselves, or from
cells infiltrating the tumor.

Among the 28 mRNAs encoding secreted proteins
that were significantly upregulated in 66c¢l4 cells and
tumors, we found not only Greml, but also its ligand,
Bmp4. Like other members of the TGF-pB superfamily,
BMP4 has both tumor-suppressing and tumor-
promoting roles in tumor cells [40]. On one side, it has
been demonstrated that BMP4 inhibits tumor cell
growth. On the other side, BMP4 has been shown to in-
crease cell migration and invasion of tumor cells. Re-
cently, it has been described that BMP4 might regulate
autophagy [49] and polarize macrophages towards an
anti-inflammatory or M2-like phenotype [50]. Using
web-based databases we analyzed mRNA expression
levels of GREM1 and BMP4 in breast cancer cell lines
and a breast cancer patient cohort (TCGA) and found
that these two genes are also co-expressed in some
tumor cell lines and primary tumors. In this way, we
confirmed a possible relevance of this unexpected co-
expression of both BMP4 and its antagonist gremlinl
specifically in the aggressive 66cl4 cells.

In addition to BMP4, also elevated levels of other
members of the BMP-family, including BMP6 [51, 52]
and BMP7 [53], have been linked to increased tumor
aggressiveness. Interestingly, in contrast to GREMI1, we
found no correlation between high mRNA expression
level and poor prognosis for breast cancer patients for
any of the three BMPs tested. However, the correlation
between GREMI expression levels and RFS in ER-
negative breast cancer cases was not annulled when

Page 14 of 17

combining high expression levels of GREM1 and BMP2,
BMP4 or BMP7. These data indicate that gremlinl and
BMP may not counteract each other with respect to can-
cer progression. Since gremlinl has been shown to bind
to cell surfaces [54], one could speculate that gremlinl,
secreted by tumor cells or surrounding cells, binds to
the surface of the transformed cancer cells and protects
them from BMP-induced differentiation. On the
other hand, BMPs could be further distributed in the
TME and thereby induce differentiation of immune
cells and stroma cells to promote tumor growth and
metastasis.

In this study, we show that GREMI mRNA in tumor
biopsies correlates with poor survival in ER-negative
breast cancer patients. We propose that there may be
an association between expression of GREM1 and lack
of expression of the estrogen receptor, ESRI, as we
only found GREM1I expression among the ESRI nega-
tive tumor cells. Our findings are consistent with a
previous study showing that BMPs can counteract
estrogen-induced cell division and that estrogen treat-
ment led to downregulation of several BMP-receptors,
including BMPR1A [55]. BMPRI1A is needed for proper
BMP2 and BMP4 activity and downregulating this re-
ceptor could be one way that ER-positive breast cancer
cells avoid BMP activity. We speculate that ER-
negative cells may develop other mechanisms to avoid
BMP activity, for instance by producing their own
BMP antagonists or by modulating the microenviron-
ment to secrete factors that inhibit BMPs. We also ob-
served that 6% of the tumor biopsies had elevated
GREMI mRNA levels (Fig. 2c) as opposed to 10% of
the breast cancer cell lines (Fig. 7). Since the source of
GREM]1 in some of the tumor biopsies likely are CAFs,
the proportion of cell lines that make their own
GREM]1 is relatively large and this may indicate that
GREM1 gives them a growth advantage that enrich for
such cells among the breast cancer cell lines.

Conclusions

We find that gene expression of BMP-antagonists is
more frequently elevated than expression of inhibitory
SMADs in breast cancer biopsies. Elevated expression
level of GREM]1 in tumor biopsies correlate with adverse
outcome irrespective of the expression level of the BMPs
in the biopsy. This suggests a dominant role for
gremlinl secretion with respect to tumor progression.
The predictive value of the gene expression level for
the different BMP-antagonists varies and suggests that
the antagonists are functionally different in ways that
must be better understood to explore these as
possible drug targets against metastatic breast cancer
development.
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