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ARTICLE INFO ABSTRACT

Mathematical stormwater models are often used as tools for planning and analysing urban drainage systems.
However, the inherent uncertainties of the models must be properly understood in order to make optimal use of
them. One source of uncertainty that has received relatively little attention, particularly for increasingly popular
green areas as part of urban drainage systems, is the mathematical model structure. This paper analyses the
differences between three different widely-used models (SWMM, MOUSE and Mike SHE) when simulating
rainfall runoff from green areas over a 26-year period. Eleven different soil types and six different soil depths
were used to investigate the sensitivity of the models to changes in both. Important hydrological factors such as
seasonal runoff and evapotranspiration, the number of events that generated runoff, and the initial conditions for
rainfall events, varied significantly between the three models. MOUSE generated the highest runoff volumes,
while it was rather insensitive to changes in soil type and depth. Mike SHE was mainly sensitive to changes in
soil type. SWMM, which generated the least runoff, was sensitive to changes in both soil type and depth.
Explanations for the observed differences were found in the descriptions of the mathematical models. The dif-
ferences in model outputs could significantly impact the conclusions from studies on the design or analysis of
urban drainage systems. The amount and frequency of runoff from green areas in all three models indicates that
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green areas cannot be simply ignored in urban drainage modelling studies.

1. Introduction

Stormwater management is a challenge for cities around the world
and has traditionally been addressed using pipe-based drainage net-
works. These networks are costly to construct and maintain and may
potentially exacerbate flooding and water quality issues downstream.
Green infrastructure attempts to solve these problems by managing
stormwater in a more natural way (see e.g. Eckart et al., 2017; Fletcher
et al., 2013). Effective and efficient design and operation require the
ability to analyse and predict the performance of such green urban
drainage systems. This is often conducted using one of several simula-
tion models available for urban drainage systems (see e.g. Elliott and
Trowsdale, 2007). Such models are always simplifications of reality,
which result in uncertainties associated with their use. Understanding
the sources and describing the magnitude of these uncertainties is ne-
cessary if the models are to contribute to optimal management and
design of stormwater systems (e.g. Deletic et al., 2012). A lack of un-
derstanding could lead to either over-dimensioned, unnecessarily ex-
pensive drainage systems, or under-dimensioned systems that lead to
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flooding and damages.

Uncertainties in urban drainage modelling arise from different
sources that may be divided into three groups: model input un-
certainties, calibration uncertainties and model structure uncertainties
(Deletic et al., 2012). The uncertainties related to input data and the
calibration process have been studied to some extent, albeit more ex-
tensively for traditional pipe-based drainage systems than for green
infrastructure. Dotto et al. (2014) showed that calibration can to some
extent compensate for measurement errors. Following developments in
natural hydrology, different methods for estimating parameter un-
certainty have been applied to urban drainage modelling (Freni et al.,
2009; Dotto et al., 2012), including mathematically formal Bayesian
methods (e.g. Kleidorfer et al., 2009; Dotto et al., 2011, 2014; Wani
et al., 2017) and mathematically informal methods such as GLUE (e.g.
Thorndahl et al., 2008; Breinholt et al., 2013; Sun et al., 2013). Im-
provements in the calibration procedure have been proposed based on
higher-resolution input data (Krebs et al., 2014; Petrucci and
Bonhomme, 2014) or a more systematic way of distinguishing the
parameter sets that provide an acceptable match between simulated
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and observed values in order to estimate parametric uncertainty
(Vezzaro et al., 2013).

Despite this growing body of research on urban drainage modelling,
model structure uncertainty has received little attention. Although
model results for green areas are sometimes compared (e.g. infiltration
models in Duan et al., 2011), most comparisons do not explicitly discuss
the applied model structures. A review by Elliott & Trowsdale (2007)
mainly describes the practical and technical differences between a
number of common urban drainage models in terms of model uses,
temporal and spatial resolution, runoff generation, flow routing, re-
presentation of low-impact development facilities and user interface.
This review does not consider the differences between the conceptual
models used by each of the models (compare e.g. DHI, 2017a; Rossman
and Huber, 2016). Understanding these differences and their implica-
tions is valuable for three reasons. First, these differences can be ex-
pected to give rise to differences in the results of modelling studies,
depending on which model is utilised. It may be argued that models are
usually calibrated to field measurements and that this will reduce or
even eliminate the differences between their outcomes. However, this
argument fails to consider that different calibrated models may predict
similar outflow rates, while diverging in other aspects of the water
balance (Kaleris and Langousis, 2016; Koch et al., 2016). For urban
drainage models specifically, pipe leakage, infiltration and mis-
connections may also affect the measured flow rates, and these issues
cannot be identified from outflow measurements alone. Such diver-
gence could lead to conflicting outcomes if different models are used to
forecast the performance of urban drainage systems, for example, ex-
amining the differences between various climate and/or development
scenarios (see Karlsson et al. (2016) for an example of this in a natural
catchment). Second, model calibration is often performed by adjusting
only a subset of model parameters based on a sensitivity analysis. This
kind of analysis is traditionally performed using one of the many ex-
perimental numerical techniques available, but it could also benefit
from an improved theoretical understanding of the ways in which dif-
ferent parameters affect the model results. Third, models may be used
to predict more extreme events than they were calibrated for, and un-
derstanding the ways the model might react to more extreme rainfall
input can help in understanding the uncertainty involved.

The three reasons outlined above equally apply to models of tradi-
tional and green urban drainage systems. One of the aims of the in-
creasing use of green infrastructure is to locally retain and store water
for a longer period. Thus, from a theoretical perspective, models of such
systems would also need to include slower in-soil processes such as
infiltration, groundwater recharge and evapotranspiration (Fletcher
et al., 2013; Salvadore et al., 2015). This was also demonstrated by
Davidsen et al. (2018), although they only modelled infiltration capa-
city using Horton’s equation and did not consider the fate of the water
after it had infiltrated. The effect of including a more complete de-
scription of in-soil processes (more similar to descriptions used in
models of natural hydrologic systems) on urban runoff processes at a
fine temporal and spatial resolution has not yet been studied ex-
tensively.

In addition to the theoretical considerations in the previous two
paragraphs, there are also experimental indications that model struc-
ture can play a significant role in urban drainage modelling studies.
Fassman-Beck and Saleh (2018) found that the EPA Storm Water
Management Model (SWMM) displayed some counter-intuitive beha-
viour when modelling a bioretention system. For green roof modelling
in SWMM, Peng and Stovin (2017), for example, found that the green
roof module requires further modifications. Leimgruber et al. (2018)
found that water balance components were insensitive to most para-
meters involved in the process (which could mean that the model
structure is unnecessarily complex) and Johannessen et al. (2019)
raised concerns about the large variability in calibrated model para-
meters and their non-correspondence with material properties. Within
runoff quality modelling, the validity of traditional build-up/wash-off
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models was shown to be limited to a subset of cases (Bonhomme and
Petrucci, 2017; Sandoval et al., 2018).

Considering the above, there are indications that model structure
uncertainty could considerably impact modelling outcomes, but it has
received relatively limited attention in research on modelling green
urban drainage. Thus, this paper aims to further the understanding of
model structure uncertainties in urban drainage models that specifically
address green areas. The research questions in this paper are:

1. What is the impact of model structure on the predicted runoff and
evapotranspiration in green plots with different soil textures and
depths in an urban context?

2. How can the differences between conceptual model structures be
linked to differences in model results?

Answering these questions could ultimately contribute to a better
understanding and applicability of urban drainage models for green
infrastructure.

2. Materials and methods
2.1. Models

The three models used in this paper were the storm water man-
agement model (SWMM, version 5.1.011, U.S. Environmental protec-
tion Agency), MOUSE RDII (hereafter referred to as ‘MOUSE’, release
2017, DHI - Danish hydrological Institute) and MIKE SHE (hereafter
referred to as ‘SHE’, release 2017, DHI). (Note that the PCSWMM (CHI)
interface was used for initial setup of the model, but the final model
runs were performed with the standard EPA SWMM 5.1.011 execu-
table.) A brief description of the conceptual models is given below and
in Fig. 1. For additional details see the official documentation for each
of the models. An overview of all model parameters may be found in
Table 1. SWMM and MOUSE are semi-distributed models, where the
study area may be divided into subcatchments of arbitrary shape and
size. Parameter values are set for each subcatchment. SHE, on the other
hand, is a fully distributed model that uses a regular rectilinear grid to
divide the study area into a large number of cells, and different para-
meter values can be assigned to each cell. All three models contain
three possible storage compartments for each catchment: surface, un-
saturated zone (UZ) and saturated zone (SZ) storage. The ways in which
water is moved between these three storages and out of the catchment
vary between the models. All three models have methods to account for
snowfall and snowmelt, but since snow periods were not considered in
this study these methods are not described here.

2.1.1. SWMM

SWMM (Rossman and Huber, 2016) conceptualizes each catchment
as a single soil column that is divided into an unsaturated and a satu-
rated zone by a variable groundwater level. The surface storage is filled
by precipitation (supplied as a time series by the user) and emptied by
overland flow, infiltration and evapotranspiration. Overland flow is
described using Manning’s Formula, which, for the case of overland
flow in a catchment, can be written as:

1.1,

Q= ;S 2d3W D)
where n is Manning’s coefficient (which depends on the roughness of
the surface, including vegetation), S is the slope of the surface, d is the
depth of the water, and W the width of the flow. In ideal cases (as in this
study), W is simply the width of the catchment, but in more complex
cases it may be considered to be a flow routing parameter instead. The
water depth d is replenished by rainfall (provided as input data to the
model) and reduced by surface runoff and infiltration.

For infiltration, the Green-Ampt model (Green and Ampt, 1911) was
selected (SWMM also supports the Horton and Curve Number methods).
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This model assumes that, initially, all precipitation will infiltrate, until
a saturated layer develops at the top of the soil and the maximum in-
filtration rate becomes:

_ %
Jo = KS“’(l s ) ©)

where the infiltration rate f, is controlled by two soil hydraulic para-
meters (saturated hydraulic conductivity K, and suction head ), the
initial soil moisture deficit 6; at the start of the rainfall event and the
cumulative infiltration volume F during the rainfall event. As the soil
becomes more saturated the infiltration rate asymptotically approaches
the saturated hydraulic conductivity. The rate of recovery of infiltration
capacity during dry periods is calculated from:

VK.
= edmax At

75 ()

where 64, is the maximum possible moisture deficit, i.e. the difference
between soil porosity and residual moisture content. Higher saturated
hydraulic conductivity (Ks,) leads to a faster recovery of infiltration
capacity. If rainfall occurs long enough after the previous rainfall (the
time is calculated as T, = %), the initial moisture deficit 8; for the

Agg =

Green-Ampt calculation is set to the unsaturated zone moisture content.
Thus, the recovery of infiltration capacity is initially based only on K,
but after sufficient time has elapsed it is affected by evapotranspiration
and also by percolation from the unsaturated to the saturated zone.
From the unsaturated zone, water can percolate to the saturated zone at
a rate calculated from:

]; = Kyt o~ (@s—Ocur) HCO 1))

where 6; is the maximum soil water content (i.e. porosity), 6., is the
current unsaturated zone soil water content and HCO is a soil parameter
representing the slope of the conductivity vs. soil water content curve.
The percolation rate grows exponentially (up to the value of Ky,,) as the
water content in the unsaturated zone increases. Water can drain from
the saturated zone according to a linear reservoir equation, which was
used for consistency with MOUSE (see Section 2.2). Evapotranspiration
takes place initially from surface water and after this is depleted from
both the unsaturated and saturated zone simultaneously. A user-sup-
plied factor (between 0 and 1) determines what fraction of potential
evapotranspiration is assigned to the unsaturated zone, with the re-
mainder being assigned to the saturated zone. In this study, this factor
was set based on the root zone depth according to Shah et al. (2007).
Their work provides values for the division of evapotranspiration be-
tween the saturated and unsaturated zones based on groundwater
depth. Thus, the average groundwater table from an initial SWMM run
was used to obtain an estimate of the upper zone evaporation factor
(UEF). This was then iterated until there were no further changes in the
average groundwater table. Evapotranspiration from the unsaturated
zone takes place at the potential rate supplied as input data to the
model. Evapotranspiration from the saturated zone is calculated using:

DEL — d,
DEL )

where d, is the groundwater depth and DEL is the groundwater depth
below which evapotranspiration is disabled. The potential evapo-
transpiration rate e,,q, can either be provided by the user directly (as in
this study) or calculated from temperature data using Hargreaves’s
method.

fEL = (1 - UEF)emax

2.1.2. MOUSE

In MOUSE, each catchment consists of a surface storage (with cur-
rent storage U), a root zone storage (with current storage L) and a sa-
turated zone, which is described by the depth of the phreatic surface
below the ground level, meaning that it is (theoretically) infinite in size.
The surface storage is filled by rain (provided as time series by the user)
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and emptied (slowly) by evapotranspiration and interflow:

L
T~ —Tr

IF = CK”:'il—max U

1- T ©
where IF is interflow, CKjr is a user-supplied coefficient, the factor L/
Lonax is the fraction of the root zone storage that is currently filled, and
Ty is a threshold for L/L,,,, below which interflow is disabled. (Note
that the value of L/L,,4. can theoretically vary between 0 and 1, in
contrast to the soil volumetric water content 6 used by SWMM, which
can vary only between the soil residual moisture content and the soil
porosity.) Since CKjr has a typical value of 500 to 1000 h and the sur-
face storage U is quite small, interflow is usually also small. Water in
the surface storage cannot infiltrate into the soil.

When surface water exceeds the maximum storage (Uyqx, cOmpar-
able to depression storage), the excess precipitation P, is divided into
overland flow, groundwater recharge and infiltration into the un-
saturated zone according to:

L

—=——P,
1 - Tor ()

L

L T
G=(B - OF)L
1-T; (8

I=PF—-0OF-G ©

where OF is overland flow, G is groundwater recharge, I is infiltration
into the unsaturated zone, CQor is a user-supplied coefficient (between
0 and 1) and Tor and Tg; are threshold values which L/L,,q, must exceed
in order to activate overland flow and groundwater recharge, respec-
tively. The values of OF, G and I are limited to positive values only.
Higher values of L/L,,q, indicate a more saturated root zone storage
which increases overland flow and reduces infiltration into the root
zone storage. Overland flow is routed through two consecutive identical
linear reservoirs.

Evapotranspiration is initially drawn from the surface storage (at
the potential evapotranspiration rate), and then from the unsaturated
zone according to:

L

E,=E,—
P L (10)

where E, and E, are the actual and potential evapotranspiration rates,
respectively. Potential evapotranspiration rates are provided by the
user. There is no percolation from the unsaturated to the saturated
zone, but capillary flux does take place the opposite way. The saturated
zone acts as a linear reservoir generating groundwater outflow (DHI,
2017a).

2.1.3. SHE

Mike SHE combines a number of physically-based methods to de-
scribe hydrological processes. Overland flow is described by the diffu-
sive wave approximation of the Saint-Venant equations for 2D shallow
water flow. As part of this, SHE uses Manning’s coefficient to describe
the friction that the flow experiences from the surface. In effect, this
means that SHE uses Manning’s equation like SWMM. However, this
equation is applied to each grid cell individually, rather than on a
catchment scale. Thus, surface water depths (and processes that depend
on this, e.g. infiltration) can vary throughout the catchment area.
Although not used in this study, the user-supplied precipitation rates
can also vary throughout the catchment area.

Water movement in the unsaturated zone (including infiltration) is
described using the 1D Richards’ Equation, which describes the vertical
movement of water in the unsaturated zone. It requires a description of
how well the soil retains water. In this study, the Van Genuchten
Equation (van Genuchten, 1980) was used for this:
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es_ er
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where 6, 6; and 6, are the current, saturated and residual soil moisture
content, respectively, y is the tension head (i.e. the attractive force
between water and soil particles, calculated when SHE solves Richards’
Equation), and a and n are soil-specific parameters. Higher values of
these parameters are associated with looser soils (Schaap et al., 2001).

Water movement in the saturated zone is described using a 3D
Darcy method. In its simplest form, flow between two grid cells is
calculated using:

Q = AhC a2)

where Q is the flow rate, Ah is the difference in piezometric head (i.e.
the water level in unconfined aquifers as used in this study), and C is the
conductance. In SHE the conductance is calculated from the saturated
hydraulic conductivity parameter of the soil, so the saturated zone flow
is mainly controlled by this parameter. As a boundary condition, the
groundwater level was fixed at the bottom of the soil profile on the
downhill boundary and excess groundwater allowed to drain from the
model at this point (DHI, 2017b).

2.2. Synthetic catchments

In order to examine how the different models react to changes in
soil type and depth, the simulations combined eleven different soil
types (from the standard classification by the U.S. Department of
Agriculture) with six different depths (0.5, 1.0, ... 3.0 m) for a total of
66 soil profiles. The eleven soil types were numbered: Olsand, 02loa-
my_sand, 03sandy_loam, O4loam, O05silt loam, 06sandy_clay loam,
07clay_loam, 08silty_clay_loam, 09sandy_clay, 10silty_clay, 11clay. The
soils are numbered in order of decreasing hydraulic conductivity.
However, it should be noted that not all other soil hydrological prop-
erties follow the same pattern. The depth of the soil is appended when
referring to single soil profiles, e.g. 11clay_3.0 for the 3-metre deep clay
profile. Each soil profile is used for one catchment that is
240m X 240 m, covered in grass, with a 2% gradient in one direction.

For each soil profile, parameters for all the models were set to ty-
pical values for the soils from literature and based on the models’ of-
ficial documentation (MOUSE: DHI, 2017a, SHE: DHI, 2017b; SWMM:
Rossman and Huber, 2016). The sources of the different parameter
values are listed in Table 1, while the actual parameter values can be
found in Table S1 in the Supplementary information to this article.

Generic parameter values for the groundwater reservoirs were not
available, so the parameter values for SWMM and MOUSE were selected
based on results from SHE. Starting with an empty catchment, a SHE
simulation for the saturated zone only was run with a constant rainfall
rate and the groundwater outflow rate was obtained for each soil type.
The time constant of a linear reservoir with the same rainfall input was
then calibrated to this groundwater outflow data and the resulting re-
servoir constant was implemented in both SWMM and MOUSE.
Although SWMM supports more complex formulations of the ground-
water reservoir, these were not used in order to maintain a comparable
setup in all three models.

In MOUSE, overland flow and groundwater recharge only take place
if the relative root zone moisture content L/L,.,. iS above a certain
threshold value. The reference manual states that “the threshold values
should reflect the degree of spatial variability in the catchment character-
istics, so that a small homogeneous catchment is expected to have larger
threshold values than a large heterogeneous catchment” (DHI, 2017a). The
catchments in this study are homogeneous. However, setting high va-
lues for the thresholds would result in the soil moisture having no
impact on the infiltration capacity until the soil was very wet, which we
considered unrealistic. Instead, the threshold values were set at 0.2 for
overland flow and 0.4 for groundwater recharge, so that (in numerical
experiments with constant rainfall) the infiltration rate develops in the
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same way as in Horton’s infiltration model. In addition, MOUSE con-
tains two flow routing time constants (for overland flow and interflow,
respectively) that lack a clear way of determining them except via ca-
libration. The overland flow constant was set so that the end of the
runoff from MOUSE roughly matched the end of the runoff from SWMM
for one rainfall event. The lack of a clear physical basis in this approach
means that the shape of the surface runoff hydrograph cannot be
compared directly. However, since only the runoff routing is affected
(and not the runoff generation), total runoff volumes can still be com-
pared.

2.3. Meteorological data

The precipitation input is a 26-year rain and snow record from
Trondheim, Norway (5-minute temporal resolution, 0.1 mm tipping
bucket, see Thorolfsson et al. (2003)). The potential evapotranspiration
(PET) was first calculated using the FAO Penman-Monteith (Allen et al.,
1998) formula with eleven years of radiation data from a different
meteorological station located about 1 km away (MET Norway, 2018).
A generalized formulation of Hargreaves’s equation (Almorox and
Grieser, 2015) was then calibrated to this PET using temperature data
from the precipitation station. The calibrated formula was then used to
estimate PET for the entire simulation period based on temperature
from the precipitation station. It was not possible to use the Penman-
Monteith PET directly, since the required solar radiation data was not
available for the entire study period.

2.4. Simulation and analysis

The simulations were run as one continuous simulation from which
the relevant results for different time periods were extracted. The
models were compared on both seasonal and event basis. Since the
focus of this article is on rain rather than snow it considers the typically
snow-free period from April-October for seasonal comparisons. Rain
events are defined with a minimum 3-hour antecedent dry weather
period (ADWP), as well as a total depth of at least 2 mm and an average
intensity of at least 0.01 mm/h (Hernebring, 2006). The first three
hours after the end of each rain event (i.e. up until the earliest possible
start of the next rainfall) are included in the analysis of the events. The
first year of simulations was used as an initialization period and not
included in the analysis.

In the event scale analysis, rainfall events that cause mass balance
errors greater than 5% (of the event rainfall) in at least four soil profiles
were excluded from the analysis. (The mass balance is calculated as the
precipitation volume minus the volumes of outflows and storage in-
creases.) This is because such errors would normally render the simu-
lation outcomes unacceptable and the modeller would typically attempt
to eliminate these errors by changing computational settings such as the
time step control. Given the length and number of simulations carried
out in this study, it was not feasible to further reduce the size of the
time steps. In order not to contaminate the results with known erro-
neous mass balances, these needed to be excluded. It would be possible
to exclude mass balances only for the soil profiles and events that had
larger errors. However, this would mean that different soil profiles and
models employ different sets of events, making comparison between
them inaccurate. Thus, the entire rainfall event was excluded if four or
more soil profiles had a mass balance error of more than 5% in any of
the models. Events for which only a limited number of soil profiles
(maximum three) caused mass balance errors were included to avoid
over-limiting the set of events.

3. Results and discussion
3.1. Total available soil storage

First the (theoretically) available soil storage volumes in the
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Table 1
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Sources of parameter values for all three models. The actual parameter values for all soil types and soil depths are provided as Supplementary material, since this
table is impractically large for printed publication. “x” denotes parameters that were input directly into the models, “i” denotes parameters that were used to

calculate other parameters.

Parameter(s) SWMM SHE MOUSE Source/comment

Soil water content

Porosity (Bsar) X X Rawls et al. (1983, 1982)

Wilting point (8) i

Field capacity (6. i

Suction head (W) X

Initial deficit (Bgmax) X Porosity — field capacity, i.e. the maximum empty pore volume available when the soil cannot be drained further
by gravity

Root zone storage (Lmax) X Limax = (6 — Byp) X d; (DHI, 2017a)

Hydraulic conductivity

Saturated hydraulic conductivity (K0 X X

Conductivity slope (HCO) X Directly from Table 5-9 in Rossman and Huber (2016).

Van Genuchten a, n and L X Fitted to data from Rawls et al. (1983); also using Schaap et al. (2001)

Evapotranspiration

Effective root depth (d,) i i Shah et al. (2007), grass land cover. Used for lower evap. depth (SWMM) and Lyax (MOUSE).

Lower evap. depth (DEL) X Smallest value of effective root depth and soil depth

Upper evap. Fraction (CET or UEF) X Fraction of subsurface evapotranspiration assigned to the unsaturated zone. Based on work on root depth and
extinction depth by Shah et al. (2007).

Surface flow

Manning’s coefficient (n) X X From Table 3-5 in Rossman and Huber (2016)

Depression storage X X Surface storage in MOUSE is set to the same value as depression storage in the other models; (Richards et al.,

Surface storage (Upax)
Overland coefficient (CQor)

TC overland flow (CKop)
TC interflow (CKr)
Threshold overland flow (Tog)

>

2013; Rossman and Huber, 2016)

Based on recommendations from the model’s developer (DHI, 2017a), extreme values were set for shallowest and
deepest sand and clay soils, then other soil profiles were interpolated based on field capacity and soil depth.
See explanation in text

See explanation in text

MoxM M M

Threshold groundwater recharge (Tg)

different models were compared, see Fig. 2. For SWMM and SHE, the
maximum storage is calculated according to Eq. (13):

Smax = d(esat - 6wp) (13)

where S,,q, is the maximum water storage capacity (mm), d the soil
depth (mm), 6, (-) the saturated soil water content (porosity) and 8,
(-) the water content at wilting point. Here it is assumed that soil water
content will never fall below wilting point. For MOUSE, the maximum
storage (mm) is calculated according to Eq. (14):

Smax = max(d, dg)sy + Lyax = max(d, dg)s, + min(d, d,)(6 — Owp)
(14)

where d, is the depth (mm) at which capillary flux from SZ to UZ equals
1mmd™ %, d, (mm) is the effective root depth, s, () is the specific yield,
and 6 (-) is the soil water content at field capacity, and Ly, is the
maximum root zone storage (mm) calculated according to the model’s
reference manual (DHI, 2017a). It should be noted that the root zone
storage is not expected to empty completely under moderate climate
conditions, but since there is no clear minimum value of actual root
zone storage, the entire value of L,,,, is included in the calculation of
total soil storage capacity. Fig. 2 shows that total storage capacity is
usually larger in MOUSE for shallower soils, but similar to SWMM/SHE
for deeper soils. Silt loam has a larger storage capacity in MOUSE
throughout, which is attributable to the large difference between field
capacity and wilting point for this soil. The results in this section show
that even at the model setup stage there may be significant differences
between the various models, although the magnitude of these differ-
ences depends on soil type and soil depth.

There is, of course, uncertainty involved in estimating parameter

values from the literature without calibration. However, it should be
noted that it is common practice to directly estimate values for the
parameters, since it may not be possible to estimate values for all
parameters during model calibration. This can be the result of e.g. the
calibration data not containing enough information to identify all
parameters or the model structure being overly complex. Although
model calibration should be performed whenever possible (since it
provides the information that is most pertinent to the studied catch-
ment), it may be unavoidable to base estimates for some parameters on
literature values, and in that case understanding the effect of the chosen
values is valuable in understanding the uncertainties in the study.

3.2. Seasonal runoff

For all soil profiles, the average percentage surface runoff from
April-October was highest in MOUSE and lowest in SHE, except for
some deeper soils for which SWMM had the lowest runoff (see Fig. 3).
The difference between models for the same soil profile reached up to
37 percentage points (11clay_3.0), which was higher than the range
between the different soil profiles in SHE (19 pp) and SWMM (31 pp),
with only MOUSE showing more variation between soil profiles (50 pp).
The sensitivity to changes in soil type (i.e. the change along the hor-
izontal axis in Fig. 3) was the highest in MOUSE (although much of the
change occurred in the first four soils) and the lowest in SHE. The
sensitivity to changes in soil depth (i.e. along the vertical axis in Fig. 3)
was highest in SWMM and lowest in SHE. SWMM and SHE showed a
larger change in annual percentage runoff than MOUSE when the soil
depth changed from 0.5 m to 1.0 m. The pattern visible in the graph for
MOUSE is, as expected, similar to the pattern of the Overland
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Coefficient (CQor), see Table S1 in the Supplementary material.

The cumulative distribution of seasonal (April-October) percentage
runoff (25 seasons in total) allows examination of the inter-annual
variation in runoff in the different models (see Fig. 4). MOUSE had the
lowest variation between different years (i.e. the lines in the figure are
close to vertical), while the variation was similar for SWMM and SHE.
For all models, the inter-annual variation was higher in shallower soils
than in deeper soils, but this effect was much weaker in MOUSE than in
the other two models. For all three models, soil types that generated
minimal runoff also had less inter-annual variation. The inter-model

variation between MOUSE and SWMM or SHE was higher than the
inter-annual variation in MOUSE. The large inter-model variation could
significantly impact, for example, studies that address the effects of
climate change or the effects of urbanization and green drainage in-
frastructure on urban water balances.

An explanation of the differences described above may be found in
the approach to infiltration in the different models. In MOUSE, when-
ever the root zone moisture content L/L,,., is above a certain threshold
and the surface storage is full, part of the precipitation becomes over-
land flow, based on the fixed coefficient CQor and current moisture
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Fig. 3. Average seasonal (April-October) runoff as a percentage of rainfall (n = 25 seasons).

content L/L 4. The surface storage has a limited capacity (2.5 mm) and
empties only slowly so it will be full relatively often. Emptying of the
root zone storage through evapotranspiration slows down as L/Lg
becomes lower (see Fig. 1), so it will only reach below the threshold
during long, dry periods, which are rare in the climate of the study site
(see Fig. 7). On the other hand, SWMM and SHE adjust the maximum
infiltration rate based on the moisture content of the top layer of soil
and when this is exceeded, surface runoff is generated. In other words,

the different models predict different percentages of surface runoff,
since they generate runoff in different circumstances: SWMM and SHE
only generate runoff if rainfall intensity is higher than infiltration ca-
pacity (which depends on the soil type and the wetness of the top layer
of the soil), whereas MOUSE will nearly always generate at least some
runoff in a rainfall event. The higher inter-annual variation in SWMM
and SHE can be explained by different factors. Firstly, as described
earlier in this paragraph, the models are more sensitive to rainfall
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properties and initial soil conditions, both of which may vary from year
to year. Secondly, both SHE and SWMM divide the fixed depth of the
soil profile into UZ and SZ by the variable groundwater table, which
reflects the antecedent conditions on a relatively long time scale, and
can therefore vary relatively strongly from year to year. In MOUSE the
UZ and SZ are less well connected, and the groundwater elevation will
only stop infiltration once it reaches the surface.

3.3. Seasonal evapotranspiration

Distribution plots of the annual percentage of evapotranspiration
are shown in Fig. 5. SHE had higher evapotranspiration than the other
two models, even exceeding 100% of rainfall in some cases. This may be
attributed to water that is present in the soil following winter evapor-
ating during the subsequent summer, i.e. the period analysed here. The
absolute values for SHE were comparable to previously reported mod-
elled values for the same region (Engen-Skaugen et al., 2005). It should
also be noted that the most important parameters that influence eva-
potranspiration in SHE have well-established values (soil hydrological
properties from Rawls et al. (1982); leaf area index and root depth from
the model’s developer (DHI, 2017c)) and were therefore not considered
a major source of uncertainty in the model setup.

Of the other two models, SWMM had higher evapotranspiration
than MOUSE, except for the deep sandy soils. Both SHE and MOUSE
were insensitive to changes in soil type (from left to right in Fig. 5), but
SWMM had higher evapotranspiration for clayey soils than for sandy
soils. The same applied to sensitivity to soil depth, with only SWMM
showing increased evapotranspiration for shallower soils. Although
seemingly counterintuitive, this may be explained by SWMM dividing
evapotranspiration by a fixed factor between the unsaturated and sa-
turated zones. In this study this factor was set based on root zone depth
(Section 2.1.1), which meant that a larger fraction of potential evapo-
transpiration was assigned to the unsaturated zone in shallower soils.
The actual evapotranspiration from the unsaturated zone is equal to the
apportioned part of the total, but reduced (based on groundwater
depth) for the saturated zone, thus increasing evapotranspiration when
the root zone covers a large part of the soil depth, as is the case in
shallow soils.

One of the benefits and goals of green infrastructure is to retain
water in place, rather than generating runoff. This restores or maintains
a water balance which is closer to the natural water balance than would
be the case with pipe-based drainage systems. Hydrological models can
be used to assess the water balance of existing or proposed drainage
systems. The results in this section and the previous section show that if

models are used to help assess the water balance of a green infra-
structure system, different models may find different results. From a
hydrological perspective it is clear that this may influence the design of
drainage systems. Increasing evapotranspiration through the increased
use of green infrastructure may help reduce the urban heat island effect
and its negative consequences (see e.g. Arnfield, 2003; Gill et al., 2007).
Information from hydrological models may help inform decisions in
urban planning processes, and the uncertainties of the results in these
models should be properly understood in order to make optimal use of
the information.

3.4. Mass balance errors in rainfall events

Although not a primary objective of this study, avoiding mass bal-
ance errors is important in any hydrological study and a brief overview
is therefore included here. Fig. 6 shows cumulative distribution plots of
the mass balance errors for all soil profiles and events. (Mass balance
errors on the seasonal scale were negligible and are therefore not pre-
sented here.) A mass balance error-free model would show a vertical
line at 0% event rainfall and mm, respectively, and it is clear from the
plots that this was not the case for any of the three models. SWMM had
the smallest mass balance errors and MOUSE the largest. In SWMM,
most errors were negative (i.e. outflows larger than inflows + changes
in storage), while SHE and MOUSE had mostly positive errors (i.e. some
of the rainfall was unaccounted for in outflows and storage changes). As
described in section 2.4, rainfall events were excluded from the analysis
if one of the models caused a mass balance error of more than 5% for
four or more soil profiles. In total, 1,192 rainfall events (out of 2,026
total) remained part of the comparison. For the individual models, SHE
would retain 1,452 events, MOUSE 1,623 and SWMM 2,005. This shows
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Fig. 6. Cumulative distribution plots of mass balance errors for all simulated
events and soil profiles.
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that the larger mass balance errors in MOUSE were concentrated in a
more limited number of rainfall events than in SHE. The differences in
mass balance error behaviour mean that the choice of one model over
another can significantly affect the computational aspects of modelling
studies, and it cannot be assumed (without verifying) that models are
free of such computational errors.

3.5. Initial conditions for rainfall events

The distribution of UZ water content (relative to total soil pore
volume for SHE and SWMM,; relative to maximum root zone storage for
MOUSE) is shown in Fig. 7. For SHE, it should be noted that soil in-
filtration capacity depends on moisture content in the top layer of the
soil, but average SWC in the entire UZ is shown here in order to facil-
itate comparison with the other models. For SWMM, it is possible that if
the antecedent dry time of an event is relatively short, then the initial
moisture used in the Green-Ampt equation is not set equal to the value
of UZ SWC, but is derived from the Green-Ampt recovery calculation
that followed the previous event. However, it is not possible to obtain
this value from the SWMM output files. From the figure, it is clear that
initial conditions were most variable in SHE and least variable in
SWMM. MOUSE was relatively insensitive to changes in both soil type
and depth, both SWMM and SHE were sensitive to soil type, and SHE
was also somewhat sensitive to soil depth. The higher variability and
the presence of low values in SHE can be explained by the higher
evapotranspiration (see section 3.3). The results in Fig. 7 show that care
needs to be taken in determining the appropriate initial conditions for
simulations of green areas, especially when using SHE or (to a lesser
degree) MOUSE. Only for clayey soils in SWMM can it be considered
appropriate to use a standard value for different events.

These results support previous findings that the infiltration capacity
of green areas may be reduced due to initial soil wetness, even for sandy
soils (Davidsen et al., 2018). Using Horton’s equation for infiltration,
Davidsen et al. found that the initial infiltration capacity ranged from
45% to 100% of the maximum. Although this figure cannot be com-
pared directly with the relative UZ SWC from our results, the variations
found here may be smaller or larger, depending on the model used.

3.6. Number of rainfall events with runoff

Fig. 8 shows the percentage of rainfall events that generate at least
1 mm of runoff for each soil profile and model. This revealed the same

patterns as the seasonal percent runoff, i.e. MOUSE had the highest
number of runoff events and SWMM had the lowest. However, SWMM
predicted more runoff than SHE for shallow clayey soils. SWMM was
most sensitive to changes in soil type (ranging from 1% of events for
shallow sand to 56% for shallow clay), while MOUSE and SHE were
sensitive to changing soil type for the three sand soils, but only some-
what sensitive to changes in the other soil types. MOUSE was in-
sensitive to changes in soil depth (6-8% change between shallowest and
deepest soil, except for sandy soils), SHE was somewhat sensitive (up to
33%) but not for clay soils, and SWMM was most sensitive to changes in
soil depth (e.g. approx. 40% difference between deepest and shallowest
soils). This last observation was unexpected since SWMM used the
Green-Ampt model for infiltration in which the infiltration capacity
becomes limited as the very top layer of soil becomes wetter, and this
would be expected to give similar infiltration capacities (and therefore
surface runoff) in shallow and deep soils. Davidsen et al. (2018) found
no runoff from sandy soils when simulating infiltration capacity, but
not the fate of infiltrated water (using Horton’s equation). Here we
found that runoff does occur for shallow sandy soils, but less for deeper
sandy soils, suggesting that the long-term storage of water in the sa-
turated and unsaturated zones can also lead to the generation of runoff.
Our findings in this section and in Section 3.2 further underline that
green areas may contribute to runoff in urban areas during many
rainfall events and cannot be simply ignored in studies of catchment
runoff. It should also be noted that actual runoff from urban green areas
may be even higher or more frequent if the soil is compacted (see e.g.
Gregory et al., 2006; Muthanna et al., 2018; Pitt et al., 2008).

3.7. Runoff during rainfall events

Distribution plots for the event percentage runoff are shown in
Fig. 9. For most soil profiles, SWMM and SHE showed similar bi-modal
distributions, i.e. events tended to generate either less than 10% or
more than 60% runoff with relatively few events generating runoff
between these percentages. This effect was clearer for larger rainfall
events (compare the upper and lower panel of Fig. 9). (Although the
distributions for SHE and SWMM appeared to be similar, the standard
two-sample Kolmogorov-Smirnov test at the 95% significance level
showed that they may not be considered to be samples from the same
distribution.) This behaviour was not present in MOUSE, where inter-
event variation was smaller except for sand soil. For rainfall events
larger than 10 mm (lower panel in Fig. 9) there are no events for which
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MOUSE does not predict any runoff (except for sandy soils), while
SWMM and SHE predict some of these events even for clay soils. The
observations above may be attributed to the mechanisms described in
Section 3.2, i.e. the higher sensitivity of SWMM and SHE to varying
rainfall properties and initial conditions and the larger influence of the
groundwater table. In addition, the smaller inter-event variation in
MOUSE can be explained by negative feedback effects where water
infiltrating into the root zone will increase the root zone storage L/Lqx,
which then lowers infiltration and groundwater recharge at the next
time step.

In a design context, it is important to note that the differences in the
distributions found here would be expected to influence the return in-
tervals of runoff events, and in this way lead to different models, re-
sulting in different designs of urban drainage systems. In addition, this
suggests that if the distribution of the observed event percentage runoff
is similar to the unimodal distribution shown by MOUSE it may be more
difficult to match this in a multi-event calibration with SHE or SWMM,
and vice versa.

3.8. Sensitivity to rainfall intensity

The dependence of simulated surface runoff on rainfall intensity is
visualized in Fig. 10. With the exception of SHE for sandy soil, there
was no clear increase of event percentage runoff with increasing rainfall
intensity for intense events with > 15 mm rain in 2 h. For such intense
events the percentage runoff for clay soils would be expected to be
closer to 100% than the figure shows. This may be attributed to the fact
that these events are observed events where intensity will vary
throughout the event, where the most intense two-hour period is used
in the figure. This means that the events also can contain less intense
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Fig. 8. Percentage of rainfall events (n = 1192 events) that generated at least 1 mm of runoff.
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periods where little runoff is generated. Only two intense events (one
event with 15.4 mm in two hours and a total of 51.9 mm over 34 h; one
event with 24.7 mm in two hours and a total of 46.8 mm over 24 h) had
close to 100% runoff (in both SWMM and SHE). This shows that the
variability of rainfall within events makes it challenging to analyse the
relationship between rainfall intensity and runoff using observed rain-
fall data. For shallow sand soil, SHE showed a group of events in which
surface runoff increased roughly linearly with rainfall intensity, which
did not exist for the other models. This is likely caused by high
groundwater levels in the soil. For clay soil, events with an intensity of
less than 15 mm in two hours were split into two groups for SHE: one
group with runoff of > 75%, and another group with less runoff, but
both groups showed a slight increase in runoff for increasing rainfall
intensities. For SWMM it was mainly the first group that was visible for
shallow clay soil and mainly the second group that was visible for deep
clay soil. For MOUSE there was no relation between rainfall intensity
and runoff at all (for any of the soils), which may be attributed to the
fact that MOUSE does not feature a limited infiltration rate like SHE and
SWMM.

4. Conclusions

The objective of this study was to examine the differences in model
structure of three models (SWMM, SHE and MOUSE) used for urban
drainage and their impact on simulation outcomes. This comparison
was made for varying soil types and varying soil depths. The differences
found between the three different models are described below.

On a seasonal scale, the differences between the models are large
(e.g. up to 33 percentage points for seasonal runoff for the same soil
profile) compared to those between different soil types. MOUSE
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generates much more runoff than the other two models. Runoff in SHE
and MOUSE is mainly sensitive to soil type, and less so to soil depth,
while SWMM is sensitive to both. Inter-annual variation is higher in
SHE and SWMM than in MOUSE.

On an event basis, the inter-model variation of runoff generation is
similar to the seasonal scale, while statistical distributions of event
percentage runoff are different. While MOUSE predicts between 10%
and 60% runoff for most events, SWMM and SHE mainly predict either
less than 10% or more than 60% event runoff. There was considerable
inter-event and inter-model variation in the initial conditions for rain-
fall events. The sensitivity to rainfall intensity for different soil types
also varied between the three models.

The observed differences may be linked to differences in the model
structures. In MOUSE, the relative root zone moisture content L/L;qx
influences most of the important processes (runoff generation, in-
filtration, groundwater recharge), creating negative feedback loops
which reduce the sensitivity of the model output to variations in soil
type, soil depth and meteorological conditions. In SWMM and SHE,
saturation of the top layer of soil can limit the maximum infiltration
rate, making runoff generation more sensitive to rainfall characteristics
and increasing inter-event and inter-annual variation in the model
outputs.

The main practical implications of these findings are that model

11

structure should be regarded as an influential source of uncertainty in
urban drainage modelling. The differences in the simulation outcomes
and in the responses of the models to changes in soil type and depth are
large enough that they may significantly impact the outcome of various
modelling studies. In the special case of model forecasts (e.g. studying
the impacts of climate change or changing land use, where calibration
is, per definition, impossible) the magnitude of the uncertainties arising
from model structure should be explicitly considered in the analysis. In
addition, the results from this paper further underline that green areas
may contribute significantly to runoff in urban areas and should not be
simply ignored.

Even if different models are first calibrated to, for example, runoff
measurements, it cannot be expected that the results will be the same
for other components of the water balance or in terms of inter-event or
inter-annual variation. The differences that were observed in the dis-
tribution of the event percentage runoff may also mean that different
models may encounter different challenges while calibrating them to
multiple events, for example, different trade-offs between the different
events might be necessary. If flow rate data is available, the values of
the subset of parameters that are identifiable from flow rate data can be
calibrated. After this, the approach shown in this paper can be used to
estimate the range of model outcomes that is still possible for the dif-
ferent values of the parameters that were not identified from the flow
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since it showed no runoff for SWMM and SHE.

data. Finally, the results from this paper show that different models set
up with the explicit goal of representing identical simple synthetic
catchments may give strongly varying results. Thus, the direct com-
parison of parameter values between models may not be meaningful.
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