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Abstract: Comparing and selecting an adequate spectral filter array (SFA) camera is application-specific
and usually requires extensive prior measurements. An evaluation framework for SFA cameras is
proposed and three cameras are tested in the context of skin analysis. The proposed framework does
not require application-specific measurements and spectral sensitivities together with the number
of bands are the main focus. An optical model of skin is used to generate a specialized training
set to improve spectral reconstruction. The quantitative comparison of the cameras is based on
reconstruction of measured skin spectra, colorimetric accuracy, and oxygenation level estimation
differences. Specific spectral sensitivity shapes influence the results directly and a 9-channel camera
performed best regarding the spectral reconstruction metrics. Sensitivities at key wavelengths influence
the performance of oxygenation level estimation the strongest. The proposed framework allows to
compare spectral filter array cameras and can guide their application-specific development.

Keywords: spectral filter array; multispectral imaging; biomedical optics; image quality; reflectance
spectroscopy; oxygenation; tissue optics

1. Introduction

Spectral filter array (SFA) cameras are a new single-shot spectral imaging technology [1], which is
gaining popularity in different fields of research [2]. The light entering the camera is filtered with
narrow spectral bandpass filters on each pixel or subpixel. Spatial decomposition of the spectral signal
allows capturing of all spectral bands at the same instance.

Prototypes have been proposed in academia [3] and commercial models are now available
including the XIMEA xiSpec camera [4,5] and Silios technologies SFA camera [6]. With increased
adoption and commercial availability of SFA cameras, it is important to analyze parameters
contributing to image quality parameters of these cameras and provide tools to guide further
development for specific applications.

Image quality performance of cameras for close range imaging is a broad field of
research [7–9] covering many different aspects including: spatial resolution [10–12], spectral or color
accuracy [3,13,14], reproducibility, noise behavior [15], optical distortions and post-processing steps.
The required accuracy of spectral reconstructions, number of channels and wavelength of interest
are application dependent and should be evaluated in the context of specific applications. If SFAs
combine accurate spectral reconstruction with real-time acquisition speed and ease of use, they could
potentially be a powerful new imaging modality for the medical field. Digital imaging is already
widely adopted for skin imaging, which could benefit from additional spectral information [16–20].
Small color variations in the skin can carry relevant information for physicians. There is a need for
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more reliable and quantitative methods to measure physiologic parameters of patients in non-contact.
SFA cameras could combine non-contact monitoring of vital functions and diagnosis of diseased skin
tissue in real time [21–28]. In particular, dynamic processes such as oxygenation would highly benefit
from spectral and spatially resolved images in real time [27,29–32].

Previous work by Preece and Claridge [33] has investigated optimal filter sensitivities for a
three-channel system for skin diagnosis. An extensive hardware focused analysis of spectral imagers
for biomedical applications is provided by Gutiérrez-Gutiérez et al. [34]. The main focus of their
work was the technical limitations including acquisition speed, efficiency, object plane curvature,
spatial resolution, distortions, and noise. They emphasized an imaging system for biomedical
applications should be selected after thorough testing of these parameters. A comprehensive emulation
framework has been proposed by Saager et al. [35] giving an overview of the performance of different
spectral imagers including a Xispec SFA camera and an RGB sensor a burn wound mouse model
and photoaging experiment. High-resolution spectral measurements were performed using a spatial
frequency domain spectroscopy (SFDS) system. In the computer graphic domain with Jimenez et al. [36]
and Iglesias-Guitian et al. [37] described physically based skin appearance models to show color
changes due to emotions or ageing. The same models can be used as to generate skin reflectance
training sets.

The aim of this study is the development and testing of a framework for comparison of SFA
cameras for spectral reconstruction, skin imaging, and oxygenation level estimation without prior
patient measurements. A generated specialized training set is quantified for spectral reconstruction.

This framework could be considered prior to the hardware focused selection by
Gutiérrez-Gutiérez et al. [34] and provides a simplified measurement free alternative to the method
proposed by Saager et al. [35]. The framework could also be applied as a guide for the development of
application-specific SFA cameras.

Three aims of study can be formulated as:

• comparison framework of spectral filter array cameras for skin imaging and medical diagnosis
• illustrate the impact of spectral reflectance reconstruction using a specialized training set for SFA

camera applications in skin imaging.
• recommendation of commercially available SFA cameras for monitoring of vital functions

and diagnosis.

2. The Proposed Framework

The proposed framework has three main elements: (1) calculation of a spectral reconstruction
matrix, (2) simulated sensor responses and (3) an evaluation block. It is shown in Figure 1 and follows
the concepts of a spectral filter array processing pipeline proposed by Lapray et al. [38].

As a first part, a spectral reconstruction is performed to estimate the full spectra using the
limited number of SFA bands providing a measure of the performance of the different cameras
independent of applications. In addition, the estimated spectra are then analyzed regarding their
accuracy for oxygenation level estimation being an example for a specific application. Three SFA
cameras, one prototypical, two commercially available and an RGB camera are evaluated. The impact
of gaussian spectral bands (GSB) is tested by simulating sensor sensitivities with gaussian shapes for
each of the SFA cameras channels.

A set of (10,000) [39] skin reflectances is generated using a Monte Carlo skin model and compared
to a Munsell reflectance patch database [40,41] for training the spectral reconstruction. A database of
spectral measurements of skin reflectances (100 measurements) [42] is used for testing the spectral
reflectance reconstruction. The spectral reconstruction accuracy is compared numerically using Root
Mean Square Error (RMSE) and ∆E00 color differences [43]. Differences in estimated oxygenation
levels are numerically compared using a proposed metric. Spatial aspects are not considered in this
study since the standard clinical measurement of oxygenation levels are usually averaged over a small
area and the skin simulation is only considering homogeneous tissue over the simulated surface.
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Figure 1. Framework, including training set, testing set, sensor sensitivities, reconstructed spectra and
the evaluation according to RMSE, ∆E00, ∆Oxy.

3. Prerequisites

For full spectral reconstruction simulated sensor responses are needed. The spectral reconstruction
accuracy needs to be evaluated regarding spectral accuracy and in relation to specific applications.
The framework could be applied to any channel-based spectral imager with known spectral sensitivities.
For comparing specific spectral imagers, sensor sensitivities, training and test data and evaluation
metrics must be chosen.

3.1. Spectral Imaging Model and Spectral Reconstruction

Spectral reconstruction is a useful estimation technique to estimate full spectra from a limited
number of bands. The wavelengths of interest might also be unknown prior to the practical applications.
It allows comparison of spectral cameras with different sensitivity peaks in a common space.

The spectral reconstruction is based on the inversion of a commonly known imaging model,
which can be described with the equation:

Pi =
∫

λ
E(λ)Rj(λ)Qi(λ)dλ (1)

where Pi is the channel response of the ith channel of the sensor. E(λ) is the illumination spectral power
distribution (SPD) per wavelength, Rj(λ) is the spectral reflectance of sample j and Qi(λ) describes
the spectral sensitivity of the ith channel of the sensor. Noise can be described as an additive constant
to each channel.

Two simplification have been applied to the imaging model for this study. Noise per channel has
not been considered and illumination has been assumed to be of equi-energy. Both variables influence
the performance of the cameras in a real setup. Specific light-source power distributions might favor a
particular camera hindering the comparability. A mathematical description of noise might not be an
adequate descriptions of practical noise behavior of a physical camera. A chosen noise model could
also favor one camera for the comparison.
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This model can be inverted for spectral reconstruction, by estimating Rj(λ). Several different
techniques have been proposed including the pseudo-inverse method [44] (linear least-square fitting)
or linear least-square fitting in lower-dimensional space (Imai–Berns method) [45]. For this study,
a commonly used spectral reconstruction technique known as Wiener estimation [45–50] is applied.
Before inverting Equation (1) it is rewritten into discrete formulation:

Pi =
N

∑
k=0

E(λk)Rj(λk)Qi(λk) (2)

N is the number of spectral bands depending on the wavelength range and spectral resolution,
in this case, λ ∈ [400, 700] with a sampling rate of 2 nm steps and N = 151. For all j reflectances of the
training set, the channels i of the sensor and k distinct spectral bands, we can write in matrix form:

p = REQ (3)

p is of J × I dimensionality with J spectral samples and I channels, R of J × N, E of N × N
(diagonal matrix) and Q of N × I where N is 151 different wavelengths for this research. This is
inverted according to the Wiener estimation method [45–47], in this study the implementation by
Nishidate et al. [49] is followed and describes a reconstructed reflectance with:

r̃ = Wp, (4)

where W describes the Wiener estimation matrix, r̃ the resulting vector of reflectance estimation or
reconstruction and p the vector of sensor responses for each channel. The Wiener matrix is calculated
by minimizing the square error of reconstructed and given reflectance for a training set of reflectances.

This matrix needs to be calculated for each camera and training set combination. Sensor responses
can be simulated by multiplying the sensor sensitivities and the reflectance spectrum of an object.
Spectral reconstructions can then be performed given this sensor response and the pre-trained Wiener
estimation matrix W.

3.2. Sensors

Most SFA sensors are based on micro interference filters (often Fabry–Pérot interference) that can
be simulated with GSB as shown by Lapray et al. [51] with width and shape as main parameters [52,53].

The framework enables the comparison of any multi-band sensors with known spectral
sensitivities or optimize the design of ’virtual’ SFA cameras for specific applications. SFA cameras
have a limited number of wavelength bands divided over the sensor. The design of SFA sensors will
be a trade-off between spectral resolution and spectral range covered. A narrower spectral band per
filter will improve the spectral resolution, but would require more spectral bands to cover the whole
sensitivity. Broader sensitivities on the other hand, reduce the spectral resolution, but require less
filters and avoid (“holes”) in the covered spectrum. However, for specific applications only a few
primary wavelengths are needed as in case of oxygenation estimation.

In this study, we included simulated GSB they were chosen with a full width half max that make
them comparable with them real sensor sensitivities of the cameras tested.

3.3. Training and Test Set

The training set will contribute to the accuracy of spectral reconstruction using Wiener
estimation which calculates a transformation matrix that translates SFA responses to a full spectrum.
This transformation matrix should minimize the difference between the reference spectrum and a
reconstructed spectrum. The reference spectrum used to determine this matrix is called the training set.

For training two sets were compared to see the impact on the reconstruction accuracy for the
different cameras: The Munsell database is used as a standard for color testing and the second training
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set was a generated for skin color simulation using a wide array of skin optical properties. The skin
simulation (training set) assumes an equi-energy illumination and therefore represents illumination
corrected skin spectra. Both sets are normalized using a feature scaling so that all values cover a range
from 0 to 1. A more detailed description of this skin database follows in the experimental setup. For the
validation if the spectral reconstruction another set based on skin reflectances was used. These skin
reflectances (test set) are measured using a spectrophotometer and illumination corrected as described
in [42].

The three sets are illustrated in Figure 2. This Figure allows comparison of the area covered by
all sets and highlights three reflectances for each dataset. It includes the database of 100 measured
skin reflectances [42], 10000 Monte Carlo simulated reflectances and the Munsell reflectances color
patches [40,41].
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Figure 2. Measured Munsell relfectances [40] (Munsell), measured skin reflectances [42] (SkinRef),
simulated skin reflectances (SkinSim). Three reflectances highlighted for visibility in each set.

3.4. Evaluation Metrics

The validation of the proposed framework can be tested by applying it to a specific clinical
application, oxygen level estimation. This should show which spectral filter array camera is most
suitable for this specific application. Three different evaluation metrics are considered. Two of
the metrics focus on spectral reconstruction quality regarding shape and color. The third metric is
application-specific and in this case quantifies the ability of each camera to estimate oxygen levels,
it will be discussed in detail in the next section.

The first metric calculates the color difference ∆E00 [43] of two spectra which is the distance
between two colors in the human perceptual colorspace. Each spectrum is converted into color
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coordinates using the, D65 illumination for the calculations, and CIE 1931 2 Degree Standard Observer
color-matching functions. A ∆E00 of around 2 is a just noticeable color difference for a human observer.

The second spectral reconstruction metric is the root mean square error (RMSE) between the
reference spectrum and a reconstructed spectrum. There is no need to include the goodness of fit
coefficient (GFC) or the angular error, since previous studies [54] have shown that these correlate
strongly with the RMSE.

3.5. Application-Specific Metric and Oxygenation Level Estimation

The third metric is a validation of the oxygenation level estimations. This parameter can be
approximated through calculations using the reflectance spectrum of skin. The reflectance spectrum of
skin is the result of concentrations of particular chromophores present in the skin. The ratio between
oxygenated and deoxygenated hemoglobin reflects the relative oxygenation level in the skin and is an
important parameter for diagnostics. Hemoglobin occurs in different forms but only these two are
relevant for oxygenation. Different methods have been proposed to estimate oxygenation levels from
particular wavelengths [27,29,49,55].

For this study, the estimation uses a multiple regression method described by Nishidate et al. [49].
A fast way of estimating absorbance A(λ) from reflectance assumes the Lambert-Beer law:

A(λ) = −log10R(λ) (5)

According to the simplified Lambert-Beer law the total absorbance of skin tissue can be
described with:

A(λ) = Cmle(λ, Cm)εm(λ) + Cbild(λ, Cbi)εbi(λ) + Cobld(λ, Cob, Cdb)εob(λ)+

Cdbld(λ, Cob, Cdb)εdb(λ),
(6)

where εm, εb, εob, εdb describe the molar extinction coefficients of melanin, bilirubin, oxygenated and
deoxygenated hemoglobin and Cm, Cb, Cob, Cdb describe the concentration of each specific chromophore.
le describes the mean optical path length for epidermis, ld for dermis and D(λ) describes the attenuation
due to scattering these values are taken from literature. This equation can be solved by multiple
regression analysis and is therefore reformulated to:

A(λ1) = cmεm(λ1) + cbiεbi(λ1) + cobεob(λ1) + cdbεdb(λ1)

A(λ2) = cmεm(λ2) + cbiεbi(λ2) + cobεob(λ2) + cdbεdb(λ2)

A(λ3) = cmεm(λ3) + cbiεbi(λ3) + cobεob(λ3) + cdbεdb(λ3)

.

.

A(λn) = cmεm(λn) + cbiεbi(λn) + cobεob(λn) + cdbεdb(λn),

(7)

where cm, cbi, cob, cdb are closely related to the concentrations of melanin, bilirubin, oxygenated and
deoxygenated blood and represent the unit-less contribution of each extinction coefficient to
the total absorbance A. Any number of wavelengths can be used to calculate the absorbances.
Reflectance spectra can be converted to absorbance spectra according to Equation (5) and then used
with the following equation. The calculation of the concentration of any chromophore can then be
formulated in matrix notation as:

a = εc

c = ε−1a
(8)
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Finally, oxygen saturation can be calculated with:

Soxy =
Cob

Cob + Cdb
(9)

Even though a simplification of the physical light skin interactions, methods based on these
principles have been used for oxygenation level estimation [49,56–58]. This approach allows rapid
calculation of tissue parameters with low computational complexity. It is assumed that most other
chromophores are constant over time. The oxygenation of blood is not constant, due to oxygen
consumption by tissue. According to Equation (9) oxygenation level estimation is calculated using
both the reflectance spectra and reconstructed spectra. The Euclidean distance between the two
resulting oxygenation level estimation values is then calculated and used as a quality metric to judge
the reconstruction accuracy with:

∆Oxy =| Soxy1 − Soxy2 | (10)

4. Experimental Setup

This section will be discussing the concrete choices of sensors, training and test data, and finally,
summarize the approach. A new database of simulated skin spectra is also created and described in
detail in this section.

4.1. Sensors

Five cameras are investigated the Sinarback 54 RGB camera (RGB) as representative for
common three-channel imaging, three spectral filter array cameras are considered, XIMEA xiSpec
MQ022HG-IM-SM4X4-VIS [4,5], Silios technologies CMC-C [6] (Silios) and a prototypical device by
Thomas et al. [3] (France1). Table 1 provides an overview of their key features and is sorted by the
number of bands. The CorXim ’virtual cameras is added, which is the corrected version of the Ximea
xispec [4] camera by applying a linear transformation matrix provided by the manufacturer which
reduces the effect of secondary transmission peaks in some filter bands [59]. It is considered to be an
independent camera to test the impact of such a correction.

Table 1. Features of the included cameras. RGB camera [60], commercially available XIMEA Xispec
SFA camera [4,5] (Ximea and CorXim), Silios technologies SFA camera [6] (Silios), and a prototypical
device from academia [3] (France1).

Property RGB France1 Silios CorXim Ximea

spectral bands 3 8 9 10 16
spectral peak range [nm] 480–610 440–850 445–710 465–630 465–630

frame rate [Hz] 60 60 60 170 170
resolution per band 4080× 5440 160× 128 426× 339 512× 272 512× 272

size [mm] 38.8× 50.0 NA 56× 56× 22 26× 26× 26 26× 26× 26

Figures 3 and 4 show the spectral sensitivities of all cameras in the spectral range of (400–700 nm)
with a measurement interval of 2 nm steps. All sensitivities are measured and provided by the camera
manufacturers and interpolated to this range and measurement interval. Additionally, for each camera
a virtual GSB sensor is generated and included in the study. The GSB are generated according to
Thomas [52] at each of the sensitivity peaks of each camera(GRGB, GFrance1, GSilios, GCorXim,
GXimea). All GSB have a σ = 15 nm and provide a virtual version of each camera with perfectly shaped
narrow band sensitivities.
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Figure 3. Sensor sensitivities, one RGB camera [60], a prototypical implementation by Thomas et al. [3]
(France1) and commercially available Silios [6] (Silios) (all left) and simulated GSB (GRGB, GFrance1
and GSilios) versions (all right).
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Figure 4. Sensor sensitivities, Ximea xispec [4] (Ximea and CorXim) (all left) and simulated GSB
(GCorXim and GXimea) versions (all right).

4.2. Generating a Training Set

The skin simulations are generated using a modification of the multi-layered Monte Carlo tissue
model (MCML) published by Atencio et al. [39]. This code was modified to vary and simulate
combinations chromophore concentrations and blood volume fractions [61]. Changing Bilirubin
concentration Cbi, oxygen saturation Soxy, blood and melanin volume fractions fbl and fmel were
changed and 10,000 skin reflectances were calculated.

This simulation environment is based on a three-layer skin model and initially proposed to
simulate bilirubin concentration in the skin of the forehead of newborns. The three layers are epidermis,
dermis and a bone layer. This model assumes each of the layers as infinite homogenous media with a
defined absorption per layer. Scattering is assigned uniformly to both layers. Each layer has different
chromophores contributing to its absorption based on the volume fractions of melanin ( fmel) blood,
( fbl) and bilirubin ( fbi). Epidermis contains melanin, dermis contains bilirubin and oxy- deoxygenated
hemoglobin. The total absorbance of each of the layers is the sum of the absorbance fractions of
chromophores present in that particular layer and defined as µa. The chromophore parameters for
the Monte Carlo simulation, were chosen to cover the entire range defined by Atencio et al. [39]
(see Table 2). For melanin volume fractions of approximately 1% to 6.3% equivalent to fair skin
according to Jacques [62].
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Table 2. Parameter range for MCML (Monte Carlo modelling of light transport in multi-layered tissues)
skin simulation [39,61] resulting in 10,000 different parameter combinations. Soxy is the saturation of
oxygenation, fbl and fmel the volume fraction of blood and bilirubin, and Cbi describes the bilirubin
concentration. Green and red Shadings indicate extreme values of simulation range.

Parameter Level: 1 2 3 4 5 6 7 8 9 10
Soxy 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
fbl 0.1% 0.2% 0.3% 0.4% 0.5% 0.6% 0.7% 0.8% 0.9% 1%
Cbi 0.0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225
fmel 0 2% 3% 4 % 5% 6% 7% 8% 9% 10%

Each of the chromophore absorption coefficients is modelled from the data provided by
Jacques et al. [63]. This µa can be seen as analogous to the Absorption A in previous equations,
but in the context of defining optical properties of skin it is referred to as µa. For the epidermis,
the absorption µae only depends on melanin the only chromophore present in this layer with:

µaepi = fmelµamel (λ) (11)

The Monte Carlo simulation framework by Atencio et al. mentions specifically that the model
needs further testing and verification to simulate darker skin types, therefore even higher melanin
volume fractions were not included as parameters for the simulation. To calculate the final absorption
of the dermis layer both bilirubin and blood are the main contributors:

µaderm = fblµabl (λ) + fbiµabi (λ) (12)

fbi is considered to be constant and the parameter is the concentration of bilirubin as:

µabil (λ) = ln(10)
Cbi

PMbi
εbi(λ), (13)

where PMbi is a constant and εbi(λ) are the literature values for the extinction coefficients for
bilirubin [63]. fbl describes the volume fraction of total blood in the dermis layer. The volume
fraction parameters for this simulation cover typical values homogeneously distributed blood in the
dermis layer [63]. Due to differences in absorbance for oxygenated hemoglobin and deoxygenated
hemoglobin µablo (λ) is calculated as:

µablo = Sµaob(λ) + (1− S)µadb(λ) (14)

S describes the oxygen saturation in the blood and is to be estimated. The dataset will be verified
in the Results Section 5 using a principle component analysis.

5. Results and Discussion

5.1. Training Set Validation

The first results presented in this study address the skin simulation database and can be seen as
an additional verification for using this simulated training set. It is based on principle component
analysis (PCA) of the sets included in this research.

The principle components allow representation of the multidimensional set in a lower-dimensional
space. If the principle components are calculated for a combined set they represent the orthogonal axes
of a space describing the sets. The area covered by the sets plot into this orthogonal space describes
the diversity of the particular set. If multiple sets are plot into the same principle component space the
difference in diversity and area covered within that PCA space can be analyzed.

The sets are shown along the first two principal components of the combined set in Figure 5.
Table 3 shows the resulting principle components of each of the sets and the combined set. The Munsell
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set is the most diverse considering its low first principle component. The skin simulation set covers a
wider range of reflectances compared to measured skin reflectances. This is represented in a lower first
principle component. Physiological parameters cover a wider range than living tissue see Table 2.
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Figure 5. Dimensionality analysis of all sets combined (B) skin simulation (blue), skin reflectance (green)
and Munsell reflectances (red). Colored markings for maximum PCA1, minimum PCA1, maximum
PCA2, minimum PCA2, for skin simulation and skin reflectance, respectively. Color patch recreation
(under D65 light source) of the extreme spectra for the skin simulation (A) and skin reflectance database
(C) with minimum PCA 1 and PCA 2 and maximum PCA 1 and PCA 2. Plot of the maximum and
minimum spectra for the skin reflectance database (D) and skin simulation database (E) according to
PCA analysis.
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Table 3. Resulting PCAs for all sets. Variance of each of the sets along the first 4 principle components.

PCA Munsell SkinSim SkinRefl Combined

1 76.8 87.1 96.0 74.7
2 15.8 7.7 2.1 17.0
3 6.0 4.3 1.5 4.8
4 0.8 0.5 0.2 2.1

In Figure 5 it can be observed that the skin simulation covers all the measured skin reflectances
except for a few measurements. This can be ascribed to the limited number of parameters for the
simulation, resulting in some measured skin reflectances not being represented within the skin
simulation. The skin model is limited to Caucasian fair skin and initially designed for neonatal
babies. To further analyze the parameter of the skin simulation, which falls far out of the measured
skin reflectance, the extreme curves where plotted.

Figure 5D,E shows these extreme curves of both the skin reflectance and the skin simulation set
as marked in Figure 5A. In Table 4 it becomes apparent that the main factor for the simulations is the
blood volume parameter. All extreme results according to the PCA analysis have an extreme value
for the blood volume. The melanin parameter also contributes to extreme values within the principle
component space indicating the strong influence of melanin on the resulting skin spectra. In this
principle component space, the bilirubin concentration parameter spreads the distribution of points.

Table 4. Monte Carlo Simulation parameters for the extreme points according to the principle
components. Red background items indicate the maximum of their particular parameter, while green
background indicate minima for the range of input parameters.

Parameter Max PCA1 and PCA2 Min PCA1 Min PCA2
StO2Saturation 10% 100 % 10%

fBlood 0.1% 1% 1%
CBilirubin 0.225 0.0 0.225
fMelanin 0.0 % 10% 10%

Figure 5 also contains sRGB [64] color swatches reproduced under a virtual D65 illumination.
These provide a visual impression of the color of the extreme points in the principle component space.
They show that the extreme value curves, not included within the skin simulation represent darker skin
types and that extreme values of the skin simulation can include physiologically unlikely scenarios of
grey skin.

5.2. Spectral Reconstruction

Results for the two spectral reconstruction metrics calculated for each of the four sensors and
their simulated GSB versions are shown in Figure 6. Each of the graphs shows mean results and
standard deviation of the actual sensor as a circle and the GSB sensor results as a cross. All metrics are
calculated with the different training sets (Munsell and skin simulation) for the spectral reconstruction
and plotted. The cartesian coordinate system consists of the number of channels on the x-axes and the
value for each of the metrics on the y-axes.
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Figure 6. Resulting metrics of ∆E00 (D65, CIE 2◦ 1931) (top) and RMSE calculated between
reconstruction and training (bottom). All Sensors, Munsell set (left) and Skin Simulation set (right) as
training including standard deviation of the resulting data. For all graphs, the filled “o” represents the
original sensor and the “x” represents the GSB.

These plots allow the comparison between the sensors according to the different metrics in two
scenarios. It can be observed that the performance in RMSE and ∆E00 correspond to each other.

Figure 6 provides a plot of the ∆E00 difference between the test reflectances and their
reconstruction. Surprisingly, the plots show that the corrected Ximea performs the worst in the
case of Munsell patches for training and according to ∆E00. This can be ascribed to the cut of spectral
sensitivity imposed by the linear correction transformation. Figure 4 shows the low sensitivity of this
sensor at the edges of the chosen spectral range (400 nm to 700 nm).

Figure 7 contains plots of the spectral reflectances ground-truth and reconstructed that are
responsible for the highest ∆E00 results for the corrected and uncorrected Ximea camera. The plot
allows appreciation of the areas of the spectra that cause high ∆E00 results. In the case of the corrected
Ximea camera spectral regions that have low or zero sensitivity are wrongly reconstructed. This is not
surprising but confirms the poorer performance of the corrected Ximea camera in comparison with the
uncorrected Ximea camera in the ∆E00 and RMSE metric. The more limited spectral coverage of the
corrected spectral imager negatively influences the spectral reconstruction ability of this camera.
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Figure 7. Visualization of worst and best ∆E00 results for the uncorrected Ximea (Ximea top) and
corrected Ximea (CorXim bottom), Munsell set (left) and Skin simulation (SkinSim) set (right) as
training. Each graph includes GSB sensor results, ground-truth in solid lines and estimation with
dashed lines.

The second worst performer regarding color differences (Mean ∆E00 = ~14 and Mean ∆E00 = ~12)
is the RGB camera. Both the low number of channels and their specific overlap in the spectral region
seems to influence the estimation accuracy negatively. The lower performance of the GSB version can
be ascribed to the low sigma (σ = 15) of the gaussian filters. In the case of the RGB sensor, the coverage
of the spectral range of interested is as seen in Figure 3 not optimal. The spectral distribution shows
significant areas of very low spectral sensitivity and negatively influences the spectral reconstructions.

Both corrected (CorXim) and uncorrected Ximea benefit greatly from GSB improving the
performance according to the ∆E00 metric. For the Silios camera, the GSB only improve the ∆E00

performance when using the expert training set as the skin simulation set. One explanation could be
the sharp cut off for the GSB resulting from the bands that exceed the spectral range of this analysis.
The prototypical sensor France1 has initially already close to gaussian sensitivities and does not benefit
from the GSB.

The RMSE metric shows a similar trend compared to ∆E00. The Ximea camera scores better results
regarding the RMSE in comparison with ∆E00. Differences between original sensors and GSB sensors
are smaller considering this metric.

Training the Wiener estimation matrix with the proposed specialized skin simulation set results
in a more robust reconstruction according to ∆E00 and RMSE for all tested cameras. The more general
Munsell set lacks skin spectral shapes and is contains two dissimilar spectra in comparison with the
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skin test set. The similar shapes and increased number of spectra in the generated specialized database
improve the spectral reconstructions.

5.3. Oxygenation Level Estimation

The oxygenation estimations were performed using six wavelengths as proposed by
Nishidate et al. (500 nm, 520 nm, 540 nm, 560 nm, 580 nm, 600 nm) and three wavelengths (480 nm,
560 nm, 600 nm) the results are shown in Figure 8.

These two oxygenation metrics show different behavior for all cameras compared to the spectral
accuracy metrics. The eight and nine channel cameras (France1 and Silios) perform the worst for the
Munsell training case and six wavelengths. This is surprising since these two cameras perform the
best according to the spectral reconstruction metrics ∆E00 and RMSE. For this case, the performance
differences between the GSB sensor and the original sensor are very small. One explanation can
be that these key wavelengths all fall into valleys between the sensitivity peaks for the Silios and
France1 sensor. The GSB sensors could be affected equally or stronger, due to the relatively small sigma
(σ = 15).

The wavelengths proposed by Nishidate et al. are optimized for an RGB sensor. For the specialized
training set, the RGB camera performs the worst. Illustrating that the spectral reconstruction using a
specialized training set benefits from narrow spectral channels.

Figure 8 also contains results for the oxygenation metric using three wavelengths (480 nm, 560 nm,
600 nm). It can be observed that the choice of the training set for this configuration influences the
different cameras independently. For Munsell patch training, the RGB camera performs the worst and
both versions of the Ximea camera the best. Using the specialized training set the differences between
all cameras are smaller and the RGB camera still performs worst. The other sensors are less affected
by the change of training sets only slightly lowering their oxygenation metric differences when using
the specialized training set. For the idealized GSB RGB sensor lower oxygenation metric differences
can be observed compared to some of the SFA sensors. This could be ascribed to the wavelength
chosen for oxygenation level estimation which all fall well within high sensitivity of the gaussian RGB
(GRGB) sensor.

A camera with sensitivity peaks at the wavelength of interest should perform optimally. This can
be used if the wavelength of interest are known. None of the investigated cameras has optimal filter
sensitivity peaks for oxygenation estimation. Table 5 provides an overview of the statistical results for
all sensors, considering the better performing skin simulation training data set.

The proposed specialized training set improved the final oxygenation parameters (estimated
with three wavelengths). In the case of six wavelengths the skin training set performs worse than the
Munsell set. One explanation is that using six wavelengths includes wavelengths at the outer edges of
the considered spectral range. The specialized set provides too little variety for these areas and the
diverse Munsell set trains these regions better.

For future work noise should be incorporated into the framework. The chosen wiener estimation
method has room to incorporate a noise term into the spectral estimation and the impact of different
kind of noise should be studied. The framework also allows simulation and comparison of spectral
filter array cameras in different spectral ranges. Near infrared should be considered for future work
as it is used in traditional oximetry systems. Furthermore, oxygenation estimation methods that use
the full spectra based on inverse Monte Carlo methods should be tested in conjunction with spectral
reflectance reconstruction.
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Figure 8. Resulting values for ∆Oxy metric calculated using six wavelength (500 nm, 520 nm, 540 nm,
560 nm, 580 nm, 600 nm) (top) and three wavelengths (480 nm, 560 nm, 600 nm) (bottom) for all
Sensors. Munsell set (left) as training and Skin Simulation set (right) including standard deviation of
the data.
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Table 5. Statistical results (minimum, maximum, mean, standard deviation, 98%) for all sensors for ∆E00 (top), RMSE (2nd from top), ∆Oxy 6wvl (3rd from top) and
∆Oxy 3wvl (bottom). All values are based on skin simulation set as training and skin reflectance set as testing.

∆E00
Sensor Min Max Mean Std 98% Min Max Mean Std 98%

RGB 5.04 11.03 7.27 1.08 9.20 GRGB 8.89 16.76 12.01 1.52 14.87
France1 0.02 0.93 0.22 0.15 0.68 GFrance1 0.40 1.50 0.86 0.23 1.35
Silios 0.04 0.66 0.28 0.11 0.49 GSilios 0.03 0.75 0.25 0.12 0.51

CorXim 5.82 11.99 8.74 1.24 11.50 GCorXim 0.02 2.27 0.51 0.44 2.18
Ximea 0.89 6.81 4.40 1.16 6.38 GXimea 0.00 0.30 0.09 0.07 0.25

RMSE
Sensor Min Max Mean Std 98% Min Max Mean Std 98%
RGB 0.000647 0.002112 0.001099 0.000263 0.001717 GRGB 0.00067 0.00194 0.00108 0.00024 0.00180

France1 0.00001 0.00009 0.00004 0.00001 0.00007 GFrance1 0.00003 0.00037 0.00010 0.00005 0.00022
Silios 0.000003 0.00006 0.00003 0.00001 0.00005 GSilios 0.000003 0.00006 0.00003 0.00001 0.00006

CorrXim 0.000184 0.00099 0.00040 0.00014 0.00081 GCorXim 0.000004 0.00028 0.00004 0.00005 0.00026
Ximea 0.000007 0.00028 0.00010 0.00004 0.00020 GXimea 0.000002 0.00003 0.00001 0.00001 0.00003

Oxyg. Metric 6wvl
Sensor Min Max Mean Std 98% Min Max Mean Std 98%
RGB 0.070 0.169 0.114 0.020 0.155 GRGB 0.051 0.125 0.084 0.018 0.119

France1 0.001 0.150 0.040 0.031 0.109 GFrance1 0.0001 0.145 0.033 0.030 0.102
Silios 0.002 0.140 0.073 0.031 0.131 GSilios 0.006 0.151 0.075 0.032 0.134

CorXim 0.001 0.028 0.018 0.005 0.027 GCorXim 0.0002 0.017 0.007 0.004 0.016
Ximea 0.000 0.019 0.009 0.004 0.018 GXimea 00.002 0.017 0.009 0.003 0.016

Oxyg. Metric 3wvl
Sensor Min Max Mean Std 98% Min Max Mean Std 98%
RGB 0.010 0.132 0.051 0.022 0.090 GRGB 0.0001 0.051 0.014 0.010 0.044

France1 0.001 0.041 0.025 0.008 0.038 GFrance1 0.002 0.048 0.025 0.010 0.043
Silios 0.001 0.043 0.019 0.008 0.035 GSilios 0.001 0.048 0.019 0.009 0.036

CorXim 0.00004 0.011 0.006 0.002 0.010 GCorXim 0.0001 0.008 0.003 0.002 0.007
Ximea 0.001 0.041 0.025 0.008 0.038 GXimea 0.00001 0.007 0.004 0.001 0.006
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5.4. Summary and Conclusions

A straightforward framework to evaluate spectral filter array cameras based on spectral
sensitivities and publicly available skin and reflectance databases was proposed. It allows to compare
and quantify the performance of SFA cameras for medical applications and skin imaging in particular.
The framework does not require prior measurements and is based on a readily available skin
databases for testing, a proposed generated skin simulation database and sensor sensitivities of
the cameras included.

Reconstructing full reflectances from sensor responses allows to comparison and is useful when
the application-specific bands of interest are unknown. It can be useful to recreate color images
and benefits from a specialized training set. If the bands of interest are known a camera with high
sensitivity for those exact bands is advisable. Several observations particular to spectral filter array
cameras were made:

• Spectral shapes of the filters should be adapted application-specific
• Careful choice of the spectral bands should be adapted application-specific
• Selecting an optimal training set for spectral reflectances reconstruction improves the results for

SFAs with narrow spectral sensitivities
• GSB improve spectral reconstruction considering ∆E00 color differences and RMSE
• GSB have a small impact on oxygenation level estimation if the bands are not close to the ideal

wavelength for oxygen estimation

The framework has been applied to compare commercially available SFA cameras for skin
diagnosis and skin oxygenation level estimation.

The corrected Ximea camera performed the best in terms of oxygenation level estimations.
Regarding the spectral reconstruction and ∆E00 color difference metrics the Silios camera shows
the best results. Recommending it for applications where the specific bands of interest are not known.

SFA cameras hold great potential for monitoring vital functions and medical diagnosis as a
non-contact, real-time spectral imaging modality. This framework provides a basis for using spectral
filter array cameras effectively for medical applications. It can be used to design spectral filter
sensitivities for specific applications by optimizing the wavelength bands and transmission shapes
of the filters. It is, however, necessary to verify the findings with experimental data and extend the
framework to include spatial aspects.
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