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Abstract

The neural circuitry comprising what is assumed to be the brain’s spatial

navigation system has been investigated by scientists for decades. Re-

search has revealed how the neural networks underlying this cognitive

function might operate, and the grid cell network of the medial entorhi-

nal cortex has been suggested to function as a path integrator. How neu-

ral networks, such as those of grid cells, operates, is likely to depend on

the connectivity within the network. Much is known about the physi-

ological connectivity between the cells in the medial entorhinal cortex,

but the question of how the grid cell network is functionally wired is still

debated.

Here, we have taken a statistical approach to this question. We have em-

ployed a statistical model - the kinetic Ising model - to reverse engineer

the functional connectivity of a network of grid cells recorded in vivo.

Different versions of the model were constructed to allow it to explain

spatio-temporal variations in the firing of the cells. This was done by in-

cluding components assumed to modulate the cells in the external fields

of the kinetic Ising model. We have investigated how the differences in

external fields of the model affect the inferred functional connectivity be-

tween the cells, and how the inferred functional connectivity relates to

what has been found experimentally.

Our main findings are that including pairwise correlations in the model

increases the model quality for all models, and that the inferred connec-

tivity of the network remains remarkably stable when altering the exter-

nal field. In addition, we find indications of stronger functional connec-

tivity within grid cell modules than between, and indications that the

within-module functional connectivity decreases with phase distance.
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Abbreviations

EC - entorhinal cortex

MEC - medial entorhinal cortex

GLM - generalized linear model

HD - head direction

CAN - continuous attractor network

LNP - linear-nonlinear Poisson

LFP - local field potential

In the following, the word ’cell’ refers to neurons unless specified other-

wise.
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2 Introduction

Imagine a ship in the middle of the Pacific Ocean, surrounded by nothing

but sea. No land in sight to navigate by. How does it find its way?

Centuries ago, marine navigation was based solely on dead reckoning,

the process of estimating the change in one’s position based on velocity.

Dead reckoning, or path integration, is very sensitive to error accumu-

lation - especially at sea, where winds and ocean currents cause errors

in estimating one’s velocity. This is obviously a detrimental factor influ-

encing the ability to find one’s way. To overcome this problem, people

have, over time, invented increasingly complex tools to aid navigation.

Satellite-based navigation systems, which sprung from ideas conceived

in the days of the Space Race, gradually took over marine navigation dur-

ing the 70s and 80s. Before the advent of such systems, however, the main

tools used for navigation at sea were nautical charts, tools to estimate

position based on the observation of celestial objects, and a compass en-

abling them to set course. Starting from a known position, the first mate

could calculate an estimate of the future position, based on the speed

and course - i.e. path integrate. At fixed time intervals, depending on

the complexity of the waters, the position was checked, and, if necessary,

corrected. This process was repeated during the voyage until the ship

was safe in port.

With the advent of high-tech GPS-based navigation systems, humans

have efficiently solved the challenge of navigating worldwide, and today

the oceans are populated by cargo vessels continuously carrying goods

around the globe. Despite being a magnificent result of centuries of en-

gineering, the intercontinental freighter in transit is, in effect, just a mod-

ern representation of a basic animal ability: finding and remembering

the location of food sources, getting there by the shortest route possible,
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and bringing it back home safely. Ironically, while able to put GPS satel-

lites in orbit and utilize them for navigation, mankind have yet to fully

understand its own innate navigation system, developed over the course

of evolution. How does the human brain, an intricate, biological system

of 1011 interconnected neurons [1], navigate?

Humans and other mammals are able to find the shortest route to a goal

in a familiar environment without ever having traveled that specific path

before. This is what Tolman presented in his 1948 paper [2]. In one of

the experiments he described, rats were first trained to follow a devious

maze tunnel to a food reward. The tunnel known to the rat was then

closed, and many straight radial arms were opened. The majority of the

rats chose the arm pointing in the direction of the reward, indicating that

the rats had an internal sense of the direction in which the reward was lo-

cated. Through his work, Tolman disproved the postulate that navigation

is based only on learned routes, and suggested that, instead, the mam-

malian brain holds internal, cognitive maps of space.

Learning and storing information, such as cognitive maps, requires mem-

ory systems. In the medial temporal lobe resides a brain structure es-

sential to declarative memory formation: the hippocampus [1]. The hip-

pocampus is an archicortical1 structure onto which highly processed neo-

cortical2 input converges, and whose backprojections spreads out to vir-

tually all of neocortex. Internally, hippocampus has a striking unidirec-

tional excitatory connectivity, from the dentate gyrus (DG) through sub-

divisions of cornu ammonis (CA), two three-layered structures in which

the principal cells are condensed in one layer. The direction of flow of

information is shown in Fig. 1. Mossy fibers from dentate granule cells

innervate pyramidal cells in CA3. Schaffer collaterals arising from pyra-

1Archicortex is a phylogenetically old type of two- or three-layered cortex [4].
2Neocortex is defined by six layers [5].
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Figure 1: Hippocampus-entorinal

cortex circuitry, with forward connec-

tions from (solid lines), and backpro-

jections to (dashed lines), the neo-

cortex via the parahippocampal and

perirhinal cortex. Information en-

ters and leaves the hippocampus via

the entorhinal cortex. The directional

connectivity within the hippocampal

formation is shown; dentate gran-

ule cells project to pyramidal cells in

CA3. These cells project to CA1, which

project to subiculum. Reprinted from

[3].

midal cells of CA3 synapse on to CA1 neurons, which in turn projects to

subiculum [4]. The CA1 is a feed-forward network with sparse intrinsic

excitatory connections, whereas the CA3 network is remarkably recur-

rently connected [4], a characteristic feature of memory networks [6].

The role of hippocampus in normal memory function was illuminated

by Scoville and Milner in 1957 [7]. They reported on effects of hippocam-

pectomy on memory in ten patients, with the most extreme case being

H.M. H.M. suffered from severe epilepsy, and was treated with bilateral

resection of parts of the hippocampus. The surgery was successful as

an epilepsy treament, but after the surgery and until his death, he suf-

fered from a severe case of anterograde amnesia - the inability to form

new memories. This was a strong indication that hippocampus plays an

important role in memory. In the following years, a great body of work

was done in hippocampal research (reviewed in [8]). The observation
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that hippocampal lesions resulted in poor performance in spatial tasks

in animals [9–11], led O’Keefe and Dostrovsky [12] to record single-unit

activity in hippocampus in a freely moving rat, and with it to a profoundly

significant finding regarding the neural representation of space - namely

the discovery of place cells, as described in more detail below.

2.1 Neural representation of space

Figure 2: Spatial firing of a

place cell recorded in a rat

traversing a square box. The

trajectory of rat is shown in

black. Red circles indicates

points where the cell emitted

a spike. Adapted from [13].

Place cells, the first type of spatially mod-

ulated neurons to be discovered, consti-

tute the major part of active principal

cells in the CA region of the rodent hip-

pocampus [14]. Their name derives from

the fact that one place cell fires at one spe-

cific location in an environment of the in-

dividual. Place cells have been reported

in rats, rabbits, mice, and bats [12, 14–

18], and cells with similar properties have

been reported in humans and nonhu-

man primates [19, 20]. This indicates that

place-specific cells are part of the neural

circuitry of hippocampus in all mammals.

In rodents, place cell firing shows a pe-

culiar spatio-temporal spiking preference

related to the local field potential (LFP)3.

When the animal is not engaged in loco-

motion, the network is dominated by irregular LFP. In contrast, when the

animal is changing its position in the environment, the network is dom-

3Extracellular electrical activity
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inated by sinusoidal oscillations at 4-12 Hz, known as theta rhythm [21].

As an animal passes through the firing field of a place cell, the cell will

fire at successively earlier phases of the theta rhythm. This phenomenon

is known as phase precession. [22]

The total activity of a sufficiently large population of place cells will cover

the entire surface of a given environment. If the environment is signifi-

cantly altered, a phenomenon called remapping can be observed in the

place cell population: the activity of the cells will change, both in terms

of which cells are active, and the relative location of their firing fields [23].

The large number of place cells makes the number of possible combina-

tions of active cells and the location of their firing fields close to infinite

- such that each environment visited by the animal can be uniquely rep-

resented by the place cell network.

Although place cells of CA1 and CA3 have similar spatial firing character-

istics, the representation of different environments is different in these

two hippocampal subfields. The representation of two environments in

CA3 is virtually orthogonal, in the sense that distinct subsets of cells are

active in the two environments. In CA1, on the other hand, the active cell

populations can overlap. In addition, upon exposure to a novel environ-

ment, the place cell firing stabilizes faster in CA1 than in CA3 [24]. This

suggest a functional difference between the two place cell networks, pro-

viding yet another implication for the extensive recurrently connected

CA3 subfield as a memory network.

Taken together, the observations described above points to the CA3 of

hippocampus as a storage site for maps of different environments, but

not necessarily the prime network for computing one’s position on a given

map. To investigate if this computation is performed outside of hip-

pocampus, researchers turned their attention to a neocortical structure

adjacent to, and extensively connected with, the hippocampus: the en-
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Hippocampus Entorhinal cortex

Figure 3: Representation of the layer-specific projections from and to the

entorhinal cortex. Layer II projects to dentate gurys and CA3. Layer III

projects to CA1, while layer V receives input from CA1. Adapted from

[32].

torhinal cortex (EC). Cells in layer II of EC project to DG and CA3, whereas

layer III cells project to CA1. EC receives hippocampal input mainly from

CA1 to layer V (see Fig. 3). This reciprocal connection with the place cell

network suggests a possible role of the entorhinal cortex in the mecha-

nisms generating place cell activity. The first recordings in EC did not

reveal cells with strong spatial modulation [25–27], indicating that posi-

tion is calculated within the hippocampus. Further investigation of the

hippocampal circuit, however, revealed persistent place cell firing in CA1

after lesioning dentate gyrus [28] or CA3 [29], leaving only EC as the likely

input. This motivated researchers to revisit the EC, and in 2005, the exis-

tence of grid cells in the medial entorhinal cortex was established [30, 31].
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2.2 Grid cells

The spatial firing of grid cells differs from that of place cells: as opposed

to the single field of place cells, grid cells have multiple firing fields (shown

in Fig. 4). The fields of one cell forms a hexagonal pattern that tiles the

entire environment of the animal [31].

Figure 4: Spatial firing of a

grid cell recorded from MEC

of a rat traversing a square

box. The trajectory of rat

is shown in black. Red cir-

cles indicates points where

the cell emitted a spike.

The grid pattern can be characterized by

the distance between two neighboring fir-

ing fields, called the spacing of the cell,

and the orientation of the pattern rela-

tive to an axis of the environment. The

spacing and orientation is often similar

for grid cells that are anatomically close,

but no relationship between the spatial

phase - the spatial offset relative to a ref-

erence point in the environment - and the

anatomical distance between cells has

been found [31, 33].

Although neighboring cells have similar

spacing, the neighborhood size is lim-

ited: the spacing of the grid cells increases

along the dorsoventral axis [30, 31, 33].

Whether this increase is discrete or con-

tinuous was recently investigated by Sten-

sola et al. (2012) [34]. They recorded simultaneously from several grid

cells, and found that grid cells cluster in modules with similar properties,

such as spacing and orientation. The spacing increased in discrete steps

between modules, of which up to four was found in one animal. Upon al-

tering the environment, the change in the cell’s spatial firing pattern was
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coherent within modules, but differed across modules, suggesting that

the modules can operate independently, and thus that the connectivity

within a module might be stronger than that between modules [34].

Grid cells are not the only type of spatially modulated neurons in MEC.

Border cells, which fire when the animal is close to borders of the envi-

ronment [35], head direction cells, which fire preferentially when the an-

imals is facing specific directions relative to the environment, and cells

with conjunctive properties: grid x head direction modulation [33] and

border x head direction modulation [36] are also part of the MEC cell

population. The firing rates of head direction cells, conjunctive grid x

head direction cells, and grid cells are speed modulated [33]. The lo-

cation of a grid field, however, is unaffected by the velocity of the ani-

mal, and the spatial phase distance between the fields of two grid cells

remains constant irrespective of the environment [37]. In addition, grid

cells maintain their spatial firing pattern when visual cues are removed

[31]. Taken together, this points to the MEC network as a metric system

for keeping track of one’s position by path integration.

In rodent MEC, the extracellular theta rhythm is associated with loco-

motion. Some grid cells show phase precession, but not all: It appears to

be a layer specific property. Nearly all grid cells in layer II, and some in

layer V, show phase precession. In layer III, however, phase precession is

sparse, but phase locking can be observed in this layer [38]. In the next

section, we will further discuss the different layers of MEC.

2.2.1 Internal connectivity of the entorhinal cortex

As shown in Fig.1, the EC receives hippocampal input, and projects back

to hippocampus. The directional nature of the hippocampal-EC circuit

is to some extent maintained within EC: the interlaminar connectivity
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of EC is dominated by projections from deep layers to superficial layers

[39]. Stimulation of subiculum cause excitatory responses in layer V of

MEC [40]. Layer V projects to superficial layers, and about half of these

projections terminate on putative interneurons, possibly providing feed-

forward inhibition to principal neurons in superficial layers [41]. Projec-

tions from layer II to layer III, and from layer II and layer III to deeper

layers have been reported, although sparse [39, 42].

Intralaminar anatomy has also been investigated. The principal cells of

layer III and layer V are mainly pyramidal cells [4], and recurrent excita-

tion has been found between these cell types within layers, with a rela-

tively high probability of connections [43].

The anatomy of MEC layer II is significantly different from that of layer

III and layer V. The main cell type in this layer is the stellate cell, con-

stituting ∼67% of the principal cell population. Recently, the connec-

tivity between stellate cells of MEC layer II was investigated, and found

to be recurrent and inhibitory [44, 45]. Couey et al. (2013) [44] acti-

vated, by optogenetic retrograde labelling and patch clamping, two or

more stellate cells and measured the response in other stellate cells. They

found hyperpolarizing responses, indicating that the effective connec-

tions between layer II stellate cells, probably mediated by interneurons,

is inhibitory. Excitatory connections from stellate cells to pyramidal cells

were found, but no response in stellate cells were seen after stimulation

of pyramidal cells. In layer II, about 50% of the principal cells are grid

cells [33]. Although grid cells are also found in deeper layers, these grid

cells are largely silent upon exploring a novel environment [46]. Taken

together, these results point to the layer II stellate cells as a possible can-

didate for generation of the grid pattern.
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2.2.2 Grid cell models

Models of the mechanism generating the grid pattern has been devel-

oped since shortly after the discovery of grid cells [47–49]. One class of

grid cell models, the oscillatory interference models, arose as an exten-

sion of a place cell model that was originally motivated by the phase pre-

cession observed in place cells, and that the autocorrelation of the spike

times of the cells had a higher frequency than the theta rhythm. The sum

of the two oscillations, having slightly different frequencies, then inter-

feret to generate phase precession [22]. In the first grid cell oscillatory-

interference models, the grid cell output was modeled as a sum of dif-

ferent membrane oscillators modulated by velocity in directions spaced

by 60◦, in addition to a baseline oscillator. The cells in this model act in-

dependently of each other [50, 51]. The oscillatory-interference class of

grid cell models was recently called into question by the discovery of grid

cells in bats, as they lack the continuous theta oscillations observed in

rats [52].

Another class of models, the attractor network models, rely on connec-

tions in the network to generate the grid cell activity. Attractor networks

are dynamical models that have been used to model various neural com-

putations. [53–58]. An attractor neural network is defined by an initial

state, coupled dynamical equations, describing the collective behavior of

nodes, and a connectivity matrix. The structure of this matrix enables the

network to exhibit stable attractor states. An attractor state is (as shown

in Fig. 5) a local energy minima in the state space of the network, or, in

other words, a pattern of network activity which will remain stable over

time. To maintain a stable pattern, the assembly of active neurons in that

pattern must be recurrently connected. In one type of attractor network,

the point attractors, each stored pattern is different from the others; they

are distinct local energy minima in the state space of the system [6].
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Figure 5: Simplified representation

of attractor network dynamics. At-

tractor states are local energy min-

ima in the state space of the system.

If the system is in a position within

the basin of attraction, it will con-

verge to the stable attractor state.

Adapted from [6].

Two interesting properties that

make attractor networks suitable

for modelling memory networks

are their ability to perform both

pattern completion and pattern

separation. Pattern completion

results if the network at some

point in time is in a state con-

tained in the state space of the

’basin of attraction’ of an attractor

state (see Fig. 5). Over time, the

network will then converge to the

stored activity pattern - i.e. it is ’at-

tracted’ to that state. Depending

on the number of nodes and exci-

tatory connections, a biologically

realistic point attractor can store a large number of attractor states in its

state space [59], enabling it to perform pattern separation. Evidence ex-

ists that the CA3 place cell network of hippocampus operates as a point

attractor network [60].

One particular type of attractor network is the continuous attractor net-

work. Rather than distinct attractor states, these networks have continu-

ous attractor states [6], and are therefore suitable for modeling continu-

ous features, such as eye movements [55] and head direction [58], and

also location: both place cells [57, 61] and grid cells [48, 49, 54] have

been modeled with continuous attractor models. In most of these grid

cell models, cells that are close in spatial phase space have recurrent ex-

citatory connections. The connection strength decreases with phase dis-

tance, so that cells with opposite phase inhibit each other [48, 49, 54].

This type of connectivity is known as the Mexican hat. Connecting the
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cells according to spatial phase implicitly assumes that the cells have the

same spacing and orientation. The activity of the network is driven by ve-

locity input from head direction (HD) cells or HD x grid cells [44, 48, 54].

Recent findings, such as the modular arrangement of grid cells [34], which

show that groups of cells have similar spacing and orientation, support

the continuous attractor model. The recurrent inhibitory connectivity

pattern revealed in [44], however, contradicts the Mexican hat connec-

tivity. Whether a continuous attractor network with recurrent inhibition

can generate grid patterns, was investigated in [44]. A continuous attrac-

tor model where, instead of excitation, each cell inhibits its phase space

neighbors within a certain radius, was constructed. Providing the cells

with a constant excitatory input generated grid firing, and the grid activ-

ity could be spatially driven by velocity-modulated head-direction input.

The model also predicted that with loss of excitatory input, which grid

cells are thought to receive from hippocampus [40], grid cells lose their

spatial pattern and become head-directionally tuned - as was found ex-

perimentally [62].
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2.3 Summary

The grid cell network of the medial entorhinal cortex is assumed to per-

form path integration. Just like the dead reckoning of the ship crossing

the Pacific Ocean, estimating one’s position through path integration ac-

cumulates errors without regular positional updates. The path integra-

tion and the update mechanisms are tightly connected on the ship, be-

cause one mechanism needs backup from the other: If one cannot keep

track of where one is going between updates, continuous updating is

needed, which requires a lot of attention. On the other hand, path in-

tegration alone is too prone to error accumulation. It is clear from the

connectivity between what is assumed to be the path-integrator and its

update system of the brain, namely the MEC and hippocampus, that they

probably cooperate closely.

The connectivity of a network can tell a lot about what the network can

and cannot do, implying that to understand the brain, studying connec-

tivity is fundamental. Here, we have reverse engineered the functional

connectivity of a network of grid cells from an in vivo recording from

[34]. ’Functional connectivity’ means the way in which a neuron affects

another neuron in a statistical sense - which is not unlikely to be related

to the real, underlying connectivity of the network. Ideally, then, our in-

ference should yield results similar to experimental findings. To infer this

connectivity, we use statistical models that will be described in more de-

tail in the following section.
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3 Statistical models

Neurons process and transmit information in the form of spikes. A neu-

ron receives inputs from other neurons, or - if it is a sensory neuron -

from sensory stimuli. Depending on the total input to a cell, and how the

cell integrates it, the membrane voltage might reach threshold, resulting

in the generation of an action potential, also known as a spike. The action

potential is conducted down the axon to the synaptic terminal, where it

triggers the release of neurotransmitters that diffuse across the synaptic

cleft. The neurotransmitters bind to receptors in the postsynaptic neu-

ron, causing a change in the membrane potential. This is generally as-

sumed to be the fundamental mechanism by which the brain operates

[1].

One approach to understanding the brain is to study how neurons, and

networks of neurons, integrate information and translate it to the neural

language of spikes. To answer these questions, one can record the re-

sponse of one sensory neuron to a set of stimuli. From this, one can infer

what the preferred stimulus of that cell is based on tuning curves: firing

rate as a function of stimulus, or similarly, stimulus-triggered averages:

average stimulus preceding a spike for one neuron. To do this, many tri-

als are needed, as the response of a neuron is stochastic in nature.

In addition, the activity of each neuron is not independent of that of

other neurons in the same network. To investigate coding at network

level, one records the activity of many neurons simultaneously. Building

the probability distribution of responses based on experimental results

goes quickly from trivial to intractable as more neurons are considered,



because the activity of two neurons from the same network are likely to

be correlated. Thus, the number of trials needed to construct the proba-

bility distribution increases exponentially with the number of neurons.

Ways of dealing with this ’curse of dimensionality’ has become impor-

tant to life sciences over the last few decades, due to a lot of techno-

logical breakthroughs, enabling the generation of vast amounts of high-

dimensional data. Examples of such techniques are microarray tech-

niques in cell biology, making it possible to analyze genetic [63] or protein-

protein interactions [64], and multielectrodes in neuroscience, making it

possible to analyze the structure and function of neuronal networks. A

solution to the problem of analyzing high-dimensional data is to, instead

of constructing the probability distribution experimentally, use statisti-

cal models. Statistical models make an assumption about what kind of

probability distribution the observed data could have been drawn from.

Based on this assumption, one can infer from the data what values of

the parameters of that distribution are the most likely ones to generate

the observed data. When applying this to neural data one can infer how

the neurons influence each other in a statistical sense. This is what is

meant by functional connectivity, which, as mentioned previously, can

be related to the real connectivity in the network. In [65] the inferred

couplings was well correlated with the true connectivity of a biologically

realistic computational cortical network. Statistical models employed to

reverse engineer neuronal networks, such as the one used in [65], will be

described below.

3.1 Generalized linear models

GLMs are a flexible class of statistical models originally developed by

Nelder and Wedderburn in 1972 [66], as an extension to linear regres-
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sion. In the simple linear model, the response variable is assumed to be

normally distributed, as it is a linear function of the input variable and

a Gaussian noise term. When modeling response variables that are not

normally distributed, such as spike counts in time bins, GLMs are an ap-

propriate choice.

A generalized linear model consists of a conditional probability distribu-

tion of the response variable given the independent variables, a linear

function of the independent variables, and a link function transforming

the linear function to the expectation of the response variable [66].

GLMs have been employed to analyze neural data [67–69], where, often,

the known sensory input to the neuron is added in the linear filter, and

the probability distribution of spikes is assumed to be an inhomogenous

Poisson process. This is known as the linear-nonlinear Poisson (LNP)

cascade model, and it has a long history of application to neural data [68,

70]. Recently, this model was extended to include functional connectivity

in the network [67]. In a LNP model with functional connectivity, the

Poisson parameters λi(t) is generally given by

λi(t) = f
[∑

j

∫
Jij(t− τ)Sj(τ)dτ + hi(t) + kix(t)

]
(1)

where Jij is the time delay-dependent effect of neuron j on neuron i, x(t)

is the stimulus at time t, hi is related to the cell’s baseline firing rate at

time t and Sj(t− τ) is the number of spikes at time t− τ .

One is interested in inferring what values of the parameters of the model

(here: Jij , hi and ki) are the most likely to yield the observed data, as-

suming that the data was generated from this model. To answer this,

one constructs a likelihood function: an expression for the probability

of observing the data at hand depending on a set of parameter values.

For Poisson distributed spike data with independent time bins, the like-
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lihood function is

L(S,λ) =
N∏
i=1

T∏
t=1

(λi(t))
Si(t)e−λi(t)

Si(t)!
(2)

The parameters can then be estimated by maximizing the likelihood func-

tion with respect to the parameters given the data. Usually, one maxi-

mizes the log of the likelihood function, since it is more convenient to

work with. This is equivalent to maximizing the likelihood as log(x) is

one-to-one for x > 0. For the GLM with Poisson distribution, the log-

likelihood function is

lnL(S) =
N∑
i=1

T∑
t=1

(Si(t)ln(λi(t))− λi(t)− ln(Si(t)!)) (3)

The function is maximized by starting from a random set of parameters,

and then moving a small step in the direction of the gradient. The process

is repeated until the parameters converge; i.e. a maximum is reached.

For convex likelihood functions, this is the global maximum. Given a

close approximation of the actual system by the model, the inferred pa-

rameter values will reveal how the activity of the neurons depend on the

input variables, and correlations between neurons depend on pairwise

couplings.

3.2 Ising models

In large-scale neural recordings, the spike correlation between two neu-

rons is often weak, suggesting that they act independently of one another

[71]. However, the distribution of observed spike patterns at the popula-

tion level does not agree with the distribution one would expect if the

neurons act independently. Schneidman et al. (2006) [71] showed that
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weak correlations between neurons can have a major effect on the pop-

ulation statistics. They did this by considering the spike pattern distri-

bution given by the simplest possible model taking both pairwise corre-

lations and firing rates into account, and that given by a model without

interactions. Comparing the two distributions to the observed data, they

found that the model that included correlations outperformed the one

that assumed independence between neurons.

When asking what the simplest possible model that accounts for firing

rate and pairwise correlations is, one arrives at the Ising model. This

model is named after Ernst Ising, a physicist working in the field of statis-

tical physics [72]: a discipline developed to bridge the microscopic and

the macroscopic world. Macroscopic quantities, such as pressure and

volume, can be calculated by applying statistical principles to the prop-

erties and configuration of the vast amount of microscopic units, e.g.

molecules, constituting the system. This bridging relies on the princi-

ple that a system is most likely found in the state of maximum entropy,

i.e. the state of maximum disorder [73].

Maximizing the entropy for a set of spike patterns with constraints that

it should be consistent with observed means and pairwise correlations,

one arrives at the Gibbs equilibrium distribution for the pairwise Ising

model

P [S] =
1

Z
exp

[
1

2

∑
ij

JijSiSj +
∑
i

hiSi

]
(4)

where Z is a normalization factor, known as the partition function [74].

The Jij is, equivalent to GLMs, the coupling of neuron j to neuron i, and

hi is related to the cell’s baseline firing rate. In contrast to GLMs, Si = 1

describes the presence of any number of spikes within the time bin, and

Jij is symmetric and time delay independent.

The model in (4) describes, for a given set of hi and Jij , the distribution
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of spike patterns the system visits regardless of the order they are vis-

ited in. An intuitive problem with modeling neural data with this model

is that networks of neurons are dynamical systems, where the spike pat-

tern observed at a given time in most cases depends on the recent history

of spike patterns. In addition, the assumption that the external input is

constant in time is unlikely to hold for biological neural networks. Shared

time-varying input to two neurons will in most cases cause a correlation

between them and, if the varying input is not taken into account, the

statistical model will interpret this correlation as the existence of a con-

nection [65]. One can solve these problems by letting the state of each

neuron at a given time depend on the state of the whole population in

the previous time-step, as follows (Glauber, 1963) [76]

P (Si(t+1) = 1|{Sj(t)}) =

exp
[
hi(t) +

∑
j

JijSj(t)
]

2cosh
[
hi(t) +

∑
j

JijSj(t)
] =

1

2

[
1+Si(t+1)tanhHi(t)

]
(5)

where

Hi(t) = hi(t) +
∑
j

JijSj(t) (6)

This is the kinetic Ising model, with the same parameters as (4). Note

that, unlike the equilibrium model described at (4), Jij can be asym-

metric. The kinetic Ising model is closely related to GLMs; the kinetic

Ising model is, in fact, a ’simple’ GLM with a Bernoulli distributed re-

sponse variable Si, a simple linear filter without temporal integration (η

= Hi(t) = hi +
∑
j

JijSj(t)), and the link function relating η to the mean is

1
2

(1+tanhHi(t)).
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3.2.1 Learning algorithms

In the inverse kinetic Ising model one asks what values of the parameters

hi and Jij are the most likely to generate the observed data. Both ex-

act and fast approximate algorithms for solving the inverse kinetic Ising

model have been developed [77]. The exact solution is, like in the GLMs,

found by gradient ascent on the log-likelihood function

L[S, J,h] =
∑
it

[
Si(t+ 1)Hi(t)− log 2 cosh Hi(t)

]
(7)

The learning rules are constructed from the gradient, and a learning rate

η to ensure smooth convergence. For the simplest version, where the

external fields hi are constant, the learning rules are

δhi = η
[
mi − 〈tanhHi(t)〉t

]
(8)

δJij = η
[
〈Si(t+ 1)Sj(t)〉t − 〈tanhHi(t)Sj(t)〉t

]
(9)

where mi = 〈Si(t)〉t.

3.3 Applications to neural data

Both GLMs and Ising models have been applied to neural data. Recently,

a lot of effort have been put in investigating the significance of pairwise

correlations in networks of retinal ganglion cells.

As previously mentioned, Schneidman et al. (2006) [71] analyzed spike

data from a network of salamander retinal ganglion cells using the equi-

librium Ising model, and found that a model with pairwise correlations

captures the statistics of the observed data significantly better than a

model that assumes independent neurons. Similar results have been

found in analysis of data from a monkey retina. Pillow et al. (2008) [67]
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used a GLM with pairwise correlations in addition to the known stim-

ulus, and found that this model fit the data better than a model with-

out interactions. With a slightly different model, a ’stimulus-dependent

maximum entropy model’ (SDME), Granot-Atedgi et al. (2013) [78] also

found that including connectivity in their model improved model fit on

data from salamander retinal data.

Recently, using the non-stationary kinetic Ising model, the effect of a

time-varying external input on the inferred connectivity for retinal data

was investigated by Tyrcha et al. (2013) [65]. They analyzed a cortical

model dataset with known connectivity, and a dataset from a salamander

retina. The finding for the model data was that the kinetic Ising model

not only fit the data better when including the couplings, but also that

the inferred couplings was well correlated with the true connectivity of

the network. The story for the retinal data, however, was different: Here,

the finding was that the couplings were insignificant, and did not con-

tribute significantly to the quality of the model.

Three of the studies described above concluded that correlations are im-

portant, while the fourth one [65] found that they are not. As the authors

in [65] discussed, this is probably partly because they use a time-varying

external field that will not only account for visual stimuli to the cells, but

also all trial-to-trial reproducible correlated input to the recorded cells

from unrecorded cells, theoretically leaving only noise correlations to be

explained by couplings.

Here, we use the kinetic Ising model to analyze an in vivo 20-minute

recording of 27 grid cells. We investigate how the significance of corre-

lations in this dataset is affected by increasing the ’resolution’ of the ex-

ternal field to account for the spatial variation in firing rate. We do this

by defining the external fields of the kinetic Ising model in different ways.

Through the external fields we alter the assumed input to the cells, either
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spatially, or by other external input thought to modulate the firing of grid

cells. We also study whether the inferred couplings reflect layer specific

and modular structure that has been found experimentally.
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4 Methods

4.1 Data

A dataset from a 20-minute (1253 seconds) recording of 65 neurons in

the MEC area of a Long Evans male rat was analyzed [34], with the main

focus on the 27 grid cells of the dataset. The activity of the cells and

the local field potential (LFP) were recorded with a multisite approach

with 10 tetrodes. 27 cells distributed on 7 tetrodes showed grid-like fir-

ing. Recording locations are shown in Appendix A.2. The grid cells were

clustered according to spacing and orientation as described in [34].

Table 1: Distribution of grid cells on tetrode tracks

Cell no. Tetrode track

1-3 2

4-8 3

9-13 4

14-15 6

16-20 7

21 10

22-27 12

The spikes were binned into 10 ms or 20 ms timebins. From this, a ’spike

matrix’ of -1’s and 1’s was constructed, where a ’-1’ indicated that the cell

did not fire in time bin t, and a ’1’ indicated that the cell emitted one or

more spikes in time bin t.

Because of missing data regarding true head direction, we used running

direction as an estimate of head direction in the statistical test (Watsons

U2 test [79]) for head-direction modulation. We excluded all epochs with
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running speed below 5 cm/s.

4.2 Model definition and inference

To infer the connectivity in the network, we used the kinetic Ising model,

i.e. we assumed that observed spike trains comes from the probability

distribution in (5). To infer external fields hi and couplings Jij we maxi-

mize the likelihood function given in (7) for the given dataset under the

current model by gradient ascent. We construct different versions of the

kinetic Ising model by varying the external field in the following ways:

1. Global:

To allow the external field of the kinetic Ising model to account for the

spatial variations in the firing of the grid cells, we started by dividing the

environment globally into K square boxes. We defined three models with

increasing spatial resolution, with K = 2 x 2 in the first model, K = 3 x 3 in

the second model, and K = 4 x 4 in the third. For each K, we defined ex-

ternal fields hi,k, and a set of Cartesian coordinates, denoted Ak, defining

the spatial extent of box k.

The total field in this model was given by

Hi(t) = hi,k(t) +
∑
j

JijSj(t) (10)

where k(t) denotes that x(t), y(t) ∈ Ak, and x(t), y(t) is the position of the

rat at time t.

2. Circle fields:

We further increased the spatial resolution of the external fields by as-

signing each cell customized circular fields to closely match the cell’s

spatial differences in firing rate. The difference between the global and

the customized fields is illustrated in Fig. 4.2. Each grid cell received an
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individual number of circular fields, equal to, and in the same position

as, its firing fields. The fields were defined as follows:

Local maxima on the ratemap were defined as field centers. The center

of field k of cell i is denoted by ci,k. The local maxima were defined as

entries of the ratemap matrix with value greater than all its neighbour-

ing entries within a radius of 6 cm. To determine the radius ri,k of field k

for cell i, we calculated the average ratemap value on the circumference

of circles, denoted by Ec(r), starting with r = 1 cm. Then, we increased r

with 1 cm steps, and calculated Ec(r) in each step. This process was re-

peated until Ec(r) > Ec(r − 1). The radius of field k was set to half of the

radius at this turning point (ri,k = Ec( r2)).

The total field of cell i at time t in this model is

Hi(t) =

ni∑
k=2

αi,kΦ
[
r2i,k −

(
(x(t)− xk,i)2 + (y(t)− yk,i)2

)]
+ αi,1

ni∏
k=2

Φ
[(

(x(t)− xk,i)2 + (y(t)− yk,i)2
)
− r2i,k

)]
+
∑
j

JijSj(t) (11)

where Φ is the Heaviside function, x(t), y(t) is the position of the rat at

time t, ni is the number of fields for cell i, and ci,k is the center of field k

for neuron i.
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Figure 6: Illustration of difference between global and customized exter-

nal fields

3. Gaussian fields:

Here, we defined the field of each cell as a sum of a constant field and

two-dimensional Gaussian fields centered at the local maxima of the ratemap

(xk,i), and variance rk,i. The total external field for cell i at time t is

Hi(t) =
∑
k,i

αk,iexp

[
−
(

(x(t)− xk,i)2 + (y(t)− yk,i)2

r2i,k

)]
+ hi +

∑
j

JijSj(t)

(12)

where (xk,i,yk,i) and ri,k is the field center and radius, respectively, of the

fields we defined in the circle model for cell i.

4. Velocity field:

Motivated by the indications that grid cells perform path integration, we

also defined a ’path integration’ model, where we included a velocity field

in addition to a constant external field. Because of missing data regard-

ing true head direction of the animal, we used running direction as an

estimate of head direction when constructing the input vector.
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The total external field for cell i at time t in this model is

Hi(t) = hi +
∑
k

αikv(t)cos
(
φHD(t)− φHD,k

)
+
∑
j

JijSj(t) (13)

where v(t) is the average speed in time bin t, φHD(t) is the average head

direction in time bin t, and the set of φk’s are k=2 angles spaced by π
2

.

5. Theta (LFP) field

As mentioned in the introduction, it is known that some MEC cells show

theta modulation. This was the case for most cells in the dataset analyzed

here, as can be seen in Appendix A.1. This motivated us to construct a

model with theta input added to the external field. The LFP data was

fast-fourier transformed, and the maximum component between 4-12

Hz was set as the theta rhythm. From this, we constructed a theta input

vector, where each element was the angular average of the theta phase

in that time bin. In this model, we chose to use 10 ms time bins to get a

better estimate of the actual phase of theta.

The total external field for cell i at time t in this model is

Hi(t) = hi +
∑
k

αikcos
(
φLFP(t)− φLFP,k

)
+
∑
j

JijSj(t) (14)

where φLFP(t) is the angular average of the theta phase in time bin t, and

the set of φLFPk’s are k=2 angular phases spaced by π
2

.
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5 Results

We have inferred the functional connectivities in an in vivo recording of

27 grid cells, and investigated how the inferred functional connectivity is

affected by allowing the external field of a kinetic Ising model to vary in

space and time. We defined 8 versions of the external field. In Fig. 7-12,

histograms of the inferred couplings and external fields of the different

model versions are presented.
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Figure 7: Histograms of inferred couplings Jij (left, red: self-couplings)

and external fields hi (right) for the constant field model.
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Figure 8: Histograms of inferred couplings Jij (left, red: self-couplings)

and inferred external fields hi (right), for the 2 x 2 fields model (top row),

3 x 3 fields model (middle row), 4 x 4 fields model (bottom row).
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Figure 9: Histograms of inferred couplings Jij (left, red: self-couplings)

and external fields αi,k (right) for the circle field model.
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Figure 10: Histograms of inferred couplings Jij (left column, red: self-

couplings), external fields hi (middle column), and αik (right column)

for the Gaussian fields, where αik is the inferred strength of the k’th two-

dimensional Gaussian field of cell i.
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Figure 11: Histograms of inferred couplings Jij (top left, red: self-

couplings), external fields hi (top right), αi,1 (bottom left) and αi,2 (bot-

tom left) for the velocity field model. αi,1 and αi,2 is the inferred strength

of head-direction modulation in two perpendicular directions.
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Figure 12: Histograms of inferred couplings Jij (top left, red: self-

couplings), external fields hi (top right), αi1 (bottom left) and αi2 (bottom

left) for the theta field model. αi,1 andαi,2 is the inferred strength of theta

modulation in two perpendicular phases.

In all models, the external fields are negative and often strong, as one

would expect for datasets with very low firing rates - which is the case for

this dataset (see Fig. 13). The couplings are distributed around zero, and

the self-couplings are positive. With the refractory period in mind, posi-

tive self-couplings might seem counterintuitive. However, the refractory

period lasts for only a few ms, and we use 20 ms timebins. In addition,

grid cells are active when the animal is in the cell’s fields, and silent oth-
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erwise, i.e. the state of a grid cell in a time bin is likely to be equal to the

state in the previous time bin, which a stastistical model could interpret

as a positive self-coupling.

5.1 Model comparison

5.1.1 External fields

We modified the external field of the kinetic Ising model to include possi-

ble sources of signal correlations, such as the spatial dependence of grid

cell activity. We started by dividing the environment into subregions; 2 x

2, 3 x 3 and 4 x 4 boxes, and assigning each cell an external field per box.

First, we checked if the inferred fields mimic the spatial difference in the

firing of the cells. Below is a plot of average firing rate in a box vs. average

inferred field in the box, where the boxes have been sorted by firing rate.
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Figure 13: Average firing rate in box vs. average inferred field in the box.

The boxes have been sorted by firing rate. a) 4 boxes, b) 9 boxes, c) 16

boxes.

Results are similar for the circle and Gaussian fields (not shown), i.e. the

external fields capture at least part of the spatial variation in firing. We

then asked whether this has any effect on the couplings we infer.
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5.1.2 Couplings

In Fig. 14-15, the inferred couplings of all models with varying fields are

plotted against the inferred couplings in the stationary model.
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Figure 14: Inferred couplings from models with box fields (a-c) and circle

fields (d) plotted against the couplings inferred with constant external

field. Red: self-couplings.
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Figure 15: Inferred couplings from models with Gaussian fields (a), ve-

locity fields (b), and theta fields (c), plotted against the couplings inferred

with constant external field. Red: self-couplings.

The strength of the couplings decreases with increased ’spatial resolu-

tion’ of the external fields. However, the couplings are clearly stable be-

tween models. We asked if this could be caused by the self-couplings

which in most cases are strong and positive. As previously discussed,

when the animal is in the firing field of a grid cell, the cell tends to fire,

while when the animal is outside the cell’s fields the cell is silent; i.e. the

state of the cell in the previous timestep for most of the recording is equal

to the next - which could be explained by a positive self-coupling. We
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therefore tried setting all self-couplings to zero. First, we checked if the

couplings change within a model without self-couplings (Fig. 16).
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Figure 16: Jij inferred with self couplings plotted against Jij inferred

without self couplings in the constant field model.

Removing self-couplings had little effects on the couplings between cells

within a model. This indicates that the couplings are stable across mod-

els as well, which indeed is the case, as shown in Fig. 17 - 18:
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Figure 17: Inferred couplings from models with 2 x 2, 3 x 3, 4 x 4 and

circle external fields plotted against the couplings inferred with constant

external field. No self-couplings.
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Figure 18: Inferred couplings from models with Gaussian, velocity and

theta external fields plotted against the couplings inferred with constant

external field. No self-couplings.
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For the constant field model, we included all cells in the inference. Below

is a scatter plot of the couplings inferred on only the grid cells vs. whole

dataset.
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Figure 19: Couplings between 27 grid cells, inferred with constant exter-

nal fields from dataset of 65 cells vs. inferred from a subset with grid cells

only.
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5.1.3 Model quality

The apparent significance of the couplings is further supported by the

observation that the couplings inferred from the first half of the dataset

is correlated with the ones inferred from the second half.
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Figure 20: Couplings inferred on first half (10 minutes) of the dataset

plotted against the couplings inferred on the second half of the dataset.

a) Constant fields, b) 2 x 2 boxes, c) 3 x 3 boxes, d) 4 x 4 boxes.
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Figure 21: Couplings inferred on first half (10 minutes) of the dataset

plotted against the couplings inferred on the second half of the dataset.

a) circle fields, b) Gaussian fields, c) Velocity fields, and d) Theta fields.

We note that the behaviour of the animal is different in the two halves

of the datasets: it is more active in the first half (see Fig. 22). This may

to some extent explain the fact that the couplings inferred from the first

and second half is not too similiar. A trend in the difference between

the inferred couplings from the two halves is that some couplings are

stronger in the second half. This is particularly evident in the model with
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Gaussian fields (Fig. 21b.)

First half Second half

Figure 22: Trajectory of the animal in the first half (left) and second half

(right).

When comparing model quality in terms of log-likelihood and Akaike-

corrected4 log-likelihood (Fig. 23-24), it is evident that including cou-

plings in the models outperforms the models without couplings. This

can be seen as a decrease in likelihood along the x-axis. Fig. 23 also shows

(along the y-axis) that the quality of the models increase with increasing

’spatial resolution’ of the external fields. It further shows that allowing

spatial variation of the external fields improves the model fit more than

velocity and theta fields.

4The Akaike correction is a correction penalizing models with many parameters to

avoid over-fitting. The correction consists of subtracting the number of parameters

[80].
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Figure 23: a) Log-likelihood per neuron per time bin for all models. b)

Akaike-corrected log-likelihood per neuron per time bin for all models.

Blue: Gaussian fields, red: Circle fields, solid black: 16 fields, green: 9

fields, orange: 4 fields, dotted black: velocity fields, magenta: constant

fields.

In most of our analysis, we used 20 ms timebins. For the theta model, on

the other hand, we chose 10 ms time bins to get a better approximation

to the theta phase. Since we used smaller time bins for the model with

theta fields, the model fit of this model is plotted separately below.
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Figure 24: Log-likelihood per neuron per time bin for the model with

theta fields (black), and Akaike-corrected log-likelihood for the model

with theta fields (blue), both of which inferred with the spike data binned

in 10 ms timebins. For comparison, the log-likelihood per neuron per

time bin with 10 ms time bins is shown for the model with constant fields

(magenta), and the model with circle fields (red).

5.2 Modules and connectivity

We asked how the inferred couplings relate to experimental results, and

to what has been suggested in grid cell models. First, we compared the

coupling strength within and between modules. One would expect, based

on the experimental indications that modules can operate independently,

that the coupling strength within modules is stronger than that between

modules. To investigate this, we calculated the spacing and orientation

of the cells. Based on this, we were able to separate three clusters of cells

(see Fig. 25).
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Figure 25: Center of mass of the six peaks nearest the center in the auto-

correlograms for the 27 grid cells. Green: Module 1 (8 cells). Red: Module

2 (7 cells). Blue: Module 3 (12 cells).

We assumed that these clusters represent three modules. The compar-

ison of coupling strength between and within modules is shown in Fig.

26:
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Figure 26: Histograms of couplings within (a) and between (b) modules

(top). For clarity, the histograms are put on top of each other (bottom).

The histograms in Fig. 26 indicate that the inferred couplings are stronger

within modules than between modules, supporting the hypothesis that

each module represents a strongly connected network.
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5.3 Spatial phase dependence of couplings

As discussed in the introduction, some attractor models of grid cells have

suggested that the connection strength between grid cells should be cor-

related with spatial phase distance. This motivated us to check if there is

a relationship between the inferred couplings and the spatial phase dis-

tance between the cells. This relationship is shown in Fig. 27:
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Figure 27: Couplings vs. phase distance in the three modules. a) Module

1 (8 cells). b) Module 2 (7 cells). c) Module 3 (12 cells). Colors correspond

to colors in Fig. 25.

The relationship between coupling strength and spatial phase distance

shown in Fig. 27 resembles a Mexican hat-like functional connectivity,

with similar amounts of excitation and inhibition, contradicting exper-

imental evidence of an all inhibitory network [44, 45]. The functional

connections we have inferred, however, do not show any trend towards

being negative. We will get back to this in the discussion.
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5.4 Theta modulation

Since almost all the cells seem to have some theta phase preference, the

theta oscillations could be a source of signal correlation. We looked for

a relationship between preferred phase of theta and coupling strength.

The cells could be clustered in two separate groups, with preference for

opposite phases of theta. A histogram of couplings within and between

these two ’theta clusters’ are shown in Fig. 28.
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Figure 28: Histograms of couplings inferred with an external spatial

Gaussian field within (a) and between (b) clusters of cell that have op-

posite theta phase preference (top). For clarity, the histograms are put

on top of each other (bottom).
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There is a trend in the inferred couplings of these clusters: the histogram

of couplings between cells that prefer the same phase of theta is skewed

towards positive values, whereas the opposite is true for couplings be-

tween cells that show preference to opposite phase of theta. This obser-

vation led us to construct the theta phase model. However, as shown in

Fig. 29, this effect is not removed by adding an external theta field:
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Figure 29: Histograms of couplings inferred with an external theta field

within (a) and between (b) clusters of cell that have opposite theta phase

preference (top). For clarity, the histograms are put on top of each other

(bottom).
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Adding a theta field does not remove the observed relationship between

phase preference and sign of couplings. However, our attempt at model-

ing theta input was limited in that we have to use the average theta phase

over 10 ms.
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6 Discussion and Conclusion

In this project, the kinetic Ising model was used to reverse engineer the

functional connectivity of a network of 27 grid cells recorded in vivo.

To take the spatial firing variations into account, several versions of the

model was developed by modifying the external field of the model. Com-

ponents with different spatial resolution was added to the external field.

In addition, we developed a model with a velocity field, and one with LFP

theta fields, both of which are factors suggested to influence the activity

of grid cells.

In all models, including the couplings improved the model quality. In

other words, any model with couplings included did better at explaining

the statistics of the dataset than the same model without couplings.

We found that the couplings remain stable across models. We asked if

this could be caused by the positive self-couplings, which, as previously

discussed, can explain some of the spatial variation in firing of the cells.

Removing the self-couplings, however, did not affect the couplings be-

tween cells. Inferring on the entire dataset (65 cells) did not affect the

couplings between grid cells either.

Further support for the significance of the couplings comes from the ob-

servation that the couplings inferred from the first half of the dataset are

correlated with those inferred from the second half. We noted that the

behaviour of the animal differs in the two halves of the dataset. The cou-

plings tend to be weaker in the first half than in the second half (see Fig.

20-21; especially evident in Gaussian fields model (Fig. 21b)). Consider-

ing the firing of grid cells, this is not necessarily surprising. In the second

half, the animal more frequently visits the lower left corner in the second

half. If the animal stays more or less in the same location, one would ex-

pect the grid cells with fields in that location to fire, while the grid cells
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that do not have a field in that location will likely be mostly silent, result-

ing in a stronger correlation between the active and between the silent

cells.

The strongest effect on the couplings seems to be increasing the resolu-

tion of the spatial external fields. When we allow for spatially varying ex-

ternal fields, the strength of the couplings decreases with increased spa-

tial resolution, and the model fit increases. At the maximum spatial reso-

lution - the Gaussian field model - including the couplings still improves

the quality of the model.

The stability of the couplings could be caused by an unobserved corre-

lated input to the cells. As Tyrcha et al. (2013) [65] points out, includ-

ing the known stimulus in the model, as in [67], will account for signal-

correlations, while to account for all trial-to-trial-consistent input to the

cells from the unobserved part of the network, one should infer with a

’full resolution’ time-varying field, as was done in [65]. This requires sev-

eral repeats of the same trial, which is difficult to make for an animal

exploring a 2D environment.

The fact that the couplings are stable across models, and that they im-

prove the quality of all models, indicates that they are significant. This

significance can, as we just discussed, stem from that they explain un-

observed correlated input to the cells. A candidate for such input is the

LFP theta phase preference, which we found to be related to coupling

strength. Our attempt at adding LFP theta to the external field did not

remove this effect, however. Another possible reason that the inferred

coupling are so stable is that they are related to the real functional con-

nectivity of the network.

When comparing couplings within vs. between modules, we found indi-

cations of stronger couplings within than between modules. This is con-

sistent with what one would expect from experimental indications that
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modules can operate independently.

Our results also show indications of a relationship between coupling strength

and spatial phase distance between firing fields. This supports the con-

tinuous attractor models, all of which assume some relationship between

spatial phase distance and connectivity. In Fig. 27, where the coupling

strength is plotted against phase distance, there seems to be a trend to-

wards a ’Mexican hat’-like connectivity - in contrast to the recurrent inhi-

bition found experimentally between the main grid cell candidate, namely

the stellate cells of layer II. However, evidence exist that pyramidal cells

of deeper layers also have grid pattern. Between these cells, direct ex-

citatory connections have been indicated. It is not possible to confirm

whether the grid cells in our dataset are stellate cells, but we used the

available information to look for indications of what cell types could be

present in the data. Considering the tetrode recording locations (see Ap-

pendix A.2), many of these cells are probably recorded from deeper lay-

ers. In addition, there are some layer-specific functional differences that

can indicate what layer a grid cell may or may not belong to. As shown in

Appendix A.1, some of the cells show head-direction preference, which is

a property rarely observed in the LII population. Many of the cells show

theta phase locking (see Appendix A.1) - a property observed in LIII cells.

Taken together, this indicates that many of the cells in this dataset might

not be stellate cells.

In this dataset, we have not detected an all-inhibitory network. This does

not necessarily contradict any experimental findings, since the recurrent

inhibition was found between stellate cells of layer II [44], which prob-

ably constitutes only a minority of the cells in this dataset. The dataset

analyzed here likely contains a majority of grid cells in deeper layers. Our

results could indicate that the functional connections between the grid

cells of layer III and deeper layers decreases with spatial phase distance.
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[78] Granot-Atedgi E, Tkačik G, Segev R, and Schneidman E. Stimulus-

dependent maximum entropy models of neural population codes.

PLoS Comput Biol, 9(3), 2013.

[79] Batschelet E. Circular statistics in biology. Academic Press London,

1981.

71



[80] Akaike H. A new look at the statistical model identification. IEEE T

Automat Contr, 19(6):716–723, 1974.

72



A Appendix

A.1 Functional characteristics of the grid cells
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Figure 30: Ratemaps (column 1), autocorrelogram (column 2), head di-

rectional tuning (column 3) and distribution of spikes within the theta

cycle (column 4) for cell 1-5.
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Figure 31: Ratemaps (column 1), autocorrelogram (column 2), head di-

rectional tuning (column 3) and distribution of spikes within the theta

cycle (column 4) for cell 6-10.
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Figure 32: Ratemaps (column 1), autocorrelogram (column 2), head di-

rectional tuning (column 3) and distribution of spikes within the theta

cycle (column 4) for cell 11-15.
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Figure 33: Ratemaps (column 1), autocorrelogram (column 2), head di-

rectional tuning (column 3) and distribution of spikes within the theta

cycle (column 4) for cell 16-20.
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Figure 34: Ratemaps (column 1), autocorrelogram (column 2), head di-

rectional tuning (column 3) and distribution of spikes within the theta

cycle (column 4) for cell 21-25.
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Figure 35: Ratemaps (column 1), autocorrelogram (column 2), head di-

rectional tuning (column 3) and distribution of spikes within the theta

cycle (column 4) for cell 26-27.
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A.2 Tetrode recording locations
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Figure 36: Nissl stained saggital sections showing the extent of grid cell

recording locations. The exact location of the tetrode tracks (TT) at the

time of the recording of the dataset analyzed in this project is not known,

but the dorsoventral extent of the recording locations of grid cells is in-

dicated by red arrowheads. The number of grid cells (n), and number of

modules (M), associated with each tetrode track is shown. Adapted from

[34].
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