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Abstract

During the work with this thesis, two separate hardware designs were created.
The first, a configurable component implementing both UART, SPI and I2C,
was created to see whether this would gain any advantage over separate com-
ponents in core size, power usage or pin usage. The suggested design does gain
a small improvement in estimated power usage from Vivado reports, however
the core size is in fact a bit larger than three separate components combined.
In addition, limitations of the design means that I2C is the only interface fully
supported, with both UART and SPI having limitations not present in the al-
ternative, separate cores. With this taken into account, as well as somewhat
uneven measurement grounds (I/O bus communications were not included in
the configurable core reports), the author concludes that any advantage of this
specific design is not enough to call this an improvement over using separate
components.

The second hardware design is the GenIE, or generic interface engine, a fully
programmable interface controller able to implement arbitrary interfaces by re-
programming. The GenIE is implemented as an ASIP, or application specific in-
struction set processor. This was created to see whether or not a programmable
component could gain any further advantages over the configurable component.
With regards to the metrics focused on for the configurable component, no
definitive answer was arrived at. This was mainly because the programmable
core uses an external memory, which was not considered in the scope of this
thesis. However, the increased flexibility of the GenIE, with the ability to im-
plement different interfaces by changing its program, is an advantage over more
fixed components, as this makes it possible to use interface not originally avail-
able on the system.
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Sammendrag

Gjennom arbeidet med denne oppgaven ble det laget to forskjellige maskin-
varedesign. Den første var en konfigurerbar komponent som implementerte
b̊ade UART, SPI og I2C. Denne ble laget for å finne ut hvorvidt dette kunne
ha noen fordeler over å bruke separate komponenter, med fokus p̊a størrelse,
strømforbruk og pin-bruk. Det foresl̊atte designet har en liten forbedring i
estimert strømforbruk fra Vivado-rapporter, men størrelsen er litt større enn
summen av tre separate komponenter. I tillegg gjør begrensninger i designet
at kun I2C er støttet i sin helhet. B̊ade UART og SPI har begrensninger som
ikke finnes i de alternative, separate komponentene. Basert p̊a dette, samt litt
ujevne m̊alinger (I/O-busskommunikasjon var ikke inkludert i rapportene om
den konfigurerbare komponenten), konkluderer forfatteren med at eventuelle
fordeler med dette spesifike designet ikke er nok til å kalle dette en forbedring
fra å bruke separate komponenter.

Det andre designet er GenIE, eller Generic Interface Engine. Dette er en fullt
programmerbar grensesnitt-kontroller som kan implementere vilk̊arlige grenses-
nitt ved å omprogrammeres. GenIE er implementert som en ASIP, application
specific instruction set-prosessor. Den ble laget for å finne ut hvorvidt en pro-
grammerbar komponent hadde noen videre fordeler kontra den konfigurerbare
komponenten. Med hensyn til fokusomr̊adene for evalueringen av den konfig-
urerbare komponenten ble det ikke funnet noe definitivt svar. Dette i hovedsak
fordi GenIE er avhengig av eksternt minne, som ikke ble regnet med i omfanget
av denne oppgaven. Likevel er GenIEs økte fleksibilitet, med mulighetene til
å implementere forskjellige grensesnitt ved å endre programmeringen, en fordel
over mer l̊aste komponenter, da dette muliggjør bruk av grensesnitt som ikke
opprinnelig er støttet av systemet.
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Chapter 1

Introduction

This thesis will attempt to answer the following research questions:

1. Can the OpenCores I2CMST I2C master core be modified to support
UART and SPI, in order to gain any significant advantage over using
separate cores with regards to power consumption, core size or pin usage?

2. Does a further extension of the core with a flexible, programmable pro-
tocol controller to support arbitrary wire-compatible protocols have any
significant disadvantages over using more rigid cores? Does this open pos-
sibilities not available to more narrow purpose cores?

Answering the second question will constitute the most novel part of this thesis,
a fully programmable hardware interface controller.

1.1 Motivation

Communication between different devices in a system is commonly done using
a variety of different hardware interfaces. Three of the most popular such inter-
faces are UART, SPI and I2C. They are very commonly used for communication
with internal and external peripherals, both as a part of a System on Chip or as
discrete components in a more traditional system. Such interfaces are usually
implemented by dedicated hardware components, each implementing a single
interface. In this thesis, the author explores the idea of combining the function-
ality of several such components into a single generic interface component, in
order to gain an advantage over using multiple dedicated components.

The research questions mention three specific areas of potential improvement
over dedicated cores. First of these is the area of power consumption, which is
an important constraint both in battery powered and high performance com-
puters. Battery powered devices consists of mobile phones and other portable

1



2 CHAPTER 1. INTRODUCTION

computers, as well as the increasing amount of embedded computers powering
the Internet of Things. The battery life of these devices depend directly on the
power consumed by the device. In addition to battery powered devices, lowering
power consumption has been increasingly important in high performance archi-
tectures. According to [1], energy is the key limiter of performance. This has
led to increasingly parallel architectures, both traditional homogeneous CPUs
as well as heterogeneous parallelism. The latter includes the use of accelerators,
which are fixed function, programmable or otherwise configurable cores such as
cryptography engines, hardware codecs and more dynamic accelerators like FP-
GAs, optimized for a specific application. Creating a generic interface controller
consuming less power than a number of separate controllers will then pose an
advantage both to battery powered and other systems.

Core size is the number of transistors used by the core when implemented,
or in other words the area used by the cores logic on the chip. Transistor
density has been increasing according to Moore’s Law for decades. However,
transistor scaling is reaching a limit. The threshold voltage is reaching a limit,
with leakage currents increasing with decreasing transistor size. In addition,
the inability to decrease voltage with increasing transistor density has driven
up power consumption, which again leads to performance being limited further
by energy [1]. As such, decreasing the number of transistors used is increasingly
important, and decreasing the amount of transistors used for hardware interfaces
will contribute to this.

The third are for improvement is pin usage. As transistor density has increased,
the number of I/O pins per transistor in an integrated circuit has decreased.
Reducing the number of pins reserved by hardware interface cores will free pins
for other usages.

In addition to these potential improvements over using dedicated interface cores,
a fully programmable generic interface might provide the advantage of increased
flexibility. As the interface can be programmed and potentially reprogrammed
according to application requirements, this might open the possibility of adding
support for interfaces on an ad-hoc basis. This will make it possible to defer
decision on which interface(s) to support and use. If the programmable interface
exposes a unified and static control interface to the system, being able to change
the interface implementation without large changes to system software might
be possible.

1.2 Research method

In order to asses the feasibility of achieving the improvements outlined in the
research questions, an implementation of both the extended I2CMST core and
a fully programmable core (called GenIE, or Generic Interface Engine) will be
created. They will be implemented using VHDL, and simulated using the sim-
ulator of Vivado, a VHDL environment by FPGA manufacturer Xilinx. These
VHDL implementations can, in addition to functional simulation, be synthe-
sized for implementation on a Xilinx FPGA. This will make it possible to access
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metrics on power, speed and area requirements for each implementation.

In addition to the implementations, a theoretical discussion of the implemen-
tations and potential alternative implementations will be done. Advantages,
disadvantages and areas for further improvement and research will be discussed.
This will provide a broader view of the potential solutions than the implemen-
tations alone can provide.

Based on results of the implementations along with the theoretical discussion,
a conclusion will be drawn. This will attempt to answer the research questions
mentioned earlier in this chapter on the basis of the results of the implementation
experiment and the discussion.

1.3 Thesis structure
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Chapter 2

Background theory

2.1 Protocols

Several serial protocols and interfaces are in use for communication between
peripherals and other devices in a system. UART, SPI and I2C are three of the
most popular ones, and this section contains a presentation of each of them.

2.1.1 UART

An UART (universal asynchronous receiver-transmitter) is a simple component
for serial communication. It is an asynchronous serial interface, using two wires
for full-duplex serial communication, or a single wire for simplex or half-duplex
communication.

An UART data line is for historical reasons held high when idle. A transfer is
initiated by the line going low for one bit (this is called the start bit), then the
bits are sent in order, optionally followed by a parity bit for error checking. The
transfer is completed by one or more high bits called the stop bits, indicating
that the transfer from the transmitter is complete.

The receiving end waits for the signal to go low, indicating a start bit. If this
is maintained for at least half the bit-time, the receiver waits another bit time
and starts sampling values at bit time intervals, until reaching the stop bit(s).
If a stop bit is not encountered at the expected time, this indicates a framing
error, typically handled as a status signal in the receiving UART.

UARTs do not share a clock, both receiving and transmitting end are clocked
independently. The clock rate is typically a multiple of the bit rate, to be able to
identify the middle of the start bit and sample the following bits at the correct
time. Word length, bitrate (often referred to as baud rate), use of parity bit as
well as the number of stop bits are all configuration parameters which need to

5



6 CHAPTER 2. BACKGROUND THEORY

be set to matching values in both the transmitting and the receiving UART.

An UART can be implemented using a shift register in each end, the trans-
mitting UART shifting bits out of the register onto the line, and the receiving
end sampling the signal and shifting bits into the shift register. Since an UART
transmission is asynchronous, the transmission can be started immediately when
data is written to the register.

Figure 2.1: Timing diagram for the transmission of 8 bits and a parity bit using
an UART with two stop bits.

An UART is commonly used to back serial ports such as RS-232, a protocol
specifying voltage levels for signals used for serial data transfer between devices.

2.1.2 SPI

The SPI (Serial Peripheral Interface) does not have any readily available formal
specification. It was implemented by Motorola in their 6800 series microcon-
trollers, and this implementation constitutes the de facto standard reference
implementation of the interface. [2]

SPI is a four-wire, synchronous serial interface, operating in full duplex mode.
The wires are SCLK, MOSI, MISO and SS, where MOSI (master out, slave
in) and MISO (master in, slave out) are being used for data transfer in each
of the directions, SCLK is the interface clock, and SS is the slave select, used
when there are multiple slaves connected to a master. SPI supports only a single
master. To support multiple slaves, the SS is driven low only for the slave which
is to transmit and receive data. The MOSI should only be driven by a slave if
its SS is held low. For this reason, the MOSI is usually a tri-state driver which
is held in high-impedance mode whenever the SS is high.

Data is transferred by the master issuing clock cycles on the SCLK line. Data is
then transferred in full-duplex mode, with one bit being transferred on each of
the MOSI and MISO lines each clock cycle. The timing of reads and writes on
the data lines is governed by the so-called CPOL and CPHA settings, governing
the polarity and phase characteristics of the clock used for the timing. The
CPOL controls the polarity of the clock signal. CPOL=0 indicates that the
clock is idle at 0, and goes to 1 for each cycle. CPOL=1 is the inverse behavior,
with the clock line idle at 1 and pulses to 0. The CPHA controls where in a
clock cycle the reads and writes take place. With CPHA=0, the data on the
lines changes on trailing edges (falling edges with CPOL=0) and are read on
leading edges (rising edges with CPOL=0). In this situation, the first bit of
data must already be available on the data lines at the time of the first leading
edge of SCLK, typically the bit is made availble at the time SS is pulled low.
If CPHA=1, the data is read on the trailing edges, and changes on the leading
edges. The last bit of data must then be kept available for at least a half period
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after the final trailing edge. A timing diagram of an 8-bit transfer with CPOL=0
and CPHA=0 can be seen in Figure 2.2

Figure 2.2: Timing diagram showing transfer of 8 bits in both directions over
an SPI connection, with CPOL=0 and CPHA=0.

The data transfer in SPI is often implemented using a pair of shift registers, one
in the master and one in the slave, clocked to the SCLK. On each clock cycle,
one bit each is shifted from the master to the slave and vice versa via the MOSI
and MISO lines. This continues until the entire contents of the shift register
on each side is shifted to the other side. The entire word is then available, and
the registers can then be reloaded with more data until the entire transfer is
complete. The rate of the SCLK is controlled by the SPI master.

2.1.3 I2C

I2C (Inter-Integrated Circuit) is a serial bus developed by Philips Semiconductor
[3]. Its mainly used for low speed communication between peripherals and CPUs
on a single board and/or over low distances. Unlike SPI, I2C supports multiple
masters as well as multiple slaves, with each device functioning as either a
master or a slave at any given time. It uses only two lines, SDA and SCL, and
supports transfer speeds of up to 100 kbit/s in standard mode and up to 3.4
Mbit/s in faster modes. Unlike SPI and UART, I2C has a significantly more
complex transmission protocol, to support more complex features. Each device
is able to function as either a master or a slave, either of which can transmit
at a given time. In addition, features like arbitration and clock stretching also
demand a more full-featured bus protocol.

Physically, I2C uses two shared lines, SDA for data and SCL for clock. Both
must be connected to pull-up resistors to pull the lines high whenever no device
is controlling them, making the lines an open-drain design, also referred to as
wired AND[4]. This means that each device drives a line low to transmit a low
signal, and lets the line float and the pull-up resistor pull it high to transmit a
high signal. If any device(s) drive the line low, they “win”, and the line will be
at the low level. This fact is used for synchronization and arbitration in the I2C
protocol.

A data transfer on the I2C-bus begins with a master creating a START condi-
tion, defined as a high to low transition on the SDA while the SCL is held high.
Bytes are then transferred, bit by bit, by the master letting the SCL pulse high
while bit values are written to SDA.
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The protocol supports transferring bytes in either direction between any master
and any slave. To differentiate between slaves, I2C uses an addressing system,
with each slave having a unique 7-bit address. The address of the slave for a
given transfer, as well as an R/W bit controlling the direction of transfer (0 for
writing data to the slave, 1 for reading data from the slave) is transmitted on
the SDA line by the master as the first byte after the START condition.

After a byte (including the address) is transferred, the control over SDA swaps,
and the receiving end transmits a single ACK or NACK bit. If the transfer
was successful, the receiver drives the SDA low indicating an ACK. If for some
reason the receiver could not successfully receive the byte, it does not drive the
SDA low. This situation is called a NACK. Because of the open-drain design, if
no device is available to receive the byte, this also results in a NACK situation.

After a transfer, the master can either generate a STOP condition by sending a
low to high transition on SDA while SCL is high, or immediately send another
START condition to keep control over the bus and start a new transmission of
bytes using another address. A repeated START condition can also be used to
change transfer direction in the middle of a transfer, by transmitting the same
address with an inverted R/W bit.

Figure 2.3: Addressing and transfer of a single byte using I2C. The first ACK
is sent by the slave. If R/W = 1, the data is then sent by the slave, and the
second ACK by the master. If R/W = 0, the data is sent by the master, and
the second ACK by the slave.

2.2 Existing solutions

The idea of a software configurable serial communications interface has been
explored before. An UART is, as it is named, imagined as a Universal Re-
ceiver/Transmitter, with no regards to data format or electrical and physical
characteristics of the serial transfer line. However, it is not flexible enough to
be able to emulate neither SPI nor I2C by itself, and does not solve the problem
this thesis seeks to solve.

Texas Instruments provide microcontrollers with a software configurable univer-
sal serial communication interface (USCI)[5]. This can be toggled to function as
an UART, an SPI or an I2C-interface, respectively, by writing to special control
registers. The data transfer registers are used the same way regardless of which
configuration is specified.



2.3. TRI-STATE BUFFERS 9

2.2.1 Bit-banging

For some interfaces, particularly those with simple physical specifications and
which can run at arbitrary or slow rates, the need for a dedicated hardware
interface component can be replaced by bit-banging[6]. This is a technique where
general purpose I/O pins are toggled manually by the software to simulate the
behavior of a specific interface. It is limited by the CPU speed and spends
CPU cycles on toggling I/O pins. In addition, it is not readily applicable where
the interface requires specific electrical behavior driving the pins, such as I2C
requiring the use of high impedance and pull-up resistors.

2.3 Tri-state buffers

Normal logic signals can only be in one of two states, normally referred to as
‘0’ and ‘1’. Tri-state logic extends this by also allowing a signal to exist in a
high-impedance state. This would make it seem like the signal is not connected
to its output at all.

Tri-state logic is commonly used when several devices are sharing a single line,
where only one of them should drive the line at any given time. By setting all
outputs except the one driving the line to the high-impedance state, this can
be accomplished easily.

Inference of tri-state buffers on outputs can be accomplished quite easily using
VHDL by use of the special signal value ‘Z’. This indicates that the wire should
be held at the high-impedance state. An example:

d_out <= shift_out when ss = ’0’ else ’Z ’;

This will drive the d_out with the value on shift_out whenever ss is held low,
and keep d_out at a high impedance state otherwise.

2.4 Transport triggered architectures

Transport triggered architectures[7], or TTAs, are a superclass of VLIW instruc-
tion set architectures. They work on the principle of controlling the processor
transport mechanisms directly, instead of through the operations used in more
typical CISC or RISC instruction set architectures. The instruction level paral-
lelism available using a TTA enables more direct control of transport utilization
and scheduling, as well as allowing short processor cycle times and simple pro-
cessor design.

Transfer between registers is the only operation available on a TTA processor.
An instruction typically includes source and destination for each of the available
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transport lines, and as such the instruction word length depends on the num-
ber of transport lines available and the source and destination identifier size.
Transfer of a value from one register to another is then a very simple operation
in a TTA.

Other operations are available in a TTA processor through the use of functional
units. A functional unit is for instance an ALU. To perform an operation on the
ALU using a TTA, the necessary operands are transferd to the ALU registers,
and the operation is triggered by writing a value to a special operation triggering
register. The result will then be made available on the ALU result register.

An example of a very simple TTA with two transport lines and ALU with
an ADD and SUBTRACT operation has the following instruction format and
registers:

Field Source 1 Destination 1 Source 2 Destination 2
Bits 4 4 4 4

Description Src 1 → Dest 1, Src 2 → Dest 2

Table 2.1: Instruction format in a very simple TTA

Register Description
0-3 General purpose

4 ALU Operand 1
5 ALU Operand 2 ADD trigger
6 ALU Operand 2 SUBTRACT trigger
7 ALU Result

Table 2.2: Registers in a very simple TTA

Computing the sum of registers 1 and 2 and putting the result in register 0 can
then be done with the following instruction sequence:

// Write operands and trigger ADD operation
1 -> ALU Operand 1, 2 -> ALU Operand 2 ADD trigger
// Move result to register 0, no -op on second line
ALU Result -> 0, 1 -> 1

2.5 OpenCores I2CMST

The OpenCores I2CMST was used as the basis for the configurable core. An
overview of the I2C master core from grlib can be seen in Figure 2.4. This is
a lightly modified version of the OpenCores I2CMST, mainly modified to use
AMBA as the system bus. [8]

The OpenCores I2CMST core[9] is composed of a shift register for actual data,
and a Byte Command Controller and Bit Command Controller for dealing with
the specifics of the I2C protocol. The controllers are controllable through com-
mand and status registers, which along with data transmit and receive registers
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Figure 2.4: An overview of the GRLIB I2CMST core

are accessed through a Wishbone bus interface. The core also includes a clock
generator, with a prescale register for controlling the clock speed used for I2C
operations.

The interface between the bit controller and the rest of the core consists of a set
of command lines for communicating with the byte controller, two 1-bit wide
data lines for input and output with the DataIO shift register, and a clock input
from the clock generator. In addition it provides both input, output and output
enable signals for the SCL and SDA signals.

Communication between the byte command controller and the bit command
controller is done through two signals, a command line from the byte command
controller and the bit command controller and an ack bit from the bit command
controller to the byte command controller. The available commands are:

• NOP - Do nothing

• START - Create the I2C start condition

• STOP - Create the I2C stop condition

• READ - Read bits from the slave

• WRITE - Write bits to the slave

The ack bit is set to 1 to signify that a bit is done transmitting, and the bit
command controller is ready for the next bit of data.
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In addition to the command and ack signals, two error bits are also available
for the bit command controller to signify that it was not able to complete a
requested command. These are the busy and al signals, indicating that the I2C
bus is busy or that bus arbitration was lost, respectively, in a multi-master
environment.

2.6 Overview of proposed solution

The proposed solution to the problem is divided into two parts, one for each of
the research questions. Both proposed solutions are in the form of one or more
synthesizable hardware cores. An overview of a valid core design for answering
each of the research questions is described here, along with considerations in
implementation, testing and evaluation of each of the proposed designs.

2.6.1 Configurable core

To answer research question one, the task is to modify the OpenCores I2CMST
core to also be able to communicate using UART or SPI. In order to answer the
research question, the component should be able to accomplish the following:

1. When configured as I2C, the component should behave in the same way as
the original I2CMST. This includes both the actual I2C communications
as well as the interface against the system bus.

2. When configured as UART, the component should implement a valid and
functioning UART transmitter implementation.

3. When configured as SPI, the component should behave as a valid SPI
master.

4. Both when configured as UART and when configured as SPI, data can be
written to and from the UART/SPI using the system bus interface.

5. (Re)configuration of the core for a specific interface should be possible
through the system bus interface.

Note that the requirements omit support for behaving as an I2C or SPI slave,
or an UART receiver. The research question can be understood to also include
the slave or receiver aspect of each of the protocols, but the author has decided
to leave them out of scope for this thesis. The reasoning behind this is the fact
that in the case of I2C and SPI, the master provides the bus clock, the same
being true for the transmitter when using UART communication. Introducing
off chip clocks brings a lot of complexity into the proposed solution. In addition,
the I2CMST only implements support for an I2C master. Implementing an SPI
master provides the equivalent capabilities in an SPI setup. In the case of
UART, a transmitt-only core would, unlike the SPI and I2C masters, not be
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able to receive data. Nonetheless, the decision was made not to support off-chip
clocks because of the complexity involved.

In addition to the above requirements, in order for the proposed solution for
the first research question to be of best use in answering the second research
question, the following additional requirements were made:

6. The interface for transmitting and receiving data against the system bus
should not depend upon which protocol the core is currently configured
for. This will help create a protocol-agnostic data interface which can
later be used for a programmable core.

7. Output signals for protocol communication should be available on a shared
set of input/output signals for each of the protocols. In other words, there
should not be specific I/O signals for each of the protocols. This has the
immediate benefit of making the core more flexible as the outputs can
be routed to I/O pins without regards as to which protocol(s) might be
used. In addition, as a programmable core has no well-defined finite set
of possible protocols, a shared set of I/O drivers able to provide all the
requirements of any given protocol is a necessary feature of the protocol
I/O of such a programmable component.

8. The command language of the I2CMST should be used, and if necessary
modified, to provide for the needs of each of the specific protocol imple-
mentations. This has the effect of separating handling of the system bus
and data I/O from the system side from the specific implementation of
any protocol. The command language as well as any additional features
of this interface introduced will then constitute a candidate for a general
protocol-agnostic control interface, which can be used in a programmable
core for answering the second research question. A more thorough de-
scription of such an interface is described in HVOR DA?

Each of the protocols has requirements for different aspects of a valid solution,
outlined in the descriptions of the protocol specifications in section 2.1. The
most important of these requirements are:

• The I/O drivers must be able to support tri-state logic, in order to support
the shared data line of the I2C specification.

• Clock speed requirements differ among the protocols, with I2C having well
defined rates in the specification, an UART using one of several common
baud rates, and SPI operating on a frequency limited by the attached
peripheral. A proposed solution must then be able to vary the clock rate
used for I/O signaling.

• Both SPI and I2C support multi-slave setups, which must be handled by
a proposed solution. I2C includes a concept of addressing, while SPI and
UART do not have a concept of an address as part of the protocol. SPI,
however, uses a slave select signal. The proposed solution must handle
these differences while keeping the system bus interface the same across
configuration.
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• SPI has clock polarity and phase as implementation-specific, often config-
urable, details.

• I2C requires support for multi-master setups.

• The phases of communication (with start/stop bits and conditions, actual
data transfer etc.) vary between the protocols. The common command
interface must span these differences.

2.6.2 Evaluating the configurable core

In evaluating a proposed solution with regards to research question one, several
metrics should be considered, in order to judge whether the solution can provide
an answer to the question. The question asks whether the I2CMST can be
modified to support UART and SPI. Further, it mentions advantages over using
separate cores in three areas, power consumption, core size and pin usage.

When deciding if a proposed solution is suitable for answering the research
question, the perhaps obvious first step is to evaluate whether or not it correctly
implements all the protocols. This includes any rate and timing requirements
in the protocol specification, in addition to correct values and behaviour on the
protocol signals.

Power consumption of a proposed solution can be compared with that of sep-
arate cores by comparing specific implementations, for instance through use of
simulation tools or actual hardware measurements of implementations of both
configurable and separate implementations in the same implementation fabric.
In addition, a more general discussion with regards to the properties of the
implementations can be done to evaluate the differences between them. When
evaluating power consumption, factors like setup overhead and/or clock gating
of inactive parts of the configurable core must be taken into account.

Core size can be easily measured by comparing synthesized versions of both
separate core designs and the configurable design using an HDL synthesizer.
When comparing the core size, the configurable core can be compared to both
any single separate core, or multiple separate cores, in order to be able to discuss
any trade-off effects of making a single configurable core.

Pin usage is also easily measured as a simple property of a specific hardware
implementation of a solution. However, attention must be made to the fact that
a common I/O stage used across multiple separate cores is a potential solution
for this specific problem. This must be taken into account when evaluation a
proposed solution.

2.6.3 GenIE (Programmable core)

The requirements of a programmable core suitable for answering the second re-
search question are somewhat like the ones for the configurable core, but with
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some important differences. In order to have a clear definition of the require-
ments, they are described in total in this section, with a discussion following of
differences from the configurable core requirements.

The programmable core should at the least be able to function as a drop-in
replacement for the configurable core. This gives the following functional re-
quirements:

1. Given a suitable program, the component should behave in the same way
as the original I2CMST with regards to the actual I2C communications.

2. The core should, given a suitable program, implement a valid and func-
tioning UART transmitter implementation.

3. When programmed for SPI, the component should behave as a valid SPI
master.

4. Data communications between the system and the hardware interface
should be available over the system bus.

5. The program code used by the core should be able to be modified from
the system side

6. The system interface for the core should be independent from the currently
loaded program code. This requires a common interface implemented by
every program which can run on the core.

This is mostly the same requirements as for the configurable core, reworded to
suit a programmable design. The shared pin requirement from the configurable
core makes little sense when talking about a fully programmable core, and is
not included. System side reconfiguration of the configurable core is mirrored
in the requirement of system side reprogramming of the programmable core.
A common interface regardless of the currently active protocol/program is a
development of the common data interface requirement of the configurable core,
and the actual command design can be developed from the command design of
the configurable core. However, if the programmable core is to be designed to
be able to support as large a number of different possible protocols as possible,
some redesign or augmentation may be required to make the interface even more
general.

Again, the UART, SPI and I2C specifications give some additional requirements:

• Any I/O drivers must be able to support tri-state logic, in order to support
the shared data line of the I2C specification.

• Clock speed requirements differ among the protocols, so this must be
configurable from the system or program.

• The phases of communication (with start/stop bits and conditions, actual
data transfer etc.) vary between the protocols. The common command
interface must span these differences.
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The latter of these can be augmented to support an even more generalized
hardware interface, in order to increase the flexibility given by being able to
reprogram the core.

2.6.4 Evaluating the programmable core

Evaluation of a programmable core can, much like the configurable design, be
done using simulation or implementations in a hardware implementation fabric.
Simulation or implementation in the same environment and/or fabric as the
configurable core will make it possible to compare measurements and metrics
between the two. This will make it possible to evaluate whether any advantage
can be had in power consumption and core size.

With regards to the core size, the increased flexibility of a programmable core
must be taken into account. The programmable core has the potential of im-
plementing protocols other than the UART, SPI and I2C available using the
configurable core. This increased flexibility might outweigh any potential in-
crease in core size, as further hardware cores may be made unnecessary by the
programmable core. A discussion on any trade-off should be made.

Pin usage in a programmable core is, like the configurable core, simply an im-
plementation detail of any proposed design, and can be reasoned about as such.
The amount of I/O pins made available for programs will constrain the amount
of possible interfaces, again a discussion should be done on trade-off between
increased support for many I/O pins and increased core size, possible core com-
plexity and power requirements.

A programmable core must be able to implement at least UART, SPI and I2C at
a minimum just as well as the configurable core. This can be proved by making
programs implementing these protocols. In addition, the flexibility of the core
with regards to implementing other potential protocols should be discussed.



Chapter 3

Component design

Two different component designs were created for this thesis. They are incre-
mental steps in accomplishing the goal of having a flexible, programmable hard-
ware interface component capable of communicating using a software-defined
protocol. The first component is a configurable, but not programmable, compo-
nent capable of communicating using UART, SPI or I2C. The second component,
GenIE, accomplishes the goal of a fully programmable core. A description of
the design and implementation of each of the components follow.

3.1 Configurable core

To answer research question 1 of being able to use the same component for
communicating using either UART, SPI or I2C, the OpenCores I2CMST was
chosen as a starting point. This was then extended to be able to communicate
using UART or SPI in addition to I2C. In addition, logic was added to be able
to reconfigure the core for the different protocols.

In designing this component, a goal was set to keep the data interface as consis-
tent with the I2CMST as possible. Any system use of the core should be fully
agnostic of which protocol is being used, apart from the configuration setup
calls.

An overview of the design can be seen in figure 3.1

3.1.1 Design

The configurable core design is an extension of the OpenCores I2CMST. A
UART controller and an SPI controller component were created and added
alongside the I2CMST bit controller, in the extended design referred to as the
I2C controller.

17
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Figure 3.1: An overview of the design for the configurable core.

The I2C controller, UART controller and SPI controller all use a common in-
terface towards the Byte controller. This interface is a modified version of the
interface between the Byte controller and the Bit controller, with added en-
able lines for each of the interface controllers. The outputs from each of the
controllers is multiplexed in the output stage of the configurable core. An addi-
tional configuration register for selecting which interface to implement is added,
writable from the system bus.

The UART controller and the SPI controller each implement a subset of the I2C
commands sent by the byte controller. This was chosen in order to minimize
time spent rewriting the byte controller.

3.1.2 Implementation

The OpenCores I2CMST contains a top level module, i2c master top. This is
responsible for communication between a Wishbone bus and the rest of the
I2CMST. For this thesis, the details of bus communication was seen as not
important with regards to answering the research questions, so this top level
module was not modified to support the configurable core, and was not used
during simulation or reporting for evaluation purposes.

The I2C controller, or OpenCores I2CMST bit controller, is left unmodified. All
outputs from the I2C controller, including the command ACK, are multiplexed
with the outputs from the other controllers in the byte controller.

The UART controller is a fairly simple module. It responds to START and
WRITE commands, with the START command sending the start bit and im-
mediately ACKing the command. The WRITE command is a thin wrapper
around the data output from the byte controller, relaying the data output for
8 cycles, then transmitting the stop bits. The number of stop bits is controlled
by a flag signal from the byte controller, controlled via the system bus. This
makes it possible to select 1 or 2 stop bits. All other commands immediately
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ACK while functioning as a no-op. This makes the UART support the same
command language as the I2C controller, meaning the core can be controlled
the same way without regards to which protocol is used.

The SPI controller only supports the WRITE and READ commands. As SPI
is full duplex, both these commands perform the same action, namely a bi-
directional transfer of 1 8-bit byte in both directions. Like the UART controller,
it responds to all other commands by immediately ACKing the command. The
CPOL and CPHA are not controllable. The WRITE command implementation
simply enables the SDI clock for 8 cycles, while relaying the MISO and MOSI
to the data input and output ports.

The I2CMST clock scaling is done by the bit command controller. The config-
urable core contains clock scaling logic inside both the SPI controller and UART
controller in addition to the

3.2 GenIE (fully programmable core)

The fully programmable core GenIE was created to answer research question
2. It continues on from the configurable core, replacing the hardware interface
controller cores with a programmable core. The goal of keeping the system data
interface fully agnostic of the current software running on the component was
kept, this goal being even more important with the programmable core being
able to function with any protocol which can be supported within its limitations.
(The limitations of the programmable core is further explored in 5.2.1)

An overview of the GenIE can be seen in figure 3.2

Figure 3.2: An overview of the GenIE
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3.2.1 Design

As the major part of the I2CMST is concerned with actually implementing the
I2C protocol, and by extension a major part of the configurable core is concerned
with implementing I2C as well as UART and SPI, not a lot of the specific
design ideas of these cores were kept for the programmable core. However,
in designing the configurable core, a common interface for all three protocols
became apparent. This idea of a common interface for several protocols could
be reused in designing GenIE.

The governing idea of GenIE is that of a dedicated bit-banging co-processor.
Instead of using the CPU for bit-banging a protocol, this dedicated component
can be loaded with a bit-banging program instead, and then run independently
of the CPU.

The center of the programmable core, that is the actual programmable part,
is designed as an application specific instruction set prosessor, or ASIP. This
was designed from the ground up, along with the instruction set, specifically for
writing software with the single task of operating a set of configurable I/O pins
according to a well-defined hardware protocol. It gets the instructions from a
dedicated piece of memory, the specifics of which are outside the scope of this
thesis. Also out of scope is the method of writing a program to this memory,
although the author imagines this could be done over the same system bus used
for data transfer, for ease of reprogramming the component.

The overall design of the programmable core is inspired by the design of the
configurable core, with a bus I/O controller component sitting between the
ASIP and the system bus. This controller component is responsible for system
bus communications, and communicates with the ASIP using status lines as
well as a special command-register. The ASIP takes on the role of the multiple
protocol implementations used in the configurable core, and is responsible for
controlling the I/O pin array through using configuration and data registers.

The ASIP design is a very simple processor design, using a simple Fetch-Decode-
Execute loop with no pipeline. All operations operate on registers only; there is
no data memory. An overview is given in figure 3.3. All I/O pins have dedicated
registers. Data transfer to and from the controller component is done via two
dedicated registers, one for data input and one for data output. In addition,
several general purpose registers are available for computations required by the
protocol program.

Among the most important instructions available on the ASIP is the MOV
instruction, responsible for moving values from register to register. As the data
input and output from the system bus as well as the I/O pins are controlled via
registers, MOV instructions moving bits to and from the I/O pins are the main
part of all protocol implementations in this thesis. As hardware communications
interfaces have as a goal to transfer data between devices or components, MOV
instructions will be important for any imaginable other protocol as well.

In addition to the MOV instruction, the NOP instruction is important. As
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Figure 3.3: The Application Specific Instruction Set processor powering the
GenIE.

the ASIP has no hardware synchronization mechanisms, all synchronization
according to the protocol specification as well as other synchronization issues
must be handled in software using these instructions.

The software for the ASIP is written as implementations of several predefined
subroutines. These then constitute the common interface for all protocol imple-
mentations. Because of this, the design of this interface has a very large impact
on which protocols are possible to implement using the component, and it is
designed very generically.

The programmable core requires some static configuration data in addition to
the program code for the subroutine implementations. This is provided at prede-
fined locations in the same memory storing the program code. The configuration
data required by the programmable core is:

• Clock configuration: The programmable core, like both I2CMST and
the configurable core, contains a clock divider, which is configured using
configuration data

• Subroutine handlers: As the software is a collection of subroutines, for
each of these routines, a specific memory address is executed. This typi-
cally contains a JMP to the implementation, or a RETURN instruction if
the routine is not implemented. This enables flexible layout of programs
in memory, enabling program writers to divide the memory after protocol
needs and complexity.
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The transfer of data is done by bit by bit transfer to or from shift registers in
the controller component which are read and written over the system bus. This
imposes some limitations on the flexibility of the programmable core, but was
done to simplify the design of the core. In section 5.2.1, these limitations along
with alternative methods of data transfer are discussed.

Exit from a subroutine is done using the special RETURN instruction. This
makes the ASIP idle, and signals back to the controller component that the
requested command has been performed. An error condition can be indicated
by setting the error flag on the RETURN instruction. This error condition is
the signaled back to the controller component as well.

Instruction Description
NOP Does nothing

XOR r1, r2 → rD Bitwise XOR of r1 and r2 stored in rD
NAND r1, r2 → rD Bitwise XOR of r1 and r2 stored in rD

MOV r1 → rD Moves the contents in r1 into rD
MOV r1, #n → rD Moves the #nth bit of r1 into rD

LOAD #number → rD Loads a literal value #number into rD
NOT r1 → rD Stores the bitwise NOT of r1 in rD
JMP #addr Unconditional jump to memory address #addr

JNZ r1, #addr Conditional jump to #addr if r1 is not zero
JZ r1, #addr Conditional jump to #addr if r1 is zero

ADD r1, r2 → rD Stores the unsigned sum of r1 and r2 in rD
SUB r1, r2 → rD Stores the unsigned difference of r1 and r2 in rD

RETURN Makes the ASIP idle and listen for more commands

Table 3.1: The ISA for the GenIE ASIP

The ISA is designed to contain every instruction needed to implement each of
the I2C, SPI and UART interfaces.

3.2.2 Implementation

As the system bus I/O is a detail beyond the scope of this thesis, only the ASIP
and its components were implemented. The interface exposed by the ASIP to
the system bus I/O controller consists of the following:

• Two sets of parallel data buses. These are used for the actual data being
read and written by the ASIP program

• A command bus. This is inspired by the command bus from the I2CMST
and the configurable core. The bus I/O controller supplies commands here
to control which subroutine is to be executed by the ASIP.

• A line indicating the the last executed command subroutine has returned.
This works similarly to the ack bit in I2CMST/the configurable core.
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The supported commands are shown in table 3.2. The ASIP implementation
itself does not assign any specific significance to any command, it is the imple-
mented program for the ASIP which is responsible for handling the commnads
according to the expected function. The auxiliary commands are provided in
order for programs to expose dynamic control of part of their functionality. An
example of where this can be useful is specifying an I2C address.

Command Description
INIT Initialization logic. Triggered on reset

SEND BYTE Sends the byte provided on the data input bus
READ BYTE Reads a byte onto the data output bus

AUX0
AUX1 Auxiliary subroutines, typically interface specific
AUX2
NOP Makes the ASIP idle and wait for another command

Table 3.2: ASIP command interface specification

The ASIP decoder is quite simple, separating register IDs, opcode and any
immediate value fields from the memory data value. The ALU is also quite
simple. In the execute stage, it computes a value based on the decoded opcode
and the register values r1 and r2, read from the decoded register IDs. It also
provides a write-enable value for the rD register, as well as a return flag (set
when the opcode is RETURN) and a JMP flag. It also provides a jump address
bus used by the top level ASIP module if the JMP flag is set to 1.

Register Description
P1 Pin 1 register
P2 Pin 2 register
P3 Pin 3 register
P4 Pin 4 register
DI Bus data input register
DO Bus data output register

R6 to R15 General purpose registers

Table 3.3: The available register on the GenIE ASIP

The register file contains logic for reading and writing values to its 8-bit registers.
Table 3.3 lists the available registers. The register file has two read ports as well
as one write port, the register IDs provided on register ID buses connected to
the decoder outputs. In addition to handling the general purpose registers, it
also provides functionality for the register mapped input and output. The DI
register is a read only register mapped to the system bus data input bus. The
DO register is mapped to the system bus data output bus. The registers P1 to
P4 are used for reading and writing to the I/O pins, with the pin having the
value of the least significant bit written to its register.

The memory address size of the ASIP is 8 bits, which limits the accessible
program memory to 256 locations. Some of these are used for
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3.2.3 GenIE programs

Writing programs for the GenIE consists of defining a clock divider value, and
then implementing handlers for any supported command for the protocol which
is to be implemented. The clock divider value controls the ASIP clock rate. Each
fetch-decode-execute cycle takes three clock cycles. Exactly one instruction
is executed for each ASIP cycle. This means that the divider value can be
computed as System Clock Rate/(3×ASIP Frequency)− 1.

A number of ASIP cycles may be spent transmitting each bit. The bitrate is then
the ASIP clock rate times the number of ASIP instructions per bit. Maintaining
a constant bitrate thus requires a constant number of program instructions for
each bit transmitted.

Following is an example GenIE program for an UART
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Clock divider 0 0 x4242
INIT command 1 LOAD #1 -> P1
SEND command 2 JMP #007
READ command 3 RETURN
AUX0 command 4 RETURN
AUX1 command 5 RETURN
AUX2 command 6 RETURN
SEND handler 7 LOAD #0 -> P1

8 LOAD #0 -> R1
9 MOV DI #0 -> R2

10 XOR R2 R1 -> R1
11 MOV R2 -> P1
12 MOV DI #1 -> R2
13 XOR R2 R1 -> R1
14 MOV R2 -> P1
15 MOV DI #2 -> R2
16 XOR R2 R1 -> R1
17 MOV R2 -> P1
18 MOV DI #3 -> R2
19 XOR R2 R1 -> R1
20 MOV R2 -> P1
21 MOV DI #4 -> R2
22 XOR R2 R1 -> R1
23 MOV R2 -> P1
24 MOV DI #5 -> R2
25 XOR R2 R1 -> R1
26 MOV R2 -> P1
27 MOV DI #6 -> R2
28 XOR R2 R1 -> R1
29 MOV R2 -> P1
30 MOV DI #7 -> R2
31 XOR R2 R1 -> R1
32 MOV R2 -> P1
33 NOP
34 NOP
35 MOV R1 -> P1
36 NOP
37 NOP
38 LOAD #0 -> P1
39 NOP
40 NOP
41 NOP
42 NOP
43 NOP
44 NOP
45 LOAD #1 -> P1
46 NOP
47 NOP
48 RETURN
49
50 ...

Even though the UART is quite simple, this needs three cycles per bit trans-
ferred to compute the parity, and the bitrate is then equal to the scaled clock
rate divided by three. Lines 32 to 48 show examples of synchronization using
NOP instruction in order to maintain three instruction between pin writes. As
there is no parallelism in the ASIP, multiple pins can not be written in the same
cycle, so to update four output pin values, four instructions are needed.
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Chapter 4

Results

These are the results obtained by simulating and synthesis and implementa-
tion of the two cores in Xilinx Vivado. Both simulation output and synthesis
and implementation data is provided. In addition, similar data for comparable
components is provided in order to be used when evaluating the configurable
component and the GenIE.

4.1 Configurable component

Figure 4.1: Simulation of the UART controller of the configurable component

Simulation of the UART component can be seen in figure 4.1

When synthesized and implemented for a xc7k70tfbv676-1 Kintex-7 FPGA, Vi-
vado reports the following values:

Size 330 LUTs + 168 Flip-flops
Total power 0.087 watts

This was done using a clock constraint of 10ns clock rate, 50% duty cycle.

4.2 GenIE

When synthesized and implemented for a xc7k70tfbv676-1 Kintex-7 FPGA, Vi-
vado reports the following values:
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Size 138 LUTs + 159 Flip-flops
Total power 0.084 watts

This was done using a clock constraint of 10ns clock rate, 50% duty cycle.

4.3 OpenCores components

When synthesized in the same environment as the GenIE and the configurable
component, Vivado reports the following values:

Simple UART[10] Simple SPI[11] I2CMST[9]
Size 70 LUTs, 73 FF 85 LUTs, 67 FF 130 LUTs, 85 FF

Total power 0.083 watts 0.085 watts 0.085 watts



Chapter 5

Evaluation and discussion

Here the designs and results will be evaluated and discussed.

One thing to note is that the FPGA device has a static leakage power of 0.081
watts, which means the dynamic power increase from this is the power con-
sumption caused by the implemented HDL. This is taken into account when
comparing power consumption

5.1 Configurable component and research ques-
tion one

The configurable component successfully implements both UART and SPI in
addition to I2C, with some limitations, see 5.1.1

The three OpenCores components for UART, SPI and I2C use a total of 285
LUTs and 225 FFs. The configurable component successfully runs all three
protocols, but uses more LUTs and a bit fewer FFs. However, both the UART
and SPI components were synthesized with system bus logic, which means we
would actually expect an increase in core size when using the three separate
components.

With regards to improvement in power consumption, the total dynamic power
usage of the three separate components is 0.01 W, while the configurable core
has a dynamic power consumption of 0.006 W. This is an improvement, but as
mentioned, some of the separate cores include system bus logic, which is not
included in the reports for the configurable component.

Pin usage of the configurable component is 4 pins, to accommodate the four
lines of the SPI protocol. The discrete components use 1, 2 and 4 signals for
UART, I2C and SPI, respectively. However, these signal may be multiplexed at
the system level with a small amount of logic, so the reduced pin usage alone is

29
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not a large advantage for the configurable component.

5.1.1 Limitations

The implemented UART in the configurable core does not support parity bits.
In addition, the SPI controller does not support configurable CPOL and CPHA.
The discrete cores presented in chapter 4 has both of these features implemented.
A bit larger size and power consumption would then be expected.

In addition, the SPI implementation in the configurable component does not
handle the CPHA and CPOL entirely correct. CPOL controls whether to read
on rising edge and write on falling edge or vice versa. However, as the commu-
nication between the Byte command controller and the SPI controller is done
using a single shift register, both reading and writing must happen at the same
time. This issue cannot be fixed without rewriting large parts of the Byte com-
mand controller, for which time was not prioritized during the work with this
thesis.

5.2 GenIE and research question two

The programmable component, GenIE, reports less than half the LUTs used
by the configurable core, and around the same number of flip-flops. It also
reports a decreased power consumption. However, these numbers must be seen
in conjunction with the fact that GenIE does not implement any hardware
interface on its own. In order to implement an interface, it requires a program,
which requires memory. As the memory is external to the GenIE, it is not
included in the reported numbers from Vivado. This can then not be compared
directly with the other numbers from the reports in chapter 4.

However, GenIE is quite flexible. The instruction set makes it possible to write
programs resembling bit-banging, and opens up possibilites of extending the
support to other interfaces beside the three used in this thesis.

5.2.1 Limitations

The implemented design has a maximum addressable memory of 256 addresses.
This may be a limiting factor when implementing more complex interfaces. This
could somewhat easily be mitigated by increasing the memory address size.

In addition, only one instruction may be performed at a single time. This
means that if multiple pins need to change simultaneously, the interface is not
possible to implement on the GenIE. This has a few possible solutions. First,
one could have a separate pin-clock, with pin registers being written to the
pins at constant intervals of multiple instructions. Thus the instructions could
run sequentially while the pin values change simultaneously. Another potential
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solution is to replace the ASIP with one implementing a transport triggered
architecture (see section 2.4). This way, multiple register could be written to
with a single instruction.
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Chapter 6

Conclusion

The fact that separate components, even when evaluated with more functional-
ity than the configurable component, are better or as good as the configurable
component, leads the author to conclude that the design presented is not an
improvement over separate cores.

Whether or not the GenIE is an improvement in power or size can not be
concluded based on the findings of this thesis. As the memory is an important
part of the design, the act of not including it in the discussion means that no
comparisons can be made. However, the increased flexibility of the GenIE is a
definitive improvement in the case where support is required for an interface not
originally available on the system. This makes it possible to avoid using CPU
bit-banging in such cases, freeing up the CPU and making the CPU program
code easier to maintan.
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