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H I G H L I G H T S

• Maximum gas turbine’s load gradient is the main limitation during load changes.

• Gas turbine under-shooting compensates the steam cycle’s slow transient.

• Proposed control methodology is able to predict stresses in thick-walled components.• Stress monitoring allows optimal and safe control sequences under tight constraints.• Suitability of the proposed methodology for start-up and shut-down applications.
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A B S T R A C T

Flexible natural gas combined cycles will play a fundamental role in future electric markets. Stresses in thick-
walled components and gas turbine load ramps are arguably the main limiting factors during transient operation.
Classical control strategies as PID are not suitable to incorporate technical constraints such as stress limits. This
work presents a control methodology based on model predictive control where the stress in the walls of the high
pressure drum and the first high pressure steam turbine rotor are computed simultaneously with the optimal
control sequence. Thus, the maximum allowable stress in this equipment can be set as a constraint and the
control actions imposed in the power plant ensure that these limits are not exceeded. Two cases simulating
flexible operation under realistic conditions and tight constraints on the stress limits are included. Results show
that with the proposed control methodology the natural gas combined cycle can respond to load step changes of
165 MW in 300 s, and can operate close to the material maximum stress limit without exceeding it. The ro-
bustness and flexibility of this methodology allows its application to different operation conditions such as start-
ups and shut-downs.

1. Introduction

Anthropogenic greenhouse emissions have continuously increased
since the industrial revolution. If this tendency is maintained, global
warming is expected to reach temperatures of 1.5 °C above pre-in-
dustrial levels between 2030 and 2050 [1]. Power generation is the
largest source of greenhouse gas emissions, mainly because of its re-
liance on fossil fuels [2]. Consequently, significant progress towards the
Paris Agreement objectives of limiting the temperature increase to 2 °C
above pre-industrial levels can be achieved in this sector if adequate
measures are taken.

Electricity is progressively gaining relevance in the energy sector. It
currently accounts for 20% of the final energy global consumption and

this amount is only expected to increase [3], reaching almost 40% in
2050 [4]. Therefore, the power generation system must undergone se-
vere modifications in order to be able to produce more electricity while
reducing its emissions. Renewable energy sources will play a major role
in this new energy scenario and will have large shares in the electricity
mix, predicted to reach about 40% of the power generation in 2040 [3].
Nevertheless, traditional thermal power plants will remain the largest
source of electricity production [3].

In this context of increasing power generation from renewable en-
ergy sources, flexibility is and will be the foundation of a reliable and
efficient electric system [3–8]. The lack of dispatchability of some re-
newable energy sources, mainly wind and solar, requires the existence
of power generation alternatives that always allow to meet the power
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demand [9]. Energy storage is considered as a promising technology
supporting decarbonisation [10], but its application in a growing
electricity market in the short- and mid-term is highly limited by its
cost-effectiveness, technology maturity and commercial availability at
large scale. Therefore, flexible operation of thermal power plants may
be arguably considered as the main complement for renewable elec-
tricity production.

In the future European energy market, high renewable penetration
will significantly increase the cycling operation of thermal power plants
[11]. Modern gas-fired power plants are faster, less polluting and more
efficient than coal-fired units at both full and minimum complaint load
[12]. Thus, and despite of their utilization as based-load units, coal
power plants will be less competitive because of the increase in both
coal prices and CO2 taxes, and due to their lack of flexibility and low
part-load efficiency. On the contrary, the high efficiency of natural gas
combined cycles at part-loads and their capability to face the fast cy-
cling of renewables will lead to an increase of their share in the future
European electricity market [11].

Operational flexibility in thermal power plants is normally assessed
by three criteria: mimimun complaint load, start-up time and maximum
load gradient [13]. The minimum complaint load of a natural gas
combined cycle depends mainly on the gas turbine, as stable combus-
tion and acceptable emissions limits must be guaranteed. Modern heavy
duty gas turbines may offer a minimum load of 40–50% of the full load,
but this level is expected to decrease to 30% [12,13]. In addition, if the
power plant is expected to operate for long periods at low loads, the
steam cycle design may be adapted to these conditions in order to in-
crease the overall efficiency at part-load [14]. Start-up time and load
gradients are influenced by the size of the equipment and the control

strategy imposed on the system. Bulk components with high heat ca-
pacity store large amounts of energy for long periods of time and hence
prolong the transient of thermal power plants, leading to slow start ups
and low ramp rates. Optimal design of flexible natural gas combined
cycles must address this limitation, leading to power cycles where both
high efficiency and fast response are achieved. Once the power plant is
designed, the implemented control determines its adequate dynamic
operation aiming at reducing the transient while ensuring safe and ef-
ficient operation.

Thermal stresses in thick-walled components are the primary lim-
iting factor in the combined cycle transient as they may reduce its ex-
pected lifetime due to creep and fatigue. Therefore, proper control
strategies may reduce the start-up time and increase the load gradient
without exceeding the safety limit of the materials. Traditional control
strategies in thermal power plants rely on PID controllers whose ob-
jective is fast system stabilization. Alobaid et al. [15] showed that start-
up times can be halved without lost of stability if the gas turbine load
gradient is increased and proper control of temperatures, pressures and
levels is imposed on the power plant. However, material stresses were
not assessed and hence it could not be verified whether this approach
can be implemented in a real unit. Kim et al. [16] analysed the thermal
stress development in the steam drum of a heat-recovery steam gen-
erator under three different start-up strategies. Results showed that the
selection of the wrong approach and bad operational control may lead
to excessive stresses that deteriorate the equipment. Can Gülen and Kim
analyzed the stresses in the rotor and high-pressure drum of a natural
gas combined cycle, showing the limitations they impose during the
start-up and how appropriate control routines are required to avoid
damaging this equipment [17]. Improvements in boiler’s start-ups can

Nomenclature

Latin Symbols

A System of equations matrix [–]
a Coefficients of the responses [–]
B System of equations vector [–]
b Coefficients of the manipulated variables [–]
C Specific heat capacity [J/kgK]
c Validity function centre [–]
d Optimization weight vector [–]
E Young’s Modulus [MPa]
e Stochastic error [–]
h Convection coefficient [W/m2K]
k Heat conduction coefficient [W/mK]
M Number of local models [–]
N Time horizon [–]
n Number of discretizations or variables [–]
p Pressure [bar]
Q Optimization weight matrix [–]
r Radius [m]
T Temperature deviation from design [K]
t Time [s]
U Manipulated variable [–]
u Displacement [m]
w Validity function width [–]
X System of equations solution vector [–]
y Response [–]
z Vector of optimization variables [–]

Greek Symbols

Thermal diffusivity [m2/s]
* Thermal expansion coefficient [1/K]

x Space discretization size [m]
Current operation point [–]
Current measurement vector [–]
Objective function weights [–]
Rotational speed [rad/s]
Density [kg/m3]
Stress [MPa]
Vector of coefficients [–]
Poisson’s ratio [–]
Validity function [–]

Subscripts

Tangential direction
0 Initial conditions
drum High-pressure drum
eq Equality
eql Linearised equivalent stress
i Inner radius
ineq Inequality
LMN Local model network
m Metal
o Outer radius
r Radial direction
rotor First-stage steam turbine rotor
U Past manipulated variables
y Past responses
z Longitudinal direction

Superscripts

high Higher bound
low Lower bound
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also be achieved with suitable temperature and mass flow control
[18–20].

Optimization of dynamic operation can further improve the tran-
sient performance of thermal power plants. In this approach, both start-
up and load gradient are treated as dynamic optimization problems
[21]. Heuristic rules may be included in this type of control strategies to
reduce the computational power required [22,23], but the strength of
numerical optimization is partially lost by introducing experience-
based constraints. Optimal start-up sequences that do not exceed the
stress limits of critical components can be computed with this approach
[24,25]. Casella and Petrolani [26] proposed two strategies to reduce
the start-up time or the maximum peak stress of a three-pressure
combined cycle with reheat. However, these strategies cannot be con-
sidered as optimal since no dynamic optimization was utilized. Optimal
load gradient profiles can also be computed, ensuring that power is
varied as fast as possible without violating the imposed constraints
[27].

Model predictive control (MPC) enhances the strong capabilities of
dynamic optimization. In this control methodology, a dynamic opti-
mization problem that computes the optimal control sequence over a
time horizon is solved at each control step. The first control action is
subsequently implemented in the power plant. Thus, optimal control
actions ensuring that the operational limits are not exceeded are always
imposed. Prasad et al. [28,29] and Peng et al. [30,31] implemented an
MPC algorithm to limit and control the superheated and reheated steam
temperatures and the steam pressure in thermal power plants, obtaining
faster behaviour of the system than with traditional PID controllers. A
similar approach was followed by Lu and Hogg [32], who utilized an
MPC to control the drum level, the steam pressure and the power
generated by a thermal power plant. Model predictive control was also
tested in industrial applications, leading to improvements over tradi-
tional approaches without exceeding the maximum allowable stresses
in critical components [33]. Sindareh-Esfahani et al. [34] utilized
model predictive control to improve the start-up of a power plant and
impose constraints that limit the deterioration of the equipment.
However, these constraints were imposed on the temperature gradients
in critical components and not on the stress in their walls, which is the
variable related to material deterioration and the actual limiting factor.
Therefore, sub-optimal load ramps may be expected from this metho-
dology.

As thermal and mechanical stresses in thick-walled equipment of
thermal power plants are the main responsible of creep and fatigue
[17,35–38], conservative control strategies are traditionally im-
plemented in these power plants. To overcome this limitation, the
stresses arising in sensitive components must be considered by the
control strategy. Traditional approaches such as PID controllers do not
allow to incorporate stress estimation and hence optimization-based
strategies are required to impose constraints on these variables. This
work proposes the first control methodology, based on MPC, that de-
termines the optimal load ramp rates in the gas turbine whilst computes
both mechanical and thermal stresses in critical components and im-
poses constraints on them at every control step. This control metho-
dology ensures that the fastest load changes are achieved without ex-
ceeding the maximum allowable stress in the material of the equipment
and the maximum load gradient in the gas turbine.

The different models used to develop the proposed control metho-
dology and to test its application in a thermal power plant are described
in Section 2. This includes the high-fidelity dynamic model of the NGCC
that replicates the operation of a real power plant, and the stress and
simplified models embedded in the optimization problem of the MPC
that predict, respectively, the stresses in critical equipment, and power
generation, temperatures and pressures in the power plant. Section 3
discusses the control problem in modern NGCCs, the proposed control
methodology that accounts for the stresses in thick-walled components,
and its mathematical formulation in the form of a quadratic program-
ming problem embedded in an MPC. The results of the tests carried out

using the proposed control methodology are presented in Section 4.
Conclusions are summarized in Section 5. Supplementary Material (SM)
with a thorough development of the stress and simplified models, and
their integration in the optimization problem in the MPC control
strategy is provided with this work for the sake of completeness and
reproducibility.

2. Power plant description and stress modelling

Several models of different complexity are utilized in this study. A
physics-based dynamic model of a NGCC was used to replicate the
operation of a modern thermal power plant. As this type of models
cannot be implemented in optimization problems due to their com-
plexity and long computational time, simplified models that predict the
future state of relevant thermodynamic variables in the NGCC were
developed to be included in the optimization problem of the MPC
strategy. To predict the thermal and mechanical stresses arising in the
high pressure steam drum and in the rotor disk in the first stage of the
high pressure steam turbine, physics-based models of these stresses
were also developed and included in the optimization problem of the
MPC strategy. This section describes these models and provides details
about the assumptions considered during their development.

2.1. Natural gas combined cycle dynamic model

Modern natural gas combined cycles are composed of a heavy-duty
gas turbine and a triple pressure steam cycle with reheating. In this
work, the model also includes steam extraction from the steam turbine
and the heat-recovery steam generator (HRSG). The power plant layout
is represented in Fig. 1. GT PRO [39] was used to design the NGCC as it
provides detailed information of the geometry of the equipment and the
materials needed for the dynamic model.

The dynamic full-physics model of the NGCC was developed with
the specialized Thermal Power library [40] in the software Dymola
[41], based on the Modelica language [42]. As the transient behaviour
of thermal power plants is highly dependent on the size of the equip-
ment, dimensions and geometry of the components designed in GT PRO
were imported to the dynamic model. Software to software validation
at both full and part-load between the Thermoflow and Dymola models
was performed. Results were in good agreement. Detailed description of
the design, dynamic modelling, and validation of the NGCC dynamic
model can be found in the work carried out by Montañés et al. [43].

2.2. Simplified models of the natural gas combined cycle

Model predictive control strategies require the periodic solution of a
dynamic optimization problem. The period of time between optimiza-
tions, i.e. the sampling time of the MPC, is determined by the dominant
dynamics of the system as they indicate when the majority of the
transient has occurred. Good control strategies should anticipate the
dominant dynamics and act frequently during this period of time. Step
responses in the manipulated variables of the MPC with only the drum
level controllers switched on showed that the dominant dynamics of the
system occur in 250–300 s. Therefore, in order to meet the dynamics of
the power plant and have enough time to carry out the dynamic opti-
mization, a sampling time of 30 s was selected. This sampling time
prevents the utilization of the dynamic full-physics model in the opti-
mization algorithm and thus simplified models were used instead.
System identification [44] was employed to develop a local network of
linear ARX models that encompasses the entire power plant operation
range [28,45].

System identification refers to the process of constructing dynamic
data-based models [44]. Data was obtained from simulations performed
in the full-physics dynamic model in Dymola. Closed-loop experiments
were carried out because of its superior effectiveness for several ap-
plications, specially for control [46,47]. Among the closed-loop
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experiment alternatives, a direct approach was followed [44,48]. In this
approach, excitation signals are superimposed in the set-points of the
controllers of interest, and measurements of the inputs and outputs are
collected. All inputs were imposed simultaneously as it leads to better
identification of dynamics than doing it individually [49,50]. Pseudo-
random binary signals (PRBS) and random Gaussian signals (RGS) were
tested as they are persistently exciting and cover properly the input
spectrum. Despite that PRBS signals are widely utilized due to their
optimum crest factor, RGS proved to lead to better identification.

From this set of data, a model structure was fitted by varying the
model parameters. Autoregressive models with exogeneous variable
and without noise integration (ARX models) were selected. The general
structure of an ARX model is:

+ + + =
+ + +

y t a y t a y t n
b U t b U t n e t

( ) ( 1) ( )
( 1) ( ) ( )

n y

n U

1

1

y

U (1)

where ny and nU represent the number of past outputs and inputs in-
cluded in the model, and e t( ) is a white-noise term that enters the
equation as a direct error in the difference equation. If e t( ) is considered
as the prediction error, the predictor is given in vector form by:

= =y t t t^ ( ) ( ) ( )T T (2)

where

= … …[ ]a a a b b, , , , , ,n n
T

1 2 1y U

= … …t y t y t n U t n( ) [ ^ ( 1), , ^ ( ), , ( )]y U
T

ARX models are linear and cannot be used to predict the nonlinear
behaviour of NGCCs. Consequently, a local model network (LMN) was
used to capture and predict the high nonlinearities of the system. This
simplified model relies on the development of several local linear
models at different operating regimes and their interpolation according
to the operating conditions. Nonlinearities can hence be captured by a
set linear models with adequate interpolation. Fig. 2 represents the
general structure of a local model network with several local models.
This approach was firstly proposed by Johansen and Foss [45], and
Prasad et al. [28] proved its efficacy for capturing the nonlinear

dynamics of a thermal power plant.
Local ARX models were developed over the operating region of in-

terest of the NGCC. Defining such local regions is an heuristic proce-
dure. The gas turbine load was chosen as the main criterion. Thus,
linear models were utilized to predict the nonlinear behaviour around
the 100%, 90%, 80%, 70%, and 60% load of the gas turbine. Since the
transition among local regions is a smooth process, the local models
need to be interpolated accordingly in order to predict the overall plant
performance over its global operating region. Neighbouring local
models should contribute more to the solution than local models of
regimes far from the operating conditions. This is accomplished by

Fig. 2. Structure of a generic local model network.

Fig. 1. Process model of the natural gas combined cycle.The nomenclature in the HRSG is as follows. E: Economizer, B: Boiler, S: Superheater, R: Reheater P: Presure,
L: Low, I: Intermediate, H: High.
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associating a validity function to each local ARX model and combining
all the predicted responses in the final output:

=
=

y t f( ) ( ) ( )
k

M

i i
1 (3)

where M is the number of local models, f ( )i is the evaluation of the
each ARX model under the conditions defined by , is the local va-
lidity function associated to each ARX model, and is the parameter
defining the current operating point, which is the current GT load.

A Gaussian validity function was selected as interpolator of the local
models [45]:

=
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2

2

1
1
2

2
(4)

where ci and wi are, respectively, the centres and widths of the local
interpolation functions.

As recommended by Johansen and Foss [45] and Prasad et al. [28],
the local model and validity function parameters were computed by a
nonlinear optimization that aimed at minimizing the global predicting
error of the local model network. Local ARX models of second order
were considered suitable for predicting the temperature deviation at the
outlet of the superheater and reheater. The power plant net power ARX
model was selected to be of first order. Linear polynomials were defined
to obtain the saturation pressure and temperature in the high pressure
drum, and the pressure at the inlet of the steam turbine. Local model
and validity function parameters are included in the Supplementary
Material (SM).

Validation of the local model network was performed by testing its
prediction and interpolation capabilities in the intermediate load
ranges, i.e. at 95%, 85%, 75%, and 65% of the GT load. Random
Gaussian signals were also utilized to generate the validation data. For
the linear polynomials, ramp changes over the NGCC operation range
were employed. Table 1 summarizes the validation results based on the
R2 value. Despite the lower values of the model predicting the net
power generation of the power plant, the model is capable of predicting
the dynamics of the system with high accuracy. These results may be
observed in the Supplementary Material (SM) together with all the
graphical representation of the validation results.

Because of the linearity of the polynomials and the local models
integrating the LMN, this simplified model may be expressed as a linear
system of equations. Expanding these simplified models over time, an
overall system of equations representing the relation among the re-
sponses and manipulated variables in a finite time horizon is achieved.
Therefore, this system can be written as:

=A X bLMN LMN LMN (5)

where XLMN is the vector containing the different predicted responses,
y, and manipulated variables, U, in a time horizon. Matrix ALMN and
vector bLMN are defined in the Supplementary Material (SM).

2.3. Thermal and mechanical stress modelling

Thick-walled components are the most sensitive equipment in
NGCCs as large temperature differences that lead to thermal stresses
arise in the wall. In addition, mechanical stresses are present as these
components are exposed to the highest pressures of the power plant and
may be subjected to rotation. Adequate control of combined cycles must
hence ensure the operating conditions do not damage this critical
equipment. The high pressure drum and the high pressure steam tur-
bine rotor disk were the components considered in this work. Because
of their geometry, plane strain was assumed in the steam drum and
plane stress was considered in the rotor.

The temperature profile along the wall is required to compute the
thermal stresses. Temperature was assumed to vary in radial direction

and thus its distribution is obtained from the one-dimensional heat
equation in radial direction:

=
r r

r T
r

T
t

1 1
(6)

An implicit Crank-Nicolson discretization scheme was utilized to com-
pute the temperature distribution along the wall. Both drum and rotor
encounter different fluids and thermodynamic states in their inner and
outer surfaces. The high pressure drum is on contact with saturated
water and steam on the inner surface and with air in the outer, whereas
the high pressure turbine rotor is in contact with superheated steam on
the outer surface and the shaft at an unknown state on the inner wall.
Therefore, different boundary conditions must be imposed. The im-
plementation of the different boundary conditions is detailed in the
Supplementary Material (SM).

Thermal and mechanical stresses were modelled together following
a common approach for both plane stress and plane strain. Given the
constitutive equations that relate the stress with the strain and com-
bining them with the strain-displacement relations, the stress in each
direction can be expressed in terms of the displacement and the tem-
perature in radial direction [51]. Inserting these equations into the
radial equilibrium equation, an ordinary differential equation relating
the displacement with the temperature gradient and the centrifugal
force due to rotation is obtained [51]. Pressure enters in these equations
as boundary conditions in the radial stress equation. The systems of
equations for the cases of plane strain and plane stress are defined in
Eqs. (2) and (3), respectively.
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The stress components in the different directions are combined in an
scalar measure of the overall equivalent, or effective, stress. This

Table 1
Validation R2 results for the local network of ARX models and linear poly-
nomials.

Variable Symbol
GT Load

95% 85% 75% 65% Ramp

Net Power y1 61.77% 76.11% 74.97% 73.97% –
Superheated Steam

Temperature
y2 95.51% 98.40% 99.03% 99.14% –

Reheated Steam
Temperature

y3 93.18% 94.65% 90.37% 92.49% –

Turbine’s Steam Inlet
Pressure

y4 – – – – 86.16%

Drum’s Saturation
Temperature

y5 – – – – 85.22%

Drum’s Saturation
Pressure

y6 – – – – 86.62%

J. Rúa, et al. Applied Thermal Engineering 170 (2020) 114858

5



parameter can be implemented as a constraint in the optimization
problem included in the MPC strategy. The von Mises equivalent stress
defined in Eq. (9) is used as this measure.

= + + + +( )r z r z z reff
2 2 2 2 (9)

Since the von Mises equivalent stress is a nonlinear equation and linear
MPC is the proposed control strategy, a linearisation of the von Mises
equivalent stress is used to integrate the equivalent stress in the linear
optimization algorithm:

= + + x( )eql
2

eql,0
2

eql,0
2 2O (10)

These stress equations are discretized with central finite differences and
combined with the temperature distribution expressions in a common
system of equations that allows to compute simultaneously the tem-
perature, the displacement, each of the stress components and the
linearised von Mises effective stress. Combining these system of equa-
tions over time, the evolution of these variables in both space and time
can be obtained from a larger system of equations:

=A X Bdrum|rotor drum|rotor drum|rotor (11)

where Xdrum|rotor is a vector containing the temperature difference from
the design point, the displacement and the stresses in the wall dis-
cretizations over time. Adrum|rotor and Bdrum|rotor are defined for both
components in the Supplementary Material (SM).

The temperature and stress models where implemented in MATLAB
[52] and validated in the specialized software ANSYS [53]. Structural
steel was assumed as the material to ensure well-known physical
properties in both models. A time discretization of 1 s was selected,
whereas 50 and 800 spatial discretizations were chosen for the rotor
and drum, respectively. Heating and cooling of both components was
implemented by steam temperature ramp changes in the boundary
conditions. A summary of the boundary conditions imposed during the
validation is presented in Table 2. Figs. 3 and 4 represent, respectively,
the drum and rotor validation results at six different radii.

3. Control methodology for optimal operation accounting for
stresses

Control of thermal power plants matches generated power to the
power demand from the electrical grid, and modifies adequately the
temperatures, pressures and mass flows to ensure a safe, stable and
efficient operation. This section presents the control problem en-
countered in modern NGCCs, describes the proposed methodology to
optimally control the power plant whilst monitoring the stresses in
critical equipment, and details its implementation as a quadratic opti-
mization program embedded in an MPC.

3.1. Control problem

Natural gas combined cycles are integrated by two thermodynamic
cycles characterized by different dynamics. Gas turbines are fast com-
ponents that can adapt their operation within seconds. In contrast,
steam bottoming cycles are slow units limited by the large heat capa-
citance of the heat-recovery steam generator, as it induces delays of
10–20 min with respect to the gas turbine operation [54,55]. Therefore,

power control in modern NGCCs is achieved by adjusting the gas tur-
bine load. The steam cycle follows the gas turbine operation acting as a
passive element that generates power with the steam available in the
HRSG.

The operation of the gas turbine is determined by the performance
map of its components. Automatic control is normally incorporated in
these units to ensure high turbine inlet and exhaust temperatures at
nominal and part-loads down to 40% [54]. This control is achieved by
adapting the variable guide vanes (VGV) of the compressor, which
modify the air flow rate. As gas turbines have almost negligible dy-
namics compared with those of the steam cycle and their operating
conditions may be defined by their load, a quasi-static model is utilized
in this work to represent the gas turbine. Exhaust gas mass flow and
temperature are hence determined by the load control assuming in-
mediate adjustment of fuel mass flow and VGV position. These are the
boundary conditions imposed on the steam cycle [13].

The operation of the steam cycle is based on sliding pressure. In this
operation strategy, the admission valves of the steam turbine are close
to fully open, allowing the pressure upstream of the steam turbine to
vary freely. This keeps the volume flow close to constant in the steam
turbine at part load, leading to evenly distributed pressure ratios that
reduce the temperature gradients within the turbine and to high isen-
tropic efficiency at different operating conditions [56]. Sliding pressure
operation may be applied until 50% load, after which throttling control
is required [54]. Therefore, for the power generation changes con-
sidered in this work, steam pressure control is not necessary. Control of
the steam bottoming cycle is hence reduced to inventory control of the
steam drums and condenser, pressure control of the low pressure drum
and the deaerator, and limiting the superheated and reheated steam
temperature. Furthermore, this work proposes the control of the
stresses developing in thick-walled components, as excessively fast load
changes may lead to stresses that can damage this equipment.

3.2. Control methodology

A regulatory control layer is utilized in the control strategy of the
natural gas combined cycle to stabilize its operation. This includes the
level control of the intermediate and high pressure drums and the
condenser, and the pressure control of the deaerator and the low
pressure drum. Three-element controllers are normally utilized to
control the drum level [54]. In this type of controller, the drum level,
the feedwater flow and the live-steam flow are processed with a PID
cascade structure that acts on the feedwater valves [43]. The low
pressure of the cycle is controlled with a PI controller that measures the
pressure in the deaerator and acts on the low pressure valve. A detailed
diagram of this control structure can be found in the work by Montañés
et al. [43].

Model predictive control is utilized to control the power generation
of the NGCC, the superheated and reheated steam temperatures, and
the maximum stresses arising in the considered components. Power
generation is controlled by modifying the gas turbine load, whilst two
attemperator valves are used to limit the superheated and reheated
steam temperatures. Stress control is achieved by limiting the ramp
changes of the gas turbine. This leads to slower changes in the steam
cycle, which result in smaller temperature gradients and slower

Table 2
Validation boundary conditions.

Component
Thermal Boundary Conditions Mechanical Boundary Conditions Rotation

Tinitial Ramp hi ho ri ro

Drum 340 [°C] ± 20 20000 [W/m K2 ] 0.065 [ °W/m C2 ] p = 150 [bar] p = 1 [bar] –
Rotor 590 [°C] ± 10 – 20000 [ °W/m C2 ] u = 0 [m] p = 140 [bar] 3000 [rpm]
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pressure variations in the high pressure drum and rotor. Therefore, the
effective stress in thick-walled components is reduced by limiting the
maximum load ramps of the gas turbine.

Linear quadratic control, i.e. an MPC strategy based on a quadratic
programming optimization problem, was selected because of its fast
computational time and convexity [57]. This type of optimization
problems guarantees that global minima are found if the weight ma-
trices are defined adequately [57]. The simplified models predicting the
performance and key thermodynamic variables in the NGCC are com-
bined with the physics-based stress models in a linear system of equa-
tions that enters the optimization problem as linear equality con-
straints. This methodology ensures that optimal control actions that
respect the stress constraints in specific equipment and the behaviour of
the NGCC are thus computed.

Since the gas turbine and steam cycle have different dynamics, an
extra linear MPC that only regulates the power of the gas turbine was
included. The sampling time of this control is 5 s as the gas turbine
dynamics are almost negligible. This control aims at complementing the
global MPC with more frequent power control and at narrowing the gap

between the demand and the production. With this overall control
strategy, the global MPC defines the control actions that stabilize the
NGCC every 30 s while the GT MPC adjusts the gas turbine load every 5
s. If the difference between the current stress in the critical components
and the maximum allowable effective stress is less than 15%, it is
considered that the steam cycle’s dynamics dominate the power plant
operation and hence the global MPC sets the control actions without
inputs from the GT MPC. This approach ensures that when there is not
enough margin between the current stress in the drum and rotor and
their limit, the global MPC accounts for the stresses that may arise,
whereas when the difference is large the GT MPC acts more frequently
to meet the power demand.

A schematic representation of the control strategy of the NGCC is
presented in Fig. 5. The physics-based NGCC dynamic model represents
the operation of an actual power plant with a regulatory control layer
already implemented. Measurements of key parameters, e.g. tempera-
tures, pressures and mass flow rates, are fed into both global and GT
MPC, where dynamic optimizations are carried out every 30 and 5 s.
The solution of these optimization problems are the optimal control

Fig. 4. Validation results for the rotor model.

Fig. 3. Validation results for the drum model.
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actions that must be imposed in the power plant. The novelty and
strength of the proposed control methodology lies in the global MPC, as
optimal control actions are computed simultaneously with the stresses
arising in critical equipment in an optimization framework. This en-
sures that the implementation of the computed control actions will not
lead to excessive stresses in the equipment of the actual NGCC.

3.3. Model predictive control formulation

The optimal quadratic programming (QP) control problem re-
presented by both global and GT linear MPCs is formulated as:

= +f z z Q z d zmin ( ) 1
2z

T
n (12a)

subject to

=A z Beq eq (12b)

A z Bineq ineq (12c)

z z zlow high (12d)

with

Q 0 (12e)

In the global MPC, vector z contains X X,LMN drum and Xrotor. It re-
presents the optimal sequence of responses, control inputs, and tem-
perature, displacement and stresses in both drum and rotor for several
space and time discretizations calculated over a time horizon N. These
variables are the dynamic optimization variables and are limited by
lower and upper bounds (Eq. (12d)), ensuring that the maximum al-
lowable stress in both drum and rotor is never exceeded. This optimi-
zation problem is subject to linear constrains (Eq. (12b)) that ensure the
simplified models (Eq. (5)) and the drum and rotor stress models (Eq.
(11)) are satisfied. In addition, linear inequality constraints (Eq. (12c))
are included in order to limit the load ramps in the gas turbine. The
degrees of freedom included in vector z are modified throughout the
optimization to minimize the objective function f z( ) in Eq. (12a). The
objective function considered in this work aims at minimizing the dif-
ference between the power generation and demand, and the deviation
of both superheated and reheated steam temperatures from their
nominal value. The description of these matrices and vectors is included
in the Supplementary Material (SM).

In the GT MPC, vector z includes the optimal sequence of net power
generation and gas turbine loads throughout the time horizon.
Therefore, the LMN for these two variables is the only equality con-
straint, and the maximum gas turbine load gradient is the only in-
equality constraint. Lower and upper bounds are also included for both

Fig. 5. Structure of the proposed control methodology accounting for stresses in critical components.

J. Rúa, et al. Applied Thermal Engineering 170 (2020) 114858

8



variables. The detailed description of this GT MPC is also included in
the Supplementary Material (SM).

A diagram representing the logic of the MPC-based control metho-
dology for the NGCC is illustrated in Fig. 6. The full-physics dynamic

model developed in Dymola and the optimization algorithm in the MPC
developed in MATLAB were merged in Simulink through a Functional
Mock-up Unit (FMU). This FMU containing the detailed dynamic model
of the NGCC with the regulatory control layer represents an actual

NGCC Dymola FMU

Ẇnet, LoadGT

Sequence of opti-
mization variables

z = [ŷ1,U1]

Compute sequence
of predicted power
generation and gas
turbine loads with

the simplified models
over the time horizon.

Check if the con-
straints are violated:

Aeq z = Beq

Aineq z = Bineq

zlow ≤ z ≤ zhigh

Constraints violated?
Modify control

inputs and responses
Yes

Optimum sequence
of responses and
control inputs?

No

No

Select first op-
timal LoadGT

Yes

Demand

Ẇnet, TSH, TRH
pST, Tdrum, pdrum

LoadGT,
ValveSH, ValveRH

Sequence of optimiza-
tion variables z =

[XLMN , Xdrum, Xrotor]

Compute the estimated
responses with the
simplified models

and the temperarute,
displacement, and

stresses with the drum
and rotor models over

the time horizon.
Check if the con-

straints are violated:
Aeq z = Beq

Aineq z = Bineq

zlow ≤ z ≤ zhigh

Constraints violated?
Modify control

inputs and responses
Yes

Optimum sequence
of responses and
control inputs?

No

No

Select first control
input set [LoadGT,
ValveSH, ValveRH]

Yes

First optimum
drum and

rotor variables
[T, u, σr,θ,l,eql]

Yes

Fig. 6. Logic diagram of the MPC control strategy.

Table 3
Materials’ physical and mechanical properties.

Component Material [kg/m ]3 Cm [J/kg K] km [W/m K] [m /s]2 [1/K] E [MPa] [–] h [W/m K]o 2 h [W/m K]i 2 Yield stress [MPa]

Drum SA-515 Grade 70 7850 434 47 1.3796e-05 1.36e-5 178000 0.3 5000 0.065 190
Rotor X18CrMnMoNbVN12 7700 460 29 8.1875e-06 1.25e-5 127000 0.292 4000 – 69

Fig. 7. Net power generation of the natural gas combined cycle. Fig. 8. Load profile of the gas turbine with MPC optimization steps.
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NGCC, and provides the measurements of key parameters that are re-
quired in both MPCs to compute the optimal control actions.

4. Results and discussion

Load step change is a suitable scenario to test the control cap-
abilities of the methodology proposed in this work. A step change in the
power demand of 165 MW drives the transient operation of the natural
gas combined cycle. The main goal is to minimize the difference be-
tween the power demand and generation as fast as possible while sa-
tisfying the constraints of the system. Two cases are studied in order to
present the control capabilities of the proposed methodology. First, the
performance of the NGCC during the load ramp is analysed under
reasonable stress limitations that can be expected in current modern
power plants. Subsequently, the same dynamic behaviour is studied
under tight constraints on the allowable stress of the steam drum, as it
represents possible scenarios as start-ups. Table 3 includes the materials
considered in this work for the drum and rotor as well as their physical
and mechanical properties. The yield stress of the drum utilized in the
second analysis is 130 MPa instead of 190 MPa to guarantee that the
constraint is active.

The weights in the matrix and vector of the objective function in the
global MPC are = = =1, 10y y y1 2 3 , and = = = 2U U U1 2 3 (see
Supplementary Material (SM)). In the GT MPC, = 1y1 and = 0.1U1 . A
time horizon of 30 sampling times was considered to guarantee that the

system dynamics are captured, 200 and 50 spatial discretizations were
used in the drum and rotor walls respectively, and 3 time discretizations
per sampling time were utilized.

4.1. Optimal dynamic operation with realistic constraints

In this first case the transient performance of the NGCC is studied by
imposing constraints that may be expected in modern power plants.
This includes gas turbine load ramping rates up to 15% per minute, and
complex alloys for the rotor material capable of withstanding the high
temperature and pressure at the inlet of the steam turbine [58].

With these constraints imposed, the NGCC is able to meet the power
demand in 300 s (see Fig. 7). Since this time is half the stabilization
time of the steam cycle, it is clear that the gas turbine compensated the
slow response of the HRSG. This behaviour is represented in Fig. 8. The
gas turbine load is under-shot in order to compensate the slow transient
of the steam cycle and meet the power demand faster. As the steam
cycle reaches steady-state at part-load, the gas turbine increases pro-
gressively its load to keep the power generation constant. The GT stops
fluctuating after 600 s, which coincides with the stabilization time of
the steam cycle.

From a dynamic optimization perspective, the load of the gas tur-
bine is always dictated by the GT MPC, which finds a different and
smoother optimal trajectory than the global MPC as it is evaluated more
frequently. This is possible since the difference between the equivalent

Fig. 9. Estimated and exact equivalent stress in the drum at different radii.

Fig. 10. Estimated and exact equivalent stress in the rotor at different radii.

Fig. 11. Control of the superheat steam temperature.

Fig. 12. Control of the reheat steam temperature.
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stress in both drum and rotor and the maximum allowable stress is
always bigger than 15%. Figs. 9 and 10 show the stresses predicted by
the global MPC at each sampling time during the transient operation of
the NGCC.

The stress in both components was calculated with the exact profile
of temperatures and pressures from the dynamic high-fidelity model
and compared with the linearized equivalent stresses predicted during
the dynamic optimizations (see Figs. 9 and 10). Despite the predicted
stress overestimated slightly the equivalent stress in both components,
both in time and magnitude, it predicts adequately their tendency and
the largest value, ensuring that the components do not exceed the
maximum allowable limit. This discrepancy may be generated by the
utilization of simplified models and the lack of detailed wall tempera-
tures from the dynamic high-fidelity model. The simplified models
might over-predict the rate of change of the temperature and pressure
in both components, leading to faster dynamics than those encountered
in the detailed model. However, the the lack of detailed wall tem-
perature in the dynamic high-fidelity model may influence more the
difference between the predicted and exact stresses, as it prevents the
utilization of actual wall temperatures and forces the estimation of the
initial conditions along the wall at each optimization. Having detailed
data of the wall temperature every sampling time would smear out the
fluctuations of the stress predictions.

Superheat and reheat steam temperature profiles with PID con-
trollers in the attemperators were also calculated by imposing the gas
turbine load profile in the detailed dynamic model. The results are re-
presented in Figs. 11 and 12. Albeit being more aggressive, MPC out-
performs the PID temperature controllers as it is able to stabilize the
superheated and reheated steam temperatures faster and with smaller
deviations from their set-point.

During this transient response the inequality constraint limiting the
maximum gas turbine load gradient is always active for both MPC
controllers. Therefore, it is the gas turbine and not the stresses in thick-
walled components the main limitation for faster and more flexible
operation of natural gas combined-cycles during load changes. On the
contrary, during the start-up of the power plant, it is expected that the
stresses in these components are the limiting factor for faster operation.
Consequently, in order to prove that this control methodology is sui-
table also for start-up of natural gas combined cycles, the same scenario
is studied but ensuring that the maximum allowable stress is reached in
the steam drum. This was done by reducing the yield stress limit to
130 MPa.

4.2. Optimal dynamic operation with tight stress constraints

This case aims at showing the capabilities of the methodology

proposed in this work to control the power generation of the NGCC
under tight constraints imposed on the material of the equipment.
Fig. 13 shows the net power generation of the NGCC for these tight
constraints. As expected, the power plant requires more time to meet
the power demand since the stress limitation in the drum inhibits large
changes in the gas turbine load. Thus, and since the stabilization time is
longer than the 600 s required by the steam cycle, the stress in the high
pressure drum is the limiting factor during the transient operation of
the NGCC.

The slow transient response of the gas turbine is represented in
Fig. 14. In contrast with the previous case, the gas turbine load is dic-
tated by the global MPC, which leads in this case to a smoother gas
turbine control. As the margin between the maximum allowable stress
and the stress predicted by the global MPC is small, the GT MPC does
not influence the power plant operation.

From Fig. 15 can be observed that the constraint on the maximum
effective stress in the drum is active for a period of time during the
transient. This indicates that the MPC control strategy is able to ade-
quately predict the stress in the steam drum and obtain an optimal
control sequence that does not exceed the material allowable limits.
The comparison of the exact and the predicted effective stress in
Figs. 15 and 16 shows better agreement than in the previous case. This
is a result of the slower gas turbine load changes, leading to more
uniform conditions in the wall, which, in turn, make the predictions of
the initial conditions in the drum more accurate. This fact points out the
necessity of incorporating models to calculate the temperature profile
along the components wall in the dynamic high-fidelity models. As
occurred in the previous case, the abrupt step occurring in the effective
drum stress at the first instant after the step change in the power de-
mand may be originated by the simplified models, which over-estimate
the dynamic response of the pressure and temperature on the inner
surface of the drum.

5. Conclusions

This work proposes a control methodology based on linear MPC
with stress control. In the proposed methodology, the effective stress in
the high pressure drum and steam turbine inlet rotor are computed and
predicted together with relevant thermodynamic variables in specific
locations of the steam cycle in an optimization framework. Constraints
on the effective stress arising in critical equipment can be imposed with
this approach, which allows to compute optimal control actions that do
not exceed these material limitations.

Temperature and stress models for the wall of the drum and rotor
were developed and validated with finite element method software,
whilst simplified ARX and linear polynomial models were created to

Fig. 13. Net power generation of the natural gas combined cycle. Fig. 14. Load profile of the gas turbine with MPC optimization steps.
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predict key thermodynamic variables in the steam cycle such as tem-
peratures and pressures during the optimization. The stress and sim-
plified power plant models were embedded as linear equality con-
straints in the quadratic optimization algorithm within the MPC
strategy, which computes the optimal set of control actions and im-
plements them in the thermal power plant every sampling time.

Two cases that simulated load step changes of the NGCC were
presented. The first case imposed constraints equivalent to those en-
countered in modern combined cycles, whereas the second case dras-
tically reduced the maximum allowable stress in the steam drum. The
results showed the NGCC is able to reduce the load by 165 MW in 300 s
by under-shooting the GT load to compensate the slow transient be-
haviour of the steam cycle. In this case, the GT MPC defined the load
profile of the gas turbine because of the broad margin between the
effective and maximum allowable stress in the critical equipment.
When the stress limitations were tighter as in the second case, the
global MPC defined the gas turbine load profile as the maximum al-
lowable stress limited the ramping capabilities of the NGCC. These re-
sults demonstrate that the maximum gas turbine load gradient, and not
the stresses in critical components, is the main limitation of flexible
natural gas combined cycles during load changes. Therefore, improve-
ments towards enhanced flexibility of this type of thermal power plants
requires gas turbines capable of ramping up and down faster.

A comparison in these two cases between the exact and predicted
linearised equivalent stress in both drum and rotor showed a good
agreement of the results. Despite the simplified models may lead to
over-prediction in the initial stress dynamics, it is considered that the
discrepancy between predicted and exact effective stresses was origi-
nated by the lack of detailed wall temperatures from the dynamic high-
fidelity model and thus the need of estimating these initial optimization
conditions. Nevertheless, the exact stress never exceeded the stress
predicted by the MPC. Thus, the proposed methodology proved to be an
effective control strategy suitable to incorporate technical constraints as
stress limits in different components and with a faster response and less
overshooting in process variables than traditional feedback control
strategies.

This control methodology based on MPC with stress control can be
extended to other components such as pipes, headers, downcomers,
casings or combustors, if stress models for these components are
available. The main limitation is the computational time, as more
models add more optimization variables to the dynamic optimization
problem, which has to be solved within the sampling time spam.
Furthermore, the methodology can only handle linear or linearised
constraints and nonlinear stress models cannot be included. The
methodology proposed in this work could be extended to nonlinear
MPC. This is a research gap that must be considered for complicated

geometries that lead to nonlinear stress models.
The application of this methodology to start-ups and shut-downs of

thermal power plants to obtain optimal operating sequences is a pro-
mising future research step, as stress limitations dominate the time
required in this type of operation. Moreover, the flexibility of this
methodology allows to tune the objective function to explore different
control actions, include online model estimation to account for changes
in the power plant such as fouling, and easily include Kalman filters or
additional variables that may be needed during the start-up as, for in-
stance, bypass valves and steam mass flow and temperature prediction
models in different location of the steam cycle. This methodology could
also be combined with fatigue analysis in an economic MPC, where the
objective may be to find a trade-off between the damage in specific
equipment and the economic revenue from gas turbine ramps or start-
ups and shut-downs. Scheduling will be a relevant issue in future power
markets, and combining stress and fatigue analyses with power plant
control and damage studies can lead to economic benefits.
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