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Abstract

We study decreasing rearrangements of functions defined on (possibly non-smooth) met-
ric measure spaces with Ricci curvature bounded below by K > 0 and dimension bounded
above by N ∈ (1, ∞) in a synthetic sense, the so called CD(K, N) spaces. We first establish
a Polya-Szego type inequality stating that the W 1,p-Sobolev norm decreases under such a
rearrangement and apply the result to show sharp spectral gap for the p-Laplace operator
with Dirichlet boundary conditions (on open subsets), for every p ∈ (1, ∞). This extends to
the non-smooth setting a classical result of Bérard-Meyer [BM92] and Matei [Ma00]; remark-
able examples of spaces fitting out framework and for which the results seem new include:
measured-Gromov Hausdorff limits of Riemannian manifolds with Ricci≥ K > 0, finite dimen-
sional Alexandrov spaces with curvature≥ K > 0, Finsler manifolds with Ricci≥ K > 0.
In the second part of the paper we prove new rigidity and almost rigidity results attached to
the aforementioned inequalities, in the framework of RCD(K, N) spaces, which seem original
even for smooth Riemannian manifolds with Ricci≥ K > 0.
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1 Introduction

In 1884 Lord Rayleigh, in his book about the theory of sound [Ray], conjectured that, among
all membranes of a given area, the disk has the lowest fundamental frequency of vibration. This
was proven in 1920ies by Faber [Fa23] and Krahn [Kr25] for domains in the Euclidean plane and
extended by Krahn [Kr26] to higher dimensions. The celebrated Rayleigh-Faber-Krahn inequality
reads as follows.

Theorem 1.1 (Rayleigh-Faber-Krahn inequality [Fa23, Kr25, Kr26]). Let Ω ⊂ Rn be a relatively
compact open domain with smooth boundary. Then the first Dirichlet eigenvalue of Ω is bounded
below by the first Dirichlet eigenvalue of a Euclidean ball having the same volume of Ω, moreover
the inequality is rigid in the sense that equality is attained if and only if Ω is a ball.

The proof of the Rayleigh-Faber-Krahn inequality is based on two key facts: a variational
characterisation for the first Dirichlet eigenvalue and the properties of symmetric decreasing rear-
rangements of functions. The variational characterisation of the first eigenvalue is given by

λ(Ω) := inf
u∈C1

c (Ω)

∫

Ω
|∇u|2dx
∫

Ω u
2dx

. (1.1)

Let us now briefly recall few basics about decreasing rearrangements. Given an open subset Ω ⊂ Rn,
the symmetrized domain Ω∗ ⊂ Rn is a ball with the same measure as Ω centred at the origin. If u
is a real-valued Borel function defined on Ω, its spherical decreasing rearrangement u∗ is a function
defined on the ball Ω∗ with the following properties: u∗ depends only on the distance from the ori-
gin, is decreasing along the radial direction and is equi-measurable with u (i.e. the super-level sets
have the same volume: |{u > t}| = |{u∗ > t}|, for every t ∈ R). Since the function and its spheri-
cal decreasing rearrangement are equi-measurable, their L2-norms are the same. The key property
that Faber and Krahn proved is that the L2-norm of the gradient of a function decreases under
rearrangements. This last property was formalised, extended to every Lp, 1 < p < ∞, and applied
to several problems in mathematical physics by Polya and Szego in their book [PS51]; probably this
is why it is now well known as the Polya-Szego inequality. The Polya-Szego inequality, combined
with the variational characterization (1.1), immediately gives the Rayleigh-Faber-Krahn inequality.

Such a stream of ideas was extended in 1992 by Bérard-Meyer [BM92] to Riemannian manifolds
(Mn, g) with Ricg ≥ Kg, K > 0. They proved the following result:

Theorem 1.2 (Bérard-Meyer [BM92]). Let (Mn, g) be a Riemannian manifold with Ricg ≥ Kg,
K > 0, and let Ω ⊂ M be an open subset with smooth boundary. Let Sn

K be the round n-dimensional

sphere of radius
√

(n− 1)/K and let Ω∗ ⊂ Sn
K be a metric ball having the same renormalized volume

of Ω, i.e |Ω|
|M| = |Ω∗|

|Sn
K

| . Then λ(Ω) ≥ λ(Ω∗) and equality is achieved if and only if M is isometric to

Sn
K and Ω is a metric ball in Sn

K .

The two key ideas in [BM92] are the following. First, in the same spirit as above, for a function
u ∈ C1

c (M) define a spherical decreasing rearrangement u∗ on S; second, replace the Euclidean
isoperimetric inequality by the Lévy-Gromov isoperimetric inequality [Gr07, Appendix C] in the
proof of the corresponding Polya-Szego type inequality. Let us finally mention that, arguing along
the same lines, the comparison Theorem 1.2 was generalized to the first Dirichlet eigenvalue of the
p-Laplacian for any p ∈ (1,∞) by Matei [Ma00].

The goal of the present paper is two-fold: first, we generalise the Polya-Szego and the Bérard-
Meyer inequalities to non-smooth spaces with Ricci curvature bounded below in a synthetic sense;
second, we obtain a rigidity result for Polya-Szego inequality and an almost rigidity result for the
Dirichlet p-spectral gap which seem to be new even for smooth Riemannian manifolds.

1.1 Polya-Szego and p-spectral gap in CD(K, N) spaces

In order to discuss the main results of the paper let us introduce some preliminaries about non-
smooth spaces with Ricci curvature bounded below in a synthetic sense.
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A metric measure space (m.m.s. for short) is a triple (X, d,m) where (X, d) is a compact metric
space endowed with a Borel probability measure m with supp(m) = X , playing the role of reference
volume measure. Using optimal-transport techniques, Lott-Villani [LV09] and Sturm [St06a, St06b]
introduced the so called curvature-dimension condition CD(K,N): the rough geometric picture is
that a m.m.s. satisfying CD(K,N) should be thought of as a possibly non-smooth metric measure
space with Ricci curvature bounded below by K ∈ R and dimension bounded above by N ∈ (1,∞)
in a synthetic sense. The basic idea of this synthetic point of view is to consider weighted convex-
ity properties of suitable entropy functionals along geodesics in the space of probability measures
endowed with the quadratic transportation distance.
A first technical assumption throughout the paper is the so called essentially non-branching prop-
erty [RS14], which roughly amounts to require that the L2-optimal transport between two abso-
lutely continuous (with respect to the reference measure m) probability measures moves along a
family of geodesics with no intersections, i.e. a non-branching set of geodesics (for the precise
definitions see Section 2.1).
The class of essentially non-branching CD(K,N) spaces is very natural for extending the Polya-
Szego/Bérard-Meyer results. Indeed a key ingredient for both is the isoperimetric inequality (via a
coarea formula argument) and it was proved by Cavalletti with the first author [CM17a] that the
Lévy-Gromov isoperimetric inequality extends to essentially non-branching CD(K,N) spaces (see
Section 2.2 for the details).
Examples of essentially non-branching CD(K,N) spaces are Riemannian manifolds with Ricci cur-
vature bounded below, finite dimensional Alexandrov spaces with curvature bounded below, Ricci
limits and more generally RCD(K,N)-spaces, Finsler manifolds endowed with a strongly convex
norm and with Ricci bounded below; let us stress that our results are new in all these celebrated
classes of spaces (apart from smooth manifolds). A standard example of a space failing to satisfy
the essential non-branching property is R2 endowed with the L∞ norm.

In order to state the main theorems, let us introduce some notation about the model one-
dimensional space and the corresponding monotone rearrangement.
For any K > 0 and 1 < N < +∞ we define the one dimensional model space (IK,N , deu,mK,N) for
the curvature dimension condition of parameters K and N by

IK,N :=

(

0,

√

N − 1

K
π

)

, mK,N :=
1

cK,N
sin

(

√

K

N − 1
t

)N−1

L
1 IK,N , (1.2)

where deu is the restriction to IK,N of the canonical Euclidean distance over the real line, L 1 is the

standard Lebesgue measure, and cK,N :=
∫

IK,N
sin
(
√

Kt/(N − 1)
)N−1

dL 1(t) is the normalizing
constant.

We now introduce the corresponding monotone rearrangement. To this aim, given an open
domain Ω ⊂ X and a non-negative Borel function u : Ω → [0,+∞) we define its distribution
function µ : [0,+∞) → [0,m(Ω)] by

µ(t) := m({u > t}). (1.3)

It is not difficult to check that the distribution function µ is non increasing and left-continuous.
We will let u# be the generalized inverse of µ, defined in the following way:

u#(s) :=

{

ess supu if s = 0,

inf {t : µ(t) < s} if s > 0.

Definition 1.3 (Rearrangement on one dimensional model spaces). Let (X, d,m) be a CD(K,N)
space, for some K > 0, 1 < N < +∞, and let Ω ⊂ X be an open subset. Let (IK,N , deu,mK,N) be
the one-dimensional model space defined in (1.2) and consider [0, r] ⊂ IK,N such that mK,N ([0, r]) =
m(Ω). For any Borel function u : Ω → [0,+∞), the monotone rearrangement u∗ : [0, r] → R+ is
defined by

u∗(x) := u#(mK,N ([0, x])), ∀x ∈ [0, r]. (1.4)
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For an arbitrary Borel function u : Ω → (−∞ + ∞), let u∗ be the monotone rearrangement of |u|.
Finally, we denote by W 1,p

0 (Ω) the closure (with respect to the W 1,p-topology) of the set of
Lipschitz functions compactly supported in Ω (see Section 2 for more details).
We can now state the first main result of the paper.

Theorem 1.4 (Polya-Szego inequality). Let (X, d,m) be an essentially non branching CD(K,N)
space for some K > 0, N ∈ (1,+∞). Let Ω ⊂ X be an open subset and consider [0, r] ⊂ IK,N such
that mK,N ([0, r]) = m(Ω).

Then the monotone rearrangement maps W 1,p
0 (Ω) into W 1,p (([0, r], deu,mK,N )) for any 1 < p <

+∞. Moreover for any u ∈ W 1,p
0 (Ω) it holds u∗(r) = 0 and

∫

Ω

|∇u|
p
w dm ≥

∫ r

0

|∇u∗|
p

dmK,N . (1.5)

Theorem 1.4 will be proved in Section 3. The two main ingredients in the proof are the coarea
formula and the Lévy-Gromov isoperimetric inequality, though the full argument requires some
work and several intermediate results.

The second main result is a spectral gap for the p-Laplacian with Dirichlet boundary conditions,
in the spirit of Berard-Meyer-Matei Theorem 1.2. In order to state it we need to introduce some
more notation.
For every v ∈ (0, 1), let r(v) ∈ IK,N be such that v = mK,N ([0, r(v)]). For any fixed 1 < p < +∞,
for any v ∈ (0, 1) and for any choice of K > 0 and 1 < N < +∞, define

λp
K,N,v := inf

{

∫ r(v)

0 |u′|
p

dmK,N
∫ r(v)

0 up dmK,N

: u ∈ LIP([0, r(v)]; [0,+∞)), u(r(v)) = 0 and u 6≡ 0

}

.

For any metric measure space (X, d,m) with m(X) = 1, for any open subset Ω ⊂ X and for any
1 < p < +∞, define

λp
X(Ω) := inf

{

∫

Ω |∇u|
p

dm
∫

Ω
up dm

: u ∈ LIPc(Ω; [0,+∞)) and u 6≡ 0

}

.

Observe that for any 2 ≤ N ∈ N and K > 0, λp
K,N,v = λp

SN
K

(Bv), where SN
K is the round N -

dimensional sphere of radius
√

N−1
K and Bv ⊂ S

N
K is a metric ball of volume v.

We can now state our second main result.

Theorem 1.5 (p-Spectral gap with Dirichlet boundary conditions). Let (X, d,m) be an essentially
non branching CD(K,N) space for some K > 0, 1 < N < +∞, and let Ω ⊂ X be an open domain
with m(Ω) = v ∈ (0, 1). Then it holds

λp
X(Ω) ≥ λp

K,N,v

for any 1 < p < +∞.

The spectral gap in CD(K,N) spaces for Neumann boundary conditions, called Lichnerowicz
inequality, was established by Lott-Villani [LV07] in case p = 2 (see also [EKS15] and [JZ16] for
related results in RCD(K,N) spaces) and by Cavalletti with the first author [CM17b] for general
p ∈ (1,∞). Let us stress that the techniques used in the aforementioned papers to establish
Neumann spectral gaps seem not suitable for proving Dirichlet spectral gaps. This was indeed one
of the motivations to write the present paper.

1.2 Rigidity and almost rigidity in RCD(K, N) spaces

In order to discuss the rigidity statements associated to Theorem 1.4 and Theorem 1.5 let us recall
the “Riemannian” refinement of the CD condition, called RCD. Introduced by Ambrosio-Gigli-
Savaré [AGS14b] in case N = ∞ (see also [AGMR15]), the RCD condition is a strengthening
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of the CD condition by the requirement that the Sobolev space W 1,2((X, d,m)) is Hilbert (or,
equivalently, the heat flow, or equivalently the laplacian, is linear). The main motivation is that the
CD condition allows Finsler structures while the RCD condition isolates the “Riemannian” spaces.
A key property of the RCD condition is that, as well as CD, is stable under measured Gromov-
Haudorff convergence [AGS14b, GMS15]. The finite dimensional refinement was subsequently
proposed in [G15a] and extensively investigated in [EKS15, AMS15]. We refer to these papers and
references therein for a general account on the synthetic formulation of the latter Riemannian-type
Ricci curvature lower bounds; for a survey of results, see the Bourbaki seminar [V18] and the recent
ICM-Proceeding [Am18].

We can now state the rigidity result associated to the Polya-Szego inequality Theorem 1.4. In
order to simplify the notation we will consider K = N −1, the case of a general K > 0 follows by a
scaling argument (recall that (X, d,m) is an RCD(K,N) space for some K > 0 and 1 < N < +∞

if and only if the rescaled space (X, d′,m), where d
′ :=

√

N−1
K d, is an RCD(N − 1, N) space).

Theorem 1.6 (Rigidity in the Polya-Szego inequality). Let (X, d,m) be an RCD(N − 1, N) space
for some N ∈ [2,+∞) with m(X) = 1 and let Ω ⊂ X be an open set such that m(Ω) = v ∈ (0, 1).
Assume that for some p ∈ (1,∞) there exists u ∈ W 1,p

0 (Ω), u 6≡ 0, achieving equality in the Polya-
Szego inequality (1.5).
Then (X, d,m) is a spherical suspension, namely there exists an RCD(N−2, N−1) space (Y, dY ,mY )
with mY (Y ) = 1 such that (X, d,m) is isomorphic as a metric measure space to [0, π] ×N−1

sin Y .
If moreover the function u achieving equality in the Polya-Szego inequality (3.19) is Lipschitz and
|∇u| (x) 6= 0 for m-a.e. x ∈ supp(u), then u is radial; i.e. u = f(d(·, x0)), where x0 is a tip of a
spherical suspension structure of X and f : [0, π] → R satisfies |f | = u∗.

When specialized to the smooth setting, the last result reads as follows.

Corollary 1.7 (Rigidity in the Polya-Szego inequality-Smooth Setting). Let (M, g) be an N -
dimensional Riemannian manifold, N ≥ 2, with Ricg ≥ (N − 1)g and denote by m the normalized
Riemannian volume measure. Let Ω ⊂ X be an open subset with m(Ω) ∈ (0, 1).
Assume that for some p ∈ (1,∞) there exists u ∈ W 1,p

0 (Ω), u 6≡ 0, achieving equality in the Polya-
Szego inequality (1.5).
Then (M, g) is isometric to the round sphere SN of constant sectional curvature one.
If moreover the function u achieving equality in the Polya-Szego inequality (3.19) is Lipschitz and
|∇u| (x) 6= 0 for a.e. x ∈ supp(u), then u is radial; i.e. u = f(d(·, x0)), for some x0 ∈ S

N and
f : [0, π] → R satisfying |f | = u∗.

Let us mention that our proof of both Theorem 1.6 and Corollary 1.7 builds on top of the almost
rigidity in Lévy-Gromov inequality [CM17a] and seems new even in the smooth setting. The rough
idea is that if the space X is not a spherical suspension then by the almost rigidity in Lévy-Gromov
inequality, there is a gap in the isoperimetric profile of X and the model isoperimetric profile
IN−1,N . Thus it is not possible to achieve almost equality in the Polya-Szego inequality for suitable
approximations un ∈ LIPc(Ω) of u with |∇un| (x) 6= 0 m-a.e. x ∈ supp(un), hence contradicting
that u ∈ W 1,p

0 (Ω) achieves equality in Polya-Szego inequality. The rigidity statement in the
function is more subtle and basically consists in proving that the structure of spherical suspension
induced by the optimality in Lévy-Gromov by every super-level set {u > t} is independent of t.

Remark 1.8. A natural question about Theorem 1.6 regards sharpness of the assumptions. Clearly,
if u ≡ 0 also the decreasing rearrangement u∗ vanishes; hence u, u∗ achieve equality in the Polya-
Szego inequality but one cannot expect to infer anything on the space.

Let us also stress that the condition |∇u| 6= 0 m-a.e. is necessary to infer that u(·) = u∗◦d(x0, ·),
even knowing a priori that the space is a spherical suspension with pole x0 and that u achieves
equality in Polya-Szego inequality. Indeed let X = SN be the round sphere, fix points x1 6= x2 ∈ SN

and radii 0 < r1 < r2 < r3 such that Br1
(x1) ⊂ Br2

(x2) ⊂ Br3
(x2). Consider a function

u : SN → [0, 1] which is radially decreasing on Br1
(x1) (with respect to the pole x1), constant on

Br2
(x2) \ Br1

(x1) and radially decreasing on Br3
(x2) \ Br2

(x2) (w.r.t. the pole x2). It is easy to
check that such a function u achieves equality in the Polya-Szego inequality but is not globally
radial.

Our second rigidity result concerns the Dirichlet p-spectral gap.
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Theorem 1.9 (Rigidity for the Dirichlet p-spectral gap). Let (X, d,m) be an RCD(N−1, N) space.
Let Ω ⊂ X be an open subset with m(Ω) = v for some v ∈ (0, 1) and suppose that λp

X(Ω) = λp
N−1,N,v.

Then

1. (X, d,m) is isomorphic to a spherical suspension: i.e. there exists an RCD(N − 2, N − 1)
space (Y, dY ,mY ) such that X ≃ [0, π] ×N−1

sin Y ;

2. the topological closure Ω̄ of Ω ⊂ X coincides with the closed metric ball centred at one of
the tips of the spherical suspension: i.e. either Ω̄ = [0, R] × Y or Ω̄ = [π −R, π] × Y , where
R ∈ (0, π) is such that mN−1,N([0, R]) = v;

3. the eigenfunction u ∈ W 1,p
0 (Ω) associated to λp

X(Ω) is unique up to a scalar factor and it
coincides with the radial one: i.e. called x0 the centre of Ω and w : [0, R] → [0,+∞) the first
eigenfunction on ([0, R], deu,mN−1,N) corresponding to λp

N−1,N,v (i.e. with the constraint
w(R) = 0), it holds that u(·) = w ◦ d(x0, ·).

The proof of Theorem 1.9 builds on top of the rigidity in the Lévy-Gromov inequality proved
in [CM17a]; indeed the rough idea to establish the first and second assertions is to prove that if
λp

X(Ω) = λp
N−1,N,v, then the super-level sets of the first p-eigenfunction are optimal in the Lévy-

Gromov inequality. The proof of the third assertion requires more work. The rough idea is to
show that the first Dirichlet p-eigenfunction is unique thus, knowing already that Ω is almost a
ball centred at a tip of the spherical suspension and hence there is already a natural radial first
Dirichlet p-eigenfunction suggested by the model space, it follows that u must by radial. In the
proof of the uniqueness of the first Dirichlet p-eigenfunction we have been inspired by a paper of
Kawhol-Lindqvist [KL06] dealing with smooth Riemannian manifolds and, in order to implement
the arguments in non-smooth setting, we make use of the theory of tangent modules of m.m.s.
developed by Gigli [G18].

Let us also mention that the rigidity for the Neumann spectral gap, known as Obata Theorem,
was established in case p = 2 by Ketterer [K15] and by Cavalletti with the first author [CM17b]
for general p ∈ (1,∞).

We conclude the introduction with an almost-rigidity result which seems new even in the
smooth framework, i.e. if (X, d,m) is an N -dimensional Riemannian manifold with Ricci curvature
bounded below by N − 1. A key point in the proof is that the class of RCD(N − 1, N) spaces is
compact with respect to mGH convergence, fact which clearly fails in the smooth setting as the
limits usually present singularities.
We denote by dmGH the measured Gromov Hausdorff distance between two normalized compact
metric measure spaces.

Theorem 1.10 (Almost rigidity in the p-spectral gap). Fix 2 ≤ N < +∞ and v ∈ (0, 1). Then,
for any ǫ > 0, there exists δ = δ(v,N) > 0 with the following property: let (X, d,m) be an
RCD(N − 1, N) m.m.s. with m(X) = 1 and Ω ⊂ X be an open domain with m(Ω) = v and
λp

X(Ω) < λp
N−1,N,v + δ.

Then there exists a spherical suspension (Y, dY ,mY ) (i.e. there exists an RCD(N − 2, N −
1) space (Z, dZ ,mZ) with mZ(Y ) = 1 such that Y is isomorphic as a metric measure space to
[0, π] ×N−1

sin Z) such that
dmGH ((X, d,m), (Y, dY ,mY )) < ǫ.

Acknowledgement: Part of the work was developed while D.S. was visiting the Mathematics
Institute at the University of Warwick. He would like to thank the institute for the excellent
working conditions and stimulating environment.
A.M. is partly supported by the EPSRC First Grant EP/R004730/1 “Optimal transport and
geometric analysis”.
The authors wish to thank L. Ambrosio for inspiring discussions around the topics of the paper.

6



2 Preliminaries

Throughout the paper (X, d,m) will be a complete and separable metric measure space with
supp(m) = X and m(X) < ∞. We will denote by B(X) the family of Borel subsets of X and by
LIP(X) the space of real valued Lipschitz functions over X . For any open domain Ω ⊂ X , LIPc(Ω)
and LIPloc(Ω) will stand for the space of Lipschitz functions with compact support in Ω and the
space of locally Lipschitz functions in Ω. Given u ∈ LIPloc(X), its slope |∇u| (x) is defined as

|∇u| (x) :=

{

lim supy→x
|u(x)−u(y)|

d(x,y) if x is not isolated

0 otherwise,

moreover we introduce the notation Lip(u) for the global Lipschitz constant of u ∈ LIP(X).
For any interval I ⊂ R we will denote by AC(I;X) the space of absolutely continuous curves
γ : I → X . For any γ ∈ AC(I;X), the metric derivative |γ′| : I → [0,+∞] defined by

|γ′| (t) := lim sup
s→t

d(γ(s), γ(t))

|t− s|
,

provides the following representation of the the length of γ:

l(γ) =

∫

I

|γ′| (t) dt.

Next we introduce Sobolev functions and Sobolev spaces over (X, d,m). We refer for instance
to [AGS14a, ACDM15] for a detailed discussion about this topic.

Definition 2.1 (Sobolev spaces and p-energy). Fix any 1 < p < +∞. The p-Cheeger energy
Chp : Lp(X,m) → [0,+∞] is a convex Lp(X,m)-lower semicontinuous functional defined by

Chp(f) := inf

{

lim inf
n→∞

1

p

∫

|∇fn|
p

dm : fn ∈ LIP(X) ∩ Lp(X,m), ‖fn − f‖Lp → 0

}

. (2.1)

Moreover, we define W 1,p(X, d,m) := { Chp < +∞ } and we remark that, when endowed with the
norm

‖f‖W 1,p := (‖f‖
p
Lp + pChp(f))

1

p ,

the Sobolev space W 1,p(X, d,m) is a Banach space.

By looking at the optimal approximating sequence in (2.1) one can find a minimal object called
minimal weak upper gradient, providing the integral representation

Chp(f) =
1

p

∫

|∇f |
p
w dm

for any f ∈ W 1,p(X, d,m). We remark that without further regularity assumptions on the metric
measure space the minimal weak upper gradient depends also on the integrability exponent p;
nevertheless we will always omit this dependence in the notation.

Definition 2.2 (Local Sobolev spaces). Given an open set Ω ⊂ X , for any 1 < p < +∞ we will
denote by W 1,p

0 (Ω) the closure of LIPc(Ω) in W 1,p(X, d,m), with respect to the W 1,p norm.

2.1 Essentially non branching, CD(K, N) and RCD(K, N) metric measure

spaces

Denote by

Geo(X) := {γ ∈ C([0, 1], X) : d(γ(s), γ(t)) = |s− t| d(γ(0), γ(1)), for every s, t ∈ [0, 1]}

the space of constant speed geodesics. The metric space (X, d) is a geodesic space if and only if for
each x, y ∈ X there exists γ ∈ Geo(X) so that γ(0) = x, γ(1) = y.
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We denote with P(X) the space of all Borel probability measures over X and with P2(X) the
space of probability measures with finite second moment. The space P2(X) can be endowed with
the L2-Kantorovich-Wasserstein distance W2 defined as follows: for µ0, µ1 ∈ P2(X), set

W 2
2 (µ0, µ1) := inf

π

∫

X×X

d
2(x, y) dπ(x, y), (2.2)

where the infimum is taken over all π ∈ P(X × X) with µ0 and µ1 as the first and the second
marginal. The space (X, d) is geodesic if and only if the space (P2(X),W2) is geodesic.
For any t ∈ [0, 1], let et be the evaluation map:

et : Geo(X) → X, et(γ) := γt.

Any geodesic (µt)t∈[0,1] in (P2(X),W2) can be lifted to a measure ν ∈ P(Geo(X)), so that
(et)♯ ν = µt for all t ∈ [0, 1].
Given µ0, µ1 ∈ P2(X), we denote by OptGeo(µ0, µ1) the space of all ν ∈ P(Geo(X)) for which
(e0, e1)♯ ν realizes the minimum in (2.2). Such a ν will be called dynamical optimal plan. If (X, d)
is geodesic, then the set OptGeo(µ0, µ1) is non-empty for any µ0, µ1 ∈ P2(X).
We will also consider the subspace P2(X, d,m) ⊂ P2(X) formed by all those measures absolutely
continuous with respect with m.

A set G ⊂ Geo(X) is a set of non-branching geodesics if and only if for any γ1, γ2 ∈ G, it holds:

∃ t̄ ∈ (0, 1) such that ∀t ∈ [0, t̄ ] γ1(t) = γ2(t) =⇒ γ1(s) = γ2(s), ∀s ∈ [0, 1].

In the paper we will mostly consider essentially non-branching spaces, let us recall their definition
(introduced by T. Rajala and Sturm [RS14]).

Definition 2.3. A metric measure space (X, d,m) is essentially non-branching (e.n.b. for short)
if and only if for any µ0, µ1 ∈ P2(X), with µ0, µ1 absolutely continuous with respect to m, any
element of OptGeo(µ0, µ1) is concentrated on a set of non-branching geodesics.

It is clear that if (X, d) is a smooth Riemannian manifold then any subset G ⊂ Geo(X) is
a set of non branching geodesics, in particular any smooth Riemannian manifold is essentially
non-branching.

In order to formulate curvature properties for (X, d,m) we recall the definition of the distortion
coefficients: for K ∈ R, N ∈ [1,∞), θ ∈ (0,∞), t ∈ [0, 1], set

τ
(t)
K,N (θ) := t1/Nσ

(t)
K,N−1(θ)(N−1)/N , (2.3)

where the σ-coefficients are defined as follows: given two numbers K,N ∈ R with N ≥ 0, we set
for (t, θ) ∈ [0, 1] × R+,

σ
(t)
K,N (θ) :=







































∞, if Kθ2 ≥ Nπ2,

sin(tθ
√

K/N)

sin(θ
√

K/N)
if 0 < Kθ2 < Nπ2,

t if Kθ2 < 0 and N = 0, or if Kθ2 = 0,

sinh(tθ
√

−K/N)

sinh(θ
√

−K/N)
if Kθ2 ≤ 0 and N > 0.

(2.4)

Let us also recall the definition of the Rényi Entropy functional EN : P(X) → [0,∞]:

EN (µ) :=

∫

X

ρ1−1/N (x) dm, (2.5)

where µ = ρm + µs with µs ⊥ m.

The curvature-dimension condition was introduced independently by Lott-Villani [LV09] and
Sturm [St06a, St06b], let us recall its definition.
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Definition 2.4 (CD condition). Let K ∈ R and N ∈ [1,∞). A metric measure space (X, d,m)
verifies CD(K,N) if for any two µ0, µ1 ∈ P2(X, d,m) with bounded support there exist ν ∈
OptGeo(µ0, µ1) and π ∈ P(X × X) W2-optimal plan such that µt := (et)♯ν ≪ m and for any
N ′ ≥ N, t ∈ [0, 1]:

EN ′(µt) ≥

∫

τ
(1−t)
K,N ′ (d(x, y))ρ

−1/N ′

0 + τ
(t)
K,N ′(d(x, y))ρ

−1/N ′

1 dπ(x, y). (2.6)

It is worth recalling that if (M, g) is a Riemannian manifold of dimension n and h ∈ C2(M)
with h > 0, then the m.m.s. (M, dg, hVolg) (where dg and Volg denote the Riemannian distance
and volume induced by g) verifies CD(K,N) with N ≥ n if and only if (see [St06b, Theorem 1.7])

Ricg,h,N ≥ Kg, Ricg,h,N := Ricg − (N − n)
∇2

gh
1

N−n

h
1

N−n

.

In particular if N = n the generalized Ricci tensor Ricg,h,N = Ricg makes sense only if h is
constant.

The lack of the local-to-global property of the CD(K,N) condition (for K/N 6= 0) led in 2010
Bacher and Sturm to introduce in [BS10] the reduced curvature-dimension condition, denoted by
CD∗(K,N). The CD∗(K,N) condition asks for the same inequality (2.6) of CD(K,N) to hold but

the coefficients τ
(s)
K,N (d(γ0, γ1)) are replaced by the slightly smaller σ

(s)
K,N (d(γ0, γ1)).

Since the CD condition allows Finsler geometries, in order to single out the “Riemannian”
structures Ambrosio-Gigli-Savaré [AGS14b] introduced the Riemannian curvature dimension con-
dition RCD(K,∞) (see also [AGMR15] for the extension to σ-finite measures and for the present
simplification in the axiomatization). The natural finite dimensional refinement RCD∗(K,N) with
N < ∞ has been subsequently proposed in [G15a] and extensively investigated in [EKS15, AMS15].
We refer to these papers and references therein for a general account on the synthetic formulation
of the latter Riemannian-type Ricci curvature lower bounds; for a survey of results, see the Bour-
baki seminar [V18] and the recent ICM-Proceeding [Am18]. Here we only briefly recall that it is
a stable [AGS14b, GMS15] strengthening of the reduced curvature-dimension condition: a m.m.s.
verifies RCD∗(K,N) if and only if it satisfies CD∗(K,N) and is infinitesimally Hilbertian, meaning
that the Sobolev space W 1,2(X,m) is a Hilbert space (with the Hilbert structure induced by the
Cheeger energy).

To conclude we recall also that recently Cavalletti and E. Milman [CaMi16] proved the equiv-
alence of CD(K,N) and CD∗(K,N), together with the local-to-global property for CD(K,N), in
the framework of essentially non-branching m.m.s. having m(X) < ∞. As we will always assume
the aforementioned properties to be satisfied by our ambient m.m.s. (X, d,m), we will use both for-
mulations with no distinction. It is worth also mentioning that a m.m.s. verifying RCD∗(K,N) is
essentially non-branching (see [RS14, Corollary 1.2]) implying also the equivalence of RCD∗(K,N)
and RCD(K,N).

For all the main results we will assume that the m.m.s. (X, d,m) is essentially non-branching
and satisfies CD(K,N) from some K > 0 with supp(m) = X (or, more strongly, that (X, d,m)
is a RCD(N − 1, N) space). It follows that (X, d) is a geodesic and compact metric space with
m(X) ∈ (0,∞). Since (X, d,m) is a CD(K,N) (resp. RCD(K,N)) space if and only if (X, d, αm)
is so, without loss of generality we will also assume m(X) = 1.

2.2 Finite perimeter sets and Lévy-Gromov isoperimetric inequality

We now recall the definition of a finite perimeter set in a metric measure space (see [Am02, Mi03]
and the more recent [ADM14]).

Definition 2.5 (Perimeter and sets of finite perimeter). Given a Borel set E ⊂ X and an open
set A the perimeter Per(E,A) is defined in the following way:

Per(E,A) := inf

{

lim inf
n→∞

∫

A

|∇un| dm : un ∈ LIPloc(A), un → χA in L1
loc(A)

}

.
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We say that E has finite perimeter if Per(E,X) < +∞. In that case it can be proved that the set
function A 7→ Per(E,A) is the restriction to open sets of a finite Borel measure Per(E, ·) defined
by

Per(E,B) := inf {Per(E,A) : B ⊂ A, A open} .

Below we recall the definition of the family of one dimensional model spaces for the curvature
dimension condition of parameters K > 0 and 1 < N < +∞ (cf. [Gr07, Appendix C] and [M15]).

Definition 2.6 (One dimensional model spaces). For any K > 0 and for any 1 < N < +∞ we
define the one dimensional model space (IK,N , deu,mK,N) for the curvature dimension condition
of parameters K and N by

IK,N :=

(

0,

√

N − 1

K
π

)

, mK,N :=
1

cK,N
sin

(

√

K

N − 1
t

)N−1

L
1 IK,N , (2.7)

where d is the restriction to IK,N of the canonical Euclidean distance over the real line and cK,N :=
∫

IK,N
sin
(

√

K
N−1 t

)N−1
dL 1(t) is the normalizing constant.

In order to shorten the notation, we set hK,N (t) := 1
cK,N

sin
(√

K
N−1 t

)N−1

for all t ∈ IK,N .

Let us recall that, for any normalized metric measure space (X, d,m), the isoperimetric profile
I(X,d,m) : [0, 1] → [0,+∞) is defined by

I(X,d,m)(v) := inf {Per(E) : E ∈ B(X), m(E) = v} .

We will denote by IK,N the isoperimetric profile of the model space (IK,N , deu,mK,N ).
In [CM17a, CM18], exploiting the so-called localization technique (cf. [Kl17]), the following

version of the Lévy-Gromov isoperimetric inequality [Gr07, Appendix C] for metric measure spaces
was proven.

Theorem 2.7 (Lévy-Gromov inequality). Let (X, d,m) be an essentially non branching CD(K,N)
metric measure space for some K > 0 and 1 < N < +∞. Then, for any Borel set E ⊂ X, it holds

Per(E) ≥ IK,N (m(E)).

We next recall the notion of warped product between metric measure spaces, generalizing the
well know Riemannian construction.
Given two geodesic metric measure spaces (B, dB,mB) and (F, dF ,mF ) and a Lipschitz function
f : B → [0,+∞) one can define a length structure on the product B × F as follows: for any
absolutely continuous curve γ : [0, 1] → B × F with components (α, β), define

L(γ) :=

∫ 1

0

(

|α′|
2

(t) + (f ◦ α(t))
2

|β′|
2

(t)
)

1

2

dt

and consider the associated pseudo-distance

d((p, x), (q, y)) := inf {L(γ) : γ(0) = (p, x), γ(1) = (q, y)} .

The f -warped product of B with F is the metric space defined by

B ×f F := (B × F/∼, d) ,

where (p, x) ∼ (q, y) if and only if d((p, x), (q, y)) = 0. One can also associate a natural measure
and obtain

B ×N
f F := (B ×f F,mC) , mC := fN

mB ⊗ mF ,

that we will call warped product metric measure space of (B, dB,mB) and (F, dF ,mF ).

In [CM17a, CM18] also the rigidity problem for the Lévy-Gromov inequality was addressed in
the framework of metric measure spaces. Before stating the result from [CM17a, CM18], observe
that if (X, d,m) is an RCD(K,N) metric measure space for some K > 0 and 1 < N < +∞ then

the rescaled space (X, d′,m), where d
′ :=

√

N−1
K d, is an RCD(N − 1, N) space.
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Theorem 2.8 (Rigidity in Lévy-Gromov inequality). Let (X, d,m) be an RCD(N − 1, N) metric
measure space for some N ∈ [2,+∞) with m(X) = 1. Assume that there exists v̄ ∈ (0, 1) such
that I(X,d,m)(v̄) = IN−1,N (v̄). Then (X, d,m) is a spherical suspension: there exists an RCD(N −
2, N−1) m.m.s. (Y, dY ,my) with mY (Y ) = 1 such that X is isomorphic as a metric measure space
to [0, π] ×N−1

sin Y . Moreover in this case the following hold:

(i) for any v ∈ [0, 1] we have I(X,d,m)(v) = IN−1,N (v);

(ii) for any v ∈ [0, 1] there exists a Borel set A ⊂ X with m(A) = v and such that

Per(A) = I(X,d,m)(v) = IN−1,N (v);

(iii) for any Borel set A ⊂ X such that m(A) = v, we have Per(A) = IN−1,N (v) if and only if

m(A \ {(t, y) ∈ [0, π] × Y : t ∈ [0, r(v)]}) = 0

or
m(A \ {(t, y) ∈ [0, π] × Y : t ∈ [π − r(v), π]}) = 0,

where r(v) ∈ (0, π) is such that cN

∫ r(v)

0 sinN−1(t) dt = v (with cN normalization constant).

2.3 BV functions and coarea formula in m.m.s.

As for the classical Euclidean case, in metric measure spaces one can introduce not only a notion
of finite perimeter set but also a notion of function of bounded variation. We refer again to [Mi03]
and [ADM14] for more details about the topic.

Definition 2.9. A function f ∈ L1(X,m) is said to belong to the space BV∗(X, d,m) if there
exists a sequence of locally Lipschitz functions fi converging to f in L1(X,m) such that

lim sup
i→∞

∫

X

|∇fi| dm < +∞.

By localizing this construction one can define

|Df |∗ (A) := inf

{

lim inf
i→∞

∫

A

|∇fi| dm : fi ∈ LIPloc(A), fi → f in L1(A)

}

for any open A ⊂ X . In [ADM14] it is proven that this set function is the restriction to open sets
of a finite Borel measure that we call total variation of f .

For any Lipschitz function f : X → R it is easy to check that f ∈ BV∗(X, d,m) and |Df |∗ ≤
|∇f |m. In the following we will denote by |∇f |1 the density of |Df |∗ with respect to m. With
a slight abuse of notation motivated by simplicity, we are going to use the same symbol |∇f |1 to
denote the equivalence class (under m-a.e. equality) and a Borel representative.
The following result is a simplified version of [APS15, Proposition 4.2].

Proposition 2.10. Let f ∈ LIP(X). Then |∇f |1 (x) = 0 for m-a.e. x ∈ {f = 0}.

The identification result stated below is a consequence of the seminal work [Ch99] concerning
Lipschitz functions on metric measure spaces satisfying doubling and Poincaré inequalities and
of the identification result for p-minimal relaxed upper gradients obtained in [GH14] for proper
RCD(K,∞) spaces.

Proposition 2.11. Let (X, d,m) be an RCD(K,N) space, for some K ∈ R, N ∈ (1,∞). Then for
any f ∈ LIP(X) one has that |Df |∗ = |∇f |m.

The following coarea formula for functions of bounded variation on metric measure spaces is
taken from [Mi03, Remark 4.3]. It will play a key role in the rest of the paper.
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Theorem 2.12 (Coarea formula). Let Ω ⊂ X be an open domain in a m.m.s. (X, d,m).
Let v : Ω → [0,+∞) belong to BV∗(Ω, d,m). Then for any Borel function f : Ω → [0,+∞) it holds

∫

{s≤v<t}

f d |Dv|∗ =

∫ t

s

(
∫

f d Per({v > r})

)

dr, ∀s ∈ [0, t]. (2.8)

Combining Proposition 2.11 and Theorem 2.12 we obtain the following.

Corollary 2.13. Let (X, d,m) be an RCD(K,N) space, for some K ∈ R, N ∈ (1,∞).
Let Ω ⊂ X be an open domain and v : Ω → [0,+∞) be Lipschitz. Then, for any Borel function
f : Ω → [0,+∞) it holds that

∫

{s≤v<t}

f |∇v| dm =

∫ t

s

(
∫

f d Per({v > r})

)

dr, ∀s ∈ [0, t]. (2.9)

The following result will be useful when dealing with the almost rigidity case in the spectral
gap inequality.

Proposition 2.14. Fix K > 0 and N ∈ (1,∞). Let ((Xn, dn,mn))n∈N
be a sequence of normalized

RCD(K,N) spaces converging to (X, d,m) in the measured Gromov-Hausdorff sense.
Denote by In (resp. I) the isoperimetric profile of (Xn, dn,mn) (resp. of (X, d,m)).
Then, for any t ∈ [0, 1] and for any sequence (tn)n∈N with tn → t, it holds that

I(t) ≤ lim inf
n→∞

In(tn). (2.10)

Proof. We refer to [GMS15, AH16] for the basic definitions and statements about convergence of
functions defined over mGH-converging sequences of metric measure spaces.
First of all note that in order to prove (2.10), without loss of generality we can assume that
supn∈N In(tn) < +∞.
For any n ∈ N let En ⊂ Xn be a Borel set such that Pern(En) = In(tn), whose existence follows
as in the Euclidean case from standard lower semicontinuity and compactness arguments.
The sequence of the corresponding characteristic functions (χEn

)n∈N satisfies the assumption of
[AH16, Proposition 7.5], i.e.

sup
n∈N

{

‖χEn
‖L1(mn) + |DχEn

| (Xn)
}

= sup
n∈N

{tn + In(tn)} < +∞.

It follows from [AH16, Proposition 7.5] that, up to extracting a subsequence which we do not
relabel, (χEn

)n∈N
strongly L1-converges to a function f ∈ L1(X,m) (see [AH16, Section 3]). In

particular we can say that

‖f‖L1(m) = lim
n→∞

‖χEn
‖L1(mn) = lim

n→∞
tn = t. (2.11)

We now claim that f is the indicator function of a Borel set E ⊂ X , with m(E) = t. To this aim
call gn := χEn

(1 − χEn
) and observe that (gn)n∈N strongly L1-converges to g := f(1 − f) thanks

to [AH16, Proposition 3.3]. Thus g = 0, since gn = 0 for any n ∈ N and therefore g is the indicator
function of a Borel set, as claimed.
We can now apply [AH16, Theorem 8.1] to get the Mosco convergence of the BV energies and
conclude that

Per(E) ≤ lim inf
n→∞

Pern(En) = lim inf
n→∞

In(tn).

The lower semicontinuity for the isoperimetric profiles (2.10) easily follows, since E is an admissible
competitor in the definition of I(t).

3 Polya-Szego inequality

The working assumption of this section, unless otherwise stated, is that (X, d,m) is an essentially
non branching CD(K,N) space for some K > 0, N ∈ (1,+∞), with m(X) = 1 and supp(m) = X .
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Definition 3.1 (Distribution function). Given an open domain Ω ⊂ X and a non-negative Borel
function u : Ω → [0,+∞) we define its distribution function µ : [0,+∞) → [0,m(Ω)] by

µ(t) := m({u > t}). (3.1)

Remark 3.2. Suppose that u is such that m({u = t}) = 0 for any 0 < t < +∞. Then it makes no
difference to consider closed superlevel sets or open superlevel sets in (3.1).

It is not difficult to check that the distribution function µ is non increasing and left-continuous.
If moreover u is continuous, then µ is strictly decreasing. We let u# be the generalized inverse of
µ, defined in the following way:

u#(s) :=

{

ess supu if s = 0,

inf {t : µ(t) < s} if s > 0.

Definition 3.3 (Rearrangement on one dimensional model spaces). Fix any K > 0, 1 < N < +∞,
and let (IK,N , d,mK,N) be the one-dimensional model space defined in (2.7). Let Ω ⊂ X be an
open subset and consider [0, r] ⊂ IK,N such that mK,N ([0, r]) = m(Ω).
For any Borel function u : Ω → [0,+∞), the monotone rearrangement u∗

K,N : [0, r] → R+ is defined
by

u∗
K,N(x) := u#(mK,N ([0, x])), ∀x ∈ [0, r].

For simplicity of notation we will often write u∗ in place of u∗
K,N .

Remark 3.4. For simplicity of notation, throughout the paper we will consider monotone rearrange-
ments of non-negative functions. Nevertheless, for an arbitrary Borel function u : Ω → (−∞ + ∞)
the analogous statements hold by setting u∗ the monotone rearrangement of |u|.

In the next proposition we collect some useful properties of the monotone rearrangement, whose
proof in the Euclidean setting can be found for instance in [K06, Chapter 1] and can be adapted
with minor modifications to our framework.

Proposition 3.5. Let (X, d,m) with m(X) = 1 be an essentially non branching CD(K,N) space
for some K > 0, N ∈ (1,+∞). Let Ω ⊂ X be an open subset and consider [0, r] ⊂ IK,N such that
mK,N ([0, r]) = m(Ω). Let u : Ω → [0,+∞) be Borel and let u∗ : [0, r] → [0,+∞) be its monotone
rearrangement.
Then u and u∗ have the same distribution function (we will often say that they are equimeasurable).
Moreover,

‖u‖Lp(Ω,m) = ‖u∗‖Lp([0,r],mK,N ) , ∀1 ≤ p < +∞, (3.2)

and the monotone rearrangement operator Lp(Ω,m) ∋ u 7→ u∗ ∈ Lp([0, r],mK,N ) is continuous.

Motivated by the working assumptions of Lemma 3.10, we state and prove the following general
result about approximation via functions with non vanishing minimal relaxed upper gradient.

Lemma 3.6 (Approximation with non vanishing gradients). Let (X, d,m) be a locally compact
geodesic metric measure space and let Ω ⊂ X be an open subset with m(Ω) < +∞.
Then for any non-negative u ∈ LIPc(Ω) with

∫

|∇u|p dm < ∞, there exists a sequence (un)n∈N with
un ∈ LIPc(Ω) non-negative, |∇un| 6= 0 m-a.e. on { un > 0 } for any n ∈ N and such that un → u
in Lp(X,m),

∫

|∇un|
p

dm →
∫

|∇u|
p

dm as n → ∞.

Proof. It is straightforward to check that there exists a sequence (ǫn)n∈N
monotonically converging

to 0 from above such that m({|∇u| = ǫn}) = 0 for any n ∈ N.
Choose an open set Ω′ containing the support of u and compactly contained in Ω. Let v : Ω →
[0,+∞) be the distance function from the complementary of Ω′ in X , namely

v(x) := dist(x,X \ Ω′) for any x ∈ Ω.

Observe that v ∈ LIPc(Ω), moreover

|∇v| (x) = 1 for any x ∈ Ω′. (3.3)
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Indeed it suffices to observe that the restriction of v to any geodesic connecting x with y ∈ X \ Ω′

such that v(x) = d(x, y) has slope equal to 1 at x.
Next we introduce the approximating sequence un := u + ǫnv and we claim that it has the

desired properties. Indeed, if u ∈ LIPc(Ω) is non-negative, then also un ∈ LIPc(Ω) is so. From the
inequality

|∇(u+ ǫnv)| ≥ ||∇u| − ǫn |∇v||

and from (3.3) it follows that {|∇un| = 0} ∩ { un > 0 } ⊂ {|∇u| = ǫn}. Since the ǫn are chosen in
such a way that m({|∇u| = ǫn}) = 0, we infer that m({|∇un| = 0} ∩ { un > 0 }) = 0 .
Clearly un converge uniformly to u as n → ∞, granting in particular that un → u in Lp(Ω,m).
At the same time, the inequality

||∇un| − |∇u|| ≤ ǫn |∇v|

grants that
∫

Ω

|∇un|
p

dm →

∫

Ω

|∇u|
p

dm,

yielding the desired conclusion.

Corollary 3.7. Let (X, d,m) be a geodesic metric measure space verifying locally doubling and a
weak 1-1 Poincaré inequality and let Ω ⊂ X be an open subset with m(Ω) < +∞.
Fix any 1 < p < +∞ and let u, un ∈ LIPc(Ω) be as in the statement and the proof of Lemma 3.6.
Then, for any n ∈ N, it holds that |∇un|1 (x) 6= 0 for m-a.e. x ∈ { un > 0 }.

Proof. One of the properties of the approximating sequence in Lemma 3.6 is that |∇un| (x) 6= 0
for m-a.e. x ∈ { un > 0 }. The desired conclusion follows from [APS15] where it is proved that,
under the locally doubling and Poincaré assumption, there exists c > 0 such that

|∇f | (x) ≤ c |∇f |1 (x) for m-a.e. x ∈ X,

for any function f ∈ LIPloc(X).

Remark 3.8. Since any essentially non branching CD(K,N) metric measure space is (locally) dou-
bling and verifies a weak 1-1 Poincaré inequality (see [VR08]), Corollary 3.7 applies to the case of
our interest.

In Proposition 3.9 below we extend to the non smooth setting [K06, Theorem 2.3.2]; the key idea
is to replace the Euclidean isoperimetric inequality with the Lévy-Gromov isoperimetric inequality
Theorem 2.7.

Proposition 3.9 (Lipschitz to Lipschitz property of the rearrangement). Let (X, d,m) with m(X) =
1 be an essentially non branching CD(K,N) space for some K > 0, N ∈ (1,+∞). Let Ω ⊂ X be
an open subset and consider [0, r] ⊂ IK,N such that mK,N ([0, r]) = m(Ω).
Let u ∈ LIP(Ω) be non-negative with Lipschitz constant L ≥ 0 and assume that |∇u|1 (x) 6= 0 for
m-a.e. x ∈ { u > 0 }.
Then u∗ : [0, r] → [0,∞) is L-Lipschitz as well.

Proof. Let µ be the distribution function associated to u and denote by M := supu < +∞.
Observe that our assumptions grant continuity and strict monotonicity of µ. Therefore for any
s, k ≥ 0 such that s+ k ≤ m(Ω) we can find 0 ≤ t− h ≤ t ≤ M in such a way that µ(t− h) = s+ k
and µ(t) = s. Taking into account the assumption that u is L-Lipschitz we can say that

∫

{t−h≤u≤t}

|∇u|1 dm ≤ L (µ(t− h) − µ(t)) . (3.4)

On the other hand, an application of the coarea formula (2.8) yields

∫

{t−h≤u≤t}

|∇u|1 dm =

∫ t

t−h

Per({u ≥ r}) dr. (3.5)
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Applying the Lévy-Gromov isoperimetric inequality Theorem 2.7 we can estimate the right hand
side of (3.5) in the following way:

∫ t

t−h

Per({u ≥ r}) dr ≥

∫ t

t−h

IK,N (µ(r)) dr. (3.6)

Recalling that the model isoperimetric profile IK,N is continuous and that µ is continuous, com-
bining (3.4) with (3.6) and eventually applying the mean value theorem we get

Lk ≥

∫ h

t−h

IK,N (µ(r)) dr = hIK,N (µ(ξt
t−h)), (3.7)

for some t − h ≤ ξt
t−h ≤ t. Calling u# the inverse of the distribution function, the estimate (3.7)

can be rewritten as
(

u#(s) − u#(s+ k)
)

IK,N (µ(ξt
t−h)) ≤ Lk. (3.8)

Since IK,N is strictly positive on (0, 1), it follows from (3.8) that u# is locally Lipschitz. Moreover,
at any differentiability point s of u# (which in particular form a set of full L

1-measure on (0, 1)),
it holds

−
d

ds
u#(s) ≤

L

IK,N (s)
. (3.9)

Let r : [0, 1] → IK,N be such that r(mK,N ([0, x])) = x for any x ∈ IK,N . Differentiating in t the
identity

∫ r(t)

0

hK,N (s) ds = t,

we obtain that 1 = d
dtr(t)hK,N (r(t)) and, since we know that IK,N (s) = hK,N(r(s)), it follows that

d

dt
r(t) =

1

IK,N (t)
. (3.10)

By definition of the rearrangement u∗, for any x ∈ IK,N it holds that u∗(x) = u#(mK,N ([0, x])).
Combining the last identity with (3.9) and (3.10) we can estimate for x ≤ y

0 ≤ u∗(x) − u∗(y) = u#(mK,N([0, x])) − u#(mK,N ([0, y]))

=

∫

mK,N ([0,y])

mK,N ([0,x])

−
d

ds
u#(s) ds

≤

∫

mK,N ([0,y])

mK,N ([0,x])

L
d

ds
r(s) ds

= Lr(mK,N ([0, y])) − Lr(mK,N ([0, x])) = Ly − Lx,

which gives the L-Lipschitz continuity of the monotone rearrangement u∗.

The next lemma should be compared with [K06], dealing with the case of smooth functions in
Euclidean domains.

Lemma 3.10 (Derivative of the distribution function). Let (X, d,m) be a metric measure space
and let Ω ⊂ X be an open subset with m(Ω) < +∞. Assume that u ∈ LIPloc(Ω) is non-negative
and |∇u|1 (x) 6= 0 for m-a.e. x ∈ { u > 0 }. Then its distribution function µ : [0,+∞) → [0,m(Ω)],
defined in (3.1), is absolutely continuous. Moreover it holds

µ′(t) = −

∫

1

|∇u|1
d Per({u > t}) for L

1-a.e. t, (3.11)

where the quantity 1/ |∇u|1 is defined to be 0 whenever |∇u|1 = 0.
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Proof. Fix any ǫ > 0 and define

fǫ(x) :=
|∇u(x)|1

|∇u(x)|
2
1 + ǫ

.

Fixing t ≥ 0 and h > 0, an application of the coarea formula (2.8) with f = fǫ yields to

∫

{t≤u≤t+h}

|∇u|
2
1

|∇u|21 + ǫ
dm =

∫ t+h

t

(

∫

|∇u|1
|∇u|21 + ǫ

d Per({u > r})

)

dr. (3.12)

Now we pass to the limit as ǫ → 0 both at the right hand side and at the left hand side in (3.12).
The assumption that |∇u|1 6= 0 m-a.e. grants that the integrand at the left hand side monotonically
converges m-a.e. to 1. Thus an application of the monotone convergence theorem yields that

∫

{t≤u≤t+h}

|∇u|
2
1

|∇u|21 + ǫ
dm → µ(t) − µ(t+ h) as ǫ → 0. (3.13)

With the above mentioned convention about the value of 1/ |∇u|1 at points where |∇u|1 = 0,
applying the monotone convergence theorem twice at the right hand side of (3.12), we get

∫ t+h

t

(

∫

|∇u|1
|∇u|21 + ǫ

d Per({u > r})

)

dr →

∫ t+h

t

(
∫

1

|∇u|1
d Per({u > r})

)

dr (3.14)

as ǫ goes to 0. Combining (3.12), (3.13) and (3.14), we get

µ(t) − µ(t+ h) =

∫ t+h

t

(
∫

1

|∇u|1
d Per({u > r})

)

dr.

It follows that the distribution function is absolutely continuous and therefore differentiable at
almost all points with derivative given by the explicit expression (3.11).

Before proceeding to the statement and the proof of the Polya-Szego inequality we need an
identification result between slopes and 1-minimal weak upper gradients in the simplified setting
of the model weighted interval IK,N .

Lemma 3.11. Let I ⊂ IK,N be a sub-interval and let 1 < p < +∞. Let f ∈ W 1,p((I, d,mK,N )) be
monotone. Then f ∈ W 1,1((I, d,mK,N )) and it holds

|∇f |1 (x) = |f ′| (x) = |∇f | (x) for L
1-a.e. x ∈ I. (3.15)

Proof. The fact that f ∈ W 1,1((I, d,mK,N )) follows directly by Hölder inequality, since mK,N (I) ≤
1. Since mK,N = hK,NL 1 with hK,N locally bounded away from 0 out of the two end-points of
IK,N , it follows that f is locally absolutely continuous in the interior of IK,N . In particular it is
differentiable L 1-a.e. and |∇f | (x) = |f ′| (x) at every differentiability point x. We are thus left to
show the first equality in (3.15).
Note that the assumptions ensure that f is invertible onto its image, up to a countable subset of
f(I). The coarea formula in the 1-dimensional case reads as

∫

I

(φ·hK,N ) |∇f |1 dL
1 =

∫

I

φ |∇f |1 dmK,N =

∫

f(I)

(φ·hK,N )(f−1(r)) dr, ∀φ ∈ Cc(IK,N ). (3.16)

On the other hand, the change of variable formula via a monotone absolutely continuous function
gives

∫

I

(φ · hK,N )|f ′| dL
1 =

∫

f(I)

(φ · hK,N )(f−1(r)) dr, ∀φ ∈ Cc(IK,N ). (3.17)

The combination of (3.16) with (3.17) then gives the first equality in (3.15).

The following statement should be compared with [K06], where the study of the monotone
rearrangement on domains of Rn is performed.
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Proposition 3.12. Let (X, d,m) be an essentially non branching CD(K,N) space for some K > 0,
N ∈ (1,+∞). Let Ω ⊂ X be an open subset and consider [0, r] ⊂ IK,N such that mK,N ([0, r]) =
m(Ω).
Let u ∈ LIP(Ω) be non-negative and assume that |∇u|1 (x) 6= 0 for m-a.e. x ∈ { u > 0 }.
Then u∗ ∈ LIP([0, r]) and for any 1 < p < +∞ it holds

∫

Ω

|∇u|p1 dm ≥

∫ r

0

|∇u∗|p1 dmK,N . (3.18)

In particular, it follows that
∫

Ω

|∇u|
p

dm ≥

∫ r

0

|∇u∗|
p

dmK,N . (3.19)

Proof. Denote by M := supu. Since u is Lipschitz we are in position to apply Proposition 3.9,
which grants that the monotone rearrangement u∗ is still Lipschitz.
Introduce the functions φ, ψ : [0,M ] → [0,+∞) defined by

φ(t) :=

∫

{u>t}

|∇u|
p
1 dm, ψ(t) :=

∫

{u>t}

|∇u|1 dm.

An application of the coarea formula Theorem 2.12 yields that φ and ψ are absolutely continuous
and therefore L 1-a.e. differentiable with derivatives given L 1-a.e. by the expressions

φ′(t) = −

∫

|∇u|p−1
1 d Per({u > t}) and ψ′(t) = − Per({u > t}),

respectively. An application of Hölder’s inequality yields that for any 0 ≤ t− h ≤ t ≤ M

∫

{t−h<u≤t}

|∇u|1 dm ≤

(

∫

{t−h<u≤t}

|∇u|
p
1 dm

)
1

p

(µ(t− h) − µ(t))
p−1

p , (3.20)

where µ denotes the distribution function associated to u. It follows from the discussion above and
from Lemma 3.10 that L 1-a.e. point t ∈ (0,M) is a differentiability point of both µ, φ and ψ. In
view of (3.20), at any such point it holds that

− ψ′(t) ≤ (−φ′(t))
1

p (−µ′(t))
p−1

p . (3.21)

Applying the Lévy-Gromov inequality Theorem 2.7 we obtain that Per({u > t}) ≥ IK,N (µ(t)).
Therefore, taking into account the strict monotonicity of µ, (3.21) turns into

− φ′(t) ≥
(IK,N (µ(t)))

p

(−µ′(t))
p−1 for L

1-a.e. t. (3.22)

Thus
∫

Ω

|∇u|p1 dm =

∫ M

0

−φ′(t) dt ≥

∫ M

0

(IK,N (µ(t)))
p

(−µ′(t))p−1 dt. (3.23)

It follows from the very definition of the monotone rearrangement and from the properties of the
model isoperimetric profile that Per({u∗ > t}) = IK,N (µ(t)) (recall that u and u∗ have the same
distribution function). Moreover, since we already know that u∗ is Lipschitz, we are in position to
apply Lemma 3.10 to conclude (taking also into account Lemma 3.11) that

− µ′(t) =
Per({u∗ > t})

|(u∗)′((u∗)−1(t)|
for L

1-a.e. t. (3.24)

Applying the coarea formula to the function u∗ and taking into account (3.24) and Lemma 3.11
we conclude that

∫ r

0

|∇u∗|
p
1 dmK,N =

∫ r

0

|(u∗)′|
p

dmK,N =

∫ sup u∗

0

∣

∣(u∗)′((u∗)−1(t)
∣

∣

p−1
Per({u∗ > t}) dt

=

∫ sup u∗

0

(IK,N (µ(t)))
p

(−µ′(t))p−1 dt. (3.25)
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Comparing (3.23) with (3.25) we can conclude that

∫

Ω

|∇u|p1 dm ≥

∫ r

0

|∇u∗|p1 dmK,N =

∫ r

0

|∇u∗|p dmK,N ,

giving (3.18). To get (3.19) it suffices to recall that |∇u|1 ≤ |∇u| holds true m-a.e..

Armed with Proposition 3.12 we can extend the celebrated Polya-Szego inequality to the non-
smooth CD(K,N) framework.

Proof of Theorem 1.4.
By the very definition of W 1,p

0 (Ω) we can find a sequence (un)n∈N with un ∈ LIPc(Ω) for any
n ∈ N and un converging to u in W 1,p(X, d,m), Moreover, thanks to Lemma 3.6, we can assume
that |∇un|1 6= 0 for m-a.e. x ∈ { un > 0 } for any n ∈ N, so that we can apply Proposition 3.12 to
each of the functions un obtaining

∫ r

0

|∇u∗
n|

p
dmK,N ≤

∫

Ω

|∇un|
p

dm. (3.26)

Observe now that the strong Lp(X,m)-convergence of un to u and the strong Lp-continuity of the
monotone rearrangement (see Proposition 3.5) grant that u∗

n → u∗ in Lp([0, r],mK,N ). From the
lower semicontinuity of the p-energy w.r.t. Lp([0, r],mK,N )-convergence it follows that:

∫ r

0

|∇u∗|
p

dmK,N ≤ lim inf
n→∞

∫ r

0

|∇u∗
n|

p
dmK,N .

Hence, taking into account (3.26) and the strong convergence in W 1,p(X, d,m) of un to u, we
conclude that

∫ r

0

|∇u∗|
p

dmK,N ≤

∫

Ω

|∇u|
p
w dm,

which is the desired conclusion. �

In the following we will need an improved version of the Polya-Szego inequality. To this aim,
for any non-negative u ∈ W 1,p

0 (Ω) we introduce a function fu : [0, supu∗) → [0,+∞] by

fu(t) :=

∫

|∇u∗|p−1 d Per({u∗ > t}). (3.27)

Observe that this definition makes sense thanks to Theorem 1.4 and the coarea formula, which
also yields

∫ sup u∗

0

fu(t) dt =

∫ r

0

|∇u∗|p dmK,N , (3.28)

for any u ∈ W 1,p
0 (Ω).

We are now in position to state and prove our improved Polya-Szego inequalities.

Proposition 3.13 (Improved Polya-Szego Inequalities). Let (X, d,m) be an essentially non branch-
ing CD(K,N) space for some K > 0, N ∈ (1,+∞). Let Ω ⊂ X be an open subset and consider
[0, r] ⊂ IK,N such that mK,N ([0, r]) = m(Ω).

Suppose that u ∈ W 1,p
0 (Ω) is such that u∗ has non vanishing derivative L 1-a.e. on (0, r). Then

∫

Ω

|∇u|
p

dm ≥

∫ sup u∗

0

(

Per({u > t})

IK,N (µ(t))

)p

fu(t) dt. (3.29)

As a consequence, under the same assumptions, it holds that

∫

Ω

|∇u|
p

dm ≥

∫ sup u∗

0

(

I(X,d,m)(µ(t))

IK,N (µ(t))

)p

fu(t) dt. (3.30)
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Proof. In order to prove (3.29) we just need to observe that our assumptions, even though being
weaker than those of Proposition 3.12, put us in position to make its proof work.

Indeed, with the same notation therein introduced, we observe that the monotone rearrange-
ment u∗ has the same distribution function of u. Moreover, Theorem 1.4 implies in particular
that u∗ ∈ ACloc((0, r)). Therefore, since we are assuming that |∇u∗| (t) 6= 0 for L 1-a.e. t, it fol-
lows from Lemma 3.10 (taking into account also Lemma 3.11) that µ is absolutely continuous and
therefore differentiable L 1-a.e. with the explicit expression for the derivative given (for L 1-a.e. t)
by

− µ′(t) =
Per({u∗ > t})

|∇u∗| ((u∗)−1(t))
=

IK,N (µ(t))

|∇u∗| ((u∗)−1(t))
, (3.31)

where the second equality is a consequence of the very construction of the monotone rearrangement.
Following verbatim the beginning of the proof of Proposition 3.12 we obtain that (3.22) is still

valid in the present setting. Taking into account (3.31) we obtain that

−φ′(t) ≥
(Per({u > t}))

p

(−µ′(t))p−1
=

(Per({u > t}))
p

(IK,N (µ(t)))
p−1 |∇u∗| ((u∗)−1(t))p−1

=

[

Per({u > t})

IK,N (µ(t))

]p

|∇u∗| ((u∗)−1(t))p−1IK,N (µ(t))

=

[

Per({u > t})

IK,N (µ(t))

]p

fu(t)

for L
1-a.e. t ∈ (0, supu∗). The desired inequality (3.29) follows now recalling that

∫

Ω

|∇u|
p

dm =

∫ sup u∗

0

(−φ′(t)) dt.

Conclusion (3.30) is a consequence of (3.29) after observing that {u > t} is an admissible
competitor in the definition of I(X,d,m)(µ(t)) since, by definition, it holds that m({u > t}) =
µ(t).

Remark 3.14. In order to prove the forthcoming Theorem 5.5 we will need to slightly enlarge the
class of functions where (3.29) and (3.30) hold true.

In particular, we claim that (3.29) holds true for any u ∈ W 1,p
0 (Ω) such that u∗ is C1 and strictly

decreasing. Indeed for any such u it holds that the set of critical values of u∗ is L 1-negligible.
Moreover, the distribution function µ of u (which coincides with the distribution function of u∗

by equimeasurability, as we already observed), is differentiable at any regular point of u∗, with
derivative given by (3.31). Hence the whole proof of Proposition 3.13 can be carried over without
modifications.

4 Spectral gap with Dirichlet boundary conditions

4.1 Bérard-Meyer for essentially non-branching CD(K, N) spaces

The goal of this section is to bound from below the p-spectral gap of an essentially non branching
CD(K,N) space with the one of the corresponding one dimensional model space, for any K >
0, N ∈ (1,+∞) and p ∈ (1,+∞). This extends to the non-smooth setting the celebrated result
of Bérard-Meyer [BM92] (see also [Ma00]) proved for smooth Riemannian manifolds with Ric ≥
K,K > 0.

For every K > 0, N ∈ (1,+∞), let (IK,N , deu,mK,N ) be the one dimensional model space
defined in (2.7). For every v ∈ (0, 1), let r(v) ∈ IK,N be such that v = mK,N ([0, r(v)]).
To let the notation be more compact, for any fixed 1 < p < +∞, for any v ∈ (0, 1) and for any
choice of K > 0 and 1 < N < +∞, we define

λp
K,N,v := inf

{

∫ r(v)

0
|u′|

p
dmK,N

∫ r(v)

0
up dmK,N

: u ∈ LIP([0, r(v)]; [0,+∞)), u(r(v)) = 0 and u 6≡ 0

}

,
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and we call λp
K,N,v the comparison first eigenvalue for the p-Laplacian with Dirichlet boundary

conditions for Ricci curvature bounded from below by K, dimension bounded from above by N and
volume v.

Moreover, for any metric measure space (X, d,m) with m(X) = 1, for any open subset Ω ⊂ X
and for any 1 < p < +∞, we define

λp
X(Ω) := inf

{

∫

Ω
|∇u|

p
dm

∫

Ω u
p dm

: u ∈ LIPc(Ω; [0,+∞)) and u 6≡ 0

}

, (4.1)

and we call λp
X(Ω) the first eigenvalue of the p-Laplacian on Ω with Dirichlet boundary conditions.

Observe that for any 2 ≤ N ∈ N and K > 0, λp
K,N,v = λp

SN
K

(Bv), where SN
K is the round N -

dimensional sphere or radius
√

N−1
K and Bv ⊂ SN

K is a metric ball (i.e. a spherical cap) with

volume v.
We are now in position to prove Theorem 1.5

Proof of Theorem 1.5

For any u ∈ LIPc(Ω; [0,+∞)) not identically zero we introduce the notation

Rp(u) :=

∫

Ω |∇u|
p

dm
∫

Ω
up dm

for the Rayleigh quotient of u.
It follows from the combination of Proposition 3.5 and Proposition 3.12 that for any u ∈

LIPc(Ω; [0,+∞)) such that |∇u|1 6= 0 m-a.e. on { u > 0 } it holds

Rp(u) ≥ Rp(u∗),

where u∗ : [0, r(v)] → [0,+∞) is the monotone rearrangement of u on the model space. Observe
now that u ∈ LIPc(Ω) implies, by construction of the monotone rearrangement, that u∗ vanishes
at r(v). We thus get

Rp(u∗) ≥ λp
K,N,v.

The desired conclusion follows from Corollary 3.7 and Remark 3.8 which grant that for any u ∈
LIPc(Ω; [0,+∞)) we can find a sequence (un)n∈N ⊂ LIPc(Ω; [0,+∞)) such that |∇un|1 6= 0 m-a.e.
on { un > 0 } for any n ∈ N and

Rp(un) → Rp(u), as n → ∞.

�

4.2 Existence of minimizers

Here we collect some known result about the p-Laplace equation with homogeneous Dirichlet
boundary conditions on metric measure spaces (verifying the curvature dimension condition) that
will be useful in the next section about rigidity. We refer to [LMP05] and [GM13] for a more
detailed discussion about this topic and equivalent characterizations of first eigenfunctions.

Recall that we defined W 1,p
0 (Ω) to be the closure w.r.t. the W 1,p-norm of LIPc(Ω) (see

Definition 2.2). In the fairly general context of metric measure spaces it makes sense to talk
about the first eigenfunction of the p-Laplace equation if the notion is understood in the following
weak sense.

Definition 4.1 (First eigenfunction). Let Ω ⊂ X be an open domain. We say that u ∈ W 1,p
0 (Ω)

is a first eigenfunction of the p-Laplacian on Ω (with homogeneous Dirichlet boundary conditions)
if u 6≡ 0 and it minimizes the Rayleigh quotient

Rp(v) =

∫

Ω |∇v|
p
w dm

∫

Ω
|v|p dm

,

among all functions v ∈ W 1,p
0 (Ω) such that v 6≡ 0.
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Remark 4.2. Let us observe that if u ∈ W 1,p
0 (Ω) is a first eigenfunction of the p-Laplacian then

Rp(u) = λp
X(Ω) (that is the first eigenvalue of the p-Laplace equation defined in (4.1)), since by

the very definition of the space W 1,p
0 (Ω) it makes no difference to minimize the Rayleigh quotient

over LIPc(Ω) or over W 1,p
0 (Ω). As we will see below, the advantage of considering the minimization

over W 1,p
0 (Ω) is to gain existence of minimizers.

We conclude this short section with a general existence result for first eigenfunctions of the
p-laplacian. The main ingredient for its proof, as in the smooth case, is the Sobolev inequality
which implies in turn that also Rellich compactness theorem holds true in this setting. A good
reference for this part is [AT04, Chapter 5].

Theorem 4.3 (Existence of minimizers). Let (X, d,m) be an essentially non branching CD(K,N)
space, for some K > 0 and 1 < N < +∞. Let Ω ⊂ X be an open subset, fix 1 < p < +∞, and
assume that λp

X(Ω) < +∞.
Then there exists a first eigenfunction of the p-Laplace equation (with homogeneous Dirichlet bound-
ary conditions) on Ω.

Proof. If λp
X(Ω) < +∞, we can find a sequence (un)n∈N ⊂ W 1,p

0 (Ω) such that ‖un‖Lp = 1 for any
n ∈ N and ‖|∇un|w‖p

Lp → λp
X(Ω) as n → ∞.

Recall that the CD(K,N) condition for K > 0 and 1 < N < +∞ grants that X is a compact
and doubling metric measure space. Hence we can apply [AT04, Theorem 5.4.3] (which is a
general version of Rellich theorem for metric measure spaces) to the sequence (un)n∈N to find a
limit function u ∈ W 1,p

0 (Ω) such that un → u in Lp(Ω,m) as n → ∞ and hence ‖u‖Lp = 1. It
follows from the lower semicontinuity of the p-energy w.r.t. Lp(Ω,m)-convergence that

∫

Ω

|∇u|pw dm ≤ lim inf
n→∞

∫

Ω

|∇un|pw dm = λp
X(Ω),

thus u is a first eigenfunction of the p-laplacian with homogeneous Dirichlet boundary conditions
on Ω.

Remark 4.4. Let us remark for sake of completeness that the definition of Sobolev space adopted
in [AT04] is different with respect to the working one of this paper. However, as a consequence
of [ACDM15, Lemma 8.2], if (X, d,m) is an essentially non branching CD(K,N) m.m.s. and
f ∈ W 1,p(X, d,m) according to Definition 2.1, then f is a Sobolev function according to [AT04,
Definition 5.1.1]

5 Rigidity

5.1 Rigidity in the Polya-Szego inequality

This section is devoted to prove a rigidity statement associated to the Polya-Szego inequality
Proposition 3.12. The rough idea here is that if equality occurs in the Polya-Szego inequality
then it occurs in the Lévy-Gromov inequality too, and hence one can build on top of the rigidity
statements in the Lévy-Gromov isoperimetric inequality established in [CM17a, CM18]. Let us also
mention the paper [FV03], where an elementary proof of the rigidity statement for the Polya-Szego
inequality on R

n is presented.

Theorem 5.1 (Rigidity in the Polya-Szego inequality). Let (X, d,m) be an RCD(N − 1, N) space
for some N ∈ [2,+∞) with m(X) = 1.
Assume that there exists a nonnegative function u ∈ LIP(X) achieving equality in the Polya-Szego
inequality (3.19), with |∇u| (x) 6= 0 for m-a.e. x ∈ supp(u).

Then (X, d,m) is a spherical suspension, namely there exists an RCD(N − 2, N − 1) space
(Y, dY ,mY ) with mY (Y ) = 1 such that (X, d,m) is isomorphic as a metric measure space to
[0, π]×N−1

sin Y . Moreover u is radial, i.e. u = u∗(d(·, x0)), where x0 is a tip of a spherical suspension
structure of X.

Remark 5.2. Before discussing the proof, let us stress that Theorem 5.1 is stated for a non-negative
function u just for uniformity of notation with the previous sections. Nevertheless, such a non-
negativity assumption can be suppressed, once the rearrangement u∗ in the Polya-Szego inequality
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(3.19) is understood as the decreasing rearrangement of |u| (see also Remark 3.4). The same holds
for Theorem 5.4 below.

Proof. Step 1: (X, d,m) is a spherical suspension.
If equality occurs in (3.19), it follows from the proof of Proposition 3.12 that equality must occur
in (3.22) for L 1-a.e. t ∈ (0,M), where M := max u. Hence for L 1-a.e. t ∈ (0,M) it holds:

Per({u > t}) = IN−1,N (µ(t)). (5.1)

Since, by the very definition of the distribution function, we have m({u > t}) = µ(t), it follows
that I(X,d,m)(µ(t)) = IN−1,N(µ(t)) for L 1-a.e. t ∈ (0,M). Thus we are in position to apply part

(i) of Theorem 2.8 to conclude that (X, d,m) is isomorphic to a spherical suspension [0, π] ×N−1
sin Y

for some RCD(N − 2, N − 1) space (Y, dY ,mY ).

Step 2: for every t ∈ [0,M), the closure of the open superlevel set {u > t} is a closed metric
ball centred at a tip of a spherical suspension.
We first claim that (5.1) holds for every t ∈ (0,M). To this aim, call G ⊂ [0,M ] the subset of
those t ∈ (0,M) where (5.1) holds true. Since G is dense, for any fixed t ∈ [0,M ] we can find a
sequence (tn)n∈N ⊂ G such that tn → t as n → ∞. Our assumptions grant that {u > tn} converges
in measure to {u > t}. From the lower semicontinuity of the perimeter and the continuity of the
model isoperimetric profile it follows that:

Per({u > t}) ≤ lim inf
n→∞

Per({u > tn} = lim inf
n→∞

IN−1,N (µ(tn)) = IN−1,N (µ(t)),

yielding the claim. In order to conclude the proof of Step 2, observe that {u > t} is an open
set, since u is continuous. Denote the topological closure of {u > t} by {u > t}. Using also that
supp(m) = X , part (iii) of Theorem 2.8 implies that there exists an (a priori t-dependent) structure
of spherical suspension X ≃ [0, π] ×N−1

sin Yt for a suitable RCD(N − 2, N − 1) space (Yt, dt,mt) such
that either

[

0, r(µ(t))
)

× Yt \ {u > t} or
(

π − r(µ(t)), π
]

× Yt \ {u > t}

is an open set of m-measure zero, thus empty as suppm = X ; without loss of generality we can
assume the first case holds.
Note that the topological closure of

[

0, r(µ(t))
)

× Yt is
[

0, r(µ(t))
]

× Yt. Moreover, since by as-

sumption |∇u| (x) 6= 0 for m-a.e. x ∈ supp(u), we have that m({u > t} \ { u > t }) = 0. It follows
that {u > t} ⊂ [0, r(µ(t))] × Yt, hence

[

0, r(µ(t))
]

× Yt = {u > t}. (5.2)

Let us stress that a priori the structure of spherical suspension may depend on t ∈ (0,M); for
instance in the N -sphere any point is a pole with respect to a corresponding structure of spherical
suspension and any metric ball centred at any point is optimal for the isoperimetric problem.

Step 3: Conclusion.
To prove the rigidity statement about the function u, we need to show that the above structure
as spherical suspension is independent of t ∈ (0,M). To this aim we first observe that, if equality
holds in (3.19), then equality holds also in (3.21) for L 1-a.e. t ∈ (0,M). Since (3.21) can be
rewritten as

Per({u > t}) ≤

(
∫

|∇u|
p−1

d Per({u > t})

)
1

p
(
∫

1

|∇u|
d Per({u > t})

)

p−1

p

,

we can conclude that, for L 1-a.e. t ∈ [0,M ], |∇u| is constant Per({u > t})-a.e. by necessary
conditions for equality in Hölder’s inequality. It follows that

1

|∇u| (x)
IK,N (µ(t)) = −µ′(t), for L

1-a.e. t ∈ [0,M ] and Per({u > t})-a.e. x. (5.3)

Since u∗ is Lipschitz with (u∗)′(t) < 0 for a.e. t ∈ (0, r(v)), it admits a strictly decreasing absolutely
continuous inverse function that we denote by v∗. We claim that f(x) := v∗ ◦ u(x) is the distance
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function from a fixed point x0, playing the role of the pole of a structure as spherical suspension
independent of t.

To this aim we first observe that the combination of (5.3) with (3.31) gives that |∇f | (x) = 1
for m-a.e. x ∈ { u > 0 }. From Step 2, we know that, for any t ∈ (0,max f), {f < t} is a closed
metric ball of radius r(t) centred at a point xt ∈ X ; moreover X admits a structure of spherical
suspension having xt as one of the two tips. In particular, for any t ∈ (0,max f), it holds

Per({f < t}) =
1

cN
sin(r(t))N−1 and m({f < t}) =

1

cN

∫ r(t)

0

sin(s)N−1 ds.

Combining what we obtained above with the assumption that |∇u| 6= 0 m-a.e. on suppu, we get
that u has a unique maximum point x0, hence { f ≤ 0 } = { x0 }. In particular r(0) = 0. Taking
into account the fact that |∇f | (x) = 1 for m-a.e. x ∈ suppu, an application of the coarea formula
yields that

1

cN

∫ t

0

sin(r(s))N−1 ds = m({f < t}) =
1

cN

∫ r(t)

0

sinN−1(s) ds, (5.4)

for every t ∈ [0,max f ]. Note that (5.4) implies in particular that t 7→ r(t) is differentiable on
[0,max f ]. Differentiating (5.4) in t, we obtain that

sin(r(t))N−1 = r′(t) sin(r(t))N−1,

for every t ∈ [0,max f ]. Therefore r′(t) = 1 for every t ∈ [0,max f ] and thus r(t) ≡ t.

We now claim that the centre xt of the ball Bt(xt) = { f < t } is independent of t.
If not we can find t ∈ (0,max f) such that xt 6= x0. This implies that there exist ǫ > 0 and
x ∈ ∂Bt(xt) with d(x0, x) ≤ t − ǫ. Since f(0) = 0 and f(x) = t, we claim that this contradicts
|∇f | = 1 m-a.e. on suppu.
From the continuity of f , we can find δ ∈ (0, ǫ/8) such that for every x′ ∈ Bδ(x) and every
y′ ∈ Bδ(x0) it holds f(x′) ≥ f(x) − ǫ/4 = t− ǫ/4 and f(y′) ≤ f(0) + ǫ/4 = ǫ/4. Now consider

µ0 :=
1

m(Bδ(x))
m Bδ(x), µ1 :=

1

m(Bδ(x0))
m Bδ(x0)

and let (µt)t∈[0,1] be a W2-geodesic joining them. From [GRS16] the dynamic optimal transference
plan ν representing (µt)t∈[0,1] is a test plan. We thus reach a contradiction:

t−
ǫ

2
≤

∫

f dµ0 −

∫

f dµ1 ≤

∫

|∇f | |γ̇| dν ≤ t− ǫ+ 2δ ≤ t−
3

4
ǫ.

This proves that the center xt is independent of t and thus { f < t } = Bt(x0).
Since f is continuous, it follows that f(x) = t for every x ∈ ∂Bt(x0) and every t ∈ [0,max f ], or in
other words f(x) = d(x0, x) for every x ∈ supp(u). The claim is given by composing with u∗ both
sides in this equality.

Remark 5.3. A natural question is whether the condition |∇u| 6= 0 m-a.e. is sharp in Theorem 5.1.
Clearly, if u is a constant function, also the decreasing rearrangement u∗ is constant; hence u, u∗

achieve equality in the Polya-Szego inequality but one cannot expect to infer anything on the
space. However in the next Theorem 5.4 we show that, as soon as u is non constant, the equality
in Polya-Szego forces the space to be a spherical suspension. The proof of such a statement is
more delicate than step 1 of Theorem 5.1 and builds on top of the almost rigidity for Lévy-Gromov
inequality. As already observed in Remark 1.8, the condition |∇u| 6= 0 m-a.e. is necessary to infer
that u(·) = u∗ ◦ d(x0, ·), even knowing a priori that the space is a spherical suspension with pole
x0 and that u achieves equality in Polya-Szego.

Theorem 5.4 (Space rigidity in the Polya-Szego inequality). Let (X, d,m) be an RCD(N − 1, N)
space for some N ∈ [2,+∞) with m(X) = 1.
Let Ω ⊂ X be an open set such that m(Ω) = v ∈ (0, 1) and assume that there exists a nonnegative
function u ∈ W 1,p

0 (Ω), u 6≡ 0, achieving equality in the Polya-Szego inequality (1.5).
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Then (X, d,m) is a spherical suspension, namely there exists an RCD(N − 2, N − 1) space
(Y, dY ,mY ) with mY (Y ) = 1 such that (X, d,m) is isomorphic as a metric measure space to
[0, π] ×N−1

sin Y .

Proof. Let (un)n∈N be a sequence of Lipschitz functions with compact support in Ω such that
|∇un| 6= 0 m-a.e. on { un > 0 } for any n ∈ N approximating u in Lp(Ω,m) and in W 1,p energy
given by Lemma 3.6. Let u∗

n and u∗ be the decreasing rearrangements of un and u respectively.
The Lp-continuity of the decreasing rearrangement, together with the lower semicontinuity of the
p-energy and the Polya-Szego inequality, yield
∫ r(v)

0

|∇u∗|p dmN−1,N ≤ lim inf
n→∞

∫ r(v)

0

|∇u∗
n|p dmN−1,N ≤ lim sup

n→∞

∫

Ω

|∇un|p dm =

∫

Ω

|∇u|p dm.

(5.5)
It follows that (u∗

n)n∈N converges in W 1,p-energy to u∗, since by assumption u achieves the equality
in the Polya-Szego inequality.
Up to extracting a subsequence, that we do not relabel, we can assume that (u∗

n)n∈N converges to
u∗ both locally uniformly on (0, r(v)] and in W 1,p(([0, r(v)], deu,mN−1,N )), and moreover that both
the lim inf and the lim sup in (5.5) are full limits. Denoting by µn and µ the distribution functions
of un and u respectively, it follows that, for any t ∈ (0, supu∗) such that mN−1,N({ u∗ = t }) = 0,
it holds µn(t) → µ(t) as n → ∞.
Moreover, if we let fn := fun

be as in (3.27), then the improved Polya-Szego inequality (3.30)
grants that
∫

Ω

|∇un|
p

dm ≥

∫ sup u∗

n

0

(

I(X,d,m)(µn(t))

IN−1,N (µn(t))

)p

fn(t) dt ≥

∫ sup u∗

n

0

fn(t) dt =

∫

IN−1,N

|∇u∗
n|

p
dmN−1,N ,

which, combined with the equality in the equality in (5.5), gives

lim
n→∞

∫ sup u∗

n

0

((

I(X,d,m)(µn(t))

IN−1,N (µn(t))

)p

− 1

)

fn(t) dt = 0. (5.6)

Let us argue by contradiction and suppose that (X, d,m) is not isomorphic to a spherical sus-
pension. It follows from Theorem 2.7 that I(X,d,m)(v) > IN,N−1(v) for any v ∈ (0, 1). Since by
Proposition 2.14 we know that I(X,d,m) is lower semicontinuous on [0, 1] and IN−1,N is continuous
on [0, 1] and positive on (0, 1), we have that, for any 0 < ǫ < 1/2, there exists cǫ > 0 such that

inf
v∈[ǫ,1−ǫ]

{(

I(X,d,m)(v)

IN−1,N(v)

)p

− 1

}

> cǫ > 0. (5.7)

To conclude we observe that, thanks to the assumption that u is non constant and to what we
already observed, we can find 0 < t0 < t1 < t2 < t3 < supu∗, 0 < ǫ < 1 and n0 ∈ N such that the
following hold true:

∫

{ t1<u∗<t2 }

|∇u∗|p dmN−1,N > 0, (5.8)

{ t1 < u∗ < t2 } ⊂ { t0 < u∗
n < t3 } for any n ≥ n0 (5.9)

and
µn(t) ∈ [ǫ, 1 − ǫ] for any t ∈ [t0, t3] and n ≥ n0. (5.10)

Combining (5.9) with the Lp(mN−1,N ) convergence of |∇u∗
n| to |∇u∗| and the coarea formula, we

obtain that

lim inf
n→∞

∫ sup u∗

n

0

fn(t) dt ≥ lim inf
n→∞

∫

{ t0<u∗

n<t3 }

|∇u∗
n|

p
dmN−1,N ≥

∫

{ t1<u∗<t2 }

|∇u∗|
p

dmN−1,N .

(5.11)
Eventually, putting (5.7) together with (5.8) and (5.11), we obtain

lim inf
n→∞

∫ sup u∗

n

0

((

I(X,d,m)(µn(t))

IN−1,N(µn(t))

)p

− 1

)

fn(t) dt ≥ cǫ

∫

{ t1<u∗<t2 }

|∇u∗|
p

dmN−1,N > 0,

contradicting (5.6).

Theorem 1.6 follows from Theorem 5.1, Remark 5.2 and Theorem 5.4.
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5.2 Rigidity in the p-spectral gap

The goal of this section is to investigate the rigidity in the p-spectral gap inequality (for Dirichlet
boundary conditions), i.e. to prove Theorem 1.9.

Theorem 5.5 (Domain-Rigidity for the p-spectral gap). Let (X, d,m) be an RCD(N−1, N) space.
Let Ω ⊂ X be an open set with m(Ω) = v for some v ∈ (0, 1) and suppose that λp

X(Ω) = λp
N−1,N,v.

Then (X, d,m) is isomorphic to a spherical suspension and the topological closure of Ω coincides
with the closed metric ball centred at one of the tips of the spherical suspension of m-measure v.

Proof. Suppose that λp
X(Ω) = λp

N−1,N,v. Let u ∈ W 1,p
0 (Ω) be a non-negative eigenfunction with

‖u‖Lp = 1 associated to the first eigenvalue λp
X(Ω), whose existence is granted by Theorem 4.3.

Then Theorem 1.4 gives:

λp
N−1,N,v =

∫

Ω

|∇u|
p
w dm ≥

∫ r

0

|∇u∗|
p

dmN−1,N ≥ λp
N−1,N,v,

where, as before, r is defined by mN−1,N ([0, r]) = m(Ω) = v. Hence equality holds true in all the
inequalities so that u∗ is an eigenfunction of the p-Laplacian associated to the first eigenvalue on
the one dimensional model space ([0, r], deu,mN−1,N). It follows from the corresponding ODE that
u∗ ∈ C0([0, r]) ∩ C1((0, r)) and it is strictly decreasing.

Hence, taking into account Remark 3.14, (3.29) holds true so that

λp
N−1N,v =

∫

Ω

|∇u|
p
w dm ≥

∫ sup u∗

0

(

Per({u > t})

IN−1,N(µ(t))

)p

fu(t) dt ≥

∫ sup u∗

0

fu(t) dt = λp
N−1,N,v.

Therefore it must hold
Per({u > t}) = IN−1,N (µ(t)), (5.12)

for L 1-a.e. t such that fu(t) 6= 0.
In particular there exists at least one level t0 such that the super-level set {u > t} is optimal

for the Lévy-Gromov inequality. Thus we are in position to apply Theorem 2.8 to conclude that
(X, d,m) is isomorphic, as a metric measure space, to a spherical suspension.

Moreover the C1 regularity of u∗, together with Sard’s lemma, grants that the set of those
levels t such that (5.12) holds true is dense in (0, supu∗) (actually it is a full L 1-measure set).
In particular we can find a sequence (tn)n∈N monotonically converging to 0 from above such that
{u > tn} is optimal in the Lévy-Gromov inequality. It follows from the continuity of the model
profile IN−1,N and the lower semicontinuity of the perimeter w.r.t. L1 convergence that {u > 0} is
optimal in the Lévy-Gromov inequality itself. Since {u > 0} is an open subset and supp(m) = X ,
part (iii) of Theorem 2.8 implies that there exists an RCD(N − 2, N − 1) space (Y, dY ,mY ) such
that X ≃ [0, π] ×N−1

sin Y and

[0, r) × Y \ { u > 0 } or (π − r, π] × Y \ { u > 0 }

is an open set of m-measure zero, hence it is empty. Without loss of generality we can assume the
first case holds and therefore [0, r) × Y ⊂ { u > 0 }.
Note that the topological closure of [0, r) × Y is [0, r] × Y . Moreover, observing that [LMP05,
Corollary 5.7] grants that u is strictly positive on Ω, we obtain that the topological closure of {u >
0} coincides with Ω̄, the topological closure of Ω. Applying once more part (iii) of Theorem 2.7 and
taking into account the assumption that m has full support we can also say that { u > 0 } ⊂ [0, r]×Y .
The desired conclusion Ω̄ = [0, r] × Y follows.

Recall that, in the case of smooth Riemannian manifolds, the eigenfunction associated to the
first eigenvalue on a smooth domain (with Dirichlet boundary conditions) is always simple (see
for instance [KL06] for an elementary proof). In order to prove that in the case of rigidity in the
spectral gap inequality also the eigenfunction must coincide with the radial one, we will exploit a
generalization of such a principle to the case of our interest.
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Theorem 5.6 (Eingenfunction-Rigidity for the p-spectral gap). Let (X, d,m) be an RCD(N−1, N)
space isomorphic to a spherical suspension and let Ω ⊂ X be an open subset whose topological
closure coincides with a closed metric ball centred at one of the tips of the spherical suspension
satisfying λp

X(Ω) = λp
N−1,N,v, m(Ω) = v ∈ (0, 1).

Then, for any 1 < p < +∞, the eigenfunction associated to the first eigenvalue of the p-Laplace
equation with homogeneous Dirichlet boundary conditions on Ω is unique up to a scalar factor (and
it coincides with the radial one).

Proof. Since the closure of Ω coincides with the closed ball and Ω is open, we can infer that Ω is
contained in the open ball. It follows that proving the statement we can suppose without loss of
generality that Ω is an open ball centred at one of the tips of the spherical suspension. Indeed,
any first Dirichlet eigenfunction on Ω is a first Dirichlet eigenfunction on the open ball.

We wish to adapt the idea of [KL06, Lemma 3.2] to this fairly more general setting: we claim
that, if v1, v2 ∈ W 1,p

0 (Ω) are both non-negative eigenfunctions associated to the first eigenvalue
of the p-Laplace equation with homogeneous Dirichlet boundary conditions on Ω, defining v :=

(vp
1 + vp

2)
1

p we obtain that v ∈ W 1,p
0 (Ω) has Rayleigh quotient strictly smaller than v1 (and v2),

unless v1 and v2 are proportional.

Step 1: v := (vp
1 + vp

2)
1

p ∈ W 1,p
0 (Ω) and is a first Dirichlet p-eigenfunction.

Since v1, v2 ∈ W 1,p
0 (Ω) we can find sequences (fn)n∈N and (gn)n∈N of non-negative Lipschitz func-

tions with compact support in Ω such that fn → v1 and gn → v2 in Lp(Ω,m) and
∫

|∇fn|
p

dm →
∫

|∇v1|
p
w dm (and analogous statement for v2). Introduce now hn := (fp

n + gp
n)

1

p . It is simple to
check that hn ∈ LIPc(Ω) and hn → v in Lp(Ω,m). Moreover the pointwise inequality

|∇hn|p (x) ≤ |∇fn|p (x) + |∇gn|p (x),

holds true on Ω for any n ∈ N, hence v ∈ W 1,p
0 (Ω). Furthermore it holds that

∫

Ω

|∇v|pw dm ≤

∫

Ω

|∇v1|pw dm +

∫

Ω

|∇v2|pw dm. (5.13)

Since ‖v‖
p
Lp = ‖v1‖

p
Lp + ‖v2‖

p
Lp and v1, v2 are eigenfunctions associated to the first eigenvalue,

equality actually holds true in (5.13) and v is a first eigenfunction of the Dirichlet p-Laplacian.
The proof in the smooth case goes on by proving that it must hold |∇v|

p
= |∇v1|

p
+ |∇v2|

p
on

Ω and then turning this information into the equality ∇ log v1 = ∇ log v2 which gives the desired
conclusion.
The non-smooth setting requires some care, in particular we will call into play the notion of tangent
module of a metric measure space (see [G18]).

Step 2: It holds |α∇ log v1+β∇ log v2|w = α|∇ log v1|w+β|∇ log v2|w, m-a.e., where α :=
vp

1

vp

1
+vp

2

and β :=
vp

2

vp

1
+vp

2

; moreover |∇ log v1|w = |∇ log v2|w, m-a.e. .

Denote by Lp
loc(TΩ) the module of locally Lp(m)-integrable vector fields on Ω.

Observe that [LMP05, Theorem 5.1] grants continuity of v1, v2 on Ω (and therefore local bounded-
ness), while [LMP05, Corollary 5.7] ensures that they are also locally bounded away from 0. Hence
the following identity between elements of the Lp

loc-normed L∞-module Lp
loc(TΩ) makes sense and

is justified by the chain rule:

∇v = v

(

vp
1

vp
1 + vp

2

∇ log v1 +
vp

2

vp
1 + vp

2

∇ log v2

)

.

An application of the defining properties of normed moduli and Jensen’s inequality yield now that
m-a.e. on Ω it holds

|∇v|pw ≤vp

(

vp
1

vp
1 + vp

2

|∇ log v1|w +
vp

2

vp
1 + vp

2

|∇ log v2|w

)p

≤vp

(

vp
1

vp
1 + vp

2

|∇ log v1|
p
w +

vp
2

vp
1 + vp

2

|∇ log v2|
p
w

)

= |∇v1|
p
w + |∇v2|

p
w .

(5.14)
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Since v, v1, v2 are all first eigenfunctions it follows that equality holds true m-a.e. in all the above
inequalities. Equality in (5.14) implies

|α∇ log v1 + β∇ log v2|w = α|∇ log v1|w + β|∇ log v2|w, m-a.e., (5.15)

where α :=
vp

1

vp

1
+vp

2

and β :=
vp

2

vp

1
+vp

2

satisfy α, β ∈ (0, 1), α+ β = 1.

Moreover, equality in Jensen’s inequality yields

|∇ log v1|w = |∇ log v2|w, m-a.e.. (5.16)

Step 3: in case p = 2, then ∇ log v1 = ∇ log v2 m-a.e. in the sense of L2
loc-modules.

Let us first consider the case p = 2. In this case, equality in the triangle inequality (5.15) forces
equality in the Cauchy-Schwartz inequality

〈α∇ log v1, β∇ log v2〉 = |α∇ log v1|w |β∇ log v2|w, m-a.e.,

which in turn gives
∇ log v1 = γ∇ log v2 m-a.e., (5.17)

for some non-negative function γ. Combining (5.17) with (5.16), we get the desired conclusion

∇ log v1 = ∇ log v2 m-a.e., (5.18)

in the sense of L2
loc(TΩ)-modules.

Step 4: Conclusion.
Recall that, by assumption, Ω̄ = [0, R]×T is a closed metric ball centred at a tip of the spherical sus-
pension X = [0, π]×N−1

sin Y , for some RCD(N−2, N−1) space (Y, dY ,mY ) and λp
X(Ω) = λp

N−1,N,v.
In order to handle the case of a general p ∈ (1,+∞), observe that the function obtained as composi-
tion of the distance from a tip of a spherical suspension with the one dimensional first eigenfunction
of the p-Laplacian on ([0, R], deu,mN−1,N) is a first eigenfunction on Ω, moreover we also know it
has locally bounded gradient. Thus, choosing v1 to be this particular eigenfunction, the identity
(5.16) gives that any other first p-eigenfunction on Ω has locally bounded gradient. In particular
both ∇ log v1 and ∇ log v2 belong to L2

loc(TΩ). Thus we reduced to the case p = 2 and we conclude
that (5.18) holds.
Summarizing, we proved that if v1 is the radial first eigenfunction and v2 is any other first eigen-
function of the p-Laplacian, it holds ∇ log v1 = ∇ log v2 as elements of Lp

loc(TΩ).
In order to conclude the proof we next show that v2 ≡ cv1 for some constant c ∈ R.
To this aim, for any r0 < r1 ∈ (0, R) let

Γr0,r1 := {γr0,r1

y,ε ∈ Geo(X) : γr0,r1

y,ε (t) =
(

t(r0−ε)+(1−t)(r1−ε), y
)

, t ∈ [0, 1], ε ∈ [0, r0/2], y ∈ Y }.

Define νr1,r2 ∈ P(Geo(X)) by

dνr0,r1(γ) :=
1

m([r0/2, r0] × Y )
χΓr0,r1 dm(γ(0)),

where χΓr0,r1 is the characteristic function of Γr0,r1 .
Since by assumption m(t, y) = sinN−1(t)L 1(t) ⊗ mY (y), it is easily seen that there exists Cr1,r2

∈
(0,∞) so that

(et)♯(ν
r1,r2) ≤ Cr1,r2

m, for all t ∈ [0, 1].

Therefore νr1,r2 is a test plan and we get

1

m([r0/2, r0] × Y )

∫

r0

2

0

∫

Y

| log(v1/v2)(r1 − t, y) − log(v1/v2)(r0 − t, y)| dmY (y) sinN−1(t) dt

=

∫

Geo(X)

|(log(v1/v2))(γ1) − (log(v1/v2))(γ0)| dνr0,r1 (γ)

≤

∫

|∇(log v1 − log v2)|w dνr0,r1(γ) = 0.
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Hence, for all r0 < r1 ∈ (0, R), we obtain that log(v1/v2)(r0 − t, y) = log(v1/v2)(r2 − t, y) for
mY -a.e. y ∈ Y and L 1-a.e. t ∈ (0, r0/2). Since both v1 and v2 are continuous, we infer that there
exists a continuous function f : Y → (0,+∞) such that v1(t, y) = f(y)v2(t, y) for all (t, y) ∈ Ω.

Now, by chain rule, we get that log f ∈ W 1,p(Y, dY ,mY ) and ∇ log f(y) = ∇ log v1(t, y) −
∇ log v2(t, y) = 0 for mY -a.e. y ∈ Y and L 1-a.e. t ∈ (0, R). By the Sobolev-to-Lipschitz property
holding on RCD(K,∞) spaces [AGS14b], we get that log f ∈ LIP(Y ) with Lip(log f) = 0; hence
there exists c ∈ R so that f(y) = c for all y ∈ Y and we conclude that v2 ≡ cv1, as desired.

The combination of Theorem 5.5 and Theorem 5.6 gives Theorem 1.9.

6 Almost rigidity in the Dirichlet p-spectral gap

This section is dedicated to an almost-rigidity result which seems new even for smooth Riemannian
manifolds. The idea is to argue by contradiction, exploiting on the one hand the compactness of
the class of RCD(N − 1, N) spaces with respect to measured Gromov Hausdorff convergence and,
on the other hand, the compactness/lower-semicontinuity of the functionals involved.
The following result will play a key role in the compactness argument.

Lemma 6.1. Let (vn)n∈N be a sequence of functions in W 1,p (([0, r], deu,mN−1,N)) such that
vn(r) = 0 for any n ∈ N. Assume that (vn)n∈N converge in Lp([0, r],mN−1,N ) and in energy
to v ∈ W 1,p (([0, r], deu,mN−1,N)). Define

fn(t) :=

∫

|∇vn|
p−1

d Per({vn > t}), f(t) :=

∫

|∇v|
p−1

d Per({v > t})

and let ηn := fnL 1 and η := fL 1. Then ηn ⇀ η in duality with bounded and continuous functions.

Proof. We begin by observing that any function inW 1,p (([0, r], deu,mN−1,N)) is continuous in (0, r].
Indeed this result is well known in the case when, instead of mN−1,N , the interval is equipped with
the Lebesgue measure; in the case of our interest it suffices to observe that the density of mN−1,N

w.r.t. L 1 is uniformly bounded from below on [ǫ, r] for any ǫ > 0. Moreover, by an analogous
argument, functions in W 1,p(([0, r], deu,mN−1,N)) with uniformly bounded p-energies are uniformly
Hölder continuous on [ǫ, r] for any ǫ > 0.

In view of what we remarked above, up to extracting a subsequence we can assume that (vn)n∈N

converges to v uniformly on [ǫ, r] for any ǫ > 0 (recall that vn(r) = 0 for any n ∈ N). Moreover we
can assume that the measures γn := |∇vn|

p
dmN−1,N weakly converge to γ := |∇v|

p
dmN−1,N .

We need to prove that for any bounded and continuous function ϕ : [0,+∞) → R it holds

lim
n→∞

∫

ϕ(t)fn(t) dt =

∫

ϕ(t)f(t) dt. (6.1)

To this aim we observe that, thanks to the coarea formula, it holds

∫

ϕ(t)fn(t) dt =

∫

ϕ(t)

(
∫

|∇vn|
p−1

d Per({vn > t})

)

dt

=

∫

ϕ(vn(x)) |∇vn|
p

(x) dmN−1,N (x)

for any n ∈ N (and an analogous identity holds true for f). Thus, in order to prove (6.1), it remains
to prove that

lim
n→∞

∫ r

0

ϕ(vn(x)) |∇vn|
p

(x) dmN−1,N (x) =

∫ r

0

ϕ(v(x)) |∇v|
p

(x) dmN−1,N (x). (6.2)

To this aim we observe that for any ǫ > 0 it holds that ϕ ◦ vn converge uniformly to ϕ ◦ v on [ǫ, r],
hence

lim
n→∞

∫ r

ǫ

ϕ(vn(x)) |∇vn|
p

(x) dmN−1,N (x) =

∫ r

ǫ

ϕ(v(x)) |∇v|
p

(x) dmN−1,N (x). (6.3)
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Moreover, calling M := maxϕ, it holds that

lim sup
n→∞

∣

∣

∣

∣

∫ ǫ

0

ϕ ◦ vn |∇vn|
p

dmN−1,N −

∫ ǫ

0

ϕ ◦ v |∇v|
p

dmN−1,N

∣

∣

∣

∣

≤ 2M

∫ ǫ

0

|∇v|
p

dmN−1,N (6.4)

and the right hand-side in (6.4) goes to 0 as ǫ goes to 0. Therefore, in order to prove (6.2), it
is sufficient to split the interval of integration into [0, ǫ] and [ǫ, r], pass to the lim sup as n → ∞
taking into account (6.3) and (6.4) and then to let ǫ ↓ 0.

A proof of the following useful result can be found for instance in [AGS15, Lemma 3.3]. It will
play a key role in the forthcoming proof of Theorem 1.10.

Lemma 6.2 (Joint lower semicontinuity). Let (ηn)n∈N be a sequence of finite Borel measures
weakly converging to a measure η in duality w.r.t. bounded and continuous functions. Let moreover
fn, f : R → [0,+∞) be such that

f(t) ≤ lim inf
n→∞

fn(tn)

for any sequence (tn)n∈N such that tn → t. Then it holds that

∫

f(t) dη(t) ≤ lim inf
n→∞

∫

fn(t) dηn(t).

We can now prove the almost rigidity in the p-spectral gap Theorem 1.10.

Proof of Theorem 1.10.
Let us argue by contradiction. If the conclusion is false there exist ǫ > 0, a sequence (Xn)n∈N of
RCD(N − 1, N) spaces (with mn(Xn) = 1) and open domains Ωn ⊂ Xn such that mn(Ωn) = v,
λp

X(Ωn) ≤ λp
N−1,N,v + 1

n and

dmGH ((Xn, dn,mn), (X, d,m)) ≥ ǫ (6.5)

for any spherical suspension (X, d,m).
By the very definition of λp

X(Ω) and thanks to the approximation result of Lemma 3.6, for any
n ∈ N \ {0} we can find a nonnegative function un ∈ LIPc(Ωn) with |∇un| (x) 6= 0 for mn-a.e.
x ∈ { un > 0 } such that ‖un‖Lp(mn) = 1 and

∫

Ωn

|∇un|
p

dmn ≤ λp
X(Ωn) +

1

n
≤ λp

N−1,N,v +
2

n
.

Call µn (respectively fn) the distribution function of un (respectively the function associated
to un as in (3.27)). Recalling (3.27), (3.28) and applying (3.30) to the function un we obtain

∫ r

0

|∇u∗
n|p dmN−1,N ≤

∫ sup u∗

n

0

(

I(Xn,dn,mn)(µn(t))

IN−1,N (µn(t))

)p

fn(t) dt ≤ λp
N−1,N,v +

2

n
, (6.6)

where, as usual, r is given by mN−1,N([0, r]) = v. As a first consequence of (6.6) we obtain that,
up to extracting a subsequence, u∗

n weakly converges in W 1,p (([0, r], deu,mN−1,N)) to a function
u∗. Moreover the convergence is uniform on [ǫ, r] for any ǫ > 0 so that in particular u∗(r) = 0. By
the lower semicontinuity of the p-energy, we know that

∫ r

0

|∇u∗|
p

dmN−1,N ≤ lim inf
n→∞

∫ r

0

|∇u∗
n|

p
dmN−1,N ≤ λp

N−1,N,v.

Hence u∗ is the first eigenfunction of the p-Laplacian on the model space ([0, r], deu,mN−1,N) with
unit Lp-norm satisfying u∗(r) = 0. In particular u∗

n converges to u∗ in Lp and in W 1,p-energy.
It follows that u∗ has negligible level sets so that, taking into account the local uniform convergence
of the functions u∗

n to u∗, we obtain the pointwise convergence of the distribution functions µn to
the distribution function µ of u∗.
Moreover, using Lemma 6.1 we get that the sequence of measures ηn := fnL 1 weakly converges
to η := fu∗L 1 in duality with bounded and continuous functions.
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By compactness of the class of RCD(N − 1, N) metric measure spaces w.r.t. measured Gromov
Hausdorff convergence, there exists an RCD(N − 1, N) space (X, d,m) such that (a subsequence
of) (Xn)n∈N converges to it in the measured Gromov Hausdorff sense.
Introduce now functions gn and g by

gn(t) :=

(

I(Xn,dn,mn)(µn(t))

IN−1,N(µn(t))

)p

, g :=

(

I(X,d,m)(µ(t))

IN−1,N(µ(t))

)p

,

for any t ∈ [0,+∞). Proposition 2.14, together with the pointwise convergence of the distribution
functions, yields that

g(t) ≤ lim inf
n→∞

gn(tn) (6.7)

for any t ∈ [0,∞) and for any sequence (tn)n∈N such that tn → t as n → ∞.
Applying Lemma 6.2 with functions gn, g and measures ηn and η, we conclude that

∫ sup u∗

0

(

I(X,d,m)(µ(t))

IN−1,N(µ(t))

)p

fu∗(t) dt ≤ lim inf
n→∞

∫ sup u∗

n

0

(

I(Xn,dn,mn)(µn(t))

IN−1,N(µn(t))

)p

fn(t) dt ≤ λp
N−1,N,v,

where the last inequality follows from (6.6).
Summarizing, we proved that

λp
N−1,N,v =

∫ sup u∗

0

fu∗(t) dt ≤

∫ sup u∗

0

(

I(X,d,m)(µ(t))

IN−1,N(µ(t))

)p

fu∗(t) dt ≤ λp
N−1,N,v.

Hence it must hold
I(X,d,m)(µ(t)) = IN−1,N(µ(t))

for at least one value of t such that µ(t) 6= 0, 1. Therefore (X, d,m) is isomorphic to a spherical sus-
pension by Theorem 2.8. But this is in contradiction with (6.5) since the sequence (Xn, dn,mn)n∈N

is converging to (X, d,m) in the mGH sense. �
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