
Smart Data Driven Quality Prediction for Urban Water
Source Management

Di Wu,a,1, Hao Wangb,2,∗, Razak Seidu,a,3

a Norwegian University of Science and Technology, Ålesund, Norway.
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Abstract

A water supply system that integrates water source management, treatment

and distribution is a critical infrastructure in urban areas all around the world.

The water quality is becoming a key factor to evaluate life quality for local

residents. However, the urban water quality control is facing more and more

challenges from growing human population, industrial and agricultural pollu-

tion. Traditional water quality research mostly focused on separate aspects,

such as different types of physical, chemical or biological indicators. These

works lack of a comprehensive coverage of all aspects, which undermines the

accuracy of the predictive models.

In this paper, we build a smart data analysis scheme to analyze and predict

the water quality, considering all the water quality standard indicators in a

comprehensive environment. Instead of data output from water treatment, we

collect the raw water data directly from water sources, which are the origins
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of water supply systems. By doing so, we have better coverage of the whole

process and better chances of detecting anomalies and risks earlier. We design

two models to predict the water quality, especially for the most critical biological

indicators. The two models are (1) adaptive learning rate BP neural network

(ALBP) and (2) 2-step isolation and random forest (2sIRF) considering different

features of these indicators. We applied these models in the practical urban

water supply systems of Oslo and Bergen in Norway. The data was collected

directly from the water sources in the two cities for over 7 years. The results

show that ALBP is theoretically simple and easy to implement. 2sIRF considers

the risk distribution and shows higher prediction accuracy. In addition, we

perform the correlation analysis of all the indicators and and the importance

analysis over different indicators. The domain experts have confirmed that this

work is meaningful for future risk control and decision support in urban water

supply systems.

Keywords: Water Supply System, Smart Data Analysis, Water Quality

Control, Correlation Analysis, Adaptive Learning Rate BP Neural Network

(ALBP), 2 step Isolation and Random Forest (2sIRF).
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1. Introduction

Water covers 71% of the Earth’s surface, mostly in the four oceans. But

only a small portion (3%) is fresh water. Most of the fresh water is in icecaps,

glaciers (69%) and groundwater (30%). All the lakes, rivers and swamps com-

bined merely account for 0.3% of the total reserves [1]. The importance of water5

as a resource has been acknowledged by all over the world for a long time. Cur-

rently, there are still more than 1.2 billion people lacking access to clean drinking

water. This has resulted in a new concept known as Water Stress. Fresh water

provides people’s fundamental requirements for agriculture, industry and living,

especially in modern cities. The easily accessible freshwater, which is mainly10

groundwater and surface water bodies are significantly prone to chemical and
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microbial contamination. Currently, more than 631 million of the global popu-

lation rely on drinking water sources that are seriously contaminated. In 2015,

91% of the world’s population had improved their drinking-water sources, com-

pared with 76% in 1990. An important note is that these figures depend a lot15

on the various national or regional water quality standards.

The 21st century has been a continuous process of global urbanization. Ac-

cording to the United Nations Department of Economic and Social Affairs (UN-

DESA), the majority of the world population now is living in cities, and this

proportion will go on to develop with projections of 68% by the year 2050 [2].20

It is often said “water is life”, but another truth is Water Quality is Health.

The United Nations General Assembly published in September 2015, the Sus-

tainable Development Goals (SDGs). It presents a collection of 17 global goals

as a general vision of achieving a higher level of human health and well-being

worldwide by the year 2030. In this document, Clean Water and Sanitation25

is ranking as Goal 6 [3] in order to raise the global concerns of water quality.

However, the need to improve water quality to safeguard public health in urban

water supply remains a major challenge.

Water supply is one of the most traditional industries to provide drinking

water for city lives. The prevalent urban water supply process can be divided30

into 3 parts, including: water source management, water treatment and water

distribution. Water source management refers to the control of water origins

in urban areas. The present water sources in urban areas are mainly ground

water, such as lakes, rivers or underground water. This is the first step for water

quality control, however often neglected based on geographical or economical35

factors. Water treatment is the key step in urban supply systems. Current

routine monitoring of water quality is carried out at water treatment plants

with the purpose of assessing risk levels and tendencies, based on which effective

management decisions are taken for the provision of safe drinking water to

the public. Water distribution is to carry treated water to the end users by40

distributed pipes in the city.

The urban water quality is facing more and more challenges from industrial,
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agriculture and social pollution. Extensive anthropogenic activities in many re-

gions of the world result in compelling water quality deterioration. To addressed

this situation, several key directives and guidelines for water quality improve-45

ments such as European Union Water Framework Directive [4], Clean Water

Act [5] in United States, the World Health Organization (WHO) drinking water

quality guidelines [6] have been developed. The valid implementation of these

principles depends on the establishment of a robust and verifiable monitoring

regime of water supply systems, especially in water source management. Good50

water quality control in the source management enables earlier detection of risks

so the supply system can have longer time to react to the risks.

Water quality refers to the chemical, physical, biological, and sometimes

radiological features of water. In the face of these conventional preventive mea-

sures, cases of waterborne illnesses resulting from the use of both drinking and55

recreational water are regularly reported worldwide. It is often evaluated by var-

ious water quality indicators. Among these indicators, concentrations of fecal

indicator organisms (FIOs) in raw water provide an overview of potential levels

of pathogens in the water source, and form the basis for optimizing the follow-

ing treatment procedures to prevent potential disease outbreaks. In addition,60

real-time water quality monitoring systems are applied to detect variations in

water source quality such that appropriate management strategies and actions

can be implemented.

Complex interactions among physical and chemical indicators of water make

it difficult to identify precisely the effect of each indicator on the concentra-65

tions of the FIOs in water [7]. Moreover, typical water treatment workers and

managers may not entirely have skills for analysis and exploration of data col-

lection [8]. Accordingly, showing the patterns, tendencies and relationships

between the water quality indicators in simple, convenient way has the poten-

tials to convey the complex nature of the data that can be easily followed and70

interpreted by water supply workers, managers and researchers. Furthermore,

water quality control is based on the trends of these indicators. These trends

can affect the whole process of the local water treatment plant.
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Most of the national water quality standards rely on biological indicators.

They are different for various geographical, industrial or development stage con-75

ditions of different regions. Typical biological indicators can include coliform,

plecoptera, mollusca, escherichia coli, ephemeroptera, trichoptera, etc. In prac-

tice, most of them are inspected with sample-based testing. The samples are

taken to bacterial culture in the laboratory, and we can obtain the results from

several hours to a full day. If we consider the effect for bacteria on human’s80

body, these biological indicators are much more dangerous compared to others.

This issue has been an important challenge in water supply industry.

Urban water supply has been included in all the new Smart City designs.

The new generation of Smart Water Supply systems are pictured to integrate

various sensors, controllers, cloud computing and data technologies in order85

to provide safe, stable and sufficient water for the increasing requirements in

many enlarging cities. At present, more and more advanced ubiquitous sensing

technologies bring efficiency, convenience and new insights for almost all of our

daily lives [9]. They offer the ability to detect, transmit and measure many

environmental indicators, from delicate ecological and natural resources to ur-90

ban surroundings. In many smart city designs, water supply systems are also

integrated with various sensors in order to manage resources and monitor water

quality efficiently. This design makes data to play an important role for our

better understanding toward existing systems. In Norway, we deployed many

different sensors in the water source areas, including multiple sensors for pH,95

temperature, conductivity, etc. The massive data collected by those low-cost

sensors plus the recent data analysis technologies, help us greatly to improve

the water quality control process. One of the key issue in water quality control

is for biological indicators. Until now, there is very few appropriate microbial

sensors to directly measure biological indicators [10].100

This paper proposes a smart data-driven framework and related algorithms

to support quality prediction in urban water supply systems. It takes the advan-

tages of the historical data resources in the industrial process, and builds feasible

mathematical models to predict biological water quality indicators. We design
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two algorithms for water quality prediction, namely adaptive learning rate BP105

neural network (ALBP) and 2 step isolation and random forest (2sIRF). For

application, we select two typical cities, Oslo and Bergen, from Norway to ap-

ply our methods. We present an in-depth analysis of the relationship between

physical, chemical and biological indicators. The results are compared techni-

cally for prediction accuracy and time efficiency. In addition, we also provide110

the insight analysis for the urban water supply domain.

To our knowledge, this is the first effort to integrate data-driven technolo-

gies with smart water supply system for water quality control. This work is

essentially a first step towards developing the necessary tools to improve the

comprehension of the interactions among the water quality indicators and how115

they result in varying the levels of FIOs in raw water.

There are several technical contributions for this research. (1) It takes the

advantage of the modern big data technology to solve a traditional water quality

control question with low costs and untouched historical data. (2) It builds the

connection between easily accessible physical and chemical indicators with bio-120

logical indicators, which currently are not possible for real time measurements.

(3) It provides risk control and decision support for urban water supply systems

and our methods have been applied and tested in the real-world applications.

This can avoid the questions such as laboratory data reliability and applicabil-

ity. Regular treatment methods usually include coagulation and flocculation,125

sedimentation, filtration, and disinfection. These steps in the treatment plants

can adjust to the development and prediction of water quality indicators, and

improve drinking water quality in the supply systems.

2. Related work

This work is interdisciplinary by bridging data analysis and water quality130

control. In this section, we compare this work with related work in these fields.
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2.1. Smart Water Supply

According to World Health Organization (WHO) [11], drinking water supply

is still a worldwide challenging issue. Norway has an extensive coverage of drink-

ing water sources in most of the urban areas. In order to ensure that drinking135

water quality is sustained, the government adopts strict quality guidelines [12]

that comply with the European Water Directive Framework. The Norwegian

drinking water regulations nowadays mainly depend on the water control in

treatment plants. They require operators in the water treatment plants to con-

sistently monitor various quality indicators in their raw and treated water.140

Traditionally, the water quality monitoring approach has been employed to

achieve these drinking water requirements. This approach primarily involves

the interlinked steps of sample collection, transportation/institution analysis,

laboratory analysis reporting [13]. It is particularly a cumbersome process and

very time-consuming when applied to biological/microbial indicator organisms145

with respect to public health concerns. For example, following a contamination

event in a water supply system, it takes at least 24 hours to obtain results on all

the indicator organisms. Such delay in the identification of microbial organisms

can inevitably lead to major disease outbreaks. For instance, a waterborne

disease outbreak happened in Bergen 2004, partly attributed to the failure of150

the water utility operators to identify the aetiological agent in the treated water.

To build smart water management systems, Yuan et al [14] reviewed the

instrumentation, control and automation (ICA) research in the sub-systems of

urban water systems.Dogo et al [15] designed a framework for water manage-

ment using blockchain and IoT technologies. Petri et al [16] proposed an intel-155

ligent analytics system to optimize catchment flow for national fishery. Chang

et al [17] built a platform to analyze flood inundation with hydroinformatics.

Sven et al [18] reviewed the data-driven technologies in urban water manage-

ment systems.

In water quality control, there are some trial work to use data for predictions.160

Kang et al [19] reviewed the possible data-driven technologies in water quality

analysis. Holger et al [20] designed an ANN to predict salinity in the River
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Murray, Australia. Based on the data collected at Astane station in Sefidrood

River, Iran, Orouji et al designed different models such as ANFIS, Genetic Al-

gorithm and Shuffled Frog Leaping Algorithm to predict chemical indicators165

(e.g., sodium, potassium, magnesium, etc [21][22][23]. Chang et al [24] pro-

posed a systematic analysis scheme to analyze and predict the value of NH3-H

for Dahan River basin in Taiwan. Our team in NTNU has also developed an

adaptive Neuro-Fuzzy inference system to predict norovirus concentration in

drinking water supply [7][25] and frequency analysis[26].170

However, smart water management systems are concentrating on the sup-

ply and consumption balance for water supply, not directly related with water

quality. For quality control research, most of these works are aiming for single

value prediction. They have not addressed well the difficulties of data collec-

tion and efficiency in industrial process. In addition, the connections between175

different water quality indicator groups, especially for biological bacteria have

been ignored.

2.2. Data-Driven Technologies

The United Nations SDGs for water and sanitation targets for more detailed

monitoring and response to understand the coverage and quality of safely man-180

aged water sources. Data has to be collected by various sensors in the industrial

process. Recently, there have been significant development and applications of

sensing technologies in different sectors for the detection and transmission of vi-

tal data on key indicators [9][27][28]. At the same time, different types of sensors

also attracted a lot of attention in water quality sections. Currently, most water185

treatment plants have also deployed various sensors that enable plant operators

to collect and collate real-time data on a wide range of physical and chemical

water quality indicators.

For environment analysis, Wang et al [29] has analyzed the air pollution in

2017. More precisely, Luis Andres et al [10] in 2018 reviewed different types190

of sensors to monitor water and sanitation interventions, including satellite re-

mote sensing, aerial vehicles, water quality sensors et al. In 2007, Le Dinh et
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al [30] designed a remote sensor network for outdoor water quality monitoring in

Queensland, Australia. They used real-time sensors to test indicators like tem-

perature, conductivity, salinity, the level of the underground water table, etc.195

In order to meet Water Framework Directive in European Union (EU), O’Flynn

et al [31] proposed a Smart Coast system to monitor water quality indicators

including temperature, phosphate, dissolved oxygen, conductivity, pH, turbidity

and water level in Ireland. More recently, Yagur-Kroll et al [32][33] introduced

general bacterial sensor cells for water quality monitoring. The most commonly200

deployed real-time sensors in Norwegian water treatment plants are for pH,

temperature, turbidity, conductivity, alkalinity and color. There have also been

attempts to establish real-time sensors for fatal indicator bacteria. However,

the fatal indicator sensors have proven to be significantly flawed in terms of

sensitivity and specificity. In order to prevent waterborne disease outbreaks,205

mathematical modeling approaches are being applied to predict the occurrence

and concentrations of fatal indicator bacteria and pathogenic organisms using

real-time physical and chemical water quality data.

For data technology itself, as we can see, a big amount of data is gath-

ered by these numerous sensors that need to be analyzed using robust meth-210

ods [34][35][36]. The challenge for water quality monitoring is to find the es-

sential features from those heterogeneous and unstructured data sets to build

the corresponding model. Traditional big data processing techniques including

exploratory data analysis (EDA) methods [37], such as principal component

analysis (PCA) [38], Singular value decomposition (SVD) [39]. But they cannot215

integrate domain knowledge. Therefore, in order to find efficiently the useful

insight for modeling process, we can also explore the new machine learning al-

gorithms. During the learning process, it is convenient to dynamically integrate

with appropriate domain knowledge models. The commonly used machine learn-

ing algorithms include logistic regression [40], supporting vector machine [41],220

as well as reinforcement learning [42]. The new insight we find from the data

can support both the monitoring and prediction of water quality.

Most of these methods have different requirements to the problems, such as
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heuristic knowledge, concrete models, large scale of training sets, ect. In this

study, we will first analyze our problem, and then adapt appropriate methods225

according to the requirements.

3. Problem Analysis

3.1. System Description

A water supply system consists of the interlinked steps of source, treatment

and distribution. In order to preserve the water quality for end users, all these230

steps have to be well managed within a well articulated water safety planning

framework. Water sources are the origins of supply chain. They play the key

role in water quality control. Raw water are collected from the catchment areas

such as lakes. The monitoring and control in the catchment area is also an

industrial process.235

In practice, waste water from residents and industry, natural rainfall will also

drop into the water source. Some of these flows will infiltrate into the ground,

some will go into the lake as overland flow. In addition, storm water can affect

this process by leading the water away from the catchment area. The water

source has to be protected from excessive contamination from point and non-240

point sources of pollution through better catchment management practices. The

water treatment processes have to be well managed against potential failures;

and the water distribution network has to be secured against potential intrusion

of contaminants.

In general the main data that have been used to achieve the objective of245

effective safety planning of the water supply system include:

• Physical data. Drinking water supply has to monitor physical attributes in

water quality for the whole process, including temperature, conductivity,

total suspended solids (TSS), transparency, total dissolved solids (TDS),

taste of water, etc.250
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• Chemical data. Standard chemical water quality indicators include pH,

biochemical oxygen demand (BOD), total hardness (TH), heavy metals,

nitrate, orthophosphates, pesticides, surfactants, etc.

• Biological data. Biological indicators contain different bacteria figures,

such as ephemeroptera, plecoptera, mollusca, trichoptera, escherichia coli255

(E.coli), coliform bacteria, etc.

• Environmental data. Environment data includes the whole process of

water supply. It includes geographic information system (GIS), weather,

hydrology, soil, ecology, etc.

Data used in this study were collected from two cities in Norway, Oslo and260

Bergen. The locations of these two cities and their water sources are shown in

Figure 1. In Oslo, the Maridalsvannet lake serves as the main water source to

supply the majority population living inside the city. Raw water from the lake

flows to Oset Water Treatment plant (WTP). This plant has a capacity of 3.9 x

105 m3/day and provides drinking water to about 90% of the citizens of Oslo.265

In Bergen, the main water source is Svartediket lake which lies in the east of

urban area. It is an artificial lake in Hordaland. These two lakes in Oslo and

Bergen are both shallow. This means they are prone to contamination from

anthropogenic activities within its water catchment area. In this study, weekly

raw-water samples are taken from these lakes and analyzed for physical-chemical270

and fecal indicator organisms.

The current water quality monitoring regime employed by these two water

source operators are collecting samples every week. The samples in Oslo and

Bergen are taken from the main three inflow points individually, as the red points

shown in Figure 1. All samples are transported to an accredited laboratory275

where they are analyzed for relevant water quality indicators. We checked the

data sets from these two lakes and found the water quality indicators are selected

differently. Oslo Maridalsvannet lake has taken a complete records, including

11 indicators, as follows. Note that data from Bergen does not include the

indicators shown with *.280
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SVARTEDIKET LAKE

Figure 1: Maridalsvatnet Lake and Svartediket Lake are two main drinking water sources for

the city Oslo and Bergen in Norway.

• Physical indicators:

– Water temperature* (◦C)

– Conductivity (mS/m)

– Color (mgPt/l)

– Turbidity (FNU)285

• Chemical indicators:

– pH

– Alkalinity* (mmol/l)

• Biological indicators:

– Coliform bacteria (cfu/100 ml)290

– Escherichia coli bacteria (cfu/100 ml)

– Intestinal enterococci bacteria (cfu/100 ml)
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– Clostridium perfringens bacteria* (cfu/100 ml)

• Other indicator:

– Time (MM/DD/YYYY).295

The Geographic Information System (GIS) data for these two locations are

important in some regional analysis as well. Here we give as follows:

• Maridalsvannet: 59.9806◦N, 10.7718◦E.

• Svartediket: 60.3860◦N, 5.3667◦E.

3.2. Technical Challenges300

In order to predict water quality tendencies and analyze the mechanisms

behind these data resources, we are facing several challenges:

• Data Sparsity: the pool of available data is often very large if you consider

both in location and time domains. In practice, however, overlap between

two conditions (such as the same time, same location) is often very small or305

none based on two main reasons. First, operators that take the samples do

not follow the standard procedure (incomplete indicator collections, and

missing data). Second, data standard has been changed over last years

(indicators have been added or removed). These make the data set sparse.

These are very common situations in water quality data collections.310

• Data Synchronization: current sensing technologies can support real-time

data collection over most of the physical and chemical indicators for water

quality. Biological indicators are directly related with our health. But the

tests for different bacteria usually take longer time, from several hours to 1

day. These make the data set difficult to synchronize different indicators.315

• Risk Analysis: the final objective of drinking water quality control is to

improve health. Some types of bacteria can cause significant disease out-

breaks. When they broadcast in the drinking water distribution system,

the consequences can be irreversible. Time and accuracy are the two major

questions for risk detection and control in water quality.320
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4. Data-Driven Framework

In this paper, we propose a smart data driven framework to analyze and

predict water quality, as shown in Figure 2. In this framework, the whole

process can be divided into five parts.

Figure 2: Smart Data Driven Framework for Water Quality Control

Data collection involves the collection of data from the sensor network and325

laboratory test results in the water source monitoring systems. The concrete

indicators follow the local regulations and are limited by the sensor types. The

data pre-processing usually involves transforming raw data into a computable

format. Here we have three steps in pre-processing.
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• Cleansing is based on the fact that data collection for water quality indica-330

tors is often loosely controlled, resulting in out-of-range values, impossible

data combinations, missing values, etc. So, we have to detect and remove

those meaningless values using anomaly detection filters.

• Synchronization is needed because different indicators are collected in a

hybrid frequency environment. The data needs interpolation and spec-335

trum analysis to be synchronized together.

• Normalization is the result of the quality indicators in water system usually

have different units. It is meaningless to analyze them on the same level.

After the data is prepared, we need to find the key factors from different

dimensions of water quality indicators by primary correlations analysis, prob-340

ability distribution and generate training and testing data sets. Correlation

Analysis is used to provide some heuristic knowledge for feature selection. In

the beginning, we will use direct Pearson correlation distance to find initial re-

lationships. One thing worth to notice is with our model 2sIRF, it can generate

the correlations as a side results of water quality indicator predictions. We will345

compare the two different results.

The selected features will be separated as training and testing data sets.

Within each set, the data is divided into input and output. Input data include

physical, chemical and environmental indicators. Output data include various

biological indicators.350

With the training set, we will generate two prediction models from input

and output. Considering the multiple dimensions of nonlinear properties in the

water quality indicators, we build adaptive learning rate BP neural network

(ALBP) and 2 step isolation and random forest (2sIRF) models.

The final step is to take these models and predict water quality indicator355

tendencies in the future and test them in the testing set for prediction accuracy.

Especially for sensitive biological bacteria, the models can provide early warning

to the following procedures. Also, in practice, the models need to be evolved

with evaluation.
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5. Smart Data Driven Water Quality Prediction Model360

5.1. Feature Correlation Analysis

Prior to each data-driven water quality modeling exercise, features of the

data set are examined through descriptive analysis in order to find some possible

heuristic knowledge. This often comprises a summarized quantitative descrip-

tion of the raw data set. Conventional descriptive statistical measures include365

data distributions, measures of central tendencies, and measures of dispersion.

In addition, the relationships between features can be determined through cor-

relation analysis.

In this study, we apply Pearson’s correlation coefficient to explore prelimi-

nary relationships among the water quality indicators. This means to provide

pilot insight into effects that each of the physical and chemical indicators of

the raw water has on the fecal indicator organisms. Pearson’s correlation is a

measure of the magnitude of a linear relationship between a paired data set.

The coefficient can be computed as in Equation 1:

r =

∑
XY −

∑
X

∑
Y

N√
(
∑
X2 − (

∑
X)2

N )(
∑
Y 2 − (

∑
Y )2

N )
(1)

The coefficient r has the following constraint:

−1 ≤ r ≤ 1

In this equation, r is the result of coefficient. X and Y are two different types

of indicators. N is the number of recordings. Generally, positive values of r370

indicate the presence of positive linear correlation between the paired data set

whereas negative values denote negative linear correlation. Thus, how close

the coefficient is to 1 or -1 gives an indication of the strength of the linear

relationship between a pair of parameters. When no linear correlation exists

between a pair of data variables, r is zero.375

5.2. Pre-Processing

Data Pre-Processing in this framework is divided into three parts, as cleans-

ing, synchronization and normalization.
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For Data cleansing in this framework, we first use a selection equation to

find suspicious data according to the average values of water quality indicators,380

and then remove the obvious wrong data or correct them by the domain experts

(verified at least from the operator and water quality expert).

Assume xi(n) to be the recordings of water quality indicator i at serial

number n. The suspicious data set is selected according to the Equation 2. In

this equation, Li and Hi are low and high thresholds for the difference between385

the recording xi(n) and its average value. These thresholds are set by the

domain experts.

S = {xi(n) | Li < (xi(n)− xi(n)) < Hi} (2)

Data synchronization we directly use the time information in the data set.

We synchronize the data according to the time unit. For example, if the data

was collected weekly, then we synchronize the recordings of different indicators390

in the same week (Monday to Sunday) as the same time. To compare the work,

we remove the recordings which are not complete (lack of indicator information).

As we listed in Section 3, different water quality indicators have diversified

units. This is because two main reasons. First the indicators represent different

concrete practical meanings. Second, even for the same type of indicators in395

different countries or regions, they can have different units according to the

local standards.

Hence normalization is an inevitable step to process the data. In this work,

we use Equation 3 to normalize the raw data. In this equation, Ni is the total

number of indicator xi.400

x
′

i(n) =
xi(n)− xi(n)√∑Ni
n=0(xi(n)−xi(n))2

Ni

(3)

And, we have,

xi(n) =

∑Ni

n=0 xi(n)

Ni
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5.3. Adaptive learning Rate BP Neural Network

The concept of Artificial neural networks (ANN) comes from biological neu-

ral networks in human’s brain. It is one of the most important fundamental

framework for modern machine learning algorithms. An artificial neural net-

work is composed of a group of connected artificial neurons. Generally they can405

be organized by different functional layers (input layer, hidden layer, output

layer). In this study, we choose ANN as the basic prediction method for water

quality based on several inherent advantages as follows:

• ANN does not ask for prior knowledge. As we explained in Section 3,

the physical and chemical interactions between various water quality in-410

dicators have not been well understood, so we can not provide a rigorous

theoretical model to predict biological indicators.

• ANN has self learning ability. By error back propagation structure and

relevant algorithms, ANN can learn in the training process. In practice,

we are using ANN as a supervised regression for our prediction problem.415

• ANN can support parallel output computation. The water quality predic-

tions are not facing unique indicator. ANN method are not sensitive to

the output numbers. So we can adapt ANN models according to different

national or regional standards.

• ANN is suitable for highly nonlinear problems, especially on regression.420

For biological indicator predictions, the problem is typically multi-output

nonlinear. ANN has been designed for using massive structured neurons

to build nonlinear relationships between inputs and outputs.

In this study, by the virtue of above reasons, we chose ANN as the basic

framework to solve our problem. Furthermore, Back Propagation (BP) is a425

broadly used model in ANN practice. Its main conveniences rely on solid the-

oretical foundation, versatility and simple learning rules assumption. But clas-

sical BP neural network with unique learning rate can slow down the training
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and easily fall into local minimum value. To avoid these problems, we design

an adaptive learning rate BP neural network, as ALBP. It is described as in430

Algorithm 1.

In this algorithm, we separate our data set to training and testing in order

to evaluate the prediction results. Normalization handles the water quality

indicators that are collected with different units. The normalization is followed

with the Equation 3. In this equation, xi represents different indicator. n is the435

sample serial number.

Several questions are important in this ALBP model, including network

structure, activation function, prediction function, learning principle and learn-

ing rate update function.

There are two main factors to consider for the structure of this model, size of440

the data set and training efficiency. The structure in our ALBP model follows

the classical principle of ANN, which contains input, output and hidden layers.

Usually, for the water quality predictions in a specific urban area, according

to the local standard and regulation, input and output are fixed. This means

the physical and chemical indicators are stable as the system input, the same445

with the biological indicators as the output. In practice, it is also possible that

standards were modified in the history. In that case, the data should be adjusted

in the pre-processing stage.

As for the hidden layers, they should be dynamic as a result of the size of

the data increases. In principle, more neurons and more layers can improve the450

prediction accuracy. But it also has the saturation effect. we design this struc-

ture which aims to unified with most of the water quality prediction problems

as well as taking into account for different local urban requirements.

Activation function is added in ANN in order to better fitting nonlinear func-

tions. Popular activation function include sigmoid, hyperbolic tangent, ReLu,455

Maxout, etc. We use hyperbolic tangent in accordance with the zero average

output and less dead neurons in the training process. The equation for activa-

tion function is in Equation 4. In this equation, y is the input of the perception

neuron, and g(y) is the output.
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Data: Raw Data Collection from Water Sources

Result: Biological indicator predictions

Step 1: Pre-Processing.

1. Initialization;

2. Normalization;

while Each city do
Step 2: Training Model.

3. Select the training set;

4. Separate input and output data set;

while !Training Stop Conditions do

while Each training sample inputs do
5. Take the inputs as the input layer of ALBP;

6. Calculate the output of the neurons of each layer;

7. Take the outputs of the corresponding inputs as expected

outputs;

8. Calculate the error between expected outputs and actual

outputs calculated;

9. Back propagate the error to the hidden layer;

10. Change the weights of neurons according to the error

reduction principle;

11. Record error;

end

12. Update learning rate parameter;

13. Update Stop Conditions;

end

14. Conclude the trained model;

15. Select the testing set;

Step 3: Testing Model

while Each testing sample inputs do
16. Calculate the expected output with the trained ALBP

model;

17. Calculate the error between expected outputs and actual

outputs;

end

18. Evaluate the model result;

end

Algorithm 1: ALBP algorithm for water quality predictions
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g(y) = tanh(y) =
(ey − e−y)

(ey + e−y)
(4)

We chose normalized exponential function for output layer in this ALBP460

model. This function is also named as softmax function. Softmax is to compress

a K-dimensional vector z of arbitrary real values to a K-dimensional vector σ(z)

of real values, where each entry is in the range (−1, 1), and all the entries add

up to 1. This function is described in Equation 5. In this equation, z is the

vector which include all the output of the last hidden layer. K is the number465

of the neurons in the last hidden layer.

σ(z) =
ezj∑K
k=1 e

zk
j = 1, ...,K. (5)

As for the learning strategy, we need to find a cost function to guide the

learning process. In this study, in order to improve the training efficiency, we

select the cross entropy as the cost function. It is given by Equation 6

C = − 1

n

∑
x

[y ln a+ (1− y) ln(1− a)] (6)

where C is the total cost. n is the number of samples. x is the training470

sample. y is the expected output value, a is the prediction output value.

Learning rate in the classical BP model is fixed, but this makes the training

easily fall into local optimal values. But for concave function regressions are

very common in water quality indicator prediction problems. In this study, we

design an adaptive learning rate in order to not only suits for concave functions,475

but also improve training efficiency. The update function of the learning rate

is following Equation 7. In this equation, we use secondary partial derivative

of the cost C to expected output. ω and b is the parameters to linearize the

derivative to learning rate.

Lr(n) = ω
∂2Cn−1

∂2an−1
+ b (7)
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5.4. 2 Step Isolation and Random Forest480

Random forest (RF) is a well-known ensemble learning method proposed by

Tin Kam Ho in 1995 [43]. RF is based on decision tree theory. It is broadly used

in both classification and regression. However, the predictions for water quality

indicator and values do not take the equal priorities according to their suggesting

risks. In this study, we add a step in the beginning to select the important485

indicators and high risk values. High risk values have much more influences

on the drinking water quality for end users. According to our experience, they

often appear as anomaly points in the data distribution. We use an isolation

forest (IF) to quickly locate them and furthermore predict their values using

random forest regression. Isolation Forest algorithm was proposed by Liu et490

al in [44]. It is designed for anomaly detection by finding the shortest depth

classifications in most of created decision trees. We chose IF as the classification

method considering two main reasons. First, it does not require prior knowledge

for classification. Second, it is not sensitive to the number of dimensions of

the input and output data. In general, we call this method 2 step isolation495

and random forest, as 2sIRF. In this method, we generate multiple prediction

models simultaneously and conclude the results in order to improve the overall

accuracy. Through our applications, we found several distinct advantages of

this method.

• The introduction of isolation forest can separate different risk levels. Tra-500

ditional random forest algorithm regression usually take mean squared

error (MSE) as the evaluation function. This has an assumption of all the

data are equally important. But in water quality predictions, biological

indicators are more critical in the peak values. So in this step, we classify

these data first.505

• In regular RF regression, The usage of randomness and multiple decision

trees can the avoid over-fitting. Over-fitting often appears with many

algorithm in the training process. It usually uses over strict assumption
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to get uniform convergence. This can generate large error in prediction.

Compare with regular decision tree, RF has greatly reduced over-fitting.510

• Regular RF is designed for high dimensional data set, in addition, RF does

not require directly feature selection process. In regular RF algorithm, the

training set will be randomly chosen for features. The dimensions of each

selection can also be customized for preliminary knowledge. As a result,

RF can provide is importance order for variables for the prediction output.515

So, it can integrate correlation analysis and feature selection process.

• This method 2sIRF is easy for parallel computing, because both isolation

forest and random forest are creating various decision trees. These multi-

ple prediction models are running independently. This property is helping

to fasten the training process. It is useful in big data set.520

• 2sIRF is straightforward to implement.

Considering the above reasons and the requirements of our problem, we

design a new 2sIRF to predict water quality for biological indicators. First to

classify high risk and low risk data from the training set using an isolation forest

algorithm. And intake them as the input in the second step, use the random525

forest algorithm to train them for independent regressions as different groups.

The model will be evaluated by the testing data set. The work flow of this

method is depicted in Algorithm 2.

In this algorithm, we adopt easily-measured physical and chemical indicators

to predict time-consuming biological indicators in water quality management.530

Usually, both input indicator and output indicator are not unique. This requires

a multiple-input and multiple-output (MIMO) algorithm. Both Isolation Forest

and Random Forest naturally satisfy this requirement. Besides, in practice, for

water quality prediction, we consider the risks in two levels, high risks and low

risks. According to the different water quality standards, usually high risk sit-535

uations are happening when specific biological indicators or their combinations

get high values. The high risk situations are more difficult to predict, both in
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Data: Raw Data Collection from Water Sources

Result: Biological indicator predictions

1. Initialization;

while Each city do
2. Separate data into training and testing sets;

Step 1: Training Model.

while training set do
3. Separate data into training IF training and

training IF testing sets;

while training IF training do
4. Train the isolation forest model for high and low risk

samples;

5. Generate the model;

end

while training IF testing do
6. Evaluate the classification results;

end

7. Classify all the samples in the training set;

while samples in groupi do
8. Train the random forest regression model for groupi

samples;

9. Generate groupi regression model;

end

end

Step 2: Testing Model.

while testing set do
10. Calculate the error between expected outputs and actual

outputs;

11. Evaluate the regression results;

end

12. Evaluate feature importance;

13. Evaluate the model results.

end

Algorithm 2: 2sIRF algorithm for water quality predictions
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time and accuracy. Therefore we use two steps in this method for water quality

prediction.

Both isolation forest and random forest algorithms are based on the decision540

tree. There are generally several ways to build the tree, such as Iterative Di-

chotomiser 3 (ID3), C4.5, Classification And Regression Tree (CART). They use

different ways to degrade information uncertainty in the tree. For calculation

simplicity, we choose CART to build our decision trees. The evaluation of in-

formation uncertainty in CART is Gini impurity, Gini impurity is a measure of545

how often a randomly chosen element from the set would be incorrectly labeled

if it was randomly labeled according to the distribution of labels in the subset.

It is shown in Equation 8. Suppose our water quality data (both classification

and regression) has K classes, i = 1, 2, ...,K. Let pi be the fraction of items

labeled with class i in the set. In this equation IG(p) is the Gini impurity of a550

specific layer of the decision tree. NCi
is the number of items has been labeled

in the class i. N is the number of the items in the whole data set.

IG(p) = 1−
K∑
i=1

p2i = 1−
K∑
i=1

(
NCi

N

)2

(8)

CART provides the basic decision tree. Next step is to build the forests.

The reason for the difficulty in predicting high risk data is they are few and

different. In the first step of 2sIRF, we classify the training data set as high and555

low risk sets. Based on their features, we can define them as anomaly points

in the data set. We use isolation forest algorithm to find them. This algorithm

uses the length of decision tree to detect irregular points. The anomaly score

of a data is defined as in Equation 9. In this equation, x is the item, N is

the number of the items in the whole data set. c(N) is the average path length560

of unsuccessful search. E(h(x)) is the average path length from a collection of

isolation trees.

s(x,N) = 2−
E(h(x))
c(N) (9)
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For the items in high risk and low risk groups, we use two regression models

to predict them. We are taking this way because for water quality prediction,

high risk situations are much more influential for people’s health. The accuracy565

for them have higher priority over low risk situations. If we use a single pre-

diction function for regression accuracy, it will average the effect in high risk

situations because there are much fewer data for them. In random forest regres-

sion, for high risk group, we use Equation 10 to predict the indicator values. In

this equation, f(x̂) is the prediction of unknown item x̂. fb(x̂) is the prediction570

of tree b. αi is an adaptive parameter in biological indicator i. B is the number

of trees in the random forest.

f(x̂) = max(fb(x̂))− αi ∗
max(fb(x̂))−min(fb(x̂))

B
(10)

b = 1, 2, ..., B.

For low risk samples, we use Equation 11.

f(x̂) =
1

B

B∑
b=1

fb(x̂) (11)

6. Experiment and Results

6.1. Experiment Design575

Typical municipal drinking water supply systems carry out sampling and

laboratory analysis to ascertain the concentrations of physical, chemical and bi-

ological indicators of raw water before treatment. But we propose to bring it one

step ahead, to the water source management stage. The frequency of the analy-

sis rely on the source types, importance of indicator, equipment constraints, as580

well as the water quality standards of the local regulatory authorities.

The raw water quality data used in this study was obtained through a Nor-

wegian national water research project to improve water supply. It is collected

from two major cities in Norway, Oslo and Bergen. These data sets are based
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on the lab test results from the water sources of the two cities. The locations of585

the water sources are shown in Figure 1, in which the red points are sampling

locations. Based on the constraints on human resources, the samples are taken

in weekly. For each city, one location will be taken randomly from the sampling

locations.

The water source from Oslo is Maridalsvannet, which is the biggest lake in590

the municipality. In Bergen, the water is coming from a lake from the east side of

the city, named Svartediket. The time periods for Oslo is from 2009 to 2015, for

Bergen is from 2007 to 2015. They are recorded in weekly bases from their water

sources. The data set from Oslo contains a typical complete group of indicators

as turbidity, conductivity, pH, temperature, color, alkalinity, coliform bacteria,595

E.coli, intestinal enterococci and clostridium perfringens. However for the data

set from Bergen, the indicators are less, temperature, alkalinity and clostridium

perfringens are not recorded. So, in this study, we treat them independently.

The detailed average values and number of recordings for these two data sets

are shown in Table 1. We use 0.0 for the indicators lack of valid recordings. The600

further normalization, and data concrete biological indicator predictions will be

based on these values.

The experiments in this section are conducted on the platforms of Tensor-

flow 1.13 and Python 3.6. The hardware environment contains a system using

Intel(R) Core(TM) i7-6600U CPU 2.80 GHz with 16.0 GB of RAM, 64-bit Op-605

erating System.
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Indicator Oslo AVG Bergen AVG

No. of Recordings 356 467

Temperature 7.11 0.0

Conductivity 2.60 3.52

Color 26.76 21.70

Turbidity 0.45 0.55

pH 6.51 6.20

Alkalinity 0.09 0.0

Coliform 7.78 83.17

Ecoli 0.29 1.81

Intestinal 0.23 0.42

ClPerf 0.42 0.0

Table 1: Statistical Performance of the Raw Data Sets

6.2. Correlations among water quality indicators

Results of the Pearson’s correlation analysis between the various water qual-610

ity indicators for the two cities are shown in Figure 3 and 4. The red stars at

upper right corner in every cell show the level of linear correlation between the

indicators. The number in the cell represents Pearson coefficient. Bigger it is,

stronger is the correlation. These provide different means of extracting infor-

mation from the correlation matrix. From these two matrix, there are several615

numbers worth noting.

In Oslo, correlations between conductivity and color (-0.72), as well as be-

tween color and alkalinity (0.67) are clearly standing out. In Bergen, the number

between conductivity and color (-0.61) is also higher than other correlations.

The Oslo matrix shows the Pearson’s correlation matrix shows that the wa-620

ter pH is positively correlated with all the observed fecal indicator organisms
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Figure 3: Correlation Analysis of Water Quality Indicators in Oslo

except coliform bacteria. The numbers of PH and the organisms are 0.061,

0.083, and 0.089 respectively for E.coli, intestinal enterococci, and clostridium

perfringens respectively. Although the water pH is negatively correlated with

coliform bacteria, the strength of the relationship is much higher than in the625

other organisms.

However, these results can not be seen from Bergen’s matrix (Figure 4),

in which pH has stronger correlation with intestinal enterococci (-0.15). In

Bergen’s matrix, color is more influential to the biological indicators, especially

for Ecoli (0.36), and intestinal enterococci (0.36).630

From here we can see that: (1) The correlation analysis between water qual-

ity indicators can provide us some preliminary knowledge over their relationship.

These can be used as heuristic knowledge for future water quality indicator pre-

dictions. (2) There is no physical or chemical indicators can directly related to

predict biological indicators. The reason is the correlation analysis is the linear635

relationship between two indicators. It does not consider the multiple indica-

tors effect or non linear relationship. So, the correlation analysis can provide
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Figure 4: Correlation Analysis of Water Quality Indicators in Bergen

some basic knowledge, but can not provide enough information to predict water

quality indicators.

6.3. ALBP model performance640

ANN is designed to fit non-linear object properties. In practice, the more

neurons we use, the fitting for non linearity is more accurate. But too complex

network can lead to over fitting and prolong the training time. We have exper-

iment for the structure in 3, 4, and 5 layers. In the hidden layers, we tried for

10, 50, 100, 500, 1000, 3000 neurons.645

Considering the training efficiency and prediction accuracy, we select the

structure with 5 layers, including input, output and 3 hidden layers. Each

hidden layer has 1000 neurons. We use 80% of the data (285 recordings in Oslo,

374 recordings in Bergen) as training data and 20% for testing (71 recordings

in Oslo, 93 recordings in Bergen). The training iteration takes 1500 times. The650

performance of our ALBP model is given in the following Figures 5 for Coliform,

6 for Ecoli, and 7 for intestinal enterococci (Int). In these figures, (a) for Oslo
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and (b) for Bergen. One of the important advantages for ALBP is that it can

give the predictions for all the biological indicators at the same time. Actually

when we run the experiment, the model can also give the results for clostridium655

perfringens. For easy comparisons, here we only show the results for the three

indicators.
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Figure 5: Coliform indicator predictions with ALBP in Oslo and Bergen
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Figure 6: Ecoli indicator predictions with ALBP in Oslo and Bergen

In these three Figures, blue, orange and green color lines represent the orig-

inal output of indicator Coliform, Ecoli and intestinal enterococci. Red, purple

and brown color lines represent the prediction output of those indicators. From660

the results we can see that (1) Original out put are with higher degree of os-

cillation. All the predictions are smoother. (2) The accuracy of prediction is

relatively low. Bergen’s results are even lower, which could be they have two

input indicators missing. (3) The tendencies of the biological indicators can

hardly seen from the predictions. (4) Based on the inherent deficit of Neu-665

ral Network, we can not give the explanations of different indicators on their
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Figure 7: Int indicator predictions with ALBP in Oslo and Bergen

influences for the results.

6.4. 2sIRF model performance

We design this 2sIRF model to predict the water quality biological indicators

considering the object data sets are non linear, with different risk levels and also670

the data distribution. We take the heuristic knowledge from the correlation

analysis in Section 6.2, and choose temperature for Oslo and color for Bergen

as the chief feature for prediction. In this method, we use 80% of the data as

training data and 20% for testing. In Oslo, we have 284 recordings for training

and 72 for testing. In Bergen, there are 373 recordings for training and 94 for675

testing.
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Figure 8: Coliform indicator predictions with 2sIRF in Oslo and Bergen

We present our prediction results for Oslo and Bergen in Figure 8, 9,

and 10. We give also the results for the three biological indicators, Coliform,

Ecoli and Int independently. In these two pictures, blue lines represent original
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output, and orange lines represent the prediction results.680

From these results we can see that: (1) 2sIRF can better detect the high risk

values. (2) This method can better depict the data oscillation and tendencies.

(3) The accuracy for this method is better than ALBP in both cities. In addition,

it is worth to note that this method contribute on the high risk values. This is

more important to provide efficient and accurate decision support for industrial685

operators.
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Figure 9: Ecoli indicator predictions with 2sIRF in Oslo and Bergen

0 50 100 150 200 250 300 350

0

2

4

1

3

5

6

7

(a) Oslo Int Prediction

0 50 100 150 200 250 300 350 400 450

0

2

4

6

8

10

(b) Bergen Int Prediction

Figure 10: Int indicator predictions with 2sIRF in Oslo and Bergen

7. Discussion and Insight

All the water quality indicators have been considered in previous works to

be independent because currently there is no systematic theory to prove the

relationships between them. Therefore, it is difficult to predict one indicator690

(or several ones) from others with precise models. This work uses the historical
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data resources to find the possible hidden correlations behind them by analysis.

In this section, we evaluate the results from the two case studies, including

prediction accuracy and time for training. Besides, we compare the importance

order of indicators in prediction, using Pearson’s correlation coefficient and our695

2sIRF models. From here we list some insights we found for the domain of water

quality control.

7.1. Model Performance Evaluations

To evaluate the two model performances, we use prediction accuracy and

training time as references. For prediction, we use root mean square error700

(RMSE) in Equation 12 and Mean Absolute Error (MAE) in Equation 13 to

evaluate prediction results. This equation gives a general error measurement

for all the results. Er(x) is the RMSE value. Em(x) is the MAE value. N is

the number for predicted indicators. Ni is the number of data recordings of

indicator i in the test set. xij is the real output value and x̂ij is the prediction705

value.

Er(x) =

√∑Ni

j=1(x̂ij − xij)2

Ni
(12)

Em(x) =

∑Ni

j=1 |x̂ij − xij |
Ni

(13)

Here, in order for further comparisons, we use the classical ANN and Random

Forest algorithms as references. The initial parameters used for them are the

same with our method. We compare the accuracy with RMSE and MAE. The

results is shown in Figure 11. This result tell us that (1) In general, improved710

algorithms are outperforming their classical algorithms (ALBP to ANN, 2sIRF

to RF). (2) From the city perspective, Bergen has lower performance results

than Oslo. This can be caused by Bergen contains fewer indicators. (3) For

MAE, 2sIRF has a better performance in most of the cases.
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Figure 11: Accuracy Evaluations for ALBP & 2sIRF

Another important measurement is training time, this is meaningful for real-715

time prediction with further data updates. The training times are shown in

Figure 12. This result proves that the use of data driven method can greatly

improve the risk warning efficiency in urban water supply systems. Compared

to the current culture test for biological indicators, these data models have

decreased the prediction time to minute level. Among the values from different720

methods, we found 2sIRF is better in both cities.

7.2. Insights for water quality prediction

7.2.1. Correlation Analysis

The complex interactions between these water quality indicators are not un-

derstood properly. In this study, we are using the historical data as a resource725

to learn the relationships between them. Besides the results of Pearson’s corre-

lation coefficient in Section 5.1, as a byproduct from 2sIRF model, we also get

analysis results in biological indicator predictions.

We compare the results in Figure 13. This figure gives the impact order for

each biological indicator to all the other physical and chemical indicators, as in730

Oslo and Bergen. We have several interesting findings as follows:
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Figure 12: Training Time Evaluations for ALBP & 2sIRF

• Between the two cities, it does not exist a universal principle of reliance

for specific biological indicator. in general, for the biological indicators in

Bergen, conductivity, color and turbidity are the three leading indicators

for the prediction. But in Oslo, we found temperature and pH play more735

important position (except for intestinal enterococci). This could be based

on the temperature in Bergen has not been recorded. Accordingly, we

suggest to the manager of Bergen that temperature can be a better choice

in data recording. The prediction for intestinal enterococci is more difficult

than others.740

• Between indicators, by value, we saw that the correlation between color

and conductivity are obvious in both models. For this we can consider to

remove one recording from the monitoring process. In addition, we can see

alkalinity is a weak indicator (not recorded in Bergen, and low importance

in Oslo), but this is a potential indicator for tendency prediction. So, it745

can not be removed from the data recordings, we will explain our findings

in the next paper.

• Between the two models, the leading indicators in the prediction are rel-
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Figure 13: Water indicators importance evaluation

atively similar. But the leading effects are exaggerated by Pearson cor-

relation analysis. However, we can not get the accuracy conclusion from750

this comparison work. More work need to be done based on more data

collections from more locations and longer time.

• Time effect, from the Figure 13 we can see all the indicators have another

indicator reliance, which is Time. This is important for water quality

control to check whether the indicators have some repeating features. This755

is more visible in 2sIRF models. We need further analysis and explanations

from geographical and ecological characters.

7.2.2. Limitations

Based on the difficulties of quality prediction in urban water supply systems,

limitations of our methods as ALBP and 2sIRF can be found in the following760

aspects:

• The ALBP does not show very high accuracy in prediction, the training
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time is relatively long. However, with the data size grows bigger, the

scalability of this method is higher, and easily adapt to more complex

architecture as Deep Learning.765

• The 2sIRF gives higher prediction accuracy and efficiency. The scalability

in water quality indicator is high. However, the size of the data sets

will have exponential impact on the time efficiency. In addition, now all

the indicator and recordings are treated as independent parameters, the

analysis on the time domain is relatively weak.770

• The explanability of both of these methods are relatively low.

7.2.3. Domain evaluation

This study has combined the researchers both from information technology

and urban water supply systems. To our best knowledge, this is the first trial to

provide a comprehensive solution for the water quality control in urban water775

source management. As for the results, it has greatly improved the time effi-

ciency for biological indicator predictions, the accuracy is acceptable and can

provide sufficient support for decision making in water treatment and water

quality risk warnings.

8. Conclusion & Future work780

Water, as being one of the most important resources on earth, attracted

much attention from governmental, academic and industrial organizations. Wa-

ter quality prediction is a critical step not only in water supply systems, but also

meaningful in modern smart city development. With the evolution of advanced

sensing technologies, data collections for water quality indicators have become785

more and more convenient. However, how to efficiently analyze the data and

provide early warnings remains a major challenge.

In this study, we propose to integrate smart data-driven technologies for with

urban water supply system for water quality prediction. The main contributions

of this research are three aspects.790
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• Smart Data-Driven framework. This paper proposed a framework using

the historical data resources from water source management process, aim-

ing to predict water quality evolution by advanced analyzing and modeling

techniques. It provides an efficient way for future decision making support

of water quality control and risk management.795

• Biological indicator prediction. Biological indicators in the water sup-

ply industrial system is always the most difficult to measure and collect,

based on that most of the microbial indicators have to go through bacte-

rial culture process, it takes much longer time than regular physical and

chemical indicators. This paper proposed two models to solve this prob-800

lem, including adaptive learning rate BP neural network (ALBP) and 2

step isolation and random forest (2sIRF). ALBP is theoretically simple

and easy to implement. 2sIRF considers the risk distribution and shows

higher prediction accuracy.

• Real-world-environment-oriented. The methods in this paper are experi-805

mented and tested in the practical processes at Oslo and Bergen in Norway.

This supports the work reliability.

Our future work is planned in several directions:

• To improve prediction accuracy and efficiency. We will develop more mod-

eling techniques for water quality data analysis.810

• To explore water quality properties in time domain. We will analyze and

develop circulation features of water quality data analysis.

• To connect related data from other water supply sections. We will collect

water quality data from urban water treatment and distribution process.

• To provide decision making support for the whole urban water supply815

systems.
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