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phase transitions and asymmetry 
between signal comprehension 
and production in biological 
communication
Mohammad salahshour1, shahin Rouhani1 & Yasser Roudi2

We introduce a model for collective information acquisition from the environment, in a biological 
population. In this model, individuals can make noisy observations of the environment, and 
communicate their observation by production and comprehension of signals. As the communication 
noise decreases, the model shows an order-disorder transition from a disordered phase in which no 
consensus about the environmental state exists to an ordered phase where the population forms 
a consensus about the environmental state. the ordered phase itself is composed of an informed 
consensus, in which the correct belief about the environment prevails, and an uninformed consensus 
phase, in which consensus on a random belief about the environmental state is formed. the 
probability of reaching informed consensus increases with increasing the observation probability. 
this phenomenology implies that a maximum noise level, and a minimum observation probability are 
necessary for informed consensus in a communicating population. Furthermore, we show that the 
fraction of observant individuals needed for the group to reach informed consensus decreases with 
increasing population size. this results from a shift in the uninformed-informed transition to smaller 
observation probabilities by increasing population size. Importantly, we also find that an amount of 
noise in signal production deteriorates the information flow and the inference capability, more than 
the same amount of noise in comprehension. This finding implies that there is higher selection pressure 
to reduce noise in production of signals compared to comprehension. Regarding this asymmetry, we 
propose an experimental design to separately measure comprehension and production noise in a given 
population and test the predicted asymmetry.

Information acquisition about environmental conditions is vital for populations living in an uncertain environ-
ment1–6. One of the most astonishing ways to accomplish this task is collective information acquisition by com-
munication between individuals in a population, by exchanging signals6–8. Examples of such populations can be 
found allover the biological world, from microbial organisms to large animals. Bacterial populations exchange 
information about environment in what is known as quorum sensing9,10. Communication between cells in multi-
cellular organisms, is vital for the functioning of the cell and the organism as whole11. Social and eusocial insects 
use different sorts of signals, from visual, acoustic, to chemical and tactile signals, to communicate over diverse 
issues vital for survival of the group12,13. In many large group living animals14, individuals use signals to exchange 
information. Finally, human language can be thought of as a highly evolved version of such signaling commu-
nication systems15–17. As many other biological systems, communication systems generally operate under noisy 
conditions and are prone to errors in signal production and comprehension. Eliminating noise is typically far 
from feasible, and lowering noise is subject to costs and constraints18. An important challenge for biological 
populations is therefore; how to achieve highest information acquisition capabilities, given the constraints on 
lowering noise in signal production and comprehension?

To shed light on this question, and on the mechanism by which a population collectively extracts informa-
tion from the environment, we introduce a model in which individuals use three communication channels for 
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observation of the environment, and sharing their information by production and comprehension of signals. 
The model shows an order-disorder transition from a consensus phase at low communication noise to a disor-
dered phase in which no consensus is formed, at high communication noise. The ordered phase itself is com-
posed of two phases: The informed consensus phase, in which the population collectively forms the correct belief 
about the environmental state, and an uninformed consensus phase, in which consensus is formed on a random 
belief about the environmental state. Transition from uninformed consensus to informed consensus is discon-
tinuous and happens when the flow of information to the population through direct observations by individuals 
increases. This shows that for communication to increase the information acquisition capability of a population, a 
high enough information flow to the population through direct observations, and a low enough communication 
noise is necessary. Furthermore, we show that, the fraction of observant individuals needed for the population 
to correctly infer the environmental state, decreases with the population size. This results from a shift in the 
uninformed-informed transition line to smaller observation probabilities by increasing the population size, due 
to finite size effects. Finally, we discover a fundamental asymmetry between signal production and comprehen-
sion. We show that noise in signal production is more detrimental than noise in signal comprehension, because it 
disrupts the flow of information between individuals more than the later, and decreases the amount of informa-
tion that the population can collectively reach from environment. This finding, predicts that signal production 
channels of communication systems, from bacteria to human language, should have been under higher selection 
pressure for noise reduction, and we should observe higher levels of regulation on signal production faculties 
compared to signal comprehension. We propose an experimental set-up to separately measure noise in compre-
hension and in production of signals in a population and test the asymmetry predicted here.

the model
We consider a population of N communicating individuals living in an environment which can take one out of n 
possible states. Without loss of generality, we assume the population resides on a communication network, such 
that each individual when intending to signal others, transmits its signals to its neighbors on the network.

Our model of collective information acquisition has three ingredients. First, we model individuals’ abilities to 
a) observe the environment, b) to produce signals, and c) to comprehend signals, by introducing three communi-
cation channels. Second, individuals make inferences based on the information they have received. For this pur-
pose they need a decision making mechanism. And third, the model introduces a dynamics for communication 
between individuals. Below, we introduce each part of the model separately.

Collective sensing system_. Individuals have access to n representations, each corresponding to one of the 
environmental states, and can communicate their representation, by using n signals, each corresponding to one 
of the representations. Generally, observation of the environment, signal production, and comprehension are 
subject to errors and are done probabilistically. We implement this fact by introducing three conditional proba-
bilities, or communication channels that individuals have for observation of the environment, production of 
signals, and comprehension of signals: the representation matrix ε|R r( ), gives the conditional probability that as a 
result of observing environmental state ε, representation r is produced. In the same way, the production matrix 

σ|G r( ), is used for signal production and gives the conditional probability that signal σ is produced for representa-
tion r, and the comprehension matrix σ|C r( ), is used for comprehension of signals, and gives the conditional 
probability that representation r is comprehended, when receiving signal σ. As mentioned earlier, in biological 
settings, all these activities are subject to noise. We incorporate noise into the model by parameterizing these 
matrices with a noise parameter ηx, where x can be R, G and C referring to the different channels of communica-
tion we just defined. We take the diagonal elements to be η−1 x, and off-diagonal elements to be η

−n 1
x . ηx can be 

thought of as the probability of error. Thus, we have for these matrices:
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Here δi,j is a delta function which is one if =i j and zero otherwise.

Decision making mechanism_. As a result of observation and communication, an individual i collects a 
set of representations =r r r{ , { }}i i ij . Here, j includes all the neighbors of i, from whom i has received a signal, and 
ri refers to the observation of the individual i, in case it has made an observation. r can be thought of as an indi-
vidual’s internal state, which is composed of all the representations an individual has reached, through observa-
tion or communication. Individuals need to infer the environmental state based on their internal state. For this 
purpose they use an inference scheme, or a decision rule. We consider a simple decision rule, a majority rule. In 
this decision rule, each individual chooses the representation which has happened the highest number of times. 
This is the belief or inference of the individual about the environmental state.

Dynamics of the model_. We assume that an environmental state lasts for T time steps, such that individ-
uals can make observations and communicate in each time step. At each time step, with probability h, each indi-
vidual makes an observation of the environment (which is in state ε), and reaches representation r with probability 

ε|R r( ). In addition, it possibly receives signals from its neighbors and comprehends the signals using σ|C r( ) as 
referring to representation r. Reaching internal state r, which is composed of all the representations an individual 
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has collected, the individual forms a belief b, given its internal state r using its decision rule. Finally, it produces a 
signal σ according to σ| =G r b( ) and transmits it to its neighbors on the communication network. We consider a 
synchronous update of the network. That is at each time step, all the individuals make an inference based on their 
internal state and reach a belief b, and communicate their beliefs to their neighbors by producing a signal accord-
ing to σ| =G r b( ), at the same time. The dynamics repeat in the same way for T time steps. Starting from time 1, 
no individual has a belief until it makes an observation or receives signals.

Variables of interest and nomenclature_. The collective information acquisition capability of the pop-
ulation can be measured by the fraction of individuals who infer the correct environmental state. We call this the 
inference capability. Another variable of interest to us is the size of the majority group, defined as the largest frac-
tion of population who share the same belief. That is the number of individuals with belief bm, such that for any 
belief b, ≥N b N b( ) ( )m , divided by the population size N, η η η =m( , , )R G C

N b
N
( )m . Here, N(b) is the number of 

individuals with belief b.
As explained in the Results section, the model has three phase, informed consensus, uninformed consensus 

and the disordered phase. As the order parameter of the model we need a variable which distinguishes these three 
phases. In the following, we will consider two network structures, a first and a second nearest neighbor network 
both with periodic boundary condition. On a first nearest neighbor network, the size of the majority group takes 
values close to 1, 0.5, and a small value of the order of 

N
1  in respectively, the informed, uninformed and the disor-

dered phases. Consequently, it serves as the order parameter of the model. The reason why the size of the majority 
group is close to 0.5 in the uninformed consensus, is that, as a bipartite network is composed of two independent 
subnetworks, individuals on each subnetwork signal only to those on the other subnetwork. Consequently, the 
state of each subnetwork is independent of the state of the other subnetwork at the same time and is influenced by 
the state of the other subnetwork at an earlier time step. This leads to the fact that in the uninformed consensus 
phase, the two subnetworks form consensus on independent beliefs and the size of the majority group equals the 
size of the largest subnetwork, which equals 0.5 in our case. [See Supplementary Information, section SI.3. for 
more details].

However, on a non-bipartite network, such as a second nearest neighbor network, the size of the majority 
group is a large value close to 1 in both informed and uninformed consensus phases and thus this can not distin-
guish these two phases. As the order parameter of the model on a general network, we define μ = − ν− + m( 1)( 1) . 
Where ν is equal to one if the majority belief is the same as the environmental state, and zero otherwise. This will 
allow us to distinguish true from false consensus. For a population which is equipped with a collective sensing 
system, given by the noise parameters ηR, ηG, and ηC, we denote the inference capability, majority size and the 
variable μ, respectively by η η ηΛ( , , )R G C  and η η ηm( , , )R G C , μ η η η( , , )R G C .

Results
phase digram and the nature of the phase transitions. We run two sets of simulations. We consider a 
level of noise η, and in the first simulation, put it in the production matrix, taking the comprehension matrix per-
fect (noiseless). In the second simulation, we put the noise in the comprehension matrix, making the production 
perfect. To begin with, we set the representation noise equal to η = .0 75R . We consider a population on a 10 × 10 
square lattice with first nearest neighbor interaction and periodic boundary conditions. We set the number of 
environmental states n equal to 100. Later, we will show the validity of our results for other parameter values.

We begin by studying the stationary behavior of the system. To do this, we run a simulation for a long enough 
time T, for the system to reach a stationary state and plot the majority size η.m(0 75, 0, ), and the inference capa-
bility ηΛ .(0 75, 0, ), as a function of the observation probability h, and the noise level η, respectively in Fig. 1a,b. 
Here, =T 1500 and an average over a sample of 200 simulations is taken. For details of simulations see section 
Methods below. The majority size and the inference capability when the noise is in production is qualitatively 
similar and not shown. However, as we will discuss below, there is an important quantitative difference in the 
location of phase transitions. For large noise levels, information transfer is degraded by communication noise and 
the population fails to reach consensus. By reducing the noise, the system shows a phase transition to an ordered 
phase in which the population forms consensus on a belief. However, interestingly, the ordered phase itself is 
composed of two different phases. For high observation probabilities h, the information entered to the population 
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Figure 1. (a) The size of majority group η.m(0 75, 0, ), and (b), the inference capability ηΛ .(0 75, 0, ), when an 
amount of noise η is present in comprehension, as a function of observation probability h, and comprehension 
noise η. Here, =N 100 and the communication network is a first nearest neighbor network.
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through direct observation by individuals is high enough for the population to form a consensus on the correct 
environmental state. We call this phase informed consensus. As the observation probability decreases, the system 
shows a phase transition to an uninformed consensus phase, in which consensus between individuals is formed, 
however, on a random belief, chosen independently from the environmental state. The phase diagram of the 
model, for a first and a second nearest neighbor network, when the noise is in comprehension is depicted, respec-
tively in Fig. 2a,d. Here, the two phase transition lines, informed-uninformed, and order-disorder transitions are 
plotted. As explained below both these transitions are discontinuous. Furthermore, we explain how we determine 
these transition lines.

In the ordered phase, in each simulation the system goes to one of the two ordered phases, that is informed or 
uninformed consensus. This leads to the fact that the probability distribution of the order parameter μ has two 
peaks, each corresponding to one of the ordered phases. This can be seen in Fig. 3a,b, for respectively the cases 
that the noise is comprehension noise, and when it is production noise, for the population living on a second 
nearest neighbor network of size =N 100, whose phase diagram is presented in Fig. 2d,e. Here, the probability 
distribution of the order parameter at fixed η = .0 59, which lies in the ordered phase, and different hs is plotted. 
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Figure 2. (a,b) The phase diagram of the model on a first nearest neighbor network, for respectively, the cases 
when the noise is in comprehension, and when it is in production. The model shows two ordered phases; an 
informed consensus phase for high observation probability, separated by a first order transition from an 
uninformed consensus phase. By increasing the noise, the model goes to the disordered phase in which no 
consensus is formed. Transferring noise from comprehension to production shifts the order-disorder transition 
line to smaller noise levels and higher observation probabilities h. This shows that the production noise is more 
detrimental for the collective inference of the population. (c) The comprehension-production asymmetry, 
defined as η ηΛ . − Λ .(0 75, 0, ) (0 75, , 0), as a function of h and η, on a 10 × 10 first nearest neighbor network. 
The shifts in the transition lines lead to the positivity of the asymmetry. (d,e) The phase diagram of the model on 
a second nearest neighbor network, for respectively, the cases when the noise is in comprehension, and when it 
is in production. (f) The comprehension-production asymmetry, η ηΛ . − Λ .(0 75, 0, ) (0 75, , 0), as a function 
of h and η for a second nearest neighbor network.
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Figure 3. The nature of phase transitions. (a,b) The distribution of the order parameter μ derived from =R 100 
runs. In (a) the noise is comprehension noise and in (b) it is production noise. In the ordered phase, in each run 
the system goes to one of the two ordered phases. Consequently, the probability distribution of the order 
parameter has two peaks each corresponding to uninformed or informed consensus phases. By increasing h at 
fixed η, the probability of going to the informed consensus increases, while the probability of going to 
uninformed consensus phase decreases. These show that the informed-uninformed transition is discontinuous. 
(c,d) The distribution of the majority size m in the order-disorder transition region, derived from a time series 
of the system, for comprehension noise (c), and production noise (d). The distribution is bimodal in both cases. 
By increasing the noise, the peak corresponding to the ordered phase decreases, while that corresponding to the 
disordered phase increases. This indicates a discontinuous transition.
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By increasing h, the probability that the system goes to the informed consensus increases, while the probability 
that the system goes to uninformed consensus decreases. This again can be seen in Fig. 3a,b, and is reminiscent of 
a first order transition19. The phase boundary in Fig. 2 is defined as the region in the phase space where the system 
goes to one of the two phases with a probability close to 1

2
19. [See Supplementary Information, section SI.2. for 

more details].
The nature of the order-disorder transition is investigated in Fig. 3c,d, for respectively, comprehension, and 

production noise. Here, we consider a population of size =N 100 on a second nearest neighbor network and take 
the observation probability equal to = .h 0 2 and derive the distribution of the majority size from a single time 
series of the system for different values of noise, close to the order-disorder transition. As can be seen, close to the 
order-disorder transition, the distribution is bimodal. By increasing the noise, the peak corresponding to the 
ordered phase decreases, while the peak corresponding to the disordered phase increases. This suggests that the 
order-disorder transition is discontinuous in this case. The order-disorder transition lines in Fig. 2a,b,d,e are 
determined by locating the noise level where the area below the two peaks approximately equal, for different 
observation probabilities.

Although both informed-uninformed and the order-disorder transitions are discontinuous, there are differ-
ences between the two. Close to the order-disorder transition noise level, the system shows intermittency between 
the two phases in a single run. [See the Supplementary Information, Fig. SI.2 for an example of the time series of 
the system]. This is not the case for the informed-uninformed transition, in which in each run the system goes to 
one of the two ordered phases.

the comprehension-production asymmetry. The phase diagram of the system when the noise is trans-
ferred to production is plotted in Fig. 2b for a first, and in 2e, for a second nearest neighbor network. We see 
that the phase diagram of the model when noise is in comprehension, and when it is in production are qualita-
tively similar. However, the order-disorder transition noise level for the same observation probability is shifted to 
smaller noise levels for production noise. This shows that noise in production degrades the flow of information 
more severely than noise in comprehension. Consequently, the transition from the consensus phase to the dis-
ordered phase occurs at a smaller noise level for production noise. Furthermore, production noise is more detri-
mental for informed consensus such that the line of first order informed-uninformed transition is shifted to larger 
values for a noisy production, compared to noisy comprehension. This again shows that production noise is more 
disruptive for information flow between the individuals and means that, with a noisy production, the population 
needs a higher net information flow to the population via direct observations to extract environmental state.

To see how this shift affects the inference capability, we define the comprehension-production asymmetry as 
the difference between the inference capabilities in the case that an amount of noise is in comprehension with that 
when the same noise is transferred to production, η ηΛ . − Λ .(0 75, 0, ) (0 75, , 0) (in the following we call this 
quantity asymmetry for short). We plot this in Fig. 2c for the first, and in Fig. 2f, for the second nearest neighbor 
networks. We see that the shift in the transitions leads to the positivity of this quantity. Each positive region in 
Fig. 1c,f has a different root. The positive region at, and to the right of the order-disorder transition line results 
from the fact that the order-disorder transition noise level shifts to smaller values for production noise, while the 
positive region to the left of the order-disorder transition lines in low observation probabilities results from the 
fact that production noise shifts the line informed-uninformed transition to larger observation probabilities. This 
shape is characteristic of the asymmetry and is preserved for different parameter values. As we see, the asymmetry 
captures the differences in phase diagrams between production and comprehension noise, consequently we will 
focus on it to study the comprehension-production asymmetry for different parameter values.

Dependence on the parameters of the model. We begin our analysis regarding the robustness of our 
findings with respect to the model parameters, by studying the dependence of the results on the population size. 
The inference capability for the comprehension noise ηΛ .(0 75, 0, ), as a function of h and η for a population of 
size =N 400 and =N 900 on a first nearest neighbor network, is plotted respectively, in Fig. 4a,b. See section 
Methods for details of simulation in this section. The case of production noise, leads to a similar picture. As can 
be seen by comparing with Fig. 1b for =N 100, while the order-disorder transition line shows very small sensi-
tivity with respect to the population size, the informed-uninformed transition line, shows stronger sensitivity to 
the population size and shifts to smaller h values by increasing the population size. This phenomena has an inter-
esting interpretation and means that, for a larger population, a smaller fraction of observant individuals is needed 
for the group to collectively infer the correct environmental state. A similar result to this finding had been noticed 
before, and can be argued to be resulted from the wisdom of crowd effect5. However, our result gives an interest-
ing aspect to this finding, by reinterpreting it as resulting from a shift in a discontinuous phase transition, due to 
finite size effects.

The comprehension-production asymmetry η ηΛ . − Λ .(0 75, 0, ) (0 75, , 0) as a function of h and η, for a 
population of size =N 900 on a first nearest neighbor network is plotted in Fig. 4c. By comparing with Fig. 2c, it 
can be seen that, while the asymmetry arising from the shift in the order-disorder transition shows little sensitiv-
ity to the population size, That part of asymmetry resulting from the shift in the uninformed-informed transition, 
shows stronger sensitivity, and decreases by increasing population size and seems to tend to a stationary value for 
large population sizes.

To see the overall behavior of the asymmetry with respect to the population size, the average of the asymmetry 
over h and η, η η〈Λ . − Λ . 〉 η(0 75, 0, ) (0 75, , 0) h ,  as a function of N is plotted in Fig. 4d. We see that it slightly 
decreases with population size, for population of size up to =N 200, and shows small sensitivity to population 
size for larger populations.

https://doi.org/10.1038/s41598-019-40141-4


6Scientific RepoRts |          (2019) 9:3428  | https://doi.org/10.1038/s41598-019-40141-4

www.nature.com/scientificreportswww.nature.com/scientificreports/

We note that the asymmetry increases in situations where communication has stronger effect on the inference 
by the population. One circumstance where the effect of communication is increased is by increasing network 
connectivity. In Fig. 5a we plot the average of the asymmetry over h and η, η η〈Λ . − Λ . 〉 η(0 75, 0, ) (0 75, , 0) h ,  as 
a function of network connectivity k, defined as the number of neighbors. In this simulation, we have considered 
a population of =N 100 individuals on a square lattice with 1st up to 5th nearest neighbor interactions, and 
periodic boundary conditions. We have set =n 100 and =T 500. We see that the mean asymmetry increases with 
network connectivity. How this increase comes about can be seen by comparing Fig. 2a,b for a first, with Fig. 2d,e 
for a second nearest neighbor network. As seen, the shift in first order transition line is much higher for a second 
nearest neighbor network.

Another circumstance where communication has stronger effect on the inference of the population, is when 
noise in representation increases. In such cases, communication is more indispensable in providing crucial infor-
mation for the individuals to remedy their highly noisy observations. By plotting η η η η〈Λ − Λ 〉 η( , 0, ) ( , , 0)R R h ,  
as a function of ηR in Fig. 5b, we see that the asymmetry increases with representation noise for up to high values 
of ηR. It gradually tends to zero as representation formation tends to become random, as in this case there is no 
information entered to the population via observation to be amplified by communication.

The behavior of the asymmetry with respect to the number of environmental states n, is investigated in Fig. 5c. 
Here, we note that as η = .0 75R , with =n 4 state, the representation formation is uniformly random. Thus, we 
expect no asymmetry in this case as there is no information entered to the population via direct observation. By 
increasing n, the asymmetry shows up and increases, until it approaches a stationary value for large n.

So far, we have considered the stationary behavior of the system. A curious question is how the 
comprehension-production asymmetry behaves in the non-stationary dynamics. To see this, we plot 

η η〈Λ . − Λ . 〉 η(0 75, 0, ) (0 75, , 0) h ,  as a function of environmental duration time scale T, in Fig. 5d. As can be 
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Figure 5. (a) The mean asymmetry over h and η, η η η η〈Λ − Λ 〉 η( , 0, ) ( , , 0)R R h , , as a function of network 
connectivity k, defined as the number of neighbors. Here a population of size =N 100 is set on a lattice with 
periodic boundary condition and 1st up to 5th nearest neighbor interactions. (b) The mean asymmetry as a 
function of representation noise ηR. The mean asymmetry increases with ηR up to high noise levels and drops for 
very large representation noises. (c) The mean asymmetry as a function of the number of states n. The mean 
asymmetry increases with n until it saturates to a constant value for large n. (d) Non-stationary behavior. The 
mean asymmetry as a function of time T. Asymmetry is zero for =T 1, and rapidly increases and tends to a 
stationary limit for large times.
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seen, the asymmetry increases with T until it saturates to a stationary limit. This implies that in a situation where 
signal transmission time scale is of the same order of environmental duration time scale, =T 1, there is no or little 
asymmetry in signal comprehension and production. While in biological communication systems, that operate 
in a situation where environmental time scale is longer than signal exchange time scale, an asymmetry between 
signal comprehension and production is observable.

In the Supplementary Information [see Supplementary Information], we consider modifications of the deci-
sion rule in which individuals exploit the distinction between representations provided by direct observation, and 
those provided by communication, by weighting their direct observation with a factor ω > 1, when making an 
inference. Such a more self-confident decision rule can be useful in high communication noise regimes. We show 
that the asymmetry also holds under such modifications of the decision rule (Fig. SI.3). Furthermore, we show the 
validity of our results for different network structures (Fig. SI.3). In addition, we consider the effect of a back-
ground noise added to both comprehension and production faculties, and show that the asymmetry endures in 
the presence of such background noise as well (Fig. SI.2).

Discussion
In this paper we analyzed a simple model of communication between agents trying to collectively infer an envi-
ronmental state. We described the phase diagram of this model and showed that noise in production of signals is 
more detrimental for the information acquisition capability of a communicating population, compared to noise 
in comprehension. This means that, assuming biological organisms have limited resources to devote to noise 
reduction in the communication system, they do better if they devote the resources to noise reduction in produc-
tion more than in comprehension. Consequently, we conjecture that biological communication systems should 
have higher levels of regulation on signal production to reduce errors.

In addition, the analysis of our model reveals the conditions over which the comprehension-production asym-
metry is stronger, and thus provides hints at where it is more likely for such an asymmetry to be more readily 
observable in nature. Specifically, our analysis shows that the asymmetry is strongest in populations living in 
smaller groups, groups with high connectivity, and groups composed of individuals with noisier senors. An exam-
ple where the first, and probably also the second condition holds, seems to be primate and early human socie-
ties20. As early humans used to live in small populations of size approximately 100 or less20, we conjecture that this 
asymmetry should be observable in the case of human language. The fact that such an asymmetry in language 
learning exists has been noticed, for example in the case of comprehension and production of sentence order21, 
and pronouns and reflexives agreement22. According to this phenomena, correct production of sentences requir-
ing certain grammatical competence, occurs with higher probability compared to correct comprehension, during 
language learning in certain ages. Understanding the mechanism behind this asymmetry in language learning is 
a very interesting problem, in particular given that some theoretical work on the subject suggest that mastery of 
language comprehension precedes language production17,23. Our model provides an evolutionary explanation for 
this phenomenon: as evolutionarily it is more advantageous to make oneself understandable than to understand, 
such an asymmetry can be the vestige of an evolutionary advantageous architecture of language. More accurate 
empirical tests, which are devised to specifically examine comprehension-production asymmetry, for example in 
the form of language games, can shed more light on the question whether such an asymmetry indeed exists in 
humans.

Among other examples of collective information acquisition systems where the existence of a 
comprehension-production asymmetry can be tested, here we discuss honey bee and ant societies. In ant socie-
ties, a successful forager by laying a pheromone trail recruits other workers12. As a laid trail is accessible to many 
ants (potentially the whole colony), it can be argued that this communication system has a very high network 
connectivity. On the other hand, poor performance of individual ants in finding resources seems to suggests 
ants posses a noisy sensor24. Our theory predicts a strong comprehension-production asymmetry in this case. 
Although it is argued that this communication system is highly noisy24,25, how the noise in comprehension com-
pares to noise in production needs to be studied. Another example where comprehension-production asymmetry 
can be explored is the case of honey bees. Communication between honey bees is performed by waggle dance 
which conveys information about the direction and distance of a desired source from the hive12,13,26,27. As opposed 
to the case of ants, where the trail can last for hours to be felt by other individuals, the signal in bees is mainly 
visual and lasts for seconds26. It thus can be argued that the connectivity of the communication network in this 
case, is much smaller than that of ants. Our theory thus predicts a smaller asymmetry in this case.

Here, we suggest an experimental set up to explore whether a comprehension-production asymmetry exists in 
animal communities. We state the argument having bees in mind as an example, however, a similar experiment 
can be performed with other species. Assume we record the roots taken by a number, say n1 bees all of whom has 
observed a single waggle dance. Denote the path (or the angle of deviation at a distance x from the hive, measured 
with respect to the line joining the hive to the goal in a two dimensional plane) of the ith bee by di. As experiments 
of this kind has shown, the path taken by the bees is subject to fluctuations27. Since all the n1 bees has observed the 
same dance, any variation in their paths has to be attributed to noise in each bee’s comprehension of the signal. A 
measure of the dispersal of the individual paths around the mean path (e.g. standard deviation) of the n1 bees, 
could thus be argued to be a measure of comprehension noise (plus possibly noise in decision making). For the 
case of the standard deviation this can be written as η = 〈 − 〈 〉 〉d d( )C i i i i

2 . Where the subindex i indicates an aver-
age over the n1 bees. On the other hand, assuming errors in bees’ comprehension is distributed symmetrically 
around zero, and n1 is large, the mean of the path over all the n1 bees who has observed the same signal, gives the 
signaled direction. Now assume we perform such an experiment for n2 times. Denote the mean path of the bees 
in the experiment α by dα, that is = 〈 〉αd di i in experiment α. Now consider a measure of the dispersal, say stand-
ard deviation, of dα around its mean over n2 experiments, η = 〈 − 〈 〉 〉α α α αd d( )G

2 . Assuming the cost associated 
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with noise reduction in comprehension and production are more or less the same, our theory predicts that 
η η≤G C. In principle, similar experiments can be performed with other species to test the comprehension pro-
duction asymmetry.

Another interesting prediction of our model is that biological communication systems, in the presence of 
some level of noise in communication, up to a threshold η⁎, perform almost as well as a noiseless communication 
system. This results from the fact that the transition to the ordered/high inference capability phase happens at a 
non-zero noise level. This means that, since a marginally noisy communication system performs almost as well as 
a noiseless communication system, there is little selection to reduce noise, once in the small noise region.

Although it is argued that information sharing increases accuracy of decision making28–30, it has been noticed 
that the same phenomena can lead to pathological effects such as herding on an inferior decision or formation 
of a wrong belief31. This can be the case, in situations where individuals have no way of judging the quality of the 
information provided by their group mates. As experimental work has demonstrated, in such cases, relying on 
social information can lead to false consensus32. It is argued, for example, that financial crashes are results of such 
collective decision making failure by herding on an inferior choice33. Our model provides a theoretical frame-
work to explain and interpret this phenomena in terms of an uninformed-informed phase transition, and shows 
that for collective decision making to be successful, there has to be enough information flow to the population 
through direct observations by individuals, otherwise the system will be stuck in an uninformed consensus phase.

In addition, the finite size analysis of our model reveals that the fraction of observant individuals needed 
for the group to correctly infer the environmental state decreases with the population size5, due to a shift in the 
uninformed-informed transition to smaller observation probabilities by increasing the population size.

The model introduced here has profound similarities with ferromagnetic systems in statistical physics34. In 
both, the signaling system introduced here, and magnetic systems such as Ising/Potts models, a set of agents, 
who can take one out of n possible states, are coupled with one of the states with an external field, and try to align 
themselves through an interaction term, in a noisy background. The equivalent of the external field in our model 
is the probability of faithful observation of the environment. The interaction in our model is provided with sign-
aling between agents and their efforts to align their beliefs with each other according to the signals they receive. 
In fact, the two ordered phases, uninformed and informed consensus phases, can be thought of as analogs of 
spin up and spin down ordered phases in ferromagnetic systems, which are separated by a first order transition 
in both cases. The order-disorder transition however, as shown, has a different phenomenology in our model 
of collective information acquisition, compared to the Ising model: while in the Ising model the order-disorder 
transition happens at a single critical point, our model posses a line of discontinuous order-disorder transition. 
Another important fundamental difference is that, while in ferromagnetic systems there is only one type of noise, 
the thermal noise, in this model of communication, we have two different types of noise which operate differently. 
Comprehension noise acts independently in each signal exchange event. Production noise however, by affecting 
a signal from the source, effectively acts in a more correlated fashion.

Regarding the similarity of our model with Ising and Potts models, a future direction of research can be to 
investigate this similarity in more depth. In fact, it is possible to formulate a similar model in terms of Potts vari-
ables by assigning to each agent, three Potts variables for signals, representation and belief, which are represented 
as binary vectors of length n, where n is the number of possible states. For example, we can represent agent i’s 
belief by 

→
= .. ..b (0, , 0, 1, 0, 0)i , where a 1 in ath entry means agent i believes in state a. Assuming these varia-

bles obey Boltzmann statistics, it is possible to write expressions for their means. Imposing a self consistency 
requirement, which equals the variables with their means, leads to mean field equations for equilibrium distribu-
tion of the variables [Hertz, J. Salahshour, M. and Roudi, Y. under preparation].

The effect of network structure on the inference of the population can be another avenue for future research. 
Although, the effect of network structure on consensus formation and spread of opinions has attracted much 
attention35–38, but less attention has been payed to the effect of network structure on the inference capability of the 
population. Our model, by distinguishing the two informed and uninformed consensus phases, provides an inter-
esting mathematical framework for the study of the effect of network structure on true consensus formation and 
the inference capability of the population. For example, applying the dynamics on real world sensory networks38,39 
seems to provide valuable insights into the beneficial aspects of real world sensory networks for collective infer-
ence of the population. For instance, as already can be seen here, higher network connectivity has a double sided 
effect. On the one hand it facilitates the ordering process and shifts the order-disorder transition to larger noise 
levels, and on the other hand it can promote uninformed consensus by shifting the informed-uninformed tran-
sition line to larger noise levels. How communicating populations manage to benefit from higher network con-
nectivity and at the same time avoid its detrimental effects can be an interesting question to investigate both 
theoretically and empirically.

Methods
Dynamics of the model. As explained in the section The Model, the dynamics of the model is as follows. 
The population is set on a communication network, such that each individual communicates with its neighbors 
on the network. We consider a synchronous update of the network. That is at each time step, each individual 
makes an observation with probability h, and reaches representation r according to ε|R r( ). Besides, the individual 
possibly receives a set of signals from its neighbors and transforms each signal to a representation, according to 

σ|C r( ). Reaching internal state r, which is the set of all the representations an individual has received, it forms a 
belief b using its decision rule, given its internal state r, and communicates its belief to its neighbors by producing 
a signal according to σ| =G r b( ). Starting from time 1, no individual has a belief to communicate, until it makes 
an observation or receives a signal.
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simulations. The basic parameter values used in the simulations are presented in Table 1. In each simulation 
some parameters are changed as explained in the figures. An average over R runs is taken to calculate the variables 
of interest. In Figs 1a,b and 2c,f, R is set equal to 200. For the simulations used to calculate phase diagrams in 
Fig. 2a,b,d,e, which is the same simulation used in Fig. 3a,b, =R 100. The distributions of the majority size pre-
sented in Fig. 3c,d is calculated based on a single time series of length =T 105, after discarding the first 104 steps, 
for a population of size =N 100 and on a second nearest neighbor network. To calculate the graphs in Figs 4 and 5,  
the same parameter values as in Table 1 are used. However, in Figs 4 and 5a–c, =R 24, and in Fig. 5d, =R 200. 
In Figs 1, 4 and 5, =T 500.
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Parameter Value

L 10

N 100

n 100

T 1500

Table 1. The basic parameter values used in the simulations. The population resides on a L × L lattice. N is the 
population size, n is the number of states, T is time.
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