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Abstract: Monopiles able to support very large offshore wind turbines are slender structures
susceptible to nonlinear resonant phenomena. With the aim to better understand and model the
wave-loading on these structures in very steep waves where ringing occurs and the numerical
wave-loading models tend to lose validity, this study investigates the distinct influences of
nonlinearities in the wave kinematics and in the hydrodynamic loading models. Six wave kinematics
from linear to fully nonlinear are modelled in combination with four hydrodynamic loading models
from three theories, assessing the effects of both types of nonlinearities and the wave conditions
where each type has stronger influence. The main findings include that the nonlinearities in the
wave kinematics have stronger influence in the intermediate water depth, while the choice of the
hydrodynamic loading model has larger influence in deep water. Moreover, finite-depth FNV theory
captures the loading in the widest range of wave and cylinder conditions. The areas of worst
prediction by the numerical models were found to be the largest steepness and wave numbers for
second harmonic, as well as the vicinity of the wave-breaking limit, especially for the third harmonic.
The main cause is the non-monotonic growth of the experimental loading with increasing steepness
due to flow separation, which leads to increasing numerical overpredictions since the numerical
wave-loading models increase monotonically.

Keywords: offshore wind turbines; monopile; ringing; secondary load cycle; nonlinear waves;
hydrodynamic loading models; truncated surface-piercing cylinder; regular waves

1. Introduction

Wind has become a strong player in the energy field but its main limiting factor for
growth, especially for offshore technologies, remains the cost. Since the support structures are
the most expensive part of offshore wind turbines (OWTs), advancements in the modelling of
wave-loading could lead to safer and more cost-efficient future designs. Most commonly installed
monopile-supported OWTs are normally placed in shallow to intermediate waters, where wave
nonlinearities gather and may lead to dangerous nonlinear resonant amplifications of the dynamic
response, such as ringing.

Ringing is a non-Gaussian resonant response occurring after the passage of a particularly steep wave,
reaching its maximum within a burst of a few oscillations and dissipating slowly [1,2]. Such resonant
amplifications cause significant strain on the offshore structure, causing increased fatigue and reduced
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remaining useful lifetime. Ringing is normally associated with third-order wave-loading [1–3] although
it has been suggested to be caused by higher-order loading components as well [4,5]. The higher-order
force components associated with ringing have been observed to be much larger in shallower water
than deep [6,7], reiterating the importance of its consideration in the shallow to intermediate water
depths where monopile-supported OWTs are placed. The applicability of this dangerous resonant
phenomenon to the OWT substructures is highlighted by the fact that the structural frequency of the
monopile-supported offshore wind turbines falls in the range of 3rd harmonics of typical rough sea
states occurring at sites where OWTs are placed.

Ringing is a dynamic amplification of the structural response, therefore cannot be observed on
a fixed, rigid cylinder. Nonetheless, in several past studies a fixed cylinder has been investigated in
the same wave conditions where ringing is expected, and observed a phenomenon of strong forcing
nonlinearities named “secondary load cycle” (slc) [2–6,8,9]. slc appears as a secondary peak in the
loading, around one quarter after the main peak and has been initially associated with ringing. There
has been a dispute over what the secondary load cycle is governed by: some suggesting Froude
number [3,4], some wave steepness [2], some viscous effects [10,11], while others called it a ‘hydraulic
jump’ due to local wave breaking [5,8]. Most of the early research neglected diffraction [2–5,8] but
in a recent computational study Paulsen et al. (2014) [6] have shown that the secondary load cycle
is actually caused by the interaction between the opposing flows—the outer still continuing in the
direction of the propagating wave, and the inner inside a vortex which formed at the back of the
cylinder due to diffracted wave—creating a reduction in pressure which is observed as the secondary
load cycle. The three-dimensional CFD study was the only method to capture slc numerically to
date. A suggestion was made to disassociate ringing from secondary load cycle on the grounds that
even the first six harmonics of the loading did not recreate the secondary load cycle while ringing
is commonly associated with the third [6]. This suggestion was later confirmed experimentally by
Suja-Thauvin et al. (2017) [9], where ringing was repeatedly observed without the occurrence of
secondary load cycle in the same wave events on two parallel cylinders—fixed and moving. Therefore
the ability to numerically recreate slc does not indicate on the ability of the models to capture ringing;
nonetheless, since this paper focuses on the suitability of wave-loading models for a fixed cylinder in
steep waves, their capability to capture slc is investigated as well.

Ringing on offshore wind turbines has been numerically captured with fully nonlinear wave
kinematics, but repeatedly shown to be omitted if linear wave kinematics were used [7,12–15].
Moreover, Marino et al. (2014) [14] have recently shown that second-order wave kinematics are
not sufficient to capture ringing either. Nonetheless, the nonlinearities in wave-loading stem not only
from the wave kinematics but also from the hydrodynamic loading model, and it should be noted
that these previously noted studies have all used Morison equation [16] as the hydrodynamic loading
model [7,12–15]. However, in the 1990s more advanced hydrodynamic loading models than Morison
equation were proposed. One of such is Rainey theory [17,18], which suggests neglecting the drag term
from the Morison equation and correcting the linear Morison inertia term to third order by nonlinear
slender-body terms, which consider nonlinear flow and free-surface effects to second and third order.
Higher-order hydrodynamic loading models were also derived as perturbation theories, best known
of which are Malenica & Molin (M&M) [19] and Faltinsen–Newman–Vinje (FNV) [20]. They are both
derived directly to third order to take the ringing-associated nonlinearities and wave diffraction into
account. The main difference between them is that FNV assumes the radius of the structure to be of
the same order as the wave amplitude (both of the order O(ε) with ε << 1) while the wavelength λ

is of order O(1) [19,20]. An important contribution in the FNV comes from the nonlinear scattering
potential deriving from the free-surface conditions. However, by disregarding this effect, the main
difference between the formulation in [17] and the one in [20] relies in the different way the loads
are derived, i.e., through direct integration of the pressure and Gauss integral theorem in [20] and
momentum and energy conservation in [17].
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The influence of nonlinearities in hydrodynamic loading models and in wave kinematics have
often been treated as separate issues. For example, in Chaplin et al. (1997) [2] the suitability of
Morison equation and Rainey model were tested against the results of accurate experiments, both
hydrodynamic loading models with a 16th order stream-function theory for the wave kinematics.
In Stansberg (1997) [21], on the other hand, FNV theory was the only numerical loading model.
A wide selection of wave kinematics and hydrodynamic loading models were compared in the OC5
Phase Ib [7], but none of them was a consistent perturbation model, e.g., FNV or M&M. Swan et al.
(2002) [22] compared Morison equation and Rainey corrections on linear and fully nonlinear wave
kinematics and determined that the nonlinearities in wave kinematics were more important than the
nonlinearities in the hydrodynamic loading model because when the wave kinematics were fully
nonlinear, the nonlinear corrections in the loading model became less relevant. The closest set-up to
the present study has been conducted by the Wave Loads project [23] where Morison equation, Rainey
theory, FNV and M&M were compared using fully nonlinear wave kinematics. However, the aim of
the study differed, hence also the range of the kinematics considered in it. Moreover, at the time of
the project [23] only the deep-water FNV formulation [20] was available, therefore it only provided
meaningful comparison in high water depths instead of shallow to intermediate. Only recently, indeed,
Kristiansen and Faltinsen [24] introduced the FNV formulation for finite water depth. It is observed
that in [24] the waves were up to intermediate steepness, therefore secondary load cycle was not
observed, leaving the finite-depth FNV loading model not assessed in a study on ringing or secondary
load cycle to this date.

Therefore, the present work provides a detailed study of the distinct influences on the
wave-loading stemming from the nonlinearities in wave kinematics and in the hydrodynamic loading
models considering different wave and water depth conditions. The objective is to understand which
nonlinearities are more influential in the ringing phenomenon, but also to improve the numerical
modelling of the wave-loading on OWT monopiles in general. A systematic study is presented
considering a range of increasingly nonlinear wave kinematics as input to a selection of hydrodynamic
loading models with nonlinear corrections. Six models for wave kinematics (Section 2.1) and three
hydrodynamic loading models (Section 2.2) are used in this study, on a grid of experimental values,
presented in Section 2.3. Main topics analyzed in this study of regular wave-loading on a rigid
cylinder are presented in Section 3. Section 3.1 focuses on the capability to capture secondary load
cycle numerically, while Section 3.2 clarifies the distinction between the nonlinearities stemming from
the wave kinematics and from the hydrodynamic loading model. Sections 3.3 and 3.4 discuss the
suitability of the wave-loading models to recreate experiments, especially in the off-design values for
the theories over increasing steepness and nondimensional wavenumber consequently. Section 3.5
then summarizes the findings over the experimental grid, determining the best-suited wave-loading
models and distinguishing the areas where which influence is dominant. Finally, Section 4 lists the
conclusions along with remarks on limitations and future work.

2. Methodology

In this study, six wave kinematics and four hydrodynamic loading models from three theories
are compared with experimental data found in the literature. The wave-loading model is therefore
defined as the combination of selected wave kinematics and a selected hydrodynamic loading model.
Each is introduced in short in this section.

2.1. Wave Kinematics

The modelling of linear and weakly nonlinear wave kinematics is made using Airy, Stokes 2nd,
Stokes 3rd and Stokes 5th order wave theories [25]. The stretching of kinematics from still water level
to the instantaneous free surface follows the Taylor expansion as described in [24]. The fully nonlinear
wave kinematics are based on the perturbation theory by Rienecker–Fenton (R–F) [26], as well as
computed in a two-dimensional higher-order Boundary Element Method (BEM) model initialized
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with the same R-F theory. The BEM model [27–29] is based on a two-step mixed Eulerian-Lagrangian
solution scheme and employs quadratic boundary elements in the Eulerian step to solve the Laplace
equation, and the fourth order Runge–Kutta for the time integration in the Lagrangian step. Potential
continuity at corner points [30] and 5-point smoothing [31] in simulations with higher wave steepness
are used to prevent numerical instabilities such as “sawtooth”.

Throughout the study the different wave kinematics are denoted by color of the marker or
line: linear—black, Stokes second order—blue, Stokes third order—green, Stokes fifth order—cyan,
Rienecker–Fenton—red, BEM—dark red.

2.2. Hydrodynamic Loading Models

The comparison of hydrodynamic loading models is conducted between three commonly
implemented theories: Morison equation, Rainey theory, and FNV perturbation theory. Each model is
denoted throughout the study by the style of the line or marker.

Morison equation [16] consists of linear inertia term M and quadratic drag d. Since the
experimental conditions recreated in this paper fall in the inertia and diffraction regimes (see
Section 2.3), drag contribution is neglected. Therefore, Morison equation consists of linear inertia
term only, which is integrated up to the instantaneous wave elevation, as illustrated in Figure 1a and
described in Equation (1).

FMorison = FM =
∫ η

−h
CmρπR2 ∂u

∂t
dz , (1)

where η is the instantaneous wave elevation, h—water depth, ρ—water density, R—cylinder radius
and u—horizontal velocity of the water particles.

Direction of wave propagation

z

h
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Figure 1. Coordinate system and the implemented hydrodynamic loading model components of:
(a) Morison equation (integrated inertia term FM) and Rainey theory (integrated terms FM + FA,
and point loads at the instantaneous free surface FI + FD); (b) FNV theory (integrated term F′ and
point load at mean water level Fψ).

The inertia coefficient Cm is considered depth-independent because of the constant circular
cylinder section considered along the water depth. Its value is chosen as Cm = 2 in all cases for the
consistency across experiments and hydrodynamic loading models. In the following, results obtained
with Morison equation are marked with a solid line or circle markers.

Slender-body theory [17,18] corrects the Morison inertia term M (Equation (1)) to third order.
Following the formulation of [2], the corrections are: axial divergence force A (Equation (2)), integrated
from the sea bottom to the instantaneous wave elevation; surface intersection force I (Equation (3)),
and surface distortion force D (Equation (4)), both applied as point loads at the instantaneous wave
elevation, as illustrated in Figure 1a.
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FA =
∫ η

−h
ρπR2 ∂w

∂z
udz (2)

FI = −
ρπR2

2
u2 ∂η

∂x
(3)

FD =
7ρπR2

2g
u2 ∂u

∂t
(4)

The derivation of the A and I terms is based on the expansion of kR term instead of the usual
kA, giving the advantage of no limitation in terms of steepness [18]. However, the derivation of the
surface distortion term D, which is the third-order term in this theory, rests on Stokes small amplitude
assumption [2,18]. Therefore, numerous authors have doubted its suitability in very steep waves and
have refrained from adding it, applying only the A and I terms instead, e.g., [2,15]. Thus, in this
study both M + A + I (MAI) and M + A + I + D (MAID) combinations are modelled to assess the
suitability of both variations of the Rainey theory. Throughout this study MAI is denoted by dotted
line or diamond markers, while MAID by dash-dot line or cross markers.

FNV theory was originally derived for regular waves in 1995 [20] but quickly expanded to
irregular in 1996 [32], after which further generalizations followed for general cross-sections in 1999 [33]
and recently for finite depth in 2017 [24]. In this study, the finite-depth formulation of the FNV theory
is implemented, which is valid for regular and irregular waves as well as numerical wave tanks [24].
As illustrated in Figure 1b, the total horizontal force FFNV , listed in Equation (5), consists of two main
components: force F′ (Equation (6)), integrated from the sea bottom to the instantaneous free-surface
elevation, and a point load Fψ (Equation (7)) due to the nonlinear potential ψ, which is applied at the
still water level in consistency with the original theory [20]. It is worth noting that the integrated force
F′ includes components of nonlinear loading due to wave kinematics (first term in (Equation (6)) as
well as the effect of infinite-frequency hydrodynamic added mass (second term in (Equation (6)).

FFNV =
∫ η

−h
F′(z, t)dz + Fψ , (5)

where
F′ = ρπR2(

∂u
∂t

+ u
∂u
∂x

+ w
∂u
∂z

) + a11(
∂u
∂t

+ w
∂u
∂z

) , (6)

where a11 is the two-dimensional added mass coefficient, and

Fψ =
4ρπR2

g
u2 ∂u

∂t
. (7)

It can be seen that if the nonlinear terms in the distributed force F′ were excluded, the F′ force
with only the two ∂u

∂t terms would be equal to the Morison inertia term FM with the inertia coefficient
Cm = 2. Therefore, the difference between the FNV theory and Morison equation is the assessment of
these nonlinear integrated terms and the point load Fψ. The difference between the finite-depth FNV
and the Rainey theories, as discussed by Kristiansen and Faltinsen (2017) [24], is the point load Fψ.
The surface distortion term D in the Rainey theory (Equation (4)) has a very similar formulation to this
point load Fψ (Equation (7)) with the coefficient of 3.5 instead of 4, but with a crucial difference of the
point of application—at the instantaneous free surface for D and at the still water level for Fψ.

The theory is derived directly to third order with which ringing is associated, and considers
diffraction, by which secondary load cycle has been explained in [6], therefore could be expected to
have a strong potential to recreate the secondary load cycle numerically. The marking for FNV theory
in this study is a dotted line or star marker.
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2.3. Experimental Grid

Multiple experiments from literature on a fixed rigid surface-piercing cylinder are investigated
in this study as shown in Figure 2 on the (kA, kR)-grid, where k denotes the linear wave number,
A—linear wave amplitude, R—cylinder radius. First of all, two cases of extremely high steepness
from Grue and Huseby (2002) [4] are considered because they fall right in the center of the previously
reported conditions where secondary load cycle and ringing occur [4], as well as provide an insight
into the conditions with extremely high steepness of kA > 0.3. In addition, the experimental campaign
by Kristiansen and Faltinsen (2017) [24] systematically covers the steepness up to≈0.165 and a range of
kR values, while the experiments by Stansberg (1997) [21] allow assessment of the intermediate-to-high
steepness between the previously mentioned experimental campaigns, as well as the influence of
the cylinder radius—therefore the kR number—in the same wave conditions. For the sake of brevity,
the experimental details are not reported here but can be found in the original papers. The numerical
values for wave period T and wave amplitude A were selected as reported in the original papers,
with the only exception of the two cases of Grue and Huseby (2002) [4], where the numerical wave
height H and period T were tuned by matching the digitized wave elevation, superimposed at
zero-upcrossings, by the lowest root-mean-square-error.

kA
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

k
R

0.05

0.1

0.15

0.2

0.25

0.3

K
C
=
:

KC = 10

Logged events of slc [4]
Logged events of ringing [4]

Di,raction

Inertia

Drag

[4] : kH/2 = 0.32, T = 0.70 s
[21] : T = 2.10 s, A = 0.130 m 
[21] : T = 2.10 s, A = 0.202 m 
[21] : T = 2.10 s, A = 0.254 m 
[21] : T = 2.10 s, A = 0.289 m 
[21] : T = 1.52 s, A = 0.127 m

[4] : kH/2 = 0.31, T = 0.85 s 

[24] : T = 1.010 s 
[24] : T = 1.155 s 
[24] : T = 1.299 s 
[24] : T = 1.443 s 
[24] : T = 1.588 s 
[24] : T = 1.732 s 
[24] : T = 1.876 s 
[24] : T = 2.021 s 
[24] : T = 2.165 s 
[24] : T = 2.309 s

Figure 2. Experimental studies analyzed in this paper, on a (kA, kR)-grid, with reference to historically
observed secondary load cycles as reported in Grue and Huseby (2002) [4] and the diffraction, inertia
and drag regimes separated by the KC number equal to π and 10. Identical markers in the Kristiansen
and Faltinsen (2017) [24] cases refer to cases with increasing steepness for the same wave period and
water depth.

The grid is divided into the diffraction, inertia and drag regimes by the linear Keulegan–Carpenter
KC number values equal to π and 10, where KC number is defined as uH1/Dcyl , where u is the
linear horizontal wave velocity, H1 is the linear wave height, and Dcyl is the diameter of a cylinder.
The experiments are scattered over the diffraction and inertia regimes, which is appropriate since
Morison and Rainey loading models are inertia-based, and FNV is diffraction-based. It is of interest
to note that most of the previously reported cases of observed secondary load cycle fall in the
inertia regime, justifying numerous authors discussed in the introduction neglecting wave diffraction.
As discussed in [2], Stokes first-order diffraction effects are only expected to start at kR ≈ 0.5, therefore
strongly outside of the considered range, while the Stokes third-order diffraction effects could in theory
be applicable from as low kR as 0.05 (defined by Malenica and Molin (1995) [19]), but the derivation of
this threshold rests on perturbation scheme therefore it would be expected to lose validity at such high
steepness where local wave breaking is expected. Nonetheless, the slc has been surprisingly explained
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by a diffracted wave by Paulsen et al. (2014) [6], justifying the investigation of diffraction-based
loading models in the theoretically inertia regime.

The currently analyzed experiments are also compared to the limits of wave theories, as defined
by IEC 61400-3 Design requirements for offshore wind turbines [34] in Figure 3, where H is the wave
height, g—gravitational constant, T—wave period, h—water depth. All the experiments fall in the
intermediate to deep-water conditions, therefore the shallow water limitations are avoided. They also
fall outside of the range of the linear and second-order kinematics, therefore the nonlinearities in wave
kinematics are expected to matter. Lastly, it is evident that the cases in intermediate water depth are
closer to the wave-breaking limit despite the smaller wave height, and thus the recommended wave
theories are even higher.

Stokes’ 5th or  
stream function 3

Linear/Airy or 
stream function 

Stream function 
 11 9 7 5 3

0.002 0.005 0.01 0.02 0.05 0.1 0.2 0.5

H=gT2

5e-05

0.002

0.005

0.01

0.02
[4] : kH/2 = 0.32, T = 0.70 s 

[21] : T = 2.10 s, A = 0.130 m 
[21] : T = 2.10 s, A = 0.202 m 
[21] : T = 2.10 s, A = 0.254 m 
[21] : T = 2.10 s, A = 0.289 m 
[21] : T = 1.52 s, A = 0.127 m

[4] : kH/2 = 0.31, T = 0.85 s 

[24] : T = 1.010 s 
[24] : T = 1.155 s 
[24] : T = 1.299 s 
[24] : T = 1.443 s 
[24] : T = 1.588 s 
[24] : T = 1.732 s 
[24] : T = 1.876 s 
[24] : T = 2.021 s 
[24] : T = 2.165 s 
[24] : T = 2.309 s

gT 2h=

Figure 3. Experimental studies analyzed in this paper with reference to the limitations of regular
wave theories as defined by IEC 61400-3 Design requirements for offshore wind turbines [34]. Hb
denotes the wave height corresponding to the wave-breaking limit. Identical markers in the Kristiansen
and Faltinsen (2017) [24] cases refer to cases with increasing steepness for the same wave period and
water depth.

3. Results and Discussion

This section is the core of the study where the following three main issues are addressed: (1) the
capability to numerically capture secondary load cycle, in Section 3.1; (2) the distinction between
the nonlinearities stemming from the wave kinematics and from the hydrodynamic loading model,
in Section 3.2; (3) the suitability of the wave-loading models to recreate experiments, especially in
their off-design conditions: as steepness increases in Section 3.3, and as the kR number increases in
Section 3.4; and the overall behavior of the numerical loading models on the grids of wave theory
limits and the wave and cylinder conditions in Section 3.5.

3.1. Secondary Load Cycle

In Figure 4 the grey dotted lines show the experimental values of the superimposed wave elevation
(Figure 4a) and horizontal forcing (Figure 4b) for the case with wave steepness kH/2 = 0.31 and wave
period T = 0.85 s. This case corresponds to the Grue and Huseby (2002) [4] case, which was seen to
fall among the previously observed slc range, shown in Figure 2. The slc can be seen to occur around
t = [0.5− 0.75] s in the experimental loading (Figure 4b).
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t[s]
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
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[m
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-0.06
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-0.02
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0.08
a) Wave elevation

Experimental
(Source: [4])
Linear
BEM

t[s]
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x
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3

4
b) Horizontal forcing

Experimental
(Source: [4])
Linear - Morison
Linear - FNV
BEM - Morison
BEM - FNV

Figure 4. Comparison of a selection of computed: (a) wave elevation profiles, (b) loading models,
with the superimposed experimental measurements reported in Grue and Huseby (2002) [4], for the
case with wave steepness kH/2 = 0.31 and wave period T = 0.85 s (error bars are the standard
deviation from the superimposition at zero-upcrossings).

A past preliminary study [35] has already shown that not even with fully nonlinear BEM wave
kinematics with Morison equation (inertia only as well as full formulation including quadratic drag) or
Rainey theory manage to capture the secondary load cycle. In this extended study the newly derived
finite-depth FNV theory was also considered, and is therefore shown in Figure 4b with linear and
fully nonlinear wave kinematics as input (dashed black and dark red lines). It is compared with
Morison inertia term, also with linear and fully nonlinear wave kinematics as input (solid black and
dark red lines).

The fact that FNV theory omits the secondary load cycle just like the other loading models,
even with fully nonlinear BEM wave kinematics, indicates that secondary load cycle is caused
by either three-dimensional effects or loading higher than third order. Nonetheless, as recently
suggested from the numerical study by Paulsen et al. (2014) [6] and later confirmed experimentally
by Suja-Thauvin et al. (2017) [9], the secondary load cycle, even though it occurs in the same wave
conditions, is not directly linked to ringing. Therefore, the fact that slc is not captured by any of the
analyzed combinations of wave models does not imply that ringing is omitted too.

3.2. Distinction between the Nonlinearities in Wave Kinematics and Loading Models

A deeper understanding of where the predominant nonlinearities in loading are stemming
from—wave kinematics or the loading model—is crucial in the study of ringing and optimization of
numerical wave-loading models.

The importance of nonlinearities in wave kinematics to capture the nonlinear wave profile of this
extremely steep wave is evident from Figure 4a. The fully nonlinear wave kinematics closely capture
the experimental wave-loading, while linear wave kinematics are limited to sinusoidal profile which
does not recreate the steeper crest and shallower trough. The strong influence of nonlinearities on
the total wave-loading is seen in Figure 4b: the nonlinearities in the wave kinematics reduce the total
loading (comparing dark red lines with the corresponding black lines), while the nonlinearities in the
hydrodynamic loading model cause an increase of the loading, especially at the peak of the loading
where higher harmonics normally appear (comparing the dashed lines with corresponding solid lines).

Nonetheless, a deeper insight is easier from the harmonic analysis, which is given in Figure 5
for wave elevation (top row) and horizontal loading (bottom row), for the first five harmonics (left
to right). The harmonic analysis for the wave elevation (Figure 5a–e) shows, as expected, that linear
wave kinematics (black markers) are negligible in the higher harmonics (Figure 5b–e), and therefore
overestimate the first harmonic (Figure 5a). It is worth noting here that, as introduced in Section 2.3,
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in this extremely steep and unstable case the wave characteristics for numerical models were tuned
to match the superimposed wave elevation with lowest root-mean-square-error. The fully nonlinear
wave kinematics (dark red markers), on the other hand, capture the experimental wave elevation
values much closer, even in the high harmonics.
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Figure 5. First five harmonics (ω − 5ω) of a selection of computed wave-loading models compared
with the FFT of the mean superimposed measurements of wave elevation (a–e) and horizontal force
(f–j) for loading case with wave steepness kH/2 = 0.31 and wave period T = 0.85 s, reported in Grue
and Huseby (2002) [4]. Error bars are FFT values of the top and bottom boundaries of the standard
deviation in time domain, while the numbers above each marker are the relative difference percentage,
calculated by (Fnum − Fexp)/Fexp.

The harmonic analysis of wave-loading (Figure 5f–j) reveals the influence of hydrodynamic
loading models as well. Even the most linear hydrodynamic loading model, Morison inertia term
(Equation (1)) in combination with linear wave kinematics (black circle) leads to a second-order peak
(Figure 5g) due to the integrated wave acceleration profile over depth (see Equation (1)). The higher
harmonics (Figure 5h–j), nonetheless, are negligible. This most linear case (black circle) is taken as
reference case for assessing the influence of nonlinearities in wave kinematics and hydrodynamic
loading models.

The effect of wave nonlinearities is seen from the wave forcing with the same Morison equation,
but with BEM kinematics (dark red circle, compared to black circle). It can be seen that the nonlinearities
in wave kinematics reduce the first harmonic (Figure 5f), but increase all the higher harmonics
(Figure 5g–j), similarly as seen with the impact on wave elevation (Figure 5a–e). Meanwhile,
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the nonlinearities in the hydrodynamic loading model can be seen from the loading with linear
wave kinematics, but more nonlinear FNV theory (Equation (5), black star markers compared to
black circles). It can be seen that the nonlinearities in hydrodynamic loading model increase the
loading in all harmonics (Figure 5f–j). It should be noted that FNV is a third-order perturbation theory,
therefore the harmonics above third (Figure 5i–j) are not affected, while with Rainey theory [17,18]
the fourth and fifth harmonics increased. Finally, the effect of combined nonlinearities is seen from
BEM kinematics with FNV loading model (dark red star markers, compared with black circles), and it
is to increase all higher harmonics (Figure 5g–j). It can be seen that it leads to the highest total
loading from the second harmonic (Figure 5g), increasing with the increasing harmonics (Figure 5h–j).
Swan et al. (2002) [22] found that when fully nonlinear wave kinematics were used (Rienecker–Fenton
in [22]), the nonlinearities in the hydrodynamic loading model (Rainey theory in [22]) were of smaller
importance. In this study, nonetheless, as will also be seen in next sections, the importance of the
nonlinearities in the hydrodynamic loading model is found to be greater for the more nonlinear wave
kinematics than for linear.

To show the influence of the distinct nonlinearities over the increasing steepness Figure 6 shows a
representative case in intermediate water depth, which corresponds to the wave settings of Kristiansen
and Faltinsen (2017) [24] (wave period T = 2.021 s, water depth h = 0.546 m, increasing wave
steepness). In Figure 6 the experimental values are excluded, since the behavior of the numerical
models with regards to the other numerical models, ignoring the experimental values, is similar across
different settings of wave periods and water depths. The loading in each harmonic is additionally
normalized by wave steepness H1/λ (where H1 is the linear wave height and λ is the linear wavelength)
to the power of that harmonic.
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Figure 6. First (a), second (b) and third (c) harmonics of the normalized horizontal force over the
increasing wave steepness H1/λ. Corresponds to the experimental cases by Kristiansen and Faltinsen
(2017) [24] with T = 2.021 s in the depth h = 0.564 m.

In theory the numerical wave-loading increases monotonically with the increasing wave steepness,
which would appear as a horizontal line on graph with such normalization. Therefore, the deviating
curvatures are representing the effect of the nonlinearities in the wave kinematics and hydrodynamic
loading models. It should be noted that the first harmonic is actually predicted rather similarly by
all numerical models and the modelled loading is actually increasing rather monotonically with the
increasing steepness. These curvatures are emphasized by the very small range of values in the vertical
axis allowing easier illustration of the underlying principles.

As seen from Figure 6a, in the first harmonic the most horizontal line and the reference case is
the Morison equation, i.e., linear inertia term, with the linear wave kinematics (black circle). It can be
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seen from the nonlinear kinematics (all colors except black (linear) and blue (second order)) that the
effect of the nonlinearities in the wave kinematics to reduce the first harmonic (Figure 6a) is becoming
larger with increasing steepness. On the contrary, as seen from Figure 6b,c, the effect of increasing
the loading in higher harmonics is decreasing as the steepness increases. The fact that second-order
wave kinematics (all blue markers) are the only exception, which increases the loading at any given
steepness and becomes larger as the steepness goes up, could potentially be explained by the fact that
the second-order Stokes-wave kinematics do not get the nonlinear correction to the wave number and
wave celerity as the higher-order nonlinear wave kinematics get.

The influence of the nonlinearities in the hydrodynamic loading model—to increase the loading
in all harmonics—is seen to persist and increase as steepness increases (compare, for example, MAID
model (crosses) with the Morison equation (circles) in any wave kinematics (any color)) in all panels of
Figure 6. The only exception is the FNV loading model (star markers), which in certain conditions has
the capability to correct the Morison equation (circles) towards the reduction of the loading, e.g., see
the star markers in Figure 6b, especially at the lowest steepness. It can also be observed that the
nonlinearities in the hydrodynamic loading models, growing most with the increasing wave steepness,
are the both third-order hydroloading models MAID (crosses) and FNV (stars), observed most clearly
with the second-order wave kinematics (blue color) in the second and third harmonics (Figure 6b,c).

3.3. Non-Monotonic Experimental Behavior Over Increasing Steepness

As just established in Section 3.2, the numerical results increase relatively monotonically with
increasing steepness. Nonetheless, as seen from Figure 7 which includes the experimental results,
the behavior of the experimental results does not follow the same trend.

Figure 7 shows the FFT analysis of the first three harmonics (from top to bottom) of the normalized
horizontal force (Fx/(ρgR3)) over increasing steepness H1/λ for three periods of T = 1.443 s (left),
T = 1.732 s (middle) and T = 2.021 s (right) for the depth of h = 0.397 m. It is worth mentioning that
experimental values for depth h = 0.564 m were also provided in [24], but they are omitted from this
paper for brevity due to similar behavior. The case of h = 0.397 m is kept because the cases in shallower
water become more nonlinear at lower steepness, allowing a more detailed analysis. It should also be
noted that in Figure 7 the normalization does not divide by the steepness to the power of the harmonic,
as in the Figure 6 before, and the y-axes are fixed for each harmonic for the ease of comparison.

It should be noted that in the experimental wave setting with longest wave period T = 2.021 s
(Figure 7c,f,i) wave breaking was reported in the steepest four cases (final four grey dots on the right
of Figure 7c,f,i). The occurrence of wave breaking nearly coincides with the theoretical upper limit
of the Stokes fifth-order theory, defined as Ursell number Ur = 40 (Ur = H1λ2/h3), indicated by a
vertical dotted line. Except for the breaking wave cases, the first harmonic (Figure 7a–c) is captured
well enough by all kinematics and loading models. In more detail the experimental values at the higher
steepnesses are better captured by the nonlinear wave kinematics regardless of the hydrodynamic
loading model, while the linear and second-order kinematics tend towards overestimation.

The second harmonic (Figure 7d–f) already shows an extremely non-monotonic behavior.
The cases of breaking waves aside, after a certain steepness the total loading is hardly increasing with
the increasing steepness. Some of the cases are showing such small increment in the total loading
over the increasing steepness that the monotonically increasing linear wave kinematics with nonlinear
loading models, e.g., MAID (black cross) or MAI (black diamond), are becoming the closest-predicting
models. In the third harmonic (Figure 7g–i) such effect is amplified even more, especially in the cases
with the largest kR number, where even the linear kinematics with the MAID model (black cross) are
overestimating the loading (see Figure 7i). In Kristiansen and Faltinsen (2017) [24] the discrepancies
are explained by flow separation, although the addition of drag and reduction of mass coefficient
corresponding to the local KC numbers did not offer a correcting solution to the FNV theory regardless
of whether third or fifth-order wave theory was used [24]. The main contribution of this paper on this
discussion is that a wider range of wave theories and loading models are also increasing monotonically
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with wave steepness and therefore overpredicting the higher harmonics at the occurrence of the
non-monotonic growth of the experimental results with increasing steepness.

0.02 0.03 0.04 0.05 0.06

F
x
1
!
=
(;

gR
3
)

0

1

2

3

4

5

6

7

8

9

K
C

1
 =

 :
K

C
+ 5
=

 :

K
C
! 5
=

 :

a) kR = 0:182; h = 0:397 m

0.02 0.03 0.04 0.05 0.06

F
x
2
!
=
(;

gR
3
)

0

1

2

3

4

5

6
d)kR = 0:182; h = 0:397 m

H1=6

0.02 0.03 0.04 0.05 0.06

F
x
3
!
=
(;

gR
3
)

0

0.5

1

1.5

2

2.5

3
g) kR = 0:182; h = 0:397 m

0.02 0.03 0.04 0.05 0.06

F
x
1
!
=
(;

gR
3
)

0

1

2

3

4

5

6

7

8

9
b)kR = 0:145; h = 0:397 m

0.02 0.03 0.04 0.05 0.06

F
x
2
!
=
(;

gR
3
)

0

1

2

3

4

5

6
e) kR = 0:145; h = 0:397 m

H1=6

0.02 0.03 0.04 0.05 0.06

F
x
3
!
=
(;

gR
3
)

0

0.5

1

1.5

2

2.5

3
h)kR = 0:145; h = 0:397 m

0.02 0.03 0.04 0.05 0.06

F
x
1
!
=
(;

gR
3
)

0

1

2

3

4

5

6

7

8

9

U
r 

=
 4

0

c) kR = 0:121; h = 0:397 m

0.02 0.03 0.04 0.05 0.06

F
x
2
!
=
(;

gR
3
)

0

1

2

3

4

5

6
f) kR = 0:121; h = 0:397 m

H1=6

0.02 0.03 0.04 0.05 0.06

F
x
3
!
=
(;

gR
3
)

0

0.5

1

1.5

2

2.5

3
i) kR = 0:121; h = 0:397 m

Lin - Morison
Lin - MAI

Lin - MAID

Lin - FNV

St2 - Morison
St2 - MAI

St2 - MAID

St2 - FNV

St3 - Morison
St3 - MAI

St3 - MAID

St3 - FNV

St5 - Morison
St5 - MAI

St5 - MAID

St5 - FNV

R-F - Morison

R-F - MAI

R-F - MAID

R-F - FNV

BEM - Morison

BEM - MAI

BEM - MAID

BEM - FNV

Experimental 
Source: [24]

K
C

1
 =

 :
K

C
+ 5
=

 :

K
C
! 5
=

 :

K
C

1
 =

 :
K

C
+ 5
=

 :

K
C
! 5
=

 :

K
C

1
 =

 :
K

C
+ 5
=

 :

K
C
! 5
=

 :

K
C

1
 =

 :
K

C
+ 5
=

 :

K
C
! 5
=

 :

K
C

1
 =

 :
K

C
+ 5
=

 :

K
C
! 5
=

 :

K
C

1
 =

 :
K

C
+ 5
=

 :

K
C
! 5
=

 :

U
r 

=
 4

0

K
C

1
 =

 :
K

C
+ 5
=

 :

K
C
! 5
=

 :

U
r 

=
 4

0

K
C

1
 =

 :
K

C
+ 5
=

 :

K
C
! 5
=

 :

Figure 7. Nondimensionalized horizontal force over the increasing wave steepness H1/λ for the depth
h = 0.397 m, compared with experiments from [24] (grey dots). First harmonic for wave periods
T = 1.443 s (a), T = 1.732 s (b) and T = 2.021 s (c), second harmonic consequently (d–f), and third
harmonic (g–i).
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To better understand the limiting steepness at which the agreement between the loading models
and the experimental values ceases, vertical lines representing KC = π were added. The sub- and
superscripts represent which maximum horizontal velocity was used for its calculation: linear (KC1),
fifth order taken at the crest (KC+

5 ), or fifth order taken at the trough (KC−5 ). In fact, the change
in behavior falls within that range, although the exact KC number depends on the specific case.
The general trend is that the change in the experimental behavior starts earlier for lower kR numbers.
This again is represented well in the wave limits graph in Figure 3—lower kR numbers bring the cases
towards shallower waters and closer to the wave-breaking limit, where even the lower wave steepness
makes the numerical loading models become inappropriate. The worrying finding is, however, that
since even more nonlinear wave theories are suggested in such wave conditions by the International
Standards [34], the overprediction would be increased even more.

As discussed in [24], such discrepancy between the numerical and experimental loading was also
observed in deep water in third harmonic by Huseby and Grue (2000) [36]. The deep-water cases in this
study by Stansberg (1997) [21] are shown in Figure 8. It shows the comparison with the experimental
results from [21] for the period T = 2.10 s over the increasing steepness for both radii (R = 0.1 m and
R = 0.1635 m), normalized by the cylinder radius R squared times the linear amplitude A to the power
of the harmonics. The first three harmonics are shown from left to right, and the y-axes are fixed to the
same value across the harmonics.
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Figure 8. First (a), second (b) and third (c) harmonics of the normalized horizontal force over increasing
steepness kA with period T = 2.10 s. Comparison between the experimental results from Stansberg
(1997) [21] and numerical loading models. The y-axes are fixed to the same values for easier comparison,
therefore a zoom of the first harmonic is provided in panel (a).

The first harmonic is captured well in all steepnesses for both cylinders, therefore a zoom is
provided in the same panel (Figure 8a). Only the highest steepness starts to get overestimated by the
MAID model (crosses) and underestimated by Morison equation (circles). The experimental values
in the second harmonic (Figure 8b) display a distinct non-monotonic behavior, and also strongly
differ for the different cylinder radius even at the lowest steepness with more nonlinear loading
models fitting better the smaller radius (light grey dot), and the Morison equation (circles) fitting
best for the larger radius (dark grey dot). As the steepness increases the second harmonic starts to
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get strongly overestimated by all models, a behavior already seen in the comparison with Grue and
Huseby (2002) [4] in Figure 5g with even higher steepness, hence even closer to the wave-breaking
limit. It is worth noting that in contrast to Kristiansen and Faltinsen (2017) [24] linear wave kinematics
are still suitable in capturing the second harmonic, potentially due to the larger distance from the
wave-breaking limit despite the larger steepness and due to deeper depth (refer to Figure 3). Third
harmonic (Figure 8c) is surprisingly well captured, in contrast to the intermediate depth cases (Figure 7).
Yet again the non-monotonic behavior is seen and as the steepness increases less nonlinear loading
models are capturing the loading better. On the contrary to the second harmonic, in the third harmonic
the larger cylinder shows higher loading than the smaller cylinder, therefore more nonlinear loading
models suiting it better, decreasing in nonlinearity as the steepness increases.

A notable difference of these deep-water cases from the cases in intermediate water depth by
Kristiansen and Faltinsen (2017) [24] (Figures 6 and 7) is that the hydrodynamic loading models have a
much stronger influence than wave kinematics, especially in the first harmonic. For example, in deep
water (Figure 8a) regardless of which wave kinematics were used, the final loading is similar for all
wave kinematics with the same hydrodynamic loading model, while in intermediate water depth
(Figure 6a) the models are grouped by the kinematics. This could be explained by looking at the graph
of wave theory limits in Figure 3, where the cases shown in Figure 6 refer to the dark blue crosses
while the cases shown in Figure 8 refer to the green circles. It can be seen that the Stansberg (1997) [21]
cases are in deeper water while the Kristiansen and Faltinsen (2017) [24] cases are in intermediate
water depth and therefore, regardless of the lower steepness, are closer to the wave-breaking limit and
crossing over to the range of more nonlinear wave kinematics, namely the 5th and 7th order stream
functions. It could be deducted that the wave kinematics have a stronger influence in the shallower
water while the hydrodynamic loading models in deeper.

3.4. Influence of the kR Number

With the FNV theory being a long-wave theory, and the derivation of the Rainey theory terms
A and I resting on the expansion around the kR term, the comparison of the loading models over
the wide range of kR numbers is expected to give an insight on the limitations of the hydrodynamic
loading models in terms of the wave length. To be more specific, the dependence on kR is ultimately
on the wave number k and therefore the wavelength λ (= 2π/k), because all compared models
are inertia-based. Therefore, if the wave conditions including k are identical, the different radius R
would only change the absolute values but not the distribution among the models. This is evident
when normalized by R2, as done in Figure 9—the numerical results for the cylinders of both radii
become identical.

Figure 10 shows the behavior of all models compared with the experimental data from Kristiansen
and Faltinsen (2017) [24] over the increasing nondimensional wavenumber kR for two steepnesses:
H1/λ = 1/40 (left column) and H1/λ = 1/25 (right column). First three harmonics are shown in
panels from top to bottom. Figure 9 shows all models compared with the experimental data from
Stansberg (1997) [21]: two different periods T = 2.10 s and T = 1.52 s on two cylinders of radii
R = 0.1 m and R = 0.1635 m. It leads to four different kR values, but since the different radius R does
not influence the distribution among the numerical models, only the two different k values are shown
with both radii R. The normalization of the Figure 9 follows the original in Stansberg (1997) [21],
namely by the radius squared and the linear amplitude to the power of the harmonic.
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Figure 9. First (a), second (b) and third (c) harmonics of the normalized horizontal force over
the increasing wave number kR for the two cylinders with steepness kA ≈ 0.232, compared with
experiments from [21] (grey dots—lighter grey with smaller radius R = 0.1 m, darker grey with larger
radius R = 0.1635 m).

The main observation is that the importance of the nonlinearities in the wave-loading models
is increased as the kR number decreases—the differences between the loading models become more
significant, while moving towards larger kR numbers there is no notable difference. It could be
explained by the distribution of the experimental data on the wave theory limits graph in Figure 3.
It can be seen that the experiments of Kristiansen and Faltinsen (2017) [24] are in intermediate water
depth, therefore even at smaller wave heights than, e.g., Stansberg (1997) [21], much more nonlinear
wave kinematics are required. Especially as the period increases, thus kR number decreases: in
the cases of smallest kR and largest kA even 9th order steam function is recommended by the IEC
standard [34]. The importance of wave nonlinearities is clearly seen when comparing how quickly and
strongly the linear theory deviates in the higher harmonics in intermediate water depth (Figure 10c–f),
while it is performing rather well in deep water (Figure 9), even though the latter has much higher
steepness kA. Same effect is seen with second-order wave theory as well.

As seen in Figure 10, the experimental loading from Kristiansen and Faltinsen (2017) [24]
increases with decreasing kR but stops growing monotonically from kR < 0.15 or so, from where the
trend is best captured by the nonlinear wave kinematics. The only exception is the third harmonic
(Figure 10e,f) where while in the lower steepness the higher-order wave kinematics are still predicting
well, in the higher steepness (H1/λ = 1/25, Figure 10f) the nonlinear wave kinematics tend towards
overprediction and the second-order wave kinematics match the loading well. The lowest kR numbers,
especially as the steepness lowers as well, may coincide with re-entering the diffraction regime
from inertia (refer to Figure 2). It should also be noted that while in the higher kR numbers the
difference between various loading models is reduced, all models are increasingly overpredicting the
experimental loading in the second harmonic (Figure 10c,d) as the kR number increases.

The main additions to the findings of Stansberg (1997) [21], who compared the experimental
results with the combination of linear wave kinematics and infinite depth FNV theory, are that in the
third harmonic for the larger k number the finite-depth FNV with nonlinear wave kinematics captures
the loading much better than the other models (Figure 9c) and that the Morison equation is actually
capturing the second harmonic for the lower k number well (Figure 9b). Otherwise the other models
with a range of kinematics are showing very similar results—underpredicting the loading for the
higher k number in the first harmonic (Figure 9a) and strongly overpredicting the same in the second
harmonic (Figure 9b). The strong overprediction of the second harmonic at the higher kR numbers yet
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again bridges the gap between Grue and Huseby (2002) [4], where in both cases of high steepness and
kR number the second harmonic was highly overestimated (Figure 5b), and Kristiansen and Faltinsen
(2017) [24], where on the lower end of the steepness spectrum the second harmonic was captured well,
but as both steepness and kR increased the overestimation of the second harmonic increased as well.
A short discussion on the overestimation of the second harmonic is given in Section 3.5.
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Figure 10. First (a–b), second (c–d) and third (e–f) harmonics of the normalized horizontal force over
the increasing wave number kR for two steepnesses of H1/λ = 1/40 (a,c,e) and H1/λ = 1/25 (b,d,f)
for the depth h = 0.397 m, compared with experiments from [24] (grey dots).

3.5. Behavior of the Numerical Models in Reference to the (kA, kR)-grid and Wave Theory Limits

Since all three previously discussed experimental campaigns fill a large part of the (kA, kR)-graph
(Figure 2) and a range of wave conditions (Figure 3), some general trends for the best-fitting numerical
model for certain wave and cylinder conditions can be investigated. Figures 11 and 12 show three
numerical models capturing the experimental values of the first three harmonics best, together with
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the associated relative error defined as | num3best − exp | /exp ∗ 100%. Figure 11 shows the values
on the same (kA, kR)-graph as in Figure 2, while Figure 12—on the wave theory limits graph as in
Figure 3. The three best-fitting models for each experimental case are shown in vertical with the best
model at the top. In overview, the first harmonic is captured the best with the errors for the best three
models in each condition fitting within 33%, while second harmonic is captured the worst with the
error bar scale of 250%. Third harmonic falls in-between with the worst error of 90%. The largest errors
also fall in different regions for different harmonics: the breaking cases in the first harmonic, at the
largest values of the kA and kR for the second harmonic, and above the Stokes 5th order theory limit
for the third harmonic.

The first harmonic, shown in Figures 11a and 12a, is captured relatively well across the whole grid,
except for the cases where local wave breaking was reported. As seen in Figure 11a, diffraction regime
is dominated by the second-order wave kinematics (blue), interchanged with linear (black) with more
nonlinear hydrodynamic loading models (diamonds, crosses and stars). It is counter-intuitive if only
the wave limits would have been considered, since, as seen in Figure 12a, all of these experiments
fall in the range where at least Stokes 5th order theory would be suggested. This finding emphasizes
the importance of considering the nonlinearities in the hydrodynamic loading model as well, since
they may substitute the nonlinearities in the wave kinematics. Meanwhile, in the inertia regime much
more nonlinear kinematics (5th order or higher) seem to be needed, in accordance with the wave
theory limits (Figure 12a). With regards to the hydrodynamic loading model, the full formulation
of Rainey theory (crosses), including the controversial surface distortion force D dominates the first
harmonic until kA ≈ 0.23, when MAI (diamonds) and FNV (stars) are taking over until kA ≈ 0.3,
above which Morison (circles) with highly nonlinear wave kinematics fits the best. Nonetheless,
it must be remembered that the first harmonic was relatively well captured by all wave-loading
model combinations.

The second harmonic is captured best by the finite-depth FNV theory in combination with
highly nonlinear wave kinematics in intermediate water depth, and Morison equation with a range
of most linear wave kinematics in deep water (Figure 12b). The long-wave FNV theory was not
expected to perform better than other models in higher kR values (shorter waves), and Kristiansen
and Faltinsen (2017) [24] who presented the newly derived theory have observed it to overpredict
from kR > 0.12–0.15. Nonetheless, it is apparent from Figure 11b that none of the other models are
performing significantly better up to kR ≈ 0.2. The suitability of Morison equation (circles) with
wave kinematics to third order in the high kA and kR values can be explained by two factors: first, it
coincides with the cases where the non-monotonic experimental behavior was seen and all models
have highly overestimated; and secondly, the influence of the hydrodynamic loading model has been
seen to be predominant in deep water. Therefore, the most linear hydrodynamic loading model with a
range of most linear wave kinematics is the closest match, even though the error is still very large.

The third harmonic has also been significantly affected by the non-monotonic growth of
experimental values, especially in the cases nearing the wave-breaking limit in intermediate
water depth (Figure 12c), where linear (black) and second-order (blue) wave kinematics dominate.
The problem with this co-occurrence is that design standards, e.g., [34], recommend increasingly
nonlinear wave kinematics, leading to an even stronger overestimation. If such effect could be taken
into account, numerical overestimations could potentially be avoided. The finite-depth FNV theory
(stars) once again dominates the widest range of wave and cylinder conditions, potentially because it
considers most physical aspects: nonlinear scattering and incident wave potentials, as well as nonlinear
free-surface interaction.
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the intensity behind the symbol referring to the relative error (the darker—the worse the error, scale
dependent on the harmonic), displayed on (kA, kR)-grid. Marker color denotes the wave kinematics,
marker symbol—hydrodynamic loading model. For reference to experiments see Figure 2.
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4. Conclusions

In this study, a range of wave kinematics and hydrodynamic loading models for slender cylinders
were compared over a range of increasingly nonlinear wave conditions and cylinder radii. The distinct
influences of nonlinearities in wave kinematics and in hydrodynamic loading models were investigated,
and the suitability of wave-loading model combinations were assessed compared to experimental
results from the literature.

It was found that the effect of wave nonlinearities is to reduce the first harmonic load component
and increase the higher harmonic components. The influence of the nonlinearities in the hydrodynamic
loading model, on the other hand, is normally seen as the increase of all harmonics. These effects were
found amplify as the steepness increases and as the kR number decreases. Moreover, it was seen that
in deep water the influence of the hydrodynamic loading model prevails, while in the intermediate
water depth the influence of wave kinematics is much stronger.

Overall, the first harmonic load component was seen to be captured with good accuracy in all
cases except where wave breaking has been reported. The second harmonic component was captured
most poorly, tending towards strong overestimation as both the wave steepness and nondimensional
wavenumber increase. Meanwhile the third harmonic component was captured relatively well even
in very high steepness, but poorly in intermediate water depth nearing the wave-breaking limit.
The finite-depth FNV theory was among the best-fitting loading models in the widest range of wave
and cylinder conditions. In both higher harmonics the numerical models were increasing rather
proportionally to the wave steepness while the experimental loading showed slower growth. This led
to strong overpredictions, which could potentially be avoided if this effect could be quantified and
accounted for.

This study, however, was limited to two-dimensional wave kinematics, and to separate cases of
experimental data found in the literature. Therefore, a systematic experimental campaign dedicated
specifically to such study, and an additional investigation in three dimensions could give a deeper
insight into the problem, especially the non-monotonic experimental growth.

Finally, it was confirmed that none of the considered numerical wave-loading combinations
captured the secondary load cycle, implying that slc is caused by effects of much higher-order or
three-dimensional effects. Nonetheless, slc has been disassociated from ringing, therefore the next
phase of this study is to include the dynamic structural response to analyze the distinct influences of
nonlinearities in wave-loading models in capturing ringing numerically.

Author Contributions: Conceptualization, A.M., E.M. and C.L.; Data curation, A.M.; Funding acquisition, C.B.
and E.M.; Investigation, A.M. and C.L.; Methodology, A.M., E.M. and C.L.; Resources, E.M. and C.L.; Supervision,
E.M., C.L. and C.B.; Visualization, A.M.; Writing—original draft, A.M.; Writing—review & editing, E.M. and C.L.

Funding: This work (for A.M.) was funded by the European Commission’s Framework Program “Horizon
2020”, through the Marie Skłodowska–Curie Innovative Training Network (ITN) “AEOLUS4FUTURE—Efficient
harvesting of the wind energy” (H2020-MSCA-ITN-2014: Grant agreement no. 643167). This work (for C.L.)
was supported by the Ministry of Science and Technology of P. R. China. (G20190008061) and the Ministry
of Industry and Information Technology of P. R. China (Numerical Tank Project). C.L. was also supported by
the Research Council of Norway through the Centers of Excellence funding scheme AMOS, project number
223254. The publication cost of this paper was partially covered by the Department of Civil and Environmental
Engineering of the University of Florence through “Finanziamento pubblicazioni 2019”. This support is gratefully
acknowledged.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Norwegian Petroleum Directorate. NPD Annual Report 1992; Technical Report; Norwegian Petroleum
Directorate: Stavanger, Norway, 1993.

2. Chaplin, J.R.; Rainey, R.C.; Yemm, R. Ringing of a vertical cylinder in waves. J. Fluid Mech. 1997, 350, 119–147.
[CrossRef]

http://dx.doi.org/10.1017/S002211209700699X


Energies 2019, 12, 4022 21 of 22

3. Grue, J.; Bjorshol, G.; Strand, Ø. Higher harmonic wave exciting forces on a vertical cylinder. In Mechanics
and Applied Mathematics; Preprint series No. 2; University of Oslo: Oslo, Norway,1993; pp. 1–30. Available
online: http://urn.nb.no/URN:NBN:no-52740 (accessed on 10 September 2019).

4. Grue, J.; Huseby, M. Higher harmonic wave forces and ringing of vertical cylinders. Appl. Ocean Res. 2002,
24, 203–214. [CrossRef]

5. Rainey, R.C. Weak or strong nonlinearity: The vital issue. J. Eng. Math. 2007, 58, 229–249. [CrossRef]
6. Paulsen, B.T.; Bredmose, H.; Bingham, H.B.; Jacobsen, N.G. Forcing of a bottom-mounted circular cylinder

by steep regular water waves at finite depth. J. Fluid Mech. 2014, 755, 1–34. [CrossRef]
7. Robertson, A.N.; Wendt, F.; Jonkman, J.M.; Popko, W.; Bredmose, H.; Schlütter, F.; Qvist, J.; Bergua, R.;

Yde, A.; Anders, T.; et al. OC5 Project Phase Ib: Validation of Hydrodynamic Loading on a Fixed , Flexible
Cylinder for Offshore Wind Applications. Energy Procedia 2016, 94, 82–101. [CrossRef]

8. Krokstad, J.R.; Solaas, F. Study of Nonlinear Local Flow. In Proceedings of the Tenth International Offshore
and Polar Engineering Conference, Seattle, WA, USA, 28 May–2 June 2000; Volume 4, pp. 449–454.

9. Suja-Thauvin, L.; Krokstad, J.R.; Bachynski, E.E.; de Ridder, E.J. Experimental results of a multimode
monopile offshore wind turbine support structure subjected to steep and breaking irregular waves.
Ocean. Eng. 2017, 146, 339–351. [CrossRef]

10. Gurley, K.R.; Kareem, A. Simlulation of ringing in offshore systems under viscous loads. J. Eng. Mech. 1998,
124, 582–586. [CrossRef]

11. Waisman, F.; Gurley, K.R.; Grigoriu, M.; Kareem, A. Non-Gaussian Model for Ringing Phenomena in
Offshore Structures. J. Eng. Mech. 2002, 128, 730–741. [CrossRef]

12. Marino, E.; Lugni, C.; Borri, C. A novel numerical strategy for the simulation of irregular nonlinear waves
and their effects on the dynamic response of offshore wind turbines. Comput. Methods Appl. Mech. Eng. 2013,
255, 275–288. [CrossRef]

13. Marino, E.; Lugni, C.; Borri, C. The role of the nonlinear wave kinematics on the global responses of an OWT
in parked and operating conditions. J. Wind Eng. Ind. Aerodyn. 2013, 123, 363–376. [CrossRef]

14. Marino, E.; Lugni, C.; Stabile, G.; Borri, C. Coupled dynamic simulations of offshore wind turbines
using linear, weakly and fully nonlinear wave models: The limitations of the second-order wave theory.
In Proceedings of the 9th International Conference on Structural Dynam, Porto, Portugal, 30 June–2 July
2014; pp. 3603–3610.

15. Schløer, S.; Bredmose, H.; Bingham, H.B. The influence of fully nonlinear wave forces on aero-hydro-elastic
calculations of monopile wind turbines. Mar. Struct. 2016, 50, 162–188. [CrossRef]

16. Morison, J.; O’Brien, M.; Johnson, J.; Schaaf, S. The Force Exerted by Surface Waves on Piles. Pet. Trans.
AIME 1950, 189, 149–154. [CrossRef]

17. Rainey, R.C. A new equation for calculating wave loads on offshore structures. J. Fluid Mech. 1989,
204, 295–324. [CrossRef]

18. Rainey, R.C. Slender-body expressions for the wave load on offshore structures. Proc. Math. Phys. Sci. 1995,
450, 391–416. [CrossRef]

19. Malenica, S.; Molin, B.; Malenica, Š.; Molin, B. Third-harmonic wave diffraction by a vertical cylinder. J. Fluid
Mech. 1995, 302, 203–229. [CrossRef]

20. Faltinsen, O.M.; Newman, J.N.; Vinje, T. Nonlinear wave loads on a slender vertical cylinder. J. Fluid Mech.
1995, 289, 179–198. [CrossRef]

21. Stansberg, C. Comparing ringing loads from experiments with cylinder of different diameters—An
experimental study, 1997.

22. Swan, C.; Bashir, T.; Gudmestad, O. Nonlinear inertial loading. Part I: Accelerations in steep 2-D water
waves. J. Fluids Struct. 2002, 16, 391–416. [CrossRef]

23. Bredmose, H.; Mariegaard, J.; Paulsen, B.T.; Jensen, B.; Schløer, S.; Larsen, T.; Kim, T.; Hansen, A.M. The Wave
Loads Project; Technical Report; DTU Wind Energy: Roskilde, Denmark, 2013.

24. Kristiansen, T.; Faltinsen, O.M. Higher harmonic wave loads on a vertical cylinder in finite water depth.
J. Fluid Mech. 2017, 833, 773–805. [CrossRef]

25. Chakrabarti, S.K. Hydrodynamics of Offshore Structures. 1. Offshore Structures—Hydrodynamics I.; Springer:
Berlin/Heidelberg, Germany, 1987; p. 435.

26. Rienecker, M.M.; Fenton, J.D. A Fourier approximation method for steady water waves. J. Fluid Mech. 1981,
104, 119–137. [CrossRef]

http://urn.nb.no/URN:NBN:no-52740
http://dx.doi.org/10.1016/S0141-1187(02)00048-2
http://dx.doi.org/10.1007/s10665-006-9126-2
http://dx.doi.org/10.1017/jfm.2014.386
http://dx.doi.org/10.1016/j.egypro.2016.09.201
http://dx.doi.org/10.1016/j.oceaneng.2017.09.024
http://dx.doi.org/10.1061/(ASCE)0733-9399(1998)124:5(582)
http://dx.doi.org/10.1061/(ASCE)0733-9399(2002)128:7(730)
http://dx.doi.org/10.1016/j.cma.2012.12.005
http://dx.doi.org/10.1016/j.jweia.2013.09.003
http://dx.doi.org/10.1016/j.marstruc.2016.06.004
http://dx.doi.org/10.2118/950149-G
http://dx.doi.org/10.1017/S002211208900176X
http://dx.doi.org/10.1098/rspa.1995.0091
http://dx.doi.org/10.1017/S0022112095004071
http://dx.doi.org/10.1017/S0022112095001297
http://dx.doi.org/10.1006/jfls.2001.0425
http://dx.doi.org/10.1017/jfm.2017.702
http://dx.doi.org/10.1017/S0022112081002851


Energies 2019, 12, 4022 22 of 22

27. Marino, E. An Integrated Nonlinear Wind-Waves Model for Offshore Wind Turbines; Firenze University Press:
Firenze, Italy, 2010; p. 201.

28. Marino, E.; Borri, C.; Peil, U. A fully nonlinear wave model to account for breaking wave impact loads on
offshore wind turbines. J. Wind Eng. Ind. Aerodyn. 2011, 99, 483–490. [CrossRef]

29. Marino, E.; Borri, C.; Lugni, C. Influence of wind–waves energy transfer on the impulsive hydrodynamic
loads acting on offshore wind turbines. J. Wind Eng. Ind. Aerodyn. 2011, 99, 767–775. [CrossRef]

30. Grilli, S.T.; Svendsen, I. Corner problems and global accuracy in the boundary element solution of nonlinear
wave flows. Eng. Anal. Bound. Elem. 1990, 7, 178–195. [CrossRef]

31. Longuet-Higgins, M.; Cokelet, E. The Deformation of Steep Surface Waves on Water. I. A Numerical Method
of Computation. Proc. R. Soc. A 1976, 350, 1–26. [CrossRef]

32. Newman, J.N. Nonlinear Scattering of Long Waves by a Vertical Cylinder. In Waves Nonlinear Processes in
Hydrodynamics; Grue, J., Gjevik, B., Weber, J.E., Eds.; Springer Netherlands: Dordrecht, The Netherlands,
1996; pp. 91–102.

33. Faltinsen, O.M. Ringing loads on a slender vertical cylinder of general cross-section. J. Eng. Math. 1999,
35, 199–217. [CrossRef]

34. International Electrotechnical Commission (IEC). INTERNATIONAL STANDARD IEC 61400-3. In Wind
Turbines—Part 3: Design Requirements for Offshore Wind Turbines; IEC: Geneva, Switzerland, 2009.

35. Mockute, A.; Marino, E.; Lugni, C.; Borri, C. Comparison of hydrodynamic loading models for vertical
cylinders in nonlinear waves. Procedia Eng. 2017, 199, 3224–3229. [CrossRef]

36. Huseby, M.; Grue, J. An experimental investigation of higher-harmonic wave forces on a vertical cylinder.
J. Fluid Mech. 2000, 414, 75–103. [CrossRef]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.jweia.2010.12.015
http://dx.doi.org/10.1016/j.jweia.2011.03.008
http://dx.doi.org/10.1016/0955-7997(90)90004-S
http://dx.doi.org/10.1098/rspa.1976.0092
http://dx.doi.org/10.1023/A:1004362827262
http://dx.doi.org/10.1016/j.proeng.2017.09.329
http://dx.doi.org/10.1017/S0022112000008533
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Methodology
	Wave Kinematics
	Hydrodynamic Loading Models
	Experimental Grid

	Results and Discussion
	Secondary Load Cycle
	Distinction between the Nonlinearities in Wave Kinematics and Loading Models
	Non-Monotonic Experimental Behavior Over Increasing Steepness
	Influence of the kR Number
	Behavior of the Numerical Models in Reference to the (kA,kR)-grid and Wave Theory Limits

	Conclusions
	References

