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Abstract

The first part of the thesis serves as an introduction to modelling of flow
and transport in porous media from the perspective of reservoir simu-
lation. We discuss generation of computational grids and discretization
strategies, and look at some of the main components that make up a reser-
voir simulator: discrete operators, linearization strategies, linear solvers,
and nonlinear solvers. The second part consists of nine papers that present
novel work on efficient solution strategies applicable to field-scale reser-
voir simulation. These strategies are primarily based on sequential split-
ting of the governing equations into a flow and transport subproblem.

In the first two papers, we consider novel techniques for generation
of high-quality Voronoi grids that conform to 2D surface constraints rep-
resenting geological features like faults and fractures, and 1D line con-
straints representing complex well trajectories. The flow problem has a
strong elliptic character, and the first and third paper also study consistent
discretization methods for elliptic (Poisson-type) flow equations with em-
phasis on numerical errors and computational efficiency. Flow equations
can be solved efficiently using so-called multiscale methods. The fourth
paper describes a dynamically adaptive, iterative multiscale method with
improved convergence that uses additional coarse partitions to target fea-
tures in the geological model and/or adapt to dynamic changes in the flow
field.

The transport problem typically has a strong hyperbolic character. In
the fifth and sixth papers, we use this to devise robust adaptive damp-
ing strategies for Newton’s method that delineate different contraction re-
gions in the residual function. In the seventh paper, we also exploit uni-
directional flow properties to develop a local nonlinear solver that topo-
logically sorts the grid cells according to the flow direction. By travers-
ing the grid cells in this order, the nonlinear transport subproblems can
be solved locally in a highly efficient manner. We apply this to acceler-
ate the simulation of the widely used black-oil equations, discretized by
first- and second-order discontinuous Galerkin methods. The eighth paper
extends the method to compositional problems, and combines discontinu-
ous Galerkin methods with a simple adaptive dynamic coarsening strategy
to further accelerate the simulation of fine-scale transport equations. The
last paper present a robust and efficient framework for adaptive dynamic
coarsening, and combines this with our local nonlinear solvers.
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Part I

Background





Chapter 1

Introduction

This thesis focuses on the development of robust, efficient and accurate
methods for solving partial differential equations describing flow and trans-
port in porous media. In mathematics, solutions methods for such equa-
tions are typically studied with a generic perspective, with emphasis on
properties like existence and uniqueness of solutions, stability, convergence
proofs, error estimates, etc. This necessarily requires that we make simpli-
fying assumptions that unfortunately tend to make the results less inter-
esting from an application point of view.

The work herein therefore aims to develop new methods that can read-
ily be implemented in commercial and open-source software used for prac-
tical engineering applications. Such methods must meet the special re-
quirements of the application in order to be accepted and adopted for
industry use, even if these may seem peculiar from a generic point of
view. Methods should of course be mathematically sound, but theoreti-
cal proofs of asymptotic behavior and superior performance on idealized
cases is much less important than performance observed on realistic model
instances and for practically achievable discrete resolutions. Moreover, un-
derstanding the underlying physics of the model equations is crucial in
order to devise new numerical methods that gain efficiency by utilizing
causality, sparsity, and weak(er) couplings within the systems of model
equations.

The introductory part of this thesis therefore tries to give an overview
of simulation of flow in porous media, as seen from the perspective of a
mathematician developing new numerical methods. We also try to outline
challenges that are common for many porous media applications, as well
as issues that are specific to reservoir simulation.

1



2 Introduction

1.1 Flow in porous media

Research on flow in porous media has a wide range of applications. In
Norway, the first that perhaps comes to mind is recovery of hydrocarbons
from petroleum reservoirs, either for use as fossil fuels, or as key compo-
nents in petrochemical products such as lubricants, fertilizers, and plastics.
Understanding the physical processes involved in flow of oil and gas in a
petroleum reservoir is crucial to ensure that the recovery is economically
viable, and at the same time safe. The latter is particularly important when
the reservoir is located underneath the seabed, where leakage of hydrocar-
bons into the sea may have widespread negative consequences for aquatic
organisms.

Whereas the world is likely to depend on petroleum resources for many
years to come, a shift towards renewable energy is considered important
to mitigate the effects of climate change. Flow in porous media fits nat-
urally into this development: Geothermal energy is an example of a re-
newable resource that can be exploited by injecting and extracting fluids
in geothermally heated subsurface aquifers [11]. Capturing CO2 from in-
dustrial processes for storage in subsurface reservoirs has been identified
as a key technology in order to reduce emission to an acceptable level [86].
Moreover, approximately 30% of the world’s freshwater is contained in un-
derground aquifers, which amounts to more than 90% of our readily avail-
able freshwater resources [168]. A large amount of the world’s population
relies on exploitation of these resources for drinking water. A thorough un-
derstanding of subsurface processes is crucial for all of these technologies:
The full potential of a geothermal energy system can only be exploited by
understanding the dynamics of heat transfer in the aquifer; storing CO2
underground only makes sense if we can make sure it will stay there for
hundreds or thousands of years; whereas avoiding contamination and en-
suring sustainable management of the world’s freshwater reserves are im-
perative for the world’s population.

1.2 Petroleum reservoirs

Sedimentary rocks are formed by the accumulation and deposition of par-
ticles in bodies of water covering the Earth’s surface. This process is ex-
tremely slow – the buildup of particles amounts to a few vertical centime-
ters every hundred years. The particles originate either from erosion of
mineral rocks, or from dead aquatic organisms, giving rise to different lay-
ers, or strata: Layers of mineral particles form clastic rocks such as sand-
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stones and mudrocks, whereas skeletons from aquatic organisms break up
into particles that form limestone and other carbonate rocks. The transition
from layers of particles to a solid rock formation is called lithification, and
is driven by pressure from the overlying body of water and heating from
the center of the Earth. Different layers with different rock properties are
referred to as beds. Geological activity forms fractures and faults across
these beds, and stretching and breaking of the continental crust leads to
the formation of sedimentary basins. It is in such basins we usually find
petroleum reservoirs.

Alongside this geological activity, the organic constituents of the aquatic
organisms, in particular plankton and algae, also deposit on the seabed.
These are eventually trapped within the pores of the subsurface rock, where
the high temperature from the center of the Earth and pressure of the over-
burden act together as a pressure cooker. The result is kerogen, which
over the course of approximately one to a hundred million years forms hy-
drocarbons in the form of crude oil and natural gas. As the overburden
pressure increases due to further deposition, the hydrocarbons migrate
upwards in the porous rock formation, where they either escape, or get
trapped under a layer of confining of rock. Figure 1.1 illustrates a reservoir
with a fault and a pinch-out formed by geological activity. Brine, oil and
gas are trapped in a layer of permeable sandstone, delineated by imperme-
able mudrock.

To extract hydrocarbons from a petroleum reservoir, wells are drilled
into the porous rock formation. During primary production, the reservoir
pressure is often so high that it pushes oil and gas to the surface through
these wells. In some cases, a pump can be used at the surface to increase
the pressure difference. However, as the reservoir pressure decreases, the
flow of oil and gas out of the reservoir will decline and eventually stop.
In a second phase, called secondary recovery, water or gas is injected to
increase the reservoir pressure and further drive the oil and gas towards
the producing wells.

Water injection, or water flooding, is particularly popular, especially in
off-shore reservoirs where water is abundant. A common problem with
this, is that injected water tends to follow high-flow zones through the
reservoir to the nearest production well. In addition, the high viscosity
of oil relative to water forces the injected water to form viscous fingers in
the oil. As a result, water injection typically leaves large parts of the reser-
voir unswept, and consequently a large fraction of the reservoir oil and gas
remains unexploited. A telling example is petroleum production on the
Norwegian continental shelf, where oil production from secondary recov-
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Figure 1.1: Reservoir with fault and a pinch out. Impermeable layers of mudrock
delineate a region with permeable brine-filled sandstone. The upper mudrock
layer acts as a cap under which oil and gas are trapped.

ery started to decline in 2000. The average recovery factor (i.e., recoverable
amount of hydrocarbons) in this region is 46% [111], and approximately
half of the petroleum resources is assumed to remain in the reservoir with
standard water injection [182]. In comparison, this is still well above the
world average of 22%.

To exploit as much as possible of the remaining hydrocarbon resources
in a reservoir, one may turn to tertiary recovery. Commonly referred to as
enhanced oil recovery (EOR) techniques, this includes injecting chemical
and biological substances that alter the properties of the reservoir oil and
gas, and the porous rock formation itself. Examples include injection of
polymers to increase water viscosity, solvent gas to dilute and mobilize
heavy and viscous oil, and surfactants to reduce the interface tension be-
tween the hydrocarbons and the porous rock.

EOR techniques have proven very effective for on-shore reservoirs. In
off-shore applications, on the other hand, factors such as long distances
between injection and production wells, limited storage space on the pro-
duction facilities, and severe consequences of leakage into the sea, make
the economic potential of EOR highly uncertain. To justify the expenses re-
lated to EOR techniques, it is therefore necessary to demonstrate its efficacy
on a field scale through reservoir simulation.
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1.3 Reservoir simulation

The ultimate goal of reservoir simulation is to predict how the aqueous and
hydrocarbon fluids will flow through the reservoir with different injection
strategies to determine an optimal recovery plan. In this setting, an optimal
plan is typically the one that maximizes net present value, given a number
of constraints such as regulatory requirements, drilling and injection costs,
and environmental concerns. Schematically, a reservoir simulation model
can be said to consist of three parts: (i) a geological model describing the
subsurface reservoir; (ii) a flow model that describes how fluids flow in the
porous media, including conservation laws and constitutive relations; and
(iii) models for the wells and production facilities. Figure 1.2 illustrates the
different parts. Together, these are the ingredients we use to translate the
physical problem of flow in porous media into computer code.

Developing robust, efficient, and accurate reservoir simulation technol-
ogy involves a number of disciplines, including geology, physics, mathe-
matics, computer science, and of course petroleum engineering. The math-
ematical challenges, which are the focus of this thesis, are numerous. For
example, generating suitable computational grids is seriously complicated
by the fact that such grids need to adapt to orders-of-magnitude local vari-
ations in rock properties, complex geological layering with erosions and
interbedding, structures such as fractures or faults, and possibly a large
number of wells with deviated trajectories. Computational grids therefore
tend to have skewed and irregular cell geometries, which makes it chal-
lenging to construct robust discretizations for the systems of partial differ-
ential equations that govern the fluid flow. The linear systems arising from
these discretizations tend to be ill-conditioned for the same reasons. More-
over, the governing equations are typically coupled and nonlinear. This
is particularly true for EOR simulations, for which the equations are often
strongly coupled and highly nonlinear, and numerical diffusion tends to
mask the true EOR effects in field-scale simulations.

This thesis covers a number of topics related to reservoir simulation, all
with emphasis on fast an accurate simulation of EOR. Gridding, i.e., the
process of constructing a computational grid to describe the reservoir and
discretize the flow equations, is discussed in Paper I and Paper II; spatial
discretizations for the pressure part of the model equations are covered in
Paper I and Paper III, whereas spatial discretizations for the transport of
fluid phases and components are discussed in Paper VII and Paper VIII;
linear solvers are considered in Paper IV; and nonlinear solvers are dis-
cussed in Papers V – IX. The following chapters give a brief introduction
to these different topics.
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Figure 1.2: Components of a reservoir simulator: the geological model, the flow
model, and the model for wells and production facilities. The middle figure and
the well model contains figures from [111] and from Paper VII.



Chapter 2

Physical and Mathematical
Aspects of Flow in Porous
Media

Flow in porous media is a truly multiscale phenomenon in the sense that
physical processes occur over a wide range of spatial and temporal scales:
Properties of the subsurface rock vary with several orders of magnitude
over a wide range of length scales. Moreover, pressure changes propagate
quickly over large distances, at least in conventional reservoirs, whereas
movement of fluids is typically slow and mostly local. In this chapter,
we discuss some of the basic physical and mathematical aspects associ-
ated with flow in porous media. These represent core building blocks for
our simulation model: the geological model, the flow model, and the well
model.

2.1 Single-phase flow

Transport of fluids is governed by conservation of mass. Consider a fluid
with density ρ(x, t) that moves with velocity ~v(x, t) at a given time t and
coordinate x, illustrated in Figure 2.1. In this figure, Ω(t) is a volume that
encloses the same fluid particles at all times. The mass in this volume is

∫

Ω(t)
ρ(x, t)dx.

The coordinate x(t) can be thought of as the position of a particle advected
by the fluid. Since the volume follows the same fluid particles at all times,

7
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x(t) Ω(t)

~v

Figure 2.1: The volume Ω(t) encloses the same fluid particles at all times. The
coordinate x(t) can be thought of as a passive particle that moves with the fluid
at a velocity ~v.

we must have that

d
dt

∫

Ω(t)
ρ(x, t)dx = 0. (2.1)

By a change of coordinates to a stationary reference frame and assuming
the integrand is continuous, we can show that

d
dt

∫

Ω(t)
ρ(x, t)dx =

∫

Ω(t)

(
dρ

dt
+ ρ(∇ ·~v)

)
dx.

Since x is the position of a passive particle advected by the fluid, we have
that ∂tx = ~v, so that the first term in the integrand can be written

dρ

dt
=

∂ρ

∂t
+

∂x
∂t
· ∇ρ =

∂ρ

∂t
+~v · ∇ρ.

Inserting this into the equation above gives us the famous Reynolds trans-
port theorem:

d
dt

∫

Ω(t)
ρ(x, t)dx =

∫

Ω(t)

(
∂ρ

∂t
+∇ · (ρ~v)

)
dx. (2.2)

We made no assumptions on the volume Ω(t) apart from that it follows the
same fluid particles. Assuming the integrand in the right-hand side of (2.2)
is positive at some point, it follows from continuity that there exists a do-
main Ω(t) so that the integral (2.1) is also positive. This is a contradiction,
and we can conclude that the integrand must be zero everywhere. There-
fore, conservation of mass is described by the following partial differential
equation (PDE)

∂ρ

∂t
+∇ · (ρ~v) = ρq. (2.3)
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Here, we have added the term ρq to the right-hand side to model fluid
sources/sinks, where q is the flow rate of the source/sink. Equation (2.3)
is an example of a transport equation, which generally takes the form

∂tM+∇ · ~F = Q. (2.4)

For (2.3), these terms read

M = ρ, ~F = ρ~v, Q = ρq, (2.5)

and we refer to them as the mass (M), flux (~F ), and source/sink (Q) terms,
respectively. Note that if the fluid is incompressible, ∂tM = 0 and ~F =
ρ∇ ·~v, so that (2.3) divided by the constant density ρ simplifies to

∇ ·~v = q.

Representative elementary volumes and Darcy’s law

In addition to boundary and initial conditions, we need an equation de-
scribing the fluid velocity ~v. As explained in Chapter 1, porous rock for-
mations typically consist of small pores between grains of solid. The di-
ameter of these pores depends on the rock type, and may vary from a few
millimeters and down to as little as a few nanometers. As an example,
accurate representation of a sandstone sample of 11.39 mm3 from [55] re-
quires a resolution of 3003 voxels. Direct numerical simulation of flow at
the pore scale in this small sample would require in the order of 10 million
unknowns. Pore-scale simulation of a real reservoir is therefore far out of
reach for modern-day computers. Moreover, obtaining pore-scale data for
an entire subsurface reservoir is impossible in practical applications. In-
stead, we consider a domain much larger than a typical pore, and let ~v be
the apparent macroscopic velocity of a set of particles moving through the
domain with the fluid, defined as the effective volumetric discharge per
cross-sectional area. Figure 2.2 illustrates such a domain, which we refer to
as a representative elementary volume (REV).

The apparent macroscopic velocity is also known as the Darcy velocity,
named after the French hydraulic engineer Henry Darcy. By considering
gravity-driven flow through a container filled with sand, he derived what
we refer to as Darcy’s law, which in modern notation reads

~v = − 1
µ
K(∇p− ρg∇z). (2.6)
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Solid rock

Void space

Figure 2.2: Pore network in a porous rock, with two levels of zoom. The first
has a fairly uniform spatial distribution of pores and is therefore a representative
elementary volume (REV) for the rock. The second, however, is so small that the
resulting pore distribution is very heterogeneous, and is therefore not an REV. The
pore network is inspired by an example from [125].

Here, p is the fluid pressure, ρ is the density, g the gravitational accel-
eration, and z the vertical coordinate. The absolute permeability K is a
proportionality factor that measures the REV’s ability to transmit a fluid.
Generally, this is a tensor, and may be written in matrix form as

K =



Kxx Kxy Kxz
Kyx Kyy Kyz
Kzx Kzy Kzz


 . (2.7)

If all diagonal terms are equal, Kxx = Kyy = Kzz, and all off-diagonal
terms are zero, the absolute permeability is isotropic. In the general case,
we refer to it as anisotropic. The permeability tensor will always be sym-
metric and positive definite [111, Chapter 2], and its SI unit is m2. It is,
however, commonly given in units darcy (d), which equals approximately
0.987× 10−12m2, or in millidarcy (md), which is more appropriate in reser-
voir simulation. We also associate with the REV an effective porosity φ
that measures the fraction of the bulk volume that can store and transmit
fluids. Note that the term Darcy velocity is misleading: Since the macro-
scopic Darcy velocity is defined as volume per area occupied by the fluid
per time, the macroscopic fluid velocity equals the Darcy velocity divided
by φ. Figure 2.3 illustrates permeability and porosity for the REV in Fig-
ure 2.2.

With these concepts, we can state a closed system of equations that gov-
erns single-phase flow in porous media:

(φρ)t +∇ · (ρ~v) = ρq

~v = − 1
µ
K(∇p− ρg∇z).

(2.8)
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K

φ = 0.39

Pore-scale flow in REV Upscaled Darcy flow in REV

Solid rock
Pore

Figure 2.3: The pore network induces a complex flow pattern through the porous
medium, here visualized by brown streamlines, but can be represented as a much
simpler upscaled macroscopic Darcy velocity by considering a representative ele-
mentary volume (REV) with an effective permeability K and porosity φ. The pore
network is inspired by an example from [125].

Note that we have multiplied ρ with φ, since the fluid can only occupy
the pore volume. This means that in this case, M = φρ. To close the
system, we must also specify boundary conditions and the initial state. For
incompressible flow, ∂tM = 0, and we may write (2.8) (omitting gravity
effects) as

−∇ · 1
µ
K∇p = q, (2.9)

which we recognize as the Poisson equation with variable coefficient.

2.2 Multiphase and multicomponent flow

Single-phase flow equations are hardly ever sufficient to model real hydro-
carbon reservoirs, which generally comprise a multitude of hydrocarbon
components that may exist in e.g., liquid (`) or vapor (v) phase, as well as
smaller amounts of non-hydrocarbon natural gases such as nitrogen, hy-
drogen sulfide, and helium. The formation also contains brine water, rep-
resented as an aqueous (a) phase. Hydrocarbon components may dissolve
into the brine, and the water may evaporate into steam at high tempera-
tures. Moreover, unless the reservoir is chemically inert, the liquid and va-
por phases can undergo geochemical reactions with each other and/or the
rock surface. To further complicate matters, enhanced oil recovery involves
injection of chemical species like CO2, polymers, surfactants, solvents, and
other chemical or biological agents that alter properties of the rock forma-
tion, the resident fluids, and their interaction with each other, and possibly
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θ < π/2 (water-wet) θ = π/2 θ > π/2 (oil-wet)

Water

Oil

Rockσas σ`sσ`s

σ`a

θ

Figure 2.4: The wettability of a system is determined by the fluid/rock contact
angle θ. The different quantities in (2.10) are shown to the left, with water as the
aqueous phase (a), and oil as the liquid phase (`).

also create new fluid phases (gels, foams, (micro)emulsions) and precipi-
tation of solids. In other words, a proper multiphase and multicomponent
flow formulation is usually required to properly describe flow and trans-
port in subsurface rocks. In this section, we first consider a few multiphase
concepts, before briefly discussing multicomponent formulations.

Wettability and capillary pressure

If we consider two immiscible fluid phases at the pore scale, the cohesive
forces between two molecules within the same phase will be greater than
the adhesive forces between two molecules in different phases. Effectively,
molecules at the interface between the two phases form a surface. The force
required to change the shape of this surface is measured by the surface ten-
sion. Similarly, molecules in a fluid phase will also experience adhesive
forces toward the rock surface. The phase with stronger attraction to the
rock surface is called the wetting phase, whereas the other phase is referred
to as the non-wetting phase. Young’s equation (see, e.g. [30]) gives the rela-
tionship between the liquid–water interface energy σ`a, the contact angle θ,
and the interface energy σαs between phase α and the solid:

σ`a cos θ = σ`s − σas. (2.10)

This contact angle is a measure of the wettability of the system: The system
is called water-wet if 0 ≤ θ < π/2, and oil-wet if π/2 ≤ θ < π. The
quantities are shown in Figure 2.4.

The surface tension leads to a pressure difference across the interface
between the two phases:

pc = pn − pw,
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where subscripts w and n denote the wetting- and non-wetting phase, re-
spectively. This pressure difference is called the capillary pressure. In reser-
voir simulation, capillary pressure is typically modelled as a function of
the fractions of pore volume that the different phases occupy. We refer to
these fractions as saturations, and denote the saturation of phase α by Sα.
We assume that reservoir fluids exist in either the liquid, vapor or aqueous
phase, and that they occupy the entire accessible pore volume, so that

Sa + S` + Sv = 1.

During the formation of a petroleum reservoir, hydrocarbons migrate up-
wards in the porous rock formation and displace resident water. Because
of the surface tension, the migrating oil and gas will typically not displace
all the in-place water, but leave behind an irreducible water saturation Sar.
Generally, the residual saturation Sαr of phase α is a function of the pore-
space topology, and the phases’ affinity to wet the rock relative to the other
phases.

For three-phase fluid systems, is common to model capillary pressure
separately for the liquid-water and liquid-vapor contact as

pa
c(Sa) = p` − pa, pv

c (Sv) = pv − p`.

Capillary pressure plays a key role in allowing or preventing hydrocarbons
to migrate into a porous rock formation and displace the in-place forma-
tion water. However, capillary forces are often weak compared to viscous
and buoyancy forces for conventional reservoirs. Figure 2.5 shows cap-
illary pressure curves for the Norne oil and gas field [87] and the SPE9
Benchmark [96]. Notice that capillary pressure pv

c between the liquid and
vapor phase increases with increasing vapor saturation Sv, since the liquid
phase is the wetting phase of the two.

Relative permeability

From (2.6), we see that the rate at which a single fluid phase flows through
a porous medium is governed by the permeability K. Intuitively, interfacial
tension between fluid phases means that the flow rate of one phase should
also depend on the other phases present in the pores. This is modelled by
introducing relative permeabilities (see, e.g., [136]):

Keff
α = kr,αK.

In most cases, the interfacial tension between different phases results in a
reduction in the effective permeability, so that kr,α ∈ [0, 1]. In cases where
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Figure 2.5: Capillary pressure curves for the Norne oil and gas field (left), and
the SPE9 benchmark (right). The liquid-vapor capillary pressure is identically
equal to zero in the Norne fluid model, and slightly greater than zero in the SPE9
fluid model (notice the different y-axes). Note that the capillary pressure curve
in the Norne fluid model is used match real data from the reservoir by scaling it
differently in different parts of the model.

the non-wetting phase is more viscous, however, the wetting phase may
act as a lubricant, so that kr,n may take on values greater than one [147].

Since Sαr represents the minimum saturation at which phase α becomes
mobile, it follows that kr,α(Sα) = 0 for Sα ≤ Sαr. The relative permeabil-
ity of a phase is typically assumed to be a monotone function of satura-
tion. Whereas relative permeability can be experimentally measured by
analyzing core samples, analytic functions remain popular due to signifi-
cant uncertainties related to experimental data [30]. The most common is
the Brooks-Corey power law

kr,α(Sα) = kmax
r,α

(
Sα − Sαr

1−∑β 6=α Sβr

)nα

, (2.11)

where exponent nα and the maximum relative permeability kmax
r,α are used

to fit experimental data. The model gets its name from the similarity to the
expressions derived by Brooks and Corey [35] for two-phase liquid-water
flow. Figure 2.6 shows two examples of Brooks-Corey relative permeabil-
ities with exponents nw = nn = 2, but with different residual saturations
and maximum relative permeabilities.

Most models for three-phase relative permeability are based on com-
bining relative permeability models for two-phase oil-water (kr,`a) and oil-



2.2. Multiphase and multicomponent flow 15

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Sw

kr,wkr,n

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Sw

kr,w

kr,n

Sr,w 1 − Sr,n
kmax

r,n

kmax
r,w

Figure 2.6: Brooks-Corey relative permeabilities with nw = nn = 2. Relative per-
meabilities in the right figure have residual saturations Sr,α > 0 and maximum
relative permeabilities kmax

r,α < 1. The different quantities are indicated in the fig-
ure.

gas (kr,`v) systems, e.g.,

kr,`(Sa, S`, Sv) = ωa(Sa, Sv)kr,`a(S`) + ωv(Sa, Sv)kr,`v(S`),

ωa(Sa, Sv) =
Sa − Sar

Sa + Sv − (Sar + Svr)
,

ωv(Sa, Sv) = 1−ωa(Sa, Sv).

See [16] for a review. Figure 2.7 shows three-phase relative permeabilities
from the Norne field model and the SPE9 Benchmark.

Hysteresis

The process when a non-wetting fluid migrates upwards into a porous rock
formation and displaces the resident wetting phase is known as drainage. In
an REV of this formation, the residual wetting-phase saturation will then
equal Swr. The reverse process, i.e., when the wetting phase displaces the
non-wetting phase, is known as imbibition. During this process, some of the
non-wetting phase tends to be trapped in small pores as a result of inter-
facial tension. In effect, the residual saturation of the non-wetting phase is
different during drainage and imbibition. This, and other pore-scale phe-
nomena such as variations in wettability between fluid phases, effectively
means that the relative-permeability and capillary-pressure functions will
be different during drainage and imbibition. This is known as hysteresis,
and is a direct effect of that we are explaining microscopic and pore-scale
effects through upscaled constitutive relations valid for REVs.
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Figure 2.7: Relative permeabilities from one real and one realistic model. The left
plot shows (unscaled) relative permeabilities from the Norne field model, whereas
the right plot shows relative permeabilities from the SPE9 benchmark. Relative
permeabilities for the Norne filed model have different endpoint scaling in differ-
ent parts of the reservoir.

Governing equations for multiphase flow

We have now introduced the basic concepts of multiphase flow in porous
media, most notably permeability, porosity, and saturation. We commonly
refer to these and related properties as petrophysical properties. With these
concepts, we can state the governing equations for imisscible multiphase
flow at the macro-scale:

∂tMα +∇ · ~Fα = Qα, α = a, `, v, (2.12)

where
Mα = φραSα, ~Fα = ρα~vα, Qα = ραqα, (2.13)

and the macroscopic Darcy velocity is given by

~vα = −λαK(∇pα − ραg∇z), λα =
kr,α

µα
. (2.14)

Here, we have introduced the mobility λα of phase α. Finally, we have a set
of closure relations for phase saturations and pressures,

Sa + S` + Sv = 1, pα
c = p` − pα, α = a, v.

Compositional flow

As mentioned in the beginning of this section, reservoir fluids usually con-
sist of a number of hydrocarbon components that, at least in principle, can
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be distributed among all three fluid phases. Compositional flow can be
modeled by introducing phase mass fractions Xα,c that denote the fraction
of component c present in phase α. If Mα,c is the mass of component c in
phase α, the corresponding mass fraction is

Xα,c =
Mα,c

∑m
i=1 Mα,i

,

where m is the number of components. The mass, flux, and source terms
for component c in phase α read

Mα,c = φραXα,cSα, ~Fα,c = ραXα,c~vα, Qα,c = ραXα,cqα.

The component mass fractions and phase saturations can be determined by
imposing thermodynamic equilibrium, as predicted by a chosen equation
of state. Since we have interphase mass transfer, the conserved quantity is
now component mass

∂tMc +∇ · ~Fc = Qc,

where

Mc = ∑
α=a,`,v

Mα,c, ~Fc = ∑
α=a,`,v

~Fα,c, Qc = ∑
α=a,`,v

Qα,c.

With m number of components, we get m such equations. The mass frac-
tions of all components in a phase must sum to unity, giving an additional
closure relation for each phase,

m

∑
c=1

Xα,c = 1, α = a, `, v.

For many applications, it may be sufficient to lump together compo-
nents with similar properties into pseudo-components. A particularly pop-
ular model that does this is the black-oil model, which gathers the hydrocar-
bon molecules into two pseudo-components that appear as oil and gas at
surface conditions, respectively. Developed by and for the petroleum in-
dustry, the model uses equations of state that are defined through formation-
volume factors Bc, or the reciprocal shrinkage factors bc = 1/Bc, and the
solubility ratios rs and rv. The shrinkage factor bc is defined as the ra-
tio of volume occupied by the same number of molecules of (pseudo)-
component c at surface conditions relative to the volume at reservoir con-
ditions. The solubility of gas in oil is modeled by rs. This is defined as
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the volume of gas at standard conditions that at reservoir conditions can
be dissolved into the amount of oil that forms a unit volume at so-called
stock-tank conditions. Similarly, vaporization of oil into the vaporous gas
phase is modeled by rv, defined as the volume of surface condensate oil
that can be vaporized in a unit volume of surface gas at reservoir condi-
tions; see, e.g., [111, Chapter 11] for a thorough explanation to these con-
cepts. In the black-oil model, the aqueous phase is assumed to consist of
the water component only, so that the mass, flux, and source terms for this
phase are given by (2.13) with α = w. The mass, flux, and source terms for
the oil (o) and gas (g) pseudo-components read

Mo = φ(boSo + bgrvSg), Mg = φ(bgSg + borsSo),
~Fo = bo~vo + bgrv~vg, ~Fg = bg~vg + bors~vo,
Qo = boqo + bgrvqg, Qg = bgqg + borsqo.

(2.15)

Note that an accurate description of the fluids in a petroleum reservoir
should also account for thermal effects, diffusion of components due to
concentration gradients, and chemical reactions. Treatment of these phe-
nomena is outside the scope of this thesis.

2.3 Geological models

It is clear from the discussion in Section 2.1 that porous rock formations
show large local variations in their ability to transmit fluids. Reservoirs are
in many cases also delineated into different flow compartments by faults or
other sealing mechanisms. The first step in accurate description of flow in
a subsurface reservoir is therefore an accurate description of the reservoir
geology.

Geological data from a subsurface reservoir are hard to obtain, espe-
cially when the reservoir is located off-shore and buried hundreds or thou-
sands of meters underneath the seabed. Available information then typi-
cally consists of data from geophysical (seismic, electromagnetic) surveys,
as well as logs and core samples extracted from a small number of wells
drilled from the porous rock at strategical points. These data, along with
a conceptual understanding of the geological history of the reservoir rock,
are used by the geomodeller to determine the stratigraphic layering and
sedimentology of the reservoir. Since data points are scarce, computational
tools like geostatistical techniques and/or process simulations are used to
fill in plausible missing pieces to obtain a geological model that represents
the full reservoir volume. This model consists of a collection of small REVs,
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Porosity

Permeability Kx = Ky (md)

Permeability Kz (md)

Figure 2.8: Porosity and permeability from Model 2 of the SPE10 benchmark
study. The blue line shows Layer 10, which is part of the Tarbert formation,
whereas the red line shows Layer 80, which is part of the Upper Ness formation.
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commonly referred to as cells, with distinct petrophysical properties like per-
meability and porosity.

Figure 2.8 shows Model 2 from the 10th SPE Comparative Solution
Project [41], which is an artificial geological model that is widely used as a
benchmark for reservoir simulation. This model consists of 60× 220× 85
rectangular cells of 20 × 10 × 2 ft3, and is a geostatistical realization of
the Jurrasic Brent formations in the northern North Sea region. The top
35 horizontal layers have properties from the Tarbert formation, which is
made up of shallow-marine sandstone and coal beds, whereas the next
50 layers have properties from the Upper Ness formation, consisting of
an intertwined pattern of fluvial sandstone channels on a background of
low-permeable mudrock and coal beds. The petrophysical properties are
highly heterogeneous and has permeability values spanning eight orders
of magnitude. Note that the ratio of horizontal to vertical permeability is
exaggerated in this benchmark in order to make it challenging to upscale,
which we will discuss in the next section.

Figure 2.9 shows a geological model of the Norne oil and gas field from
the Norwegian Sea, first made openly available by the NTNU IO-Center
[87] and later by the Open Porous Media (OPM) initiative [143]. The inset
shows a number of faults, which together delineate a sealed compartment
in the full model. This compartment makes up the oil and gas reservoir,
with porosity ranging from 0.09 to 0.35. The figure also shows two differ-
ent vertical slices of the model. Notice how geological activity has shifted
different parts of the model in the vertical direction, creating faults. Fig-
ure 2.10 shows the permeability, which spans four orders of magnitude.

While not part of the geological model, resident fluid properties are also
part of the reservoir description, since different regions of a reservoir usu-
ally also have different relative permeability and capillary pressure curves.
A more detailed discussion of geological models aimed at mathematicians,
computer scientists, and other non-geologists can be found in e.g., [111,
Chapter 2]

Upscaling

Even though a geological model is significantly less detailed than a pore
network description, spatial resolution of contemporary geological mod-
els will nonetheless tend to be too high to allow simulations to be per-
formed directly on the model. Moreover, there are usually large uncertain-
ties associated with a geological model, so that we often have a number of
equally probable model realizations of the same reservoir. Therefore, even
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Porosity

Figure 2.9: Geological model of the Norne oil and gas field in the Norwegian Sea.
The inset on the left shows a number of faults that delineates the active part of the
model. The porosity of this part is indicated by color, with two highlighted slices.

Permeability Kx = Ky (md) Permeability Kz (md)

Figure 2.10: Permeability of the Norne oil and gas field. The cut-out shows that
the model has large local variations in permeability, especially in the vertical di-
rection.

with sufficient computing power available, it is more common to perform
many simulations of different realizations of the same reservoir at a some-
what coarser resolution instead of performing a single direct simulation of
a highly resolved geological model.

The process of obtaining a coarse version of a geological model is called
upscaling, and amounts to propagating properties from the fine geological
model to a model with a lower number of cells. Petrophysical properties
of a cell in the upscaled model are often computed by averaging the prop-
erties of cells in the fine model that comprise the coarse cell. A review of
different upscaling techniques can be found in e.g., [151, 65, 68, 18, 40]. An
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Figure 2.11: Radial flow into a vertical wellbore of diameter rw and height h. Fig-
ure from [111].

important result of the upscaling process is that cells tend to get anisotropic
and full-tensor permeabilities, which make the subsequent flow simula-
tions more demanding than for models with isotropic properties.

Upscaling methods are not discussed much further in this thesis, but
form an important background for our work on multiscale methods in Pa-
per IV and adaptive coarsening methods in Paper IX.

2.4 Wells

Wells are drilled into a reservoir to extract fluids (typically a mixture of
hydrocarbons and formation water) out of the reservoir and inject other
fluids into the reservoir (typically water or gas, possibly with chemical
and/or biological substances) to maintain pressure and/or displace the
resident fluids. In its simplest form, a well is a hole with a radius from
5 to 40 inches, but in most cases, the hole is cased with steel and cement
and equipped with perforations or more advanced valve systems that al-
low fluids to flow between the reservoir and wellbore, i.e., the void space
inside the well that is connected to the surface. Injection wells are often
operated at a constant injection rate, whereas production wells are usually
operated at a constant bottom-hole pressure, defined as the pressure at a cer-
tain depth (usually the lowest perforation) inside the wellbore. In a real
production scenario, wells can also be controlled by a number of param-
eters such as maximum bottom-hole pressure; oil-, gas-, and water-rates;
total volumetric rate; etc.

Flow near the wellbore usually takes place on a smaller scale compared
with flow in the rest of the reservoir. It is therefore common to introduce
some kind of analytical or semi-analytical model to determine the flow



2.4. Wells 23

rates in/out of wells and the pressure drop in the near-well region. If we
consider steady-state, single-phase, radial flow into a vertical wellbore, as
depicted in Figure 2.11, the mass termM is constant, and we can rewrite
(2.8) in cylinder coordinates as

1
r

∂

∂r
(rρv) = 0, (2.16)

where v = v(r) is the radial Darcy velocity. We obtain v = C/ρr for some
constant C. With this formula and a given injection rate q, we can integrate
over a small cylinder with radius r around the wellbore to get

q =
∫ h

0

∫ 2π

0
rρv(r)dθ dz = 2πhC. (2.17)

This gives C = q
2πh , which we insert into Darcy’s law to get

v =
q

2πρh
= −K

µ

dp
dr

.

Rearranging and integrating from the wellbore radius rw to an arbitrary
radius r > rw, this reads

q
2πhK

∫ r

rw

1
r

dr =
∫ r

rw

ρ

µ

dp
dr

dr =
(

ρ

µ
p
) ∣∣∣

r

rw
+
∫ r

rw

p
∂

∂r

(
ρ

µ

)
dr.

Density and viscosity will generally both increase with pressure, and the
fraction ρ/µ will therefore typically vary much less than the pressure p
with respect to r. Assuming ρ/µ to be constant, we get the expression

p(r) =
qµ

2πhKρ
ln
(

r
rw

)
+ pw. (2.18)

Expressions for idealized scenarios such as (2.18) are hardly represen-
tative for realistic scenarios: the flow is rarely single phase and perfectly
radial for a variety of reasons. The permeability is often altered nonuni-
formly in the near-well region during drilling and completion, the flow
is affected by buoyant forces, resident and injected fluids exist in multi-
ple phases and comprise a multitude of components, and the wellbore is
hardly ever fully vertical. In fact, the characteristic ”pancake-topology” of
petroleum reservoirs means that horizontal well trajectories with bends and
branches are much more effective. Figure 2.12 illustrates the complexity of
a real well with multiple branches from the Troll oil and gas field in the
North Sea by superimposing it on the streets of Manhattan.
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Figure 2.12: Horizontal well from the Troll oil and gas field in the North Sea,
superimposed on Manhattan, New York for perspective. Figure by Baker Hughes
Inc, published under the creative commons CC-BY-SA-4.0 license.

Needless to say, closed-form expressions that take all these effects into
account are generally not possible to obtain, and it is more common to
use subscale models that represent the subscale variations in the near-well
zone in an averaged sense. One example is Peaceman-type well models,
which are widely used in reservoir simulations. First derived by Muskat
and Wyckoff [136], and developed further by Peaceman [145, 144] by us-
ing analytical solutions to an infinitely repeated pattern of producers and
injectors in a so-called five-spot configuration, such models relate the av-
erage cell pressure to the pressure at the wellbore using expressions of the
form (2.18). A more in-depth discussion of such well models can be found
in [111, Chapter 4].

Wells are in most cases the primary controls that determine flow inside
a reservoir, which has lead to development of a number of models that aim
to represent more complex wells and near-well flow. This includes mecha-
nistic models to represent changes of the permeability in the near-well zone
because of hydraulic fracturing and filter-cake buildup, as well as special-
ized solution algorithms to handle cross-flow, where fluids flow into one
part of the wellbore, and out of another part [155]. So-called multisegment
well models have been introduced to model multiphase effects, fluid stor-
age, and better account for pressure drops caused by chokes and valves,
downhole pumps and separators, and frictional forces in long horizontal
wells [170, 82].



Chapter 3

Discretization Schemes

With a geological model equipped with petrophysical properties, a fluid
model with governing equations and constitutive relations, and a model
for wells and production facilities, we can now translate the problem of
fluid flow in a subsurface reservoir into computer code by means of numer-
ical methods. We start by writing conservation of mass for an immiscible
phase α (2.12) on residual form,

Rα := ∂tMα +∇ · ~Fα −Qα = 0. (3.1)

In this chapter, we will consider discretization of the different terms in this
equation. The discretization of compositional and black-oil equations is
analogous.

3.1 Temporal discretization

The most common temporal discretizations used in reservoir simulation
are special cases of the general θ scheme. By denoting the unknowns (in
our example, saturations Sα and pressures pα) as u, we writeMα =Mα(u)
to signify thatM depends on the unknowns u. Moreover, we write un to
signify that the unknowns are evaluated at a discrete time tn, and introduce
the short-hand notationMn

α :=Mα(un). With this notation, the θ scheme
written in residual form reads

Rn+1
α =

1
∆t

(Mn+1
α −Mn

α)

+ θ
(
∇ · ~F n+1

α −Qn+1
α

)
+ (1− θ)

(
∇ · ~F n

α −Qn
α

)
= 0,

(3.2)

where ∆t = tn − tn−1 denotes the time step. The value of θ determines the
method: θ = 0 gives the explicit forward Euler method and θ = 1 gives

25
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the implicit backward Euler method, which are both first-order accurate,
whereas θ = 1/2 yields the Crank-Nicholson method, which is formally
second-order accurate. Description of these methods can be found in any
standard textbook on numerical mathematics, see e.g., [174].

An explicit scheme (θ = 0) yields a linear residual equation (3.2), mean-
ing that we can solve a linear system of residual equations to advance the
solution one timestep ∆t from time tn to tn+1. The main drawback is that
this formulation is only conditionally stable and generally puts limitations
on the choice of time steps. For reservoir simulation, these restrictions are
rather severe, as we will come back to in more detail in Section 3.4, and
explicit methods are thus rarely used in engineering computations.

The implicit scheme (θ = 1), on the other hand, is unconditionally
stable, and is therefore the standard approach to reservoir simulation of
black-oil type models. The implicit scheme results in a system of nonlinear
residual equations, and we must typically use a nonlinear solver like New-
ton’s method to find its solution. This can be computationally demanding,
and much research has thus been invested in formulating solution strate-
gies that decouple the flow equations, either at the continuous or (semi-
)discrete level, so that they can be solved more efficiently using some kind
of divide-an-conquer approach.

It is also possible to combine the two methods by using different values
for θ in different parts of the reservoir, which is commonly referred to as
the adaptive implicit method (AIM) [177].

Sequential splitting

The physical quantities involved in (3.1) exhibit very different physical be-
havior: Given a reservoir in equilibrium, a well that suddenly starts inject-
ing fluids will create a pressure transient that results in a rapidly moving
pressure pulse through the reservoir. This pulse will drive the fluid trans-
port. The transport is significantly slower, and will mostly take place lo-
cally, seen as a slowly propagating fluid front. At the temporal scales of in-
terest in reservoir simulation, we can say (somewhat simplified) that pres-
sure is a parabolic variable with a strong elliptic character, whereas fluid
transport is parabolic with a strong hyperbolic character [24, 111]. This
mixed mathematical character can be exploited when discretizing (3.1) by
splitting the equations into subproblems for flow and transport [193, 180]
that then can be solved sequentially.
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Flow

We can construct a flow equation for the evolving pressure at the semi-
discrete level as the weighted sum of the conservation equations

Rn+1
F = ∑

α=a,`,v
ωαRn+1

α = 0, (3.3)

where the decoupling weights ωα satisfy

∑
α=a,`,v

∂u(ωαMn+1
α ) = 0 for all non-pressure variables u.

In a sequential solution strategy, the flow equation (3.3) is first solved for
one of the phase pressures pα and for the total Darcy velocity

~v = ~va +~v` +~vv,

while keeping the transport quantities (saturations and mass fractions)
fixed.

Neglecting compressibility and gravity, the weights for (3.1) are simply
1, which gives the flow equation

Rn+1
F =

φ

∆t

(
∑ α

Sn+1
α −∑ α

Sn
α

)
+∇ ·

(
∑ α

~vn+1
α

)
+ ∑ α

qn+1
α = 0.

Because of the closure relation, the termsMF = ∑ α Sα = 1 at time n and
n + 1 cancel. The source/sink term is simply QF = qT = ∑ α qα, and with
no capillary effects (pα = p), we can use Darcy’s law to write the flux term
as

~FF = − ∑
α=a,`,v

λαK∇p = −λTK∇p.

This gives the flow equation

Rn+1
F = −∇ · λTK∇pn+1 + qn+1

T = 0,

where we have introduced the total mobility λT = ∑ α λα. Note that in this
simple case, summation of the continuous residual equations (3.1) would
result in an analogous continuous pressure equation. This is generally
true for immiscible, incompressible multiphase flow, where the weights
are ωα = 1/ρα. For more complex scenarios such as compositional simu-
lation, analytic expressions for the decoupling weights are cumbersome to
compute, and the decoupling is usually done once the equations are fully
discretized in time and space, see e.g., [44, 133].



28 Discretization Schemes

Explicit transport

After solving the flow equation with fixed transport quantities, the trans-
port equations Rn+1

α = 0 must be solved to advance the solution in time.
One possible approach is to do this explicitly, e.g., by setting θ = 0 in (3.2).
For immiscible multiphase flow, this gives a trivial transport equation on
the form

Sn+1
α =

1
(φρα)n+1

(
(φραSα)

n + ∆t
(
∇ · ~F n

α −Qn
α

))
.

Explicit transport is usually combined with an implicit treatment of the
flow equation, and if both equations are advanced with the same time
step1, the resulting method is commonly referred to as the IMplicit Pres-
sure, Explicit Saturation (IMPES) method [44, 43]. As with any explicit
method, this requires that the timestep satisfies the Courant–Friedrichs–
Lewy (CFL) condition, given that the spatial discretization of the transport
equation involves a computational grid. We will come back to this later.

Implicit transport

If we instead set θ = 1 and solve the transport equations implicitly, we
need expressions for the phase velocities ~vn+1

α at timestep n + 1. We can
obtain this by using the total velocity ~vT to reformulate the expression for
the phase velocities

~vα = fα

(
~vT +K ∑

β=a,`,v
λβ[~Gα − ~Gβ]

)
, (3.4)

where we have introduced the terms

fα =
λα

λa + λ` + λv
, and ~Gα = ραg∇z−∇pα

c . (3.5)

We refer to fα as the fractional flow function, which for two-phase flow usu-
ally has a characteristic S shape. Figure 3.1 shows fractional flow func-
tions for two-phase flow with simple Brooks-Corey relative permeabili-
ties kr,α = S2

α and varying viscosity ratios between the wetting (w) and
non-wetting (n) phases. The figure also shows corresponding horizontal
1D displacement profiles for incompressible flow with constant injection

1Many authors also mistakenly refer to methods that subdivide the implicit pressure
step into multiple explicit substeps when solving the transport equation as IMPES, but
strictly speaking, such schemes should be called sequentially explicit.
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Figure 3.1: Different fractional flow functions and corresponding Buckley–
Leverett displacement profiles. The 1D reservoir is initially filled with the non-
wetting phase, and is displaced by the wetting phase. The relative permeability
exponent equals 2 for all profiles, but the the wetting- to non-wetting viscosity
ratio differs. The lowest ratio 1/5 (black) results in a weak and fast propagating
front, whereas a ratio of 5 gives a strong, piston-like displacement.
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Figure 3.2: Different wetting- to non-wetting density ratios changes the fractional
flow function. Notice that at the maximum, the sum of the viscous and gravity
part is greater than one, reflecting that when we have counter-current flow due to
gravity, the phase velocity ~vα can be greater than the total velocity ~v.

of the wetting phase through the left boundary, which is an example of a
Buckley–Leverett displacement. Figure 3.2 shows the fractional flow func-
tion for varying density ratios ρw/ρn, and its two components: the viscous
flux fw~vT, and the gravity flux fwKλn(~Gw− ~Gn). After solving the pressure
equation, the implicit transport equations Rn+1

α = 0 are reformulated by
inserting the fractional-flow expression (3.4) for the phase velocities, and
then solved to advance the transport solution in time.

The sequential splitting methodology is appealing not only because it
divides a large and coupled system of equations into two smaller subprob-
lems that are less expensive to solve, but also because it enables us to use



30 Discretization Schemes

Ωi
N (i)

Figure 3.3: Computational grid with polygonal cells in 2D. Cell Ωi is colored dark
gray, whereas its topological neighbors N (i) are colored light gray.

specialized solvers that exploit the distinctly different mathematical char-
acters of each subproblem. Therefore, it is an integral component in much
of the work in this thesis. On the other hand, there is no guarantee that
the method converges to the fully coupled solution when the coupling be-
tween flow and transport is strong. We will come back to this in Chapter 4,
where we also discuss specialized solvers for the different subproblems.

3.2 Computational grids

The starting point for almost any spatial discretization method is to subdi-
vide the computational domain Ω into nc non-overlapping cells {Ωi}nc

i=1,
which we refer to as our computational grid, or simply grid. Figure 3.3
shows an example of a computational grid in 2D with polygonal cells. The
figure shows an enlarged view of cell Ωi, and its topological neighbors
N (i). In the following, we will refer to a cell either by Ωi, or its index i.

Since a geological model consists of non-overlapping REVs, it can be
used directly as a computational grid. However, as mentioned in Sec-
tion 2.3, real geological models typically consist of so many cells that it is
necessary to use upscaling to construct a computational grid of reasonable
size. This grid should preferably adapt to important geological structures
and wells in the reservoir, since these have a direct impact on the the flow
pattern.

The de facto grid format in reservoir simulation is stratigraphic grids,
which were first introduced by Ponting [148]. Figure 3.4 illustrates the
construction of such grids: The starting point is a (structured) mesh of co-



3.2. Computational grids 31

Pillars Depth coordinates Hexahedral cell

Figure 3.4: Construction of a corner-point grid. Pillars are extended downwards
from a structured mesh, shown here as four black dots. Next, depth coordinates
are defined along each pillar, indicated by circles. Finally, two depth coordinates
on each of the four pillar defines a hexahedral grid cell.

ordinates covering the reservoir lateral area, with a pillar extending down-
wards into the formation from each point. A grid cell is defined by eight
corners given as two depth coordinates along the four pillars that delimit
the cell laterally, which is why the descriptive term corner-point grid is often
used. This construction induces a logical ijk-ordering of the grid cells, and
the resulting grid format can adapt to geological features such as faults,
fractures, and erosion. As such, stratigraphic grids are appealing from a
geological point of view. On the other hand, such grids are not able to
capture more complex geological features such as Y-shaped faults or easily
adapt to deviated and undulating well trajectories. The Norne field model
introduced in Figure 2.9 is an example of a stratigraphic grid.

One way to accurately conform to complex features in the reservoir is
to use an unstructured grid format. The grid in Figure 3.3 is an example of
an unstructured format called perpendicular bisector (PEBI) grid (see, e.g.
[79]). Also referred to as Voronoi diagrams, this type of grid is constructed
as the dual of a Delaunay triangulation with vertices {xi}nc

i=1: a vertex xi
in the triangulation defines a grid cell that consists of all points that are at
least as close to xi as any other vertex:

Ωi = {x ∈ Ω : |x− xi| < |x− xj| for all j 6= i}.

PEBI grids can be constructed so that they conform to surfaces representing
features like faults and fractures, and curves representing well paths, see
e.g., [124, 66]. In Paper I and Paper II, we introduce a new method for
generating PEBI grids that conform to surfaces and piecewise linear curves
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Salt dome Inclined, intersecting faults Y-shaped well paths

Figure 3.5: PEBI grids can be constructed to conform to complex features such as
geological surfaces, and honor intersecting faults and complex well paths. Figures
from Paper I and [111].

and enable spatially varying resolution; Figure 3.5 shows a few illustrative
examples.

3.3 Spatial discretization

Equipped with a computational grid, we are ready to derive a fully dis-
crete version of the conservation equations. For notational convenience, we
henceforth simply set θ = 1 in (3.2), which gives us the implicit backward
Euler method, and tactically postpone the rationale behind this choice un-
til after we have introduced spatial discretizations. MultiplyingRn+1

α with
a test function ψ in a function space V, and integrating in space over a cell
Ωi gives the weak formulation:

Find un+1 ∈ U such that for all ψ ∈ V, i = 1, . . . nc,

Rα,i(un+1, un, ψ) =
1

∆t

∫

Ωi

(
Mα(un+1)−Mα(un)

)
ψ dV

+
∫

Ωi

(
∇ ·

[
~Fα(un+1)ψ

]
− ~Fα(un+1) · ∇ψ

)
dV

−
∫

Ωi

Qα(un+1)ψ dV = 0.

(3.6)
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We get a fully discrete formulation by replacing the function spaces2 U and
V with suitable finite-dimensional subspaces Uh and Vh and replacing the
unknowns u and the test function ψ with approximations uh ∈ Uh and
ψh ∈ Vh.

By imposing continuity of the functions at the interface between differ-
ent cells, we obtain a continuous Galerkin (cG) method, whereas allowing
for discontinuity gives a discontinuous Galerkin (dG) method. A descrip-
tion of cG and dG is outside the scope of this introduction, and we refer the
interested reader to e.g., [152] for an introduction to dG methods applica-
ble to flow in porous media. Discontinuous Galerkin methods for black-oil
and compositional models are discussed in Paper VII and Paper VIII.

In the rest of this chapter, as well as in most of the papers that make
up the second part of this thesis, we focus on finite-volume methods (FV),
which can be seen as a special case of dG methods in which Vh is taken to
be the space of functions that are constant on each cell. This gives a robust
method that makes very few assumptions on cell geometry and topology,
and is therefore currently the industry-standard in reservoir simulation.
With this choice of Vh, the weak formulation (3.6) simplifies to

Rn+1
α,i =

1
∆t

∫

Ωi

(
Mn+1

α −Mn
α

)
dV +

∫

Ωi

∇ · ~F n+1
α dV −

∫

Ωi

Qn+1
α dV = 0.

(3.7)
In the following, we explain how to discretize the different terms in this
equation. First, we write the mass term as

∫

Ωi

Mn+1
α dV = |Ωi|Mn+1

α,i , (3.8)

where |Ωi| is the volume of cell i and subscript i indicates a volume aver-
age over Ωi. For immiscible, multiphase flow, the mass term readsMn+1

α,i =

(φραSα)
n+1
i , which we usually take to be the product of the individual cell

averages ρα,i and Sα,i, whereas φi is assumed constant over the cell. Dis-
cretizing the flux and source terms needs a more elaborate description.

Discretization of flux terms

In order to discretize the flux term, we first move the integral to the surface
∂Ωi of Ωi,

∫

Ωi

∇ · ~Fα dV =
∫

∂Ωi

~Fα ·~ni dS,

2On purpose, we do not specify these spaces in any detail, since different unknowns
and the test functions can potentially belong to different function spaces.
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xi
xij

Ωi

Ωj

Γij

~nij~cij

Figure 3.6: Cells Ωi and Ωj share a common interface Γij, with the interface normal
~nij oriented form cell Ωi to cell Ωj. The vector ~cij points from the cell centroid xi
of Ωi to the face centroid xij of Γij.

where~ni is the outward surface normal of ∂Ωi. Recalling thatN (i) denotes
the set of cells that share a common interface with cell i (see Figure 3.3), this
integral can be written as a sum

∫

∂Ωi

~Fα ·~n dS = ∑
j∈N (i)

∫

Γij

~Fα ·~nij dS = ∑
j∈N (i)

|Γij|~Fα,ij ·~nij. (3.9)

Here, Γij is the common interface between Ωi and Ωj, with normal ~nij
pointing from cell i to cell j, whereas |Γij| is the interface area, as depicted
in Figure 3.6. Analogous to the volume integrals, subscript ij indicates that
quantities inside the parenthesis are the areal average over Γij. Using again
immiscible multiphase flow as an example, the flux term (3.9) reads

∫

Ωi

∇ · ~Fα dV = ∑
j∈N (i)

|Γij|(φρα~vα)ij ·~nij.

Since we have assumed that our primary unknowns take on different con-
stant values in Ωi and Ωj, we must be careful when we define this areal
average.

Two-point flux approximation

In a finite-volume-setting, it is much more convenient to work with inter-
face fluxes rather than velocities. To this end, we define the flux across
interface Γij as

vij =
∫

Γij

~v ·~n dS = −
∫

Γij

λK(∇p− ρg∇z) ·~n dS, (3.10)
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where we have inserted Darcy’s law from (2.14), omitting the phase sub-
script α for readability. With this definition, vij is positive if the flow across
Γij is from Ωi to Ωj, and negative if it is from Ωj to Ωi. For the method to be
locally conservative, we must have that vij = −vji. First, consider the term
−K∇p. If we let pi and pij denote the pressure at the centroid of cell Ωi
and interface Γij, respectively, we can use finite differences to approximate
the pressure gradient

−
∫

Γij

K∇p ·~n dS ≈ |Γij|
(Ki~nij) ·~cij

|~cij|2
(pi − pij) = Ti,j(pi − pij). (3.11)

Here, ~cij is the vector from the cell centroid xi to the interface centroid xij,
as illustrated in Figure 3.6, and Ki is the constant permeability in Ωi. The
quantity Ti,j is referred to as the one-sided transmissibility. An analogous
expression holds for the term K∇z, with the vertical coordinates zi of the
cell centroid xi and zij of the interface centroid xij in place of pi and pij.

Imposing continuity of the face pressures, mobilities, and densities (pij =
pji, etc.), the approximations in cells Ωi and Ωj read

vij = λijTi,j
(
[pi − pij]− ρijg[zi − zij]

)
,

vji = λijTj,i
(
[pj − pij]− ρijg[zj − zij]

)
.

Since a conservative method requires vij = −vji, this can be simplified to

vij = λijTij
(
[pi − pj]− ρijg[zi − zj]

)
, (3.12)

where we have introduced the transmissibility

Tij =
(

T−1
i,j + T−1

j,i

)−1
, (3.13)

associating the permeabilities of cells i and j with their common interface.
This method is commonly referred to as the two-point flux approxima-

tion (TPFA) scheme: an easy-to-implement method that makes very few as-
sumptions on the grid geometry and topology. In fact, apart from the ver-
tical coordinate of the cell centroids, all the information we need from the
grid and petrophysical properties are contained in the graph ({Ωi}, {Tij})
defined using cells as nodes and transmissibilities as edges. For this rea-
son, TPFA is widely used in the reservoir simulation community, and the
standard method in most commercial simulators [111].

Since the method only uses two points to approximate the intercell
fluxes, it is only consistent for so-called K-orthogonal grids [7, 195], in
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Figure 3.7: A twisted Cartesian grid that is not K-orthogonal with respect to an
isotropic permeability tensor. Pressure boundary conditions are imposed on the
left and right sides, with no-flow conditions on the top and bottom. Correspond-
ing solutions using TPFA and the consistent mimetic finite difference method are
shown to the right.

which the vector joining the two points used in the discretization aligns
with the flow direction,

(Ki~nij)×~cij = 0, for all i, j.

When this is not the case, TPFA will not converge towards the correct so-
lution when we increase the grid resolution. A large research effort has
therefore focused on developing methods that are consistent for general
combinations of grids and permeability tensors: the multipoint flux ap-
proximation [6, 58], mimetic finite differences [34], and the nonlinear two-
point flux approximation [108, 142, 163], in addition to the discontinuous
Galerkin method [15], to name a few. Paper I and Paper III introduce some
of these methods in more detail and compare and contrast how they per-
form on general unstructured grids.

Figure 3.7 illustrates how severe grid orientation effects can be for the
TPFA method when the grid is not K-orthogonal. Twisting the inner nodes
of a regular Cartesian according to the transformation

(x, y) 7→ (x + f (x, y), y− f (x, y)) ,
f (x, y) = 0.1 sin(πx) sin (3π(y− 0.5)) ,

gives a grid that is not K-orthogonal even for isotropic permeability. Im-
posing unequal constant pressure boundary conditions on the left and right
sides and no-flow boundary conditions on the top and bottom sides should
result in a linear pressure drop. However, the the pressure contours in
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Figure 3.8: Upstream and average evaluations involved in the numerical flux cal-
culation (3.16) when the flow is from Ωi to Ωj.

the TPFA solution follows the grid lines and not the axial directions. Us-
ing a consistent method, here exemplified with a mimetic finite difference
method, correctly reproduces a linear pressure drop.

Note that we have not given all details on how to discretize the Darcy
flux: We still have to estimate the interface values λij and ρij. The interface
mobility is commonly evaluated differently for each phase depending on
the direction of the phase flux,

λα,ij =

{
λα,i if vα,ij ≥ 0,
λα,j if vα,ij < 0.

(3.14)

This is called the single-point upstream (SPU) scheme. The interface den-
sity is defined as the average between the two cell averages,

ρα,ij =
1
2
(ρα,i + ρα,j). (3.15)

To sum up, the finite-volume method with two-point flux approximation
and single-point upstream mobility weighting gives the discretized flux
term

|Γij|~Fα,ij ·~nij ≈ (ραλα)ijTij
(
[pα,i − pα,j]− ρα,ijg[zi − zj]

)
. (3.16)

Note that SPU (3.14) is used for both terms in (ραλα)ij, whereas ρα,ij is cal-
culated as the arithmetic average. Figure 3.8 shows the upstream and av-
erage evaluations for multicomponent flow for a case where vij is positive.
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The definition of the upstream mobility weighting (3.14) is generally
implicit, since it depends on the direction of the phase flux, which itself
depends on the mobility. This may cause convergence problems in sequen-
tial simulations. Equivalent explicit expressions for the upstream direction
have been derived by Brenier and Jaffré [32] and are used in the sequential
simulations in this thesis.

Higher-order flux discretizations

We have now described the three main ingredients of perhaps the most
common discretization in reservoir simulation: finite volumes with two-
point flux approximation and single-point upstream mobility weighting.
While robust and stable, this method is only first-order accurate. Higher
accuracy can be achieved by employing a more sophisticated reconstruc-
tion of interface quantities based on a wider stencil, such as TVD meth-
ods with slope limiters, see e.g., [81, Chapter 3]. Interface values can also
be reconstructed by interpolating between the values in neighboring cells,
which is the idea behind the essentially non-oscillatory (ENO) [76] and
weighted essentially non-oscillatory (WENO) [39] method. In Chapter 6,
we give a short description of WENO methods for unstructured and strati-
graphic grids.

Discretization of source terms

Finite-volume discretizations assume that the volumetric average pressure
inside a cell is representative for the entire cell. Even in realistic reservoir
models, where grid cells may span tens to hundreds of meters in the lateral
direction, this is a reasonable assumption in large parts of the domain. The
diameter of a typical well in a subsurface reservoirs is approximately 1/100
to 1/1000 times the lateral dimensions of a grid cell. Near these wells, the
spatial pressure variations are so large that using the pressure at the well-
bore as an approximation of pressure in the entire cell is not realistic. It is
therefore common to associate the pressure in a well cell to the bottom-hole
pressure pbh, defined as the pressure at a given point in the wellbore.

A well is usually defined by a set consecutive cells in the simulation
grid, and the well trajectory is approximated by line segments connecting
the cell centroids. We refer to the cells intersected by the well trajectory as
perforation cells. In a cell Ωi intersected by the well trajectory, the inflow of
phase α is modelled as a source term qα,i related to the bottom-hole pressure
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q = q1 + · · ·+ q7 + · · ·+ q13

pbh

pbh + ρmixg∆z7

p7

Figure 3.9: A sloping vertical well trajectory perforating 13 cells. The inset shows
some of the quantities that are used in (3.17) to relate the wellbore pressure in per-
foration 7 to the average cell pressure p7. Notice that the centroid of perforation 7
is above the reference depth of the bottom-hole pressure, so that ∆z7 < 0.

by an expression similar to (3.14):

qα,i =

{
WγαλT,i(pα,i − pbh + ρmixg∆zi) if qα,i ≥ 0,
Wλα,i(pα,i − pbh + ρmixg∆zi) if qα,i < 0,

(3.17)

where γα is the volumetric fraction of phase α in the injected fluid, i.e., if
the well injects water only, γα = 1 for α = a and zero otherwise. The mix-
ture density ρmix is the density of the fluid mixture in the well, and ∆zi
is the depth of the centroid in Ωi, defined relative to the depth at which
the bottom-hole pressure is defined. This is used to compute the pressure
inside the wellbore in perforation i, assuming hydrostatic equilibrium, as
pbh + ρmixg∆zi. The proportionality constant W is called the well injectivi-
ty/productivity index for injection/production wells, and accounts for the
difference between the average cell pressure pi and the wellbore pressure
in perforation i. In Peaceman-type well models [145, 144], this is commonly
computed using an analytical expression, as discussed in Section 2.4. Fig-
ure 3.9 shows some of the quantities in (3.17) for a sloping vertical well that
perforates 13 cells.

In summary, the source/sink terms are discretized as
∫

Ωi

Qn+1
α dV = |Ωi|ρn+1

α,i qn+1
α,i ,
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where qα,i is given from (3.17), and ρα,i is simply taken to be the average
density in Ωi.

Wells are commonly either controlled by the bottom-hole pressure pbh,
or the injection rate qα. This means that (3.17) introduces one more un-
known variable for each well in the system (either pbh or qα) so that we
need an additional equation. This is easily implemented as

RW = pbh − pbh or RW =
n

∑
i=1

qα,i − qα,

where the first equation corresponds to a well with a target bottom-hole
pressure pbh, and the second to a well with a target injection rate qα. Here,
n is the number of perforation cells of the well.

This completes the finite-volume discretization of the conservation equa-
tion (3.1), which we can write as

Rn+1
α,i =

(
Mn+1

α,i −Mn
α,i
)
+

∆t
|Ωi| ∑

j∈N (i)
|Γij|~F n+1

α,ij ·~nij −Qn+1
α,i = 0. (3.18)

3.4 Challenges in realistic reservoir simulations

Now that we have outlined a finite-volume discretization of the pertinent
model equations, we take a moment to look at a few related challenges that
arise when we consider realistic reservoir simulation models.

Why we need implicit discretizations

First, let us justify the choice of implicit temporal discretization that we
made in Section 3.3. Consider single-phase flow in a horizontal 1D porous
channel aligned with the x-axis, with constant velocity v = 1. For simplic-
ity, we also assume unit viscosity, µ = 1. Conservation of mass for this
problem reads

φρt + ρx = 0. (3.19)

Through a transformation to time-of-flight coordinates, (x, t) → (τ, t) =
(φx, t), we can use that ∂

∂x = ∂
∂τ

∂τ
∂x = φ ∂

∂τ to write this as

ρt + ρτ = 0. (3.20)

Using the theta rule (3.2) and the spatial discretization outlined above, the
discretized residual equation for this problem reads

Rn+1
i =

∆τ

∆t

(
ρn+1

i − ρn
i

)
+
(

ρn+θ
i − ρn+θ

i−1

)
= 0.
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φρt + ρx = 0 ρt + ρτ = 0Transformation τ = φx

Figure 3.10: One-dimensional reservoir in normal (left) and time-of-flight (right)
coordinates. The porosity is equal to one in all cells except the second, where it
equals ε.

By subtracting the Taylor expansion of the terms in this formula from the
Taylor expansion of ρn+1

i around ρn
i , we find that the local truncation error

of our method is
1
2
(∆τ + [2θ − 1]∆t) ρττ.

Recognizing this as the heat equation, we can argue that our method will
smear a discontinuity across a region of width proportional to the root
mean square of the Gaussian heat kernel, O

√
t(∆t± ∆τ). Here, a minus

sign corresponds to an explicit method, whereas a plus sign corresponds
to an implicit method.

To understand the practical implications of this, we look an example
examined earlier by Mykkeltvedt et al. [137]. Consider the 1D reservoir
in Figure 3.10, with unit porosity in all cells except the second, where it
equals ε. The reservoir is also shown in time-of-flight coordinates. The
total smearing of a discontinuity traveling through this reservoir will be

9
10

(∆x± ∆t) +
1
10

ε(ε∆x± ∆t) =
9
10

∆x(1± εν) +
1
10

∆xε2(1± ν),

where we have written it in terms of the Courant (CFL) number ν = ∆t
ε∆x .

For explicit schemes, ν should not exceed 1 to ensure stability. Since the
computational grid is usually fixed during a simulation, this dictates the
timestep. In our example, the cell with porosity ε governs the choice of
timestep. On the other hand, we see from the expression above that the
total smearing is dominated by the smearing that accumulates as the dis-
continuity propagates through the high-porosity region. In other words,
even if we choose a timestep that gives a CFL number ν� 1, we still have
significant smearing of discontinuities. Using an implicit method will not
reduce the smearing, but does not introduce any theoretical timestep limi-
tations. In fact, looking at the dominant term, 9

10 ∆x(1± εν), one can argue
that ν should preferably be chosen somewhere between 1 and 1/ε to opti-
mize accuracy versus computational cost.

While this may seem a contrived example, the situation may be even
worse in real reservoir models – recall the very large local variations in
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Figure 3.11: Magnitude of the macroscopic velocity in a typical injection scenario
for the Norne field model. The bar at the bottom shows that the velocity is dis-
tributed equally over the entire range of porosities. The well pattern is completely
artificial, with five injectors and five producers, and the inset shows well positions
and streamlines.

permeability and porosity of the Norne field model in Figure 2.9 and Fig-
ure 2.10. The magnitude of the macroscopic velocity in a typical injection
scenario, shown in Figure 3.11, varies with almost 13 orders, from practi-
cally zero in stagnant regions, to 1 m/day near wells. However, the major-
ity of the cells have a macroscopic velocity that is 1–4 orders of magnitude
less than the maximum velocity. Moreover, we see that the velocity is dis-
tributed equally across the entire range of porosities. From the analysis
above, we can conclude that choosing a small timestep that honors the se-
vere CFL restriction in the high-flow region introduces significant smear-
ing in the majority of the cells. This is the reason why we need implicit
temporal discretizations in reservoir simulations.

Challenging computational grids

As mentioned in Section 3.2, the computational grid should represent the
geology and well trajectories of the real reservoir as accurately as possible.
As a result, simulation grids tend have cells with very large aspect ratios
and contorted geometries. This is particularly true for stratigraphic grids,
and requires that the discretizations that we use are sufficiently robust. As
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Cell with 20 neighbors

Regular cell Centroid outside Small interface area

Figure 3.12: Different examples of grid cells in the Norne field model: a cell with
20 neighbors ; a regular cell, a cell with its centroid outside the cell volume, and
two neighboring cells with a very small interface area. In the latter case, the largest
interface area of the right cell is nine orders of magnitude larger than its smallest
interface area.

an example, consider the computational grid of the Norne field model. Fig-
ure 3.12 shows a few examples of cells. In heavily faulted regions, corner-
point grids typically have a complex topology, as can be seen at the top in
the figure: this cell has 20 neighbors, each outlined and indicated with a
different color at its interface with the center cell. This may also result in
very small interface areas, exemplified in the lower-right of the figure. The
two cells have a very small common interface, and the right-most cell has
nine orders-of-magnitude variation in interface areas. Moreover, since the
depth coordinates along the vertical pillars are chosen with geology rather
than geometry in mind, the hexahedral cells tend to be skewed, with non-
planar faces. An example of this is shown in the bottom center, where the
cell centroid lies outside the cell. The figure also shows a typical cell in
the grid, of approximately 80× 80× 7 m3. The standard TPFA and SPU
discretizations are very robust, and apart from possible grid orientation
effects discussed in Section 3.3, the performance of the resulting scheme
seems hardly to be adversely affected by such rough grids. More sophis-
ticated schemes are usually constructed and tested on grids that are much
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more regular, both with respect to topology and cell geometries, and tend
to have tacit (regularity) assumptions that only appear as limiting factors
when you seek to apply the methods on highly complex grid models [116].

This short discussion emphasizes some of the many challenging aspect
of reservoir simulations. In addition to the moments outlined thus far,
one could also add the need to resolve delicate balances among capillary,
gravity, and viscous forces (pressure gradients) that may vary significantly
throughout the reservoir and over time; large variations in time constants,
in particular for near-incompressible systems; strongly nonlinear and hys-
teretic functional relationships that may contain kinks or discontinuities;
and abrupt and large changes in source terms (or boundary conditions) as
wells are turned on or shut in. Altogether, this indicates that even though
the basic governing equations are fairly simple, it is not an easy task to con-
struct robust discretizations that can handle all the complexity of industry-
grade simulation models. In the next two chapters, we first take a look at
methods used to solve the resulting discretized system of equations (3.18)
and then briefly introduce the open-source toolbox we have use as a re-
search platform to implement, test, and validate all the methods developed
as part of this thesis.



Chapter 4

Components of a Reservoir
Simulator

In this chapter, we look at different components of a reservoir simula-
tor that complement the discretizations outlined in Chapter 3. This in-
cludes discrete operators, nonlinear solvers, linearization schemes, and lin-
ear solvers. First, however, we discuss some of the details of three different
solution strategies.

4.1 Three solution strategies: FI, SI, and SFI

As explained in Section 3.1, the governing equations for flow and trans-
port in porous media can be split into a flow and transport subproblem,
where the flow variables tend to be elliptic or parabolic with small time
constants, whereas the transport has a hyperbolic character. This is referred
to as the sequential implicit (SI) method, in contrast to the fully-implicit
(FI) method, where we resolve all variables simultaneously. In addition
to a significant reduction in the problem size, a major advantage of the
SI method is that we can use specialized solvers to target each subprob-
lem. Because of this, the SI method is a popular approach in academia, but
is only used to a limited extent in commercial finite-volume simulators,
which typically use FI, IMPES, AIM, and IMPSAT [38, 78] (implicit pres-
sure and saturations, explicit mass fractions). For black-oil type models,
the FI method remains particularly popular due to its robustness and its
ability to fully resolve couplings between flow and transport.

To ensure convergence of the SI solution towards the FI solution, it is
possible to add an outer loop that revisits the flow problem after the trans-

45
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Figure 4.1: Schematic overview of three common solution strategies: fully im-
plicit (FI), sequential implicit (SI) and sequential fully implicit (SFI). In each of the
process boxes, a nonlinear residual equation is solved for all or a subset of the
unknowns. As usual, a superscript n indicates the timestep. The initial state u0 is
assumed to be known, and we have used subscript F and T to indicate the flow
and transport residual equations and varibles, respectively.

port problem is solved in an iterative fashion, thereby resolving the cou-
pling between the two problems in a sequential fully implicit (SFI) frame-
work [90, 109, 73]. This is, for instance, the default approach in the forth-
coming multiscale option of the INTERSECT simulator [99, 115].

Figure 4.1 gives a schematic comparison of the FI, SI, and SFI solution
strategies. In this figure, we have written the nonlinear residual equations
in vector form, i.e.,

R(u) = 0. (4.1)

The residual equations R and the unknowns u we solve for in a given
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step of the solution procedure depend on the method we are using: In FI
simulations, we solve for all equations and unknowns R(u) = 0, whereas
in SI and SFI simulations, we solve for either the flow (RF(uF) = 0) or
transport (RT(uT) = 0). Note that in Figure 4.1, the flow and transport
subproblems are written with both flow and transport variables to indicate
which variables we solve for and which we keep fixed at each step. We
assume for the moment that we know the necessary residual equations on
vector form, and will come back to how these are derived later.

Using Taylor expansion around u and assuming that u + ∆u is a solu-
tion to the residual equation, we get that

0 = R(u + ∆u) = R(u) + J∆u +O(∆u2),

where J = ∂R/∂u is the Jacobian of the residual equation. Neglecting
higher-order terms gives us the well-known Newton’s method1:

uk+1 = uk + ∆u, −J∆u = R(uk). (4.2)

This equation outlines the iteration scheme of a nonlinear solver. As such,
it concisely sums up the main computational steps of a reservoir simulator
based on one of the solution strategies just outlined:

1. Computing the discrete residual R(u). This requires a computa-
tional grid and temporal and spatial discretizations, which we dis-
cussed in Chapter 3. In Section 4.2, we will describe how the single-
point upstream mobility-weighted finite-volume discretization with
two-point flux approximation can be translated into computer code
through discrete operators.

2. Linearizing the residual equations. This involves computing the Ja-
cobian J, which is addressed in Section 4.3.

3. Solving the linear system −J∆u = R(u). This step often accounts
for the majority of the simulation time in reservoir simulation, and
an effective linear solver is therefore crucial for efficiency. We look at
linear solvers in Section 4.4.

After we have discussed these three integral components, we look at as-
pects of the nonlinear solver itself in Section 4.5.

1Newton’s method was devised by Isaac Newton in 1669, first formulated iteratively
by Joseph Raphson in 1690, and for systems of nonlinear equations by Thomas Simpson in
1740, so in all fairness, the correct term would be the Newton-Raphson-Simpson method. For
the sake of brevity, we will, however, simply write Newton’s method.



48 Components of a Reservoir Simulator

4.2 Discrete operators

The first step in the nonlinear iteration scheme (4.2) is to express the resid-
ual equation (3.18) in vector form

Rn+1
α =

1
∆t

(Mn+1
α −Mn

α) + div(F n+1
α )−Qn+1

α = 0. (4.3)

As in Chapter 3, we denote the unknown solution variables by u, and with
some slight abuse of notation, we use u to refer to all unknowns (e.g., pres-
sure, saturation, compositions), or just a subset of them, and we will em-
phasize the distinction whenever necessary. Since we consider a finite-
volume discretization, each solution variable is represented in terms of its
cell averages, i.e., by one constant value per cell. The vector form of a vari-
able u is then

u = (u1, . . . , unc)
T,

and we use ui to denote the constant value of u in cell i. We also introduce
the vector of pore-volumes,

Φ = (|Ω1|φ1, . . . , |Ωnc |φnc)
T.

For simplicity, we consider immiscible multiphase flow, and write the mass
and source terms compactly as

Mα = ΦραSα and Qα = ραqα.

Here, uv should be understood as element-wise vector multiplication so
that (uv)i = uivi, whereas Sα is the vector form of the cell-wise saturations,
ρα denotes densities, and qα volumetric source terms.

To write the flux F α in terms of discrete operators, we need a few more
definitions. Equivalent to the notation for volumetric flux over interface ij
in (3.10), we adopt the notation v for a vector field expressed as a set of
interface fluxes, where vij is the flux from cell i to cell j. In this notation, we
can write the vector form of the upstream operator in (3.14):

upw(u; v)ij =

{
ui if vij > 0,
uj otherwise.

(4.4)

In addition, we define the discrete divergence operator,

div(v)i = ∑
j∈N (i)

vij. (4.5)
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Figure 4.2: Illustration of the div operator for a vector field v given as a set of
interface fluxes. The operation div(v) maps v from interfaces to cells, and its
value in cell i is the sum of v over all interfaces between cell i and its neighbors
N (i) = {i1, . . . , i6}.

Figure 4.2 gives an illustration of the div operator for a vector field v.
These two operators are all we need to write the flux term:

div(F α) = div (upw(ρα; vα)vα) . (4.6)

Finally, we need two more operators to express the Darcy flux discretiza-
tion in vector form, namely the gradient and face average operators:

grad(u)ij = uj − ui, avg(u)ij =
1
2
(ui + uj).

Figure 4.3 gives an illustration of the gradient operator for a scalar field u.
The two-point discretization (3.12) of the Darcy flux now reads

vα = −Tupw(ρα;−Πα)Πα, Πα = grad(p− pc
α)− avg(ρα) ggrad(z).

As with the intercell fluxes, we have used T to denote the vector of inter-
face transmissibilities Tij defined in (3.13).

The discrete maximum principle

With this notation, it is easy to verify an important property for discretiza-
tions of elliptic equations. The solution to the elliptic Poisson equation on
the form (2.9) satisfies an elliptic maximum principle, which says that for
any subdomain Ω with no sources or sinks, the pressure p should attain
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i
j

grad(u)ij

Scalar field u Gradient grad(u)ij = uj − ui

Figure 4.3: Illustrations of the grad operator for a scalar field u. The operator
grad(u) maps u from cells to interfaces, and its value on interface ij is the differ-
ence uj − ui.

its maximum and minimum on the boundary ∂Ω (see e.g., [62, Chapter 6]).
Without loss of generality, we neglect capillary and gravity effects, and
write out the vectorized discrete flux term (4.6) with two-point flux ap-
proximation for cell i in Figure 4.2:

−div
(
Tgrad(p)

)
i = Tii1(pi − pi1) + · · ·+ Tii6(pi − pi6) = 0.

Since all Tiik are strictly positive by construction, there must be at least one
k ∈ [1, 6] so that pi < pik , and at least one ` ∈ [1, 6] so that pi > pi` . If
not, the sum would either be positive or negative, which is a contradic-
tion. By repeating the argument for all neighbors N (i), until we reach the
boundary, we can show that TPFA satisfies the discrete maximum principle.
This fundamental mathematical property is particularly important in mul-
tiphase simulations, where violation of the maximum principle may cause
convergence issues. We discuss this in further detail in Paper I and Pa-
per III.

To sum up, we can write the single-point, upstream mobility-weighted,
finite-volume discretization with two-point flux approximation using four
easy-to-implement discrete operators: div, grad, upw, and avg. We dis-
cretize the residual equations RW representing our well models (see Sec-
tion 3.9) in a similar fashion.

4.3 Linearization

Once we have the residual equations expressed in vector form, the next
step is linearization. To this end, we write the Jacobian matrix on block-
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matrix form as

J =
∂R
∂u

=




∂Ra
∂ua

∂Ra
∂u`

∂Ra
∂uv

∂Ra
∂uW

∂R`
∂ua

∂R`
∂u`

∂R`
∂uv

∂R`
∂uW

∂Rv
∂ua

∂Rv
∂u`

∂Rv
∂uv

∂Rv
∂uW

∂RW
∂ua

∂RW
∂u`

∂RW
∂uv

∂RW
∂uW




, (4.7)

where we have grouped the variables representing reservoir quantities as
u = (ua, u`, uv)T, and uW are the well variables (e.g., bottom-hole pressure,
water injection rate, etc.). This does not mean that uα must be a variable
that depends directly on phase α; a common choice is

(ua, u`, uv)
T = (p`, Sa, Sv)

T. (4.8)

The liquid phase saturation can be found from the closure relation S` = 1−
(Sa + Sv), whereas the aqueous and vapor phase pressures can be found
from the capillary function relations pα

c = p` − pα. We refer to the set of
variables u as primary variables. Other choices of primary variables are also
possible, see, e.g., [111, Chapter 8]. In our finite-volume formulation, ele-
ment (∂Rα/∂uβ)i,j of the Jacobian J is the derivative of residual equation
Rα in cell i with respect to variable uβ in cell j. Figure 4.4 shows the lin-
earized system from an arbitrary nonlinear step during simulation of water
injection in an oil-filled reservoir for two different cases: a 5× 5 Cartesian
grid with two wells, and a realization of the SAIGUP model [122]. The
latter is a realistic model of a shallow marine oil reservoir with multiple
faults, resulting in a complex grid topology.

The Jacobian can generally be calculated in three different ways [197]:

Manual differentiation. This involves deriving and hard-coding analytic
expressions for the Jacobians, and has been the standard approach in com-
mercial simulators [159]. The obvious advantage of this is that it results
in computer code that is both highly efficient and exact. However, calcu-
lating Jacobians by hand is generally a time-consuming and error-prone
process, in particular when the constitutive relationships involve complex
tabulated data and hysteretic behavior. The calculations are even more
challenging if we consider higher-order and high-resolution schemes that
give wider stencils involving more unknowns. In addition, the method
is inflexible: any change to the model equations or discretization requires
derivation of new expressions.
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Figure 4.4: Sparsity patterns of the linearized system at an arbitrary nonlinear
step during the solution of two different cases: a 5× 5 Cartesian grid with two
wells, and a realization of the SAIGUP model with nine wells. The first case has
56 unknowns and 359 nonzero Jacobian elements. The second case has 157 467
unknowns and a Jacobian with 1.48 million nonzero elements. Different Jacobian
blocks are outlined and labeled. For simplicity, both cases are presented for a sim-
ple two-phase liquid-aqueous system. Notice the size of the well blocks relative
to the full system.
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Numerical differentiation. This approach uses finite differences to ap-
proximate the derivatives, and is thus much more flexible with respect to
changes in the model equations/discretizations. A drawback of this ap-
proach is that it will generally not work well with conditional expressions
found in upstream operators, slope limiters, etc. In addition, the method is
by construction not exact, and the computational complexity tends to limit
the efficiency. Moreover, numerical differentiation requires a discretiza-
tion of the function we want to differentiate. This is not always straight-
forward, especially since it can have kinks or even discontinuities.

Automatic differentiation (AD) [141]. The premise of AD is that any
computation of numerical quantities can be broken down to a sequence
of binary operators like addition, subtraction, multiplication, and division,
or evaluation of unary mathematical functions like sin, cos, exp, and log,
for which elementary differentiation rules exist. By applying the chain
rule repeatedly in combination with known differentiation rules, we can
easily compute the derivative of the residual equations with respect to all
primary variables. This results in highly flexible and exact Jacobian eval-
uation. In terms of performance, AD will generally introduce a certain
overhead compared to manual differentiation, since the latter allows for
simplifications and cancellations not captured by a computer. In this the-
sis, AD has been extensively used as a tool for Jacobian calculation, and we
therefore discuss it in some detail below.

Automatic differentiation can be categorized into two groups: forward
and backward AD. Forward AD is the most intuitive, and also the ap-
proach commonly used in reservoir simulation. AD has seen much de-
velopment the last ten years, mainly due to the need for gradient compu-
tations in machine learning with neural networks, see e.g., [20]. In reser-
voir simulation, AD was first introduced in the INTERSECT simulator [51],
and later tailored for reservoir simulation through the AD-GPRS simulator
[37, 188, 187] using the ADETL library [197, 196, 198], and in the MATLAB
Reservoir Simulation Toolbox (MRST) [100, 17, 111, 129].

In practice, AD can be conveniently implement through operator over-
loading and object-oriented programming with an AD variable class. An
instance of this class will have both the function value and the value of
the Jacobian of the function. In addition, the class should include opera-
tor overloading for fundamental algebraic operators such as plus, minus
and multiplication, and of unary mathematical functions like sin, cos, exp,
and log, such that each time we perform computations with an AD vari-
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able, we also compute its derivatives with respect to all primary variables.
Chapter 5 gives a brief introduction to AD in MRST.

AD is a significant contribution to computational mathematics in gen-
eral, and reservoir simulation in particular: It is what enables us to easily
include complex fluid physics with tabulated property functions and em-
ploy higher-order discretizations in implicit simulations. However, in sim-
ulation of real asset models, which may consist of several million grid cells
and fluids with multiple hydrocarbon species, the efficiency of AD may
represent a bottleneck. Therefore, recent research has focused on speeding
up Jacobian calculations, including exploiting the local nature of the finite-
volume, single-point upstream stencil in AD [106], and operator-based lin-
earization [185, 94, 95].

4.4 Linear solvers

The blocks ∂RW/∂uα of the Jacobian in (4.7), corresponding to derivatives
of the residual well equations, are typically very small relative to the full
system: If nW is the number of wells, the diagonal block is nW × nW , and
the coupling blocks are nc × nW or nW × nc. Whereas nW rarely exceeds a
few thousand, nc can be several million. In comparison, all other blocks in
the system will be of size nc × nc – much larger than the well blocks. The
well equations are therefore usually eliminated after linearization through
a Schur complement reduction. This nonetheless leaves us with a linear
system that typically involves so many unknowns that using a direct solver
is not practical, and iterative solvers are therefore necessary.

Most modern iterative linear solvers are based on representing the so-
lution in a Krylov subspace, which we refer to as Krylov subspace meth-
ods. Perhaps the most famous Krylov subspace method is the conjugate
gradient method (CG) for symmetric, positive definite linear systems [80].
Linearized systems arising in reservoir simulations are typically not sym-
metric, and popular methods for such problems include the biconjugate
gradient method (BiCG) [104] and its stabilized version Bi-CGSTAB [184],
and the generalized minimal residual method (GMRES) [156]. A brief in-
troduction to Krylov subspace methods can be found in [72]. Due to its
robustness, GMRES is usually the method of choice in reservoir simula-
tion.
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Figure 4.5: Convergence history for the solution of a linearized problem from sim-
ulation of water injection in the SAIGUP model. GMRES is used with and without
CPR preconditioning. Algebraic multigrid (AMG) is used as the elliptic solver in
the CPR preconditioner, with a strict (10−8) and non-strict (10−3) tolerance. We
clearly see that preconditioning is necessary for rapid convergence of GMRES.
Moreover, in this example, a non-strict convergence of the pressure subproblem
in CPR causes the convergence of the full problem to halt.

Preconditioners

For any iterative linear solver, fast convergence of the method depends
strongly on the spectrum of the matrix. Unfortunately, large aspect ra-
tios and orders-of-magnitude variations in petrophysical properties tend
to result in linear systems with high condition numbers. Effective precon-
ditioners are therefore crucial [103].

For FI simulations, the mixed elliptic/hyperbolic structure of the un-
derlying PDE carries over to the linearized system, and physics-based pre-
conditioners that exploit this are therefore popular. In particular, the two-
stage constrained pressure-residual (CPR) method [189, 190] is based on
the reasoning of IMPES methods described in Section 3.1: Given a solution
to the flow equation for fluid pressure, discretized with an implicit method,
an explicit update of the transport variables yields a meaningful guess for
the solution to the full system [103]. Figure 4.5 shows an illustrative exam-
ple of the convergence history for the solution of a linearized problem from
simulation of water injection in the SAIGUP model (Figure 4.4). The prob-
lem is solved using GMRES without preconditioning, and with a two-stage
CPR preconditioner with a strict and a non-strict tolerance. We clearly see
that GMRES converges slowly without preconditioning.
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Multigrid and multiscale methods

If we use a sequential solution procedure, the mixed mathematical charac-
ter is decoupled at the nonlinear level, and we can use specialized linear
solvers for the flow and transport problems. In particular, the elliptic char-
acter of the linearized flow system indicates that we should use an efficient
elliptic solver, standalone or as a preconditioner for e.g., GMRES.

Algebraic multigrid methods (AMG) [181] systematically reduce the
residual by iteratively solving the linear system at different coarse scales.
This is done by means of a restriction operatorR that restricts the fine-scale
problem to a coarser scale, and a prolongation operator P that prolongates
the problem back to the fine scale. Algebraic multigrid methods use a hi-
erarchy of coarse scales with decreasing number of degrees of freedom.
The rationale behind this is that for elliptic problems, high-frequency er-
ror components can be effectively reduced by one or more iterations of a
so-called smoother. Once the high-frequency errors are reduced on a given
grid resolution, the remaining intermediate and low-frequency error com-
ponents are projected onto a coarser grid, where some of these components
become high-frequency component and can be reduced by smoothing, and
so on. Popular smoothers include incomplete LU-factorization with zero
fill-in, and Gauss-Seidel and Jacobi variants. Multigrid methods have been
successfully applied to reservoir simulation [103, 172, 69], and can also be
used in FI simulations [103, 70].

Multiscale methods were initially developed as an alternative to up-
scaling (see Section 2.3) that more accurately captures local features in the
fine-scale model [85]. During the last two decades, multiscale methods
for Poisson-type equations with strongly varying coefficients have seen a
massive development. Among the most notable contributions relevant to
reservoir simulation are the multiscale finite-volume (MsFV) [88, 89, 90],
the multiscale mixed finite-element (MsMFE) [1, 2, 3], and the multiscale
restriction-smoothed basis (MsRSB) [131, 132, 133] methods. The first mul-
tiscale method to be implemented and fully integrated in a commercial
simulator was MsMFE, which was implemented in the FrontSim stream-
line simulator [140]. MsFV was implemented in the prototyping branch of
INTERSECT, but has later been superseded by MsRSB, which is planned
to be commercially available within a year. Lie et al. [115] gives a more
comprehensive review of multiscale methods applicable to real reservoir
simulation.

In their original form, multiscale methods were developed as approx-
imate pressure solvers that capture the essential features of the fine-scale
pressure using significantly fewer degrees of freedom. Consider a fine grid
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with nc cells {Ωi}nc
i=1 that incorporates all the fine-scale details of the under-

lying geological model and a corresponding linearized pressure equation

Ap = q. (4.9)

A finite-volume-type, algebraic multiscale method for this problem can be
formulated by defining a coarse partition {Ωc

i }m
i=1 where each fine cell Ωj

belongs to a single coarse block Ωc
i . The restriction operator R : {Ωj} →

{Ωc
i } is linear and can be written as a matrix R ∈ Rm×nc , where row i of R

is the ith basis function ofR, which takes on the constant value Ri,j in cell j
of the fine-scale grid. Analogously, the prolongation operator P : {Ωc

i } →
{Ωj} can be written in matrix form P, with basis function i in column i of P.
The basis functions of P are computed numerically by solving a localized
flow problem (MsFV) or by localized algebraic smoothing (MsRSB).

The operators R and P can now be used to reduce the linear system:
Instead of searching for a fine-scale solution in Rnc , we seek an approxi-
mate solution p that can be written as a prolongation of a solution defined
on {Ωc

i }; that is, p = Ppc. Inserting this into (4.9) and multiplying both
sides by the restriction operator gives

(RAP)pc = Rq, or Ac pc = qc. (4.10)

Once this reduced system is solved for the coarse-scale pressure pc, we pro-
longate the solution onto the fine grid to obtain an approximate fine-scale
solution p = Ppc. Figure 4.6 illustrates the algebraic multiscale method.

This framework is very similar to AMG, and there is nothing prevent-
ing us from combining it with a smoother to obtain an iterative framework
equivalent to a two-level AMG solver. This approach has been taken by a
number of authors, (see e.g., [192, 132]), and has also been extended to use
multiple pairs of restriction and prolongation operators that are not neces-
sarily organized hierarchically as in a multigrid method, but instead each
targets specific features in the geological model [114]. This iterative multi-
basis multiscale method is conceptually equivalent to multigrid methods,
but philosophically different due to the purely physical/geometrical inter-
pretation. Recently, efforts have also been made to employ MsFV operators
in AMG [59].

Paper IV describes how linear convergence for the pressure subprob-
lem can be accelerated by using multiple multiscale operators that each
targets specific features in the geological model and/or adapts to changes
in saturation and pressure. This is used as the pressure solver in a CPR
preconditioner.
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Figure 4.6: Algebraic multiscale solvers reduce the fine-scale linearized pressure
equation to a much smaller system through the restriction and prolongation oper-
ators R and P, as seen in the middle section. The upper left box shows an example
of an MsRSB basis function, both in physical space and as a row or column vector
in R and P. The solution to the fine-scale system is approximated by solving the
reduced system and prolongating the solution pc back to the fine scale. The figure
is a modified version of one in Paper IV.

4.5 Nonlinear solvers

Newton’s method outlined in Section 4.3 is known to offer quadratic con-
vergence when the iterates are close to the solution. However, this prop-
erty seldom carries over to real cases, where large timesteps combined with
physical processes taking place on different temporal scales imply that the
initial guess is generally not close to the solution. This means that Equa-
tion (4.2) is somewhat simplified compared to Newton methods commonly
used in reservoir simulators, where global Newton methods are usually
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needed [53]. In this section, we look at different nonlinear solution strate-
gies for (4.1).

Damping strategies

It is well-known that Newton’s method (4.2) will experience convergence
issues when the update ∆u passes inflection points, kinks, and discontinu-
ities in the residual function. This has motivated a family of methods that
aim to find damping factors {θi}N

i=1 to ensure that the Newton updates are
not too large,

uk+1 = uk + Θ∆u, Θ = diag(θ1, . . . , θN). (4.11)

Here, Θ = I gives the standard Newton’s method. Criteria for what is
a too large update can either be physically/mathematically motivated, or
be based on simple heuristics. A popular method that falls into the cate-
gory of physically-motivated methods is called Appleyard chopping [159],
in which updates are dampened in cells where the update results in a
phase going from mobile to immobile and vice versa, or when a phase ap-
pears/disappears. In either case, saturation updates are dampened so that
they are close to the corresponding critical point. This method is typically
combined with heuristics such as limiting the absolute and/or relative sat-
uration update to, e.g., be less than 0.2. The latter relative update limit
is commonly referred to as geometric penalty. These heuristics can also be
used for the temperature variable in simulations involving thermal effects.
Likewise, in cases with strong capillary pressure effects, one may wish to
limit changes in capillary pressure.

As pointed out by Jenny et al. [91], convergence issues in the nonlinear
transport solver often arise from the S-shaped form of the flux functions
fα defined in (3.5). In particular, inflection points and kinks caused by
upstream changes may send the Newton iterates to different contraction
regions, which leads to oscillations or even divergence. This has spawned
a family of so-called trust-region methods in which the damping factors θi
are chosen based on these problematic points [91, 191, 110, 186, 130]. Trust
region methods offer unconditional convergence for any timestep length,
but may require a significantly higher number of expensive residual eval-
uations than the standard Newton’s method. In addition, the damping
factors tend to be overly restrictive. In Paper V and Paper VI, we outline a
trust-region framework that improves performance by introducing adap-
tivity in the trust-region algorithm. Figure 4.7 shows different damping
strategies applied to the same single-cell problem, including line search
with backtracking. The example is taken from [130].
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Newton path Appleyard

Trust region Line search

Figure 4.7: Different damping strategies applied to a single-cell transport prob-
lem with different initial guesses. The contour plot shows the normalized residual
surface, with thick black lines indicating changes in the upstream direction due to
gravity. The continuous Newton path is approximated by limiting the absolute
value of the Newton update ∆u by 0.001. Appleyard chopping with Θ = 0.1 con-
verges, but dampens many of the iterates more than necessary. Using trust regions
gives fast and accurate convergence, whereas line search converges, but passes
inflection points and several upstream changes for some of the initial guesses,
resulting in oscillations. Figure from [130].
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The hyperbolic nature of the transport subproblem means that trans-
port quantities will have finite speed of propagation. A consequence of
this is that the number of cells a propagating displacement front passes
through during a timestep will be limited by the timestep length ∆t. Large
∆t therefore tends to be challenging for the nonlinear solver. It is, however,
generally hard to predict the largest possible timestep we can take without
compromising nonlinear convergence. A common practice is therefore to
use a pragmatic ”whatever-works-approach” to this problem: If the non-
linear solver does not converge for a given timestep after a prescribed max-
imum number of iterations, the timestep is reduced, and the solver starts
over. Whereas this works well for most simulation scenarios, it may result
in a large amount of wasted computational effort, since we simply discard
any information we get from the iterations of timesteps that do not con-
verge. Heuristic timestep selection methods aim to estimate the maximum
timestep possible based on a target Newton update size, see, e.g., [37].

Localized nonlinear solvers

The local nature of hyperbolic conservation laws has an important impli-
cation for the nonlinear solver: During a timestep, updates will be small,
and even zero, in large parts of the domain, except from near propagating
fluid fronts, and in regions with large pressure updates, e.g., in the vicinity
of wells. This means that if we iterate the Newton method the same num-
ber of steps in all cells, we are wasting substantial computational efforts
by solving for a large number of zeros. It also means that different parts
of the domain may experience very different nonlinear convergence. This
is particularly true in real reservoir models, where fluid transport mainly
takes place in the drainage regions of the wells, whereas potentially large
parts of the domain essentially remain unchanged throughout the simu-
lation. A number of methods exploit this locality: one family of methods
is based on a priori identifying a support region inside which updates are
nonzero [167, 166]. Another family of methods are based on reordering the
grid cells so that the transport subproblems can be solved cell-by-cell. This
approach has been the focus of much of the research in this thesis, and we
therefore describe it in some detail here.

Reordering

Due to the upstream discretization (4.4), the neighbors N (i) of a grid cell
Ωi, and consequently also the discrete divergence operator (4.5), can be
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split into upstream U (i) and downstream D(i) cells:

div(v)i = ∑
j∈N (i)

vij = ∑
j∈U (i)

vij + ∑
j∈D(i)

vij. (4.12)

Moreover, it follows directly from the definition of the upstream operator
that

upw(u; v)i,j =

{
uj, if j ∈ U (i),
ui, if j ∈ D(i), (4.13)

and we can therefore write

div(F α)i = div(upw(ρα; vα)vα)i = ∑
j∈U (i)

ρα,jvα,ij + ∑
j∈D(i)

ρα,ivα,ij.

Since div(F α)i is the only term in the residual Rα,i that depends on values
in neighboring cells, this means that if the values in all upstream cells U (i)
are known, all unknowns in Rα,i are local to cell i. In this case, Rα,i = 0
can be solved as a single-cell problem.

This was first observed by Appleyard and Cheshire [12], who proposed
to use it as a means of accelerating Newton’s method for fully implicit
problems. Termed the Cascade method, one nonlinear iteration of the method
consists of solving the fully-implicit linearized system to obtain updated
pressures and intercell fluxes. The method then sweeps through the grid
cells in the order of decreasing pressure potential, updating the transport
variables cell-by-cell with fixed pressure. As the sweep progresses, the
number of cells with known upstream values increases rapidly, hence the
name.

In the absence of capillary and gravity forces, the flow will be cocur-
rent, meaning that all phases will flow in the same direction. This gives the
same pressure potential for all phases. After ordering the nonlinear trans-
port equations from 1 to nc based on this potential, the nonlinear system of
discrete transport equations takes a lower-triangular form:




R1(S1)
R2(S1, S2)

...
. . .

Rnc(S1, S2, . . . , Snc)


 = 0.

When gravity/capillary forces are present, fluids may exhibit counter-
current flow, which means that the potential ordering will be different for
different phases. In this case, it is not possible to permute the transport
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equations into lower-triangular form. The authors instead suggested to
perform multiple sweeps of the Cascade method, using it as a nonlinear
Gauss–Seidel solver. Note, however, that this method will not work if the
pressure contains local minima: Such a cell would have only inflow fluxes,
so that solving transport for all phases in this cell simultaneously is gen-
erally not possible. Even if we use a two-point flux approximation, which
we saw in Section 4.2 satisfies the discrete maximum principle, there is no
guarantee that the pressure is monotone before convergence.

Although promising results were reported, the Cascade method re-
mained a rarity in the reservoir simulation community for almost 35 years.
A possible reason for this is that most available simulators lack the required
flexibility to implement the method. Kwok and Tchelepi [102] addressed
the shortcomings of the Cascade method, devising a reordering strategy
for black-oil models with capillary and gravity effects. The method uses
one reordering per fluid phase. In black-oil models, relative permeabil-
ity of the water only depends on the water saturation Sw, whereas the oil
relative permeability depends on Sw and So (see Section 2.2). Therefore,
the cells are first swept according to descending water potential, solving
the single-cell transport problems for the water phase. Next, the cells are
swept in order of descending oil potential, solving the transport subprob-
lems for the oil phase. The gas equations are eliminated using the closure
relation Sw + So + Sg = 1. This corresponds to permuting the nonlinear
transport equations into the following lower-triangular form:




Ra,1(Sa,1)
Ra,2(Sa,1, Sa,2)

...
. . .

Ra,nc(Sa,1, Sa,2, . . . , Sa,nc)
R`,1(Sa,1, Sa,2, . . . , Sa,nc , S`,1)
R`,2(Sa,1, Sa,2, . . . , Sa,nc , S`,1, S`,2)

...
. . .

...
. . .

R`,nc(Sa,1, Sa,2, . . . , Sa,nc , S`,1, S`,2, . . . , S`,nc)




= 0.

With capillarity, the water pressure must be chosen as the pressure un-
known, as this is the only choice that preserves the upstream dependence
of the transport residual equations for water. This approach is tailored
for black-oil models and will generally not work for compositional mod-
els, since conservation of mass for a component generally depends on all
phase saturations.

Natvig and Lie [138] suggested a different and more general approach
that sorts grid cells based on the intercell fluxes. In particular, intercell
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fluxes obtained by solving the flow subproblem form a directed graph
({Ωi}, {vα,ij}), where each grid cell Ωi represents a node i, and the inter-
cell flux vα,ij represent directed edges; that is, vα,ij connects node i to node
j if vα,ij > 0, and connects node j to node i if vα,ij < 0. In cases with only
cocurrent flow (i.e., if all phases flow in the same direction), this will be a
directed and acyclic graph (DAG). As for potential-based ordering, we can
then solve single-cell transport problems by traversing this graph in topo-
logical order. With capillary or gravity forces, the flow across an interface
may go in opposite directions for different fluid phases (countercurrent
flow). This introduces connected components in the graph, correspond-
ing to cycles of mutually dependent cells that must be resolved simulta-
neously. Cycles can also arise if pressure is computed by a consistent but
nonmonotone method.

A topological ordering is still possible if we first group all cells belong-
ing to the same connected component into a super-node, which results in a
new DAG with fewer nodes. By traversing the nodes in topological order,
the transport subproblem can be solved cell-by-cell for nodes or cycle-by-
cycle for supernodes. Assuming that node i in the topological ordering
consists of three cells i1, i2, i3, the system of nonlinear transport equations
takes the following form




R1(S1)
R2(S1, S2)

...
. . .

Ri−1(S1, S2, . . . ,Si−1)
Ri(S1, S2, . . . ,Si−1, Si1 , Si2 , Si3)Ri+1(S1, S2, . . . ,Si−1, Si1 , Si2 , Si3 , Si+1)

...
. . .

...
. . .

Rnn(S1, S2, . . . ,Si−1, Si1 , Si2 , Si3 , Si+1, . . . , Snc)




= 0.

When solving this problem, residual equation i contains three unknowns
Si1 , Si2 , Si3 that must be solved for simultaneously. Note that nn < nc de-
notes the number of nodes in the graph, and not the number of grid cells.
Figure 4.8 illustrates the method for a small PEBI grid with gravity effects,
where a light vapor phase is injected into a heavy liquid phase.

Computing the topological ordering is called a topological sort, and can
be performed in O(nc) operations in the case of only cocurrent flow using,
e.g., a depth-first search, (see [47, Chapter 22]). With counter-current flow,
a topological order can be obtained in O(nc + n f ) operations using Tar-
jan’s algorithm [176], where nc is the number of cells and n f the number of
interfaces in the grid. This approach has been successfully applied to the
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transport subproblem in sequentially implicit solution schemes for tow-
phase flow [138], two-phase, three-component systems describing polymer
flooding [113, 150], and for linear transport equations for time-of-flight and
steady-state tracer distributions [139, 60, 149]. Figure 4.8 shows an illustrat-
ing 2D example of reordering based on the topological flux graph, where
fluid flows from an injector in the lower left corner to a producer in the
upper right corner.

Use of optimal ordering may speed up the simulation of transport equa-
tions significantly, since it offers local control of the nonlinear solution pro-
cess. In particular, computational resources are spent where updates are
nonzero, whereas large parts of the domain requires zero or a single non-
linear iteration to converge. All discretization schemes for which the stencil
is restricted to the upstream neighbors in addition to the cell itself fits into
the reordering method. As such, the increased computational efficiency
obtained by reordering also facilitates the use of otherwise prohibitively
expensive higher-order dG methods, se e.g., [139, 138, 149] and Papers VII
and VIII.

Papers VII to IX discuss localized nonlinear solvers based on reorder-
ing for black-oil (Paper VII) and compositional (Paper VIII) problems and
how this approach can be combined with dynamic spatial discretizations
(Paper IX).
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Figure 4.8: Topological ordering of the grid cells for a case with gravity, posed in
a PEBI grid filled with a heavy liquid phase. A light vapor phase is injected in
the lower-left corner, and flows towards a producer in the upper-right corner. The
original ordering runs from left to right, whereas the topological ordering starts at
the injector, and increases towards the producer. The figure also shows the struc-
ture of the system of nonlinear transport equations as sparsity plots, both in the
original and topological ordering. Buoyant forces introduce three connected com-
ponents of mutually dependent cells, indicated by a unique color in the grids and
corresponding sparsity plots. Reordering, permutes the nonlinear transport sys-
tem into lower-triangular form, with three small diagonal blocks corresponding
to cycles. The inset shows one of the cycles, with the direction of the vapor and
liquid fluxes imposed. Figure from Paper IX.



Chapter 5

The MATLAB Reservoir
Simulation Toolbox

A continuous drive towards more complex reservoirs means that reser-
voir simulation becomes an increasingly important tool for reservoir engi-
neers. There exist a number of commercial reservoir simulators: ECLIPSE
100/300 [160] and INTERSECT [161] from Schlumberger, the GPU-based
ECHELON simulator from Stoneridge Technology [171], tNavigator from
Rock Flow Dynamics [154], Nexus from Landmark [105], and IMEX, GEM
and STARS from Computer Modelling Group [42], to name a few. In addi-
tion, large companies like ExxonMobil and Saudi-Aramco have commer-
cial in-house simulators.

Commercial reservoir simulators are typically implemented in an op-
timized manner to meet the robustness and efficiency commonly required
for industrial applications. This means that they often lack the flexibility
that makes it simple to implement and test new gridding and discretiza-
tion methods, new solution strategies, etc. More important, source code is
hardly ever available to users. Therefore, some research groups develop
open-source reservoir simulation software to facilitate rapid development
of new ideas. This also contributes to bridge the gap between industry and
academia, and reduce the time from conception to implementation of new
ideas in an industrial simulator environment. There exists several excel-
lent open-source software resources for reservoir simulation, and review
of these is clearly outside the scope of this thesis. Instead, we refer to e.g.,
[27], and mention here the two open-source software packages used in this
thesis: the Open Porous Media Initiative (OPM) [143], collaboratively de-
veloped by NORCE, SINTEF, Equinor, and others; and the MATLAB Reser-
voir Simulation Toolbox (MRST) [169], developed by SINTEF. The latter

67
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has been extensively used in this work, and we therefore describe it here
in some detail.

5.1 Geological model

MRST is organized in modules and offers a wide variety of tools. Here,
we go through an example to show the basic steps necessary to set up a
simulation model. The first step is to construct a grid and populate it with
petrophysical properties.

We want to construct a 2.5D PEBI grid, and start by loading the upr
module originating from the master thesis of Berge [26], which is also de-
scribed in detail in Paper I and later improved in Paper II.

mrstModule add upr; % Load upr module for PEBI gridding

We first construct an areal 1000× 500 m2 grid with an injector in (50, 50) m
and a producer in (950, 450) m and increased resolution around the wells.

lx = 1000*meter; % Length in x direction
ly = 500*meter; % Length in y-direction
n = 20; % Approximate number of cells in x-direction

inj = [ 50, 50]*meter; % Injector coordinates
prod = [950,450]*meter; % Producer coordinates

G2D = pebiGrid(lx/n, [lx, ly] , ...
'wellLines' , {inj, prod}, ... % Wells
'wellGridFactor', 0.25 , ... % Relative well cell size
'wellRefinement', true ); % Refinement around wells

MRST offers a variety of plotting functionality, so we plot the resulting G2D
grid. All cells have a Boolean tag, which pebiGrid sets to true for all well
cells. Figure 5.1 shows the result.

Next, we make a 2.5D grid by stacking five layers of the areal grid on
top of each other using makeLayeredGrid:

nl = 5; % Number of layers
dz = 5*meter; % Layer thickness
G = makeLayeredGrid(G2D, dz*ones(nl,1)); % Make layered grid
G.cells.tag = repmat(G2D.cells.tag, nl,1); % Repeat well cell tag
G = computeGeometry(G); % Compute geometry

We then populate the grid with petrophysical properties. To mimic strati-
graphic layers, we use logNormLayers to construct a 3D array of scalar
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plotGrid(G2D, 'facecolor', 'none') % Plot grid cell outline
plotGrid(G2D, G2D.cells.tag, 'facecolor', 'r') % Plot only well cells
axis equal tight

Figure 5.1: 2D PEBI grid with refinement around well cells (shown in red).

permeability values, lognormally distributed with a different mean in each
layer. We then sample values from this array onto the 2.5D grid.

K = logNormLayers([2*n, 2*n/2, nl], nl); % Generate
perm = sampleFromBox(G, reshape(K, [2*n, 2*n/2, nl])); % Sample

This is used to construct a rock structure, where we for simplicity assume
that the porosity is directly correlated to the permeability:

perm = perm*milli*darcy; % Assign units
poro = perm/max(perm)*0.5; % Correlated porosity
rock = makeRock(G, perm, poro); % Make rock structure

Finally, we use the built-in function peaks to shift the vertical coordinates.

x = G.nodes.coords(:,1:2); % Map xy-coords ...
x = bsxfun(@rdivide, x,[lx,ly])*4 - 4/2; % to peaks' domain
z = peaks(x(:,1), x(:,2))*5 + 2000*meter; % Compute z coords
G.nodes.coords(:,3) = G.nodes.coords(:,3) + z; % Assign z coords
G = computeGeometry(G); % Compute geometry

This alters the grid geometry, and we thus called computeGeometry(G)
once more. Figure 5.2 shows the resulting geological model.
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plotCellData(G, log10(rock.perm(:,1))); % Plot log10 of x-permeabilty
axis equal tight, view(3);

Figure 5.2: Geological model constructed by extruding a 2D PEBI grid in the verti-
cal direction, and then shifting the vertical coordinate. The permeability field has
five distinct layers, where each layer is lognormal with a different mean.

5.2 Flow model

Many of the components that constitute the simulation model in MRST are
built using automatic differentiation (see Section 4.3) and object-orientation
(AD-OO). We will not describe this in detail here, and refer instead to
[111, 17, 129]. First, we load the core functionality (ad-core), as well as
functionality for fluid properties and for black-oil-type models.

mrstModule add ad-core ad-props ad-blackoil

We the construct a fluid object representing a simple immiscible three-
phase fluid model in which each phase has simple quadratic Brooks–Corey
relative permeabilities and distinct viscosity and density.

fluid = initSimpleADIFluid( ...
'phases', 'WOG' , ... % Fluid phases
'n' , [2,2,2] , ... % Relperm expn
'mu' , [0.5, 1, 0.1]*centi*poise , ... % Viscosity
'rho' , [1000, 800, 500]*kilogram/meterˆ3); % Density

Finally, we construct the fluid model. This contains all the information we
need about the geological model and fluid properties.

modelFI = ThreePhaseBlackOilModel(G, rock, fluid);
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The ThreePhaseBlackOilModel class implements the fully-implicit finite-
volume discretization of the black-oil equations (2.15) with upstream mobility-
weighting and two-point flux approximation as discussed earlier in Chap-
ter 2 and 3. The implementation is based on the discrete operators outlined
in Chapter 4.

MRST describes the reservoir state (e.g., pressure, saturations, etc.) at
any time as a state object. Given the state at timestep n+ 1 and state0
at timestep n, a timestep size dt, and a drivingForces struct that holds
information about wells and boundary conditions, the residual equations
can be evaluated as

>> problem = modelFI.getEquations(state, state0, dt, drivingForces)

problem =

LinearizedProblem with properties:

equations: {[1×1 ADI] [1×1 ADI] [1×1 ADI] [1×1 ADI] ...}
types: {’cell’ ’cell’ ’cell’ ’perf’ ...}

equationNames: {’water’ ’oil’ ’gas’ ’waterWells’ ...}
primaryVariables: {’pressure’ ’sW’ ’sG’ ’qWs’ ...}

...

This gives a LinearizedProblem with the residual equations on lin-
earized form: the residual equation for the water, oil and gas phases, in
addition to the well equations (we only show the well equation for the
water phase here). The equations are linearized using automatic differen-
tiation, which we described in Section 4.3:

>> eq = problem.equations{1}

eq =

ADI with properties:

val: [1195×1 double]
jac: {[1195×1195 double] [1195×1195 double] [1195×1195 double] ...}

AD variables are implemented in the ADI class, where the value field con-
tains the value of the residual equation in each grid cell. The blocks of the
Jacobians are stored in the jac field, where block jac{i} holds the deriva-
tives of the equation with respect to primary variable number i (remember
Figure 4.4).
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5.3 Well model

We want to simulate ten years of water injection. To this end, we set one of
the wells to inject a total of 1.5 pore volumes over a period of 10 years, and
the producer to operate at a fixed bottom-hole pressure of 100 bar.

time = 10*year; % Total prodution time
rate = 1.5*sum(poreVolume(G, rock))/time; % Injection rate
bhp = 100*barsa; % Bottom-hole pressure

The well objects are constructed using addWell.

W = [];
% Injection well
wc1 = G.cells.tag & G.cells.centroids(:,1) < 500; % Well cells
W = addWell(W, G, rock, wc1 , ...

'type' , 'rate' , ... % Rate-ctrld well
'val' , rate , ... % Injection rate
'comp_i' , [1,0,0] , ... % Injected comp
'refDepth', min(G.cells.centroids(wc1,3)), ... % Ref depth bhp
'name' , 'INJ' ); % Well name

% Production well
wc2 = G.cells.tag & G.cells.centroids(:,1) > 500; % Well cells
W = addWell(W, G, rock, wc2 , ...

'type' , 'bhp' , ... % BHP-ctrld well
'val' , bhp , ... % BHP
'comp_i' , [1,0,0] , ... % Mandatory
'refDepth', min(G.cells.centroids(wc2,3)), ... % Ref depth bhp
'name' , 'PROD' ); % Well name

Figure 5.3 shows the wells. The discrete equations relating flow between
the wellbore and the reservoir are contained in a well model represented by
model class SimpleWell, which implements a standard Peaceman-type
well model; see Section 3.3. This model is constructed by the flow model
upon starting the simulation.

5.4 Simulation

We must provide the initial state, which consists of gas in the upper parts
(z < 2000 depth) and oil in the rest of the reservoir. Pristine reservoirs are
usually in hydrostatic equilibrium, but for simplicity, we assign a constant
pressure in the entire model.
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plotGrid(G, 'facecolor', 'none', 'edgealpha', 0.2); % Plot grid outline
plotWell(G, W, 'color', 'k'); % Plot wells

Figure 5.3: The injector and producer in our setup.

sat0 = repmat([0,1,0], G.cells.num,1); % Filled with oil
ix = G.cells.centroids(:,3) < 2000; % Gas in upper parts
sat0(ix,:) = repmat([0,0,1], nnz(ix), 1);
state0 = initResSol(G, bhp, sat0); % Initial state

To simulate water injection, we construct a schedule that holds the
timesteps ∆t we want to simulate, and the control (e.g., wells, boundary
conditions, etc.) used for each timestep.

dt = rampupTimesteps(time, 30*day); % Timesteps
schedule = simpleSchedule(dt, 'W', W); % Construct schedule

Note that we have not specified boundary conditions in this example. Since
we calculate flow over each cell interface, this is equivalent to assigning no-
flow boundary conditions.

We also need a nonlinear and a linear solver. The nonlinear solvers
in MRST are implemented in the NonLinearSolver class, which is part
of the ad-core module. In this small example, MATLAB’s direct solver,
mldivide, is very efficient. Iterative solvers are found in a separate mod-
ule, linear-solvers, and for the sake of the example we instead use
the iterative GMRES solver with CPR preconditioning (see Section 4.4 and
Paper IV).
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mrstModule add linearsolvers
lsol = CPRSolverAD(); % GMRES solver with CPR preconditioner
nlsol = NonLinearSolver(); % Nonlinear solver

We can now simulate the schedule for the given flow model and initial
state. MRST usually measures convergence as in commercial simulators,
where both the maximum volume error and the total mass-balance error
are checked [159]. To be consistent with the discussion in preceding chap-
ters, we will instead only check the discrete residual equations for conver-
gence.

modelFI.useCNVConvergence = false;
[wellSolFI, statesFI, reportsFI] ...

= simulateScheduleAD(state0, modelFI, schedule, ...
'linearSolver' , lsol , ...
'nonlinearSolver', nlsol);

The following text is the first five columns of output to the command win-
dow resulting from timestep 1:

Solving timestep 001/130: -> 2 Hours, 2925 Seconds
=====================================================================
| It # | water (cell) | oil (cell) | gas (cell) | waterWells (perf) | ...
=====================================================================
| 1 | 3.88e-03 |*0.00e+00 |*0.00e+00 | 1.35e-03 |
| 2 | 8.91e-05 | 2.82e-04 | 3.81e-06 | 2.93e-03 |
| 3 |*6.58e-09 | 4.67e-06 | 2.45e-06 |*7.18e-09 |
| 4 |*3.21e-16 |*9.58e-12 |*1.50e-09 |*3.00e-16 |
=====================================================================
Solved timestep with 1 accepted ministep (0 rejected, 3 total iterations)
Completed 3 iterations in 0.77 seconds (0.26s per iteration)

The first column shows the nonlinear iteration, whereas the water, oil
and gas columns report corresponding norms of the discrete residualsRα

(3.18), multiplied by the timestep and divided by the pore volume. More-
over, there is one column for each phase for the well equations, in addition
to a column for the control equation for each well.

The object wellSolFI holds the simulated well states (bottom-hole
pressures, water/oil/gas rates, etc.) for each timestep, statesFI holds
the reservoir states, and reportsFI a solver report for each timestep, with
information about nonlinear and linear iterations, timestep cuts, etc. Fig-
ure 5.4 shows the resulting reservoir saturation at three selected timesteps.
Since most of the work in the scientific papers in this thesis is focused on
sequential splitting, we simulate the same setup using sequential splitting.
This can be done by loading the blackoil-sequential module.
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plotCellData(G, statesFI{step}.s(:,1), 'edgealpha', 0.2);
plotWell(G, W, 'height', 50, 'color', 'k');
caxis([0,1]), axis equal off, view(3)

Figure 5.4: Saturations at three selected timesteps during the simulation.

mrstModule add blackoil-sequential
modelSI = getSequentialModelFromFI(modelFI); % FI model->SI model
[wellSolSI, statesSI, reportsSI] ... % Simulate

= simulateScheduleAD(state0, modelSI, schedule);

In this case, the command window output reads

Solving timestep 001/130: -> 2 Hours, 2925 Seconds
===================================================================
| It # | Delta P | waterWells (perf) | oilWells (perf) | gasWells ...
===================================================================
| 1 | Inf | 1.35e-03 |*0.00e+00 |*0.00e+00
| 2 | 5.51e+06 | 2.96e-03 | 2.96e-03 |*0.00e+00
| 3 | 2.17e-02 |*8.67e-18 |*8.67e-19 |*0.00e+00
| 4 | 1.43e-02 |*3.04e-18 |*8.67e-19 |*0.00e+00
| 5 | 1.62e-03 |*3.04e-18 |*2.17e-18 |*0.00e+00
| 6 |*1.06e-05 |*8.67e-19 |*2.60e-18 |*0.00e+00
===================================================================
PRESSURE: Solved timestep with 1 accepted ministep (0 rejected, ...
==================================
| It # | oil (cell) | gas (cell) |
==================================
| 1 | 5.46e-02 | 2.93e-03 |
| 2 |*4.11e-05 |*1.01e-07 |
==================================
TRANSPORT: Solved timestep with 1 accepted ministep (0 rejected, ...
Solved timestep with 1 accepted ministep (0 rejected, 0 total iterations)
Completed 0 iterations in 1.03 seconds (Infs per iteration)

Here, the flow subproblem (PRESSURE) is first solved until the magni-
tude of the pressure update ∆p is below a given threshold in all cells, be-
fore we solve the transport subproblems (TRANSPORT). Note that since the
well equations determine the bottom-hole pressure and flow rates, they are
solved during the flow step only.
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plotWellSols({wellSolFI, wellSolSI}, schedule.step.val, ...
'dataSetNames', {'FI', 'SI'})
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Figure 5.5: Bottom-hole pressure in the injector (left) and gas cut in the producer
computed using FI and SI.

To compare the results of the SI and FI simulations, we plot the injector
bottom-hole pressure and producer gas cut for the two solutions in Fig-
ure 5.5. In this case, SI is quite close to FI, even though there is no outer
loop to ensure that we resolve couplings between flow and transport.

This short introduction to MRST is by no means exhaustive, but shows
some of the core functionality and exemplifies construction of the main
components of a simulation model: the geological model, the flow model
and the well model. A much more detailed introduction can be found in
[111].



Chapter 6

Summary of Papers

In total, thirteen scientific papers have been written over the course of this
PhD. Four of these are not included, either because they were later worked
into journal publications that are included in this thesis, or because they
consider topics that are outside the core focus of the thesis. The remaining
nine papers make up the second part of this thesis and can be grouped into
four broader thematic categories:

• Papers I – III cover unstructured gridding and consistent discretiza-
tions. Paper I and Paper II outline a methodology for constructing
Voronoi grids that conform to one- and two-dimensional constraints.
In particular, the methodology enables cell interfaces of the grid to
conform to prescribed surfaces, which could for instance model faults
or fractures, and cell centroids to conform to prescribed lines, which
e.g., could represent well trajectories. The resulting grids are not nec-
essarily K-orthogonal like many other types of grids generated to ac-
curately represent complex reservoir geometries. The standard two-
point flux-approximation scheme is not consistent if the grid is not
K-orthogonal; see the discussion in Chapter 2. Papers I and III there-
fore consider discretizations for elliptic Poisson-type equations that
are guaranteed to be consistent on general stratigraphic and unstruc-
tured grids.

• Paper IV discusses a new multibasis formulation of the multiscale
restriction-smoothed basis (MsRSB) method, in which extra sets of
multiscale basis functions are introduced to represent static features
in the geomodel more accurately, and to adapt to local changes in
the pressure field. The new method is used as a CPR preconditioner
in fully implicit reservoir simulation. As such, the paper differs from
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the rest of the work in this thesis, since it is the only one that considers
fully implicit simulation, and the only paper concerned with linear
solvers.

• Papers V and VI address damping strategies for Newton’s method
applied to transport problems. In Paper V, a purely numerical trust-
region method is extended to a two-phase, three-component system
modelling polymer flooding, and its efficiency is improved by only
invoking trust regions reactively as a response to convergence prob-
lems. Paper VI outlines a further improved, robust adaptive trust-
region strategy in which trust-region checks are only performed when
deemed necessary. The adaptive method performs similar to a stan-
dard Newton method when this works well, and approaches the
standard trust-region method for particularly challenging cases.

• Papers VII – IX focus on efficient and localized nonlinear solvers for
transport problems. Previous research has shown that it is possible
to develop highly efficient nonlinear solvers that solve the nonlinear
system cell by cell by first performing a topological sort of the graph
induced by the total intercell fluxes. This permutes the nonlinear
transport problem in to a block-triangular form that can be solved
using a nonlinear back-substitution method. Paper VII extends the
methodology to black-oil problems, and uses a dG formulation to
implement higher-order spatial discretization for the transport equa-
tions. The same dG formulation is used in Paper VIII, where the
methodology is further extended to compositional problems. This
paper also shows how coarsening can be used as a means of dynamic
grid adaptivity, and combines it with the dG discretization. Finally,
in Paper IX, a robust adaptive coarsening strategy is combined with
the reordering-based localized nonlinear solver strategy.



Paper I – III

Unstructured Gridding and Consistent Discretizations for Reservoirs
With Faults and Complex Wells

Øystein S. Klemetsdal, Runar Lie Berge, Knut-Andreas Lie, Halvor Møll
Nilsen, Olav Møyner

In proceedings of the 2017 SPE Reservoir Simulation Conference, Montgomery,
Texas, USA

DOI: 10.2118/182666-MS

Unstructured Voronoi Grids Conforming to Lower-dimensional Objects
Runar Lie Berge, Øystein S. Klemetsdal, Knut-Andreas Lie

Computational Geosciences, volume 23, issue 1, pp. 169–188, 2019
DOI: 10.1007/s10596-018-9790-0

A Comparison of Consistent Discretizations for Elliptic Poisson-Type
Problems on Unstructured Polyhedral Grids

Øystein S. Klemetsdal, Olav Møyner, Xavier Raynaud, Knut-Andreas Lie
Manuscript in preparation, 2019

The topics of the first three papers in this thesis is summarized in the
title of Paper I: Unstructured gridding and consistent discretizations for
reservoirs with faults and complex wells. This is evidently two different
topics, but they are closely related: The computational grid has a direct im-
pact on the quality of the numerical solution, but what is the best compu-
tational grid will depend on the specific discretization. This is particularly
true in reservoir simulation, where the grid is usually generated to repre-
sent the spatial variation in the coefficients of the PDE accurately and with
as few volumetric cells as possible. Paper I is concerned with gridding and
discretizations, Paper II gives a more in-depth and updated discussion of
the novel gridding method first presented in Paper I, whereas Paper III
presents an updated discussion of consistent discretizations for unstruc-
tured polyhedral grids.

Unstructured Voronoi grids

Papers I and II discuss application of Voronoi grids, commonly referred to
as Perpendicular BIsector (PEBI) grids in reservoir simulation, to represent

79



80 Summary of Papers

complex reservoir geometries. This is not a new idea – PEBI grids were in-
troduced in reservoir simulation in the early 1990s [79, 67, 165]. While quite
flexible, the main challenge with PEBI grids has been to accurately capture
complex geometries like multiple intersecting fault surfaces. Methods for
this, as well as strategies for handling faults intersecting at sharp angles
were outlined by Branets et al. [31] and later Manzoor et al. [123], Toor
et al. [179]. These methods are based on constrained Delaunay triangula-
tion, in which a protection layer is placed around faults. This ensures that
the grid conforms to intersecting faults and well trajectories, but tends to
create regions with small and skewed cells near intersections. These unde-
sirable effects can be mitigated by using a conflict-point removal scheme
[54], or by optimizing the PEBI grid so that cells cut in two by fractures
or fault surfaces have a minimal volume [126, 127]. The latter approach
is based on the fact that a PEBI grid minimizes an energy function on the
form ∑nc

i=1

∫
Ωi
|xi − x|2 dV. The PEBI grid can also be optimized by treating

the edges and vertices in the underlying Delaunay triangulation as springs
and connecting joints. The optimum is then found as the equilibrium to
this system [146].

In Papers I and II, we present a method for generating grids that sat-
isfy two types of conformity requirements: interface-conformity, where
given surfaces are traced by cell interfaces, and cell-conformity, where a
given line or surface is traced by cell centroids. This is achieved by build-
ing the grid dimension-by-dimension: 0D features (points) represent line
endpoints and intersections; 1D features (lines) represent intersections be-
tween surfaces, or line objects such as well trajectories; whereas 2D features
represent surfaces such as faults and stratigraphic horizons. This construc-
tion gives a nice representation of all constraints in the computational grid,
and ensures that all objects of dimension d− 1 are represented as interfaces
of objects in dimension d.

The gridding methodology is flexible and robust, and can accurately
conform to complex compositions of surface and line constraints. This is
demonstrated through a number of examples. On the other hand, the 3D
method has certain inherent limitations, since constraints are only com-
municated from lower-dimensional grids to higher-dimensional grids. As
a result, sites (or control points used to constrain the grid to surfaces)
from different surface constraints may interfere with each other so that
the resulting grid is not guaranteed to conform to all these constraints.
In contrast, the 2D methodology allows for communication between con-
straints of the same dimension, so that the grid conforms to all interface
constraints.
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Fractures 2.5D PEBI grid

Figure 6.1: A 2.5D PEBI grid conforming to fracture surfaces and having increased
resolution near three vertical wells. Figure from Paper II.

Consistent discretizations

As pointed out by e.g., Samier and Masson [157], Schneider et al. [164],
elliptic problems for flow in porous media should be discretized with a
method that:

1. is locally mass conservative, meaning that mass conservation carries
over from the continuous conservation law to the discretized version;

2. is consistent and coercive, which together gives a convergent method;

3. is monotone, meaning that the discrete solution satisfies similar min-
imum/maximum principles as the true solution;

4. ensures that the resulting discretization matrix is reasonably sparse.

In Papers I and III, we compare different consistent discretizations for
elliptic Poisson-type problems with these properties in mind. To limit
the discussion, we consider a representable set of discretizations includ-
ing multipoint flux approximation (MPFA) methods [8, 58, 6], mimetic fi-
nite difference (MFD) methods [101, 34, 23], and nonlinear TPFA methods
[108, 118, 142, 163]. We also include a fairly recent development in finite-
element methods called virtual element methods (VEM) [21, 9, 22] in the com-
parison. VEM enables finite-element discretizations on general polyhedral
grids by introducing moments over the cells as degrees of freedom, thereby
removing the requirement of explicit knowledge of basis functions.
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Paper I presents the mentioned methods and compares them on var-
ious test cases. In particular, consistency, robustness, and computational
complexity is considered. Paper III reports a more in-depth study, which
also focuses on how the different methods impact the transport solver
when used as the pressure solver in a sequential setting.

As many studies before, the work in these two papers emphasizes the
importance of using a consistent method. The novelty of the work lies
in a unified comparison of several methods within the same open-source
framework. Results are, however, inconclusive with respect to what dis-
cretization is the best, but suggest that further studies should also take into
account how the different methods affect subsequent solution of a trans-
port equation. In terms of comparisons, the two studies are somewhat lim-
ited in that they do not include mixed/hybrid finite-element methods [33],
nor the promising vertex approximation gradient method [63, 64, 157].
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Accelerating Multiscale Simulation of Complex Geomodels by Use of
Dynamically Adapted Basis Functions

Øystein S. Klemetsdal, Olav Møyner, Knut-Andreas Lie
Computational Geosciences, published ahead of print, 2019

DOI: 10.1007/s10596-019-9827-z

A natural extension of using algebraic multiscale methods as iterative
linear solvers [74, 192, 121, 132] is to include multiple sets of restriction/pro-
longation operators, which gives a truly multiscale method [50, 114, 120].
Lie et al. [114] proposed to use different multiscale operators to increase the
resolution of specific model features such as fractures and wells, demon-
strating a significantly improved convergence rate over a simple two-stage
multiscale method. This was facilitated by using the multiscale restriction-
smoothed basis (MsRSB) method [133, 132, 133], which imposes very few
restrictions on the underlying coarse grid. In Paper IV, we follow the idea
of Lie et al. [114] and introduce additional dynamically adapted basis func-
tions to capture local changes in the pressure field associated with propa-
gating fluid fronts to improve the convergence rate.

Algebraic multiscale methods are natural candidates as the elliptic solver
in CPR preconditioners [189, 190], and results on this was first published by
Cusini et al. [49]. In our work, we use the iterative multiscale-multibasis
framework to accelerate linear convergence in fully implicit simulations.
The result is a convergence speedup in the linear solver of 10-60% com-
pared to using a multiscale solver with only one set of basis functions. Fig-
ure 6.2 gives a schematic illustration of the linear solution process. The
paper only discusses adding basis functions that adapt to changes in the
pressure and saturation of specified phases, but the framework is general
and also enables adaption to other dynamic cell quantities like mass frac-
tions, residuals, or error indicators (see Paper IX).

The methodology is extensively tested through several numerical ex-
amples, including EOR scenarios and realistic reservoir models, but the
paper lacks a comparison with a CPR solver that uses a more standard
elliptic solver such as AMG. In addition, only one cycle of the iterative
multiscale solver is used, while in fact a number of cycles or convergence
to a non-strict tolerance may be a better choice. The reason for using only
one cycle is to keep the comparison between different multiscale solvers
as clean-cut as possible. Moreover, the proof-of-concept implementation
in MRST has a certain computational overhead compared with compiled
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Figure 6.2: Schematic illustration of how the iterative multiscale solver with mul-
tiple basis functions can be used as the elliptic solver in a CPR preconditioner.
After decoupling of the linearized fully-implicit system, the block J∗pp associated
with the pressure variables resembles the discretization matrix of an elliptic oper-
ator, and the solution to J∗pp∆xp = R∗p is a reasonable approximation of the true
pressure update.

languages, and performance is thus reported in term of the number of lin-
ear iterations per nonlinear iteration. So, even though the paper includes
a complexity analysis supporting the results, a more thorough numerical
investigation with CPU times is necessary to demonstrate the efficiency of
the solver on realistic field-scale models.
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Robust Nonlinear Newton Solver with Adaptive Interface-Localized
Trust Regions

Øystein S. Klemetsdal, Olav Møyner, Knut-Andreas Lie
SPE Journal, volume 24, issue 4, pp. 1576–1594, 2019
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In sequential splitting, the flux function tends to have a characteristic
S-shape, which introduces different contraction regions for an associated
nonlinear Newton solver. Therefore, even though the implicit backward
Euler temporal discretization is unconditionally stable, the Newton solver
often exhibits convergence issues when applied to the transport subprob-
lem. Jenny et al. [91] suggested to dampen Newton updates based on trust
regions, which is a well-known method from mathematical optimization
that delineates different contraction regions (see e.g., [53, Chapter 3]). The
result is an unconditionally convergent method for any timestep length.

Identification of the trust regions was originally based on closed-form
expressions, and has been successfully applied to two-phase flow with
buoyancy [191] and capillarity [110]. Voskov and Tchelepi [186] extended
the methodology to compositional flow by considering trust regions along
key tie-lines. These early versions of the method applied the same damp-
ing factor to all cells, since this preserves the direction of the Newton up-
date. However, the hyperbolic nature of the transport equations means
that Newton’s method will converge much faster in some parts of the do-
main than others. Møyner [130] extended the methodology to multiple
phases in a fully numerical framework that considers Newton updates
across cell interfaces. He also suggested a localized version of the method,
in which the damping factor of a cell is chosen as the minimum of the re-
quired damping factors in the cell itself and in all its upstream neighbors.
This was an improved generalization of the original trust-region method,
but requires a significant number of residual evaluations to approximate
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Figure 6.3: The adaptive trust-region framework. Trust regions are invoked over
an interface when we observe an oscillation, and kept on for nTR iterations, which
depends on the number of observed oscillations nosc over the interface during the
timestep. Figure from Paper VI.

the trust regions, and is therefore expensive. In addition, the damping fac-
tors tend to be overly restrictive.

Paper V extends the numerical trust-region framework of Møyner [130]
to a two-phase three-component system modelling polymer flooding [178]
and improves efficiency by introducing adaptivity in the trust-region algo-
rithm. In particular, the paper suggests a heuristic approach that invokes
trust-region damping as a response to convergence problems rather than
as a default restriction. The methodology is further improved in Paper VI,
where we propose using oscillation detection to activate trust regions only
when needed. Criteria for turning trust regions on and off come in the
form of a number of parameters that can either be set dynamically or be
prescribed by the user to achieve a nonlinear solver tailored to the prob-
lem at hand. When properly configured, the method performs similar to
a Newton solver when this performs at its best, and approaches the static
trust-region solver for particularly challenging cases. This is demonstrated
through a number of test cases, from contrived scenarios constructed to
challenge the nonlinear solver, to reservoir models with realistic grids and
fluid physics. The proposed solver is compared to Newton’s method with
industry-standard damping strategies with and without line search, and to
the trust-region solver of Møyner [130]. Figure 6.3 illustrates the method.

To ensure a clean-cut comparison between the different nonlinear solvers,
the standard Newton solver includes industry-standard chopping meth-
ods based on solution increments, number of iterations, etc., but does not
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include modified Appleyard-chopping with treatment of transitions to/from
mobile/immobile saturations [159], which may improve the convergence
of this method. The work demonstrates promising results for the adaptive
trust-region solver, but once again, results are only reported in terms of
nonlinear iterations, since the trust-region method is not possible to vec-
torize, and consequently not possible to implement fully CPU efficient in
MATLAB. As a compromise, the number of residual evaluations per non-
linear iteration are also reported, and should give a clear indication of ex-
pected performance in a compiled language.
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Localized nonlinear solvers

The key ideas behind localized nonlinear solvers for the transport subprob-
lem based on topological sorting have been thoroughly introduced in Sec-
tion 4.5, and amounts to using the intercell flux field obtained from the
solution to the pressure subproblem to sort the grid cells so that the dis-
crete transport equations are permuted to a (block) triangular form. The
methodology was first introduced by Natvig and Lie [138], and has later
been applied to a wide range of problems including linear (tracer) trans-
port [60, 149], two-phase flow [4, 138], and polymer flooding [113, 150].
Lie et al. [112] also discuss how the method can be combined with opera-
tor splitting techniques for cases with strong buoyancy/capillary effects.

Much of the groundwork for implementing the localized nonlinear solver
framework in MRST together with a discontinuous Galerkin discretiza-
tion of transport equations was done as a preparation for the ECMOR XVI
conference [97]. This paper was later developed into a journal article, in-
cluded in this thesis as Paper VII, which focuses on simulation of black-oil
models using localized nonlinear solvers based on optimal cell ordering.
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This first version implemented in MRST did not support capillary/grav-
ity forces, but the paper also presents results from a solver implemented
in OPM Flow, which was capable of simulating the full Norne field model
with real reservoir geology and full black-oil fluid physics, including grav-
ity and capillary pressure. Paper VIII extends the methodology to com-
positional simulations with capillary/buoyancy forces, whereas Paper IX
demonstrates how it can be combined with dynamic coarsening.

Whereas solving the transport subproblems cell-by-cell is optimal in
theory, modern hardware typically comprises multicore CPUs with SIMD-
type registers. Feeding sufficient computations to each core is therefore
imperative for fast execution time. In Paper VII, we therefore devise a
block-wise reordering solver that instead of solving for one node (with one
or a cycle of mutually dependent cells) in the intercell flux graph, solves for
a block of the next nb cells. This should be included in any optimized im-
plementation of the reordering methods, and possibly include parameter
tuning to utilize specific memory architectures as efficiently as possible.

Higher-order methods

The last few decades have seen a large effort into research of higher-order
methods for transport in porous media; see, e.g., [25, 29, 57, 13, 153, 119,
14]. These methods are nevertheless not yet commonplace in daily engi-
neering simulations. A possible reasons for this is that they tend to be cum-
bersome to implement in an implicit setting, and once implemented, the
added complexity significantly impedes nonlinear convergence [137, 116].
Likewise, it is not fully clear how to handle the skewed and general cell
geometries and unstructured grid topology encountered in real field mod-
els in an efficient an robust manner (remember the cells of the Norne field
model in Figure 3.12).

The unidirectional flow property exploited in localized nonlinear solvers
carries over to all discretizations based on variational formulations on the
form (3.6) as long as support of each basis function is restricted to a single
cell, and we use upstream mobility evaluation. In addition to finite-volume
methods, this is for instance the case in discontinuous Galerkin (dG) meth-
ods. These methods were first introduced for hyperbolic conservation laws
by Cockburn and Shu [45, 46], and their utility has been demonstrated for
different types of fluid models, including, e.g., single-phase, multicompo-
nent flow [175, 84]; two-phase flow [153, 61, 138]; and black-oil and com-
positional flow [128, 10]. However, all these papers assume that the grid is
structured (or relatively regular).
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In Paper VII and Paper VIII, an effort has been made to tailor dG meth-
ods to the type of grids seen in engineering simulations. This includes use
of tensor products of Legendre polynomials defined on the bounding box
of the cell as basis functions, and construction of efficient cubature rules
based on moment-fitting [135]. Referring back to Section 4.3, we see that
having as few integration points as possible is particularly important in im-
plicit simulations with automatic differentiation, where evaluation of the
residual function in an integration point also involves potentially costly
operations on the Jacobian.

Another known problem with dG methods is that discontinuities in
the solution tend to create spurious oscillations. This is usually handled
by imposing a slope limiter that effectively introduces enough numerical
diffusion to dampen oscillations. Such limiters are somewhat involved
to implement in implicit discretizations, and Natvig et al. [139] therefore
suggested an alternative ”slope kill” approach: Whenever the jump across
an interface is larger than a given threshold, the polynomial degree is re-
duced to 0 in related cells, which are also subdivided into smaller cells (i.e.,
h-refinement, p-reduction). In Papers VII and VIII, we use a simplified
approach in which the degree is reduced to 0, but with no compensating
spatial refinement. This will not preserve the formal order and the local
accuracy of the method, but has proven to be quite robust.

Numerical examples indicate that the proposed modifications give a
robust and fairly efficient dG method. The method has, however, so far
only been applied to immiscible flow. Although work is underway, a fully
robust implementation of dG for compositional flow remains to be worked
out.

Comparison of implicit discontinuous Galerkin and WENO schemes on
stratigraphic and unstructured grids

In Paper VIII, we also compare our dG implementation with a weighted
essentially non-oscillatory (WENO) discretization, and a more in-depth
comparison of dG and WENO schemes for stratigraphic and unstructured
grids was presented at the 2019 SIAM Geosciences conference [98]. These
results are not yet published, and we therefore give a short introduction to
WENO schemes and report some of the results from this work here.

High-resolution finite-volume discretizations can be constructed by in-
troducing higher-order interpolation for interface quantities. As an exam-
ple, consider a cell i in Figure 6.4, with neighbors N (i) = {i1, . . . , i6}. A
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Figure 6.4: Stencils used to for linear reconstruction of interface quantities in a cell
i with six neighbors N (i) = {i1, . . . , i6}.

linear reconstruction of the mobility λ in cell i can be written as

λ(x) = λ(xi) + (x− xi) · ∇λ +O(|x− xi|2). (6.1)

We can approximate the gradient σ ≈ ∇λ using a triplet of cell i and two
of its neighbors. Cell i has 15 such triplets: 6 primary triplets (i.e., triplets
where all cells are neighbors), and 9 secondary triplets. Generally, with N
neighbors, we get a total of Ni = (N

2 ) gradient approximations {σk
i }

Ni
k=1 and

corresponding linear reconstructions,

λ̂k
i (x) = λi + (x− xi) · σk

i , (6.2)

where we have used that λ(xi) = λi. By using these to define linear recon-
structions λ̂i in each cell and combining these with the upwind scheme in
equation (3.14),

λij =

{
λ̂i(xij), vij > 0,
λ̂j(xij), vij < 0,

we get a second-order accurate method. Higher order approximations are
possible if we accept to use wider stencils (i.e., sextets for quadratic recon-
structions, etc.). By choosing the smoothest linear reconstruction in each
cell, determined based on a suitable smoothness indicator, we get an es-
sentially non-oscillatory (ENO) method [76]. WENO [39] is a natural al-
ternative to the ENO method, in which we define the reconstructions λ̂i as
a linear combination of all available reconstructions {λ̂k

i }
Ni
k=1: given linear

weights, ∑k γk
i = 1, we compute nonlinear weights wk

i ,

wk
i =

βk
i

∑Ni
k=1 βk

i

, where βk
i =

γk
i

(ε + Λk
i )

2
, Λk

i = |Ωi| |σk
i |2.
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Permeability Kx (md) Water saturation Sa

dG(0) dG(1) WENO

Figure 6.5: Water injection in Layer 72 from the Upper Ness formation in Model 2
of the SPE10 benchmark simulated using the dG(0), dG(1) and WENO.

Here, Λk
i is the smoothness indicator, and ε is a small number to avoid

division by zero. The reconstruction is then defined as

λ̂i(x) =
Ni

∑
k=1

wk
i λ̂k

i (x).

Mykkeltvedt et al. [137] recently demonstrated how to implement fully im-
plicit higher-order WENO methods for polymer flooding in 1D and 2D.
These ideas have been further pursued to tailor the second-order WENO
method for real reservoir models [116] by, e.g., considering an SVD-based
transformation of the cell coordinates for gradient approximations, and
choosing only a subset of the cell neighbors in the linear combination.

Figure 6.5 shows results from simulation of water injection in Layer 72
of SPE10 Model 2, which we introduced in Section 2.3. This layer is part of
the Upper Ness formation and consists of an intertwined pattern of fluvial
sand channels on a background of low-permeability mudrock. The results
are obtained using dG(0), dG(1), and WENO, where k in dG(k) indicates the
polynomial degree of the basis functions in the dG method, so that dG(k)
is of formal order k + 1. We see that the two higher-order methods result
in visually sharper and less diffuse displacement profiles, in particular for
dG(1). Note that we have used the sequential implicit method with dG
for the transport subproblem only, whereas WENO results are computed
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using the fully implicit method. The results are therefore not directly com-
parable.

Figures 6.6–6.8 report a comparison on a subset of the SAIGUP model,
which we briefly introduced in Section 4.3. This is a synthetic model with
petrophysical properties based on data from real shallow-marine forma-
tions, represented in stratigraphic grid format [122]. We extract the three
top layers, and simulate waterflooding by imposing a pressure drop from
the western to the eastern boundary, and no-flow conditions elsewhere.
Again, dG(0) introduces significantly more diffusion than dG(1) and WENO,
which in this case are visually indistinguishable.

These two simple examples highlight how numerical diffusion affects
the quality of the solution, and may lead to inaccurate predictions. In terms
of coding complexity, WENO is appealing because it fits naturally into the
finite-volume framework widely used by the reservoir simulation commu-
nity. Discontinuous Galerkin methods, on the other hand, require heavier
machinery, including basis functions and cubature rules. Moreover, the
number of unknowns increases significantly with the order of the method.
WENO, on the other hand, retains the same low number of unknowns as a
standard FV method, albeit with a much denser discretization matrix. On
the other hand, the WENO stencil introduces both upstream and down-
stream dependencies, as can be seen from Figure 6.4, and it is therefore not
possible to combine with the reordering method, at least not without major
modifications of the weighting scheme.

Dynamic coarsening

Dynamic grid adaptivity can be used either as an alternative or as a com-
plement to higher-order spatial discretization to improve the solution ac-
curacy. A particularly popular approach applicable to reservoir simulation
is local grid refinement (LGR), in which a static or temporary refinement
is introduced by subdividing the grid cells into finer cells in parts of the
domain. This has been successfully applied to a number of scenarios, in-
cluding two-phase [134, 107], black-oil [75, 162] and compositional EOR
[19, 173, 83] simulations, albeit only for grids with a structured topology.

A challenge with LGR is the lack of readily available, robust refinement
strategies for the contorted cell geometries usually encountered in real sim-
ulation models. However, such models are usually upscaled from a much
finer geocellular model (see Section 2.3), which motivates the use of dy-
namic coarsening instead of dynamic refinement. This has been used by
a number of authors to construct static and dynamic grids with locally in-
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Permeability Kx = Ky (md)

Figure 6.6: Permeability in the top three layers of the SAIGUP model. The reser-
voir is modelled after data from real, shallow-marine formations. Water flooding
is simulated by imposing unequal pressure boundary conditions on the western
and eastern boundaries, and no-flow conditions elsewhere.
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Figure 6.7: Water saturation after 1869 days.

dG(0) dG(1)
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Sa

Figure 6.8: Water saturation after 2760 days.
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creased spatial resolution [56, 5, 77, 92, 93, 71, 50, 48], and in Paper IV in
the context of dynamic multiscale methods for pressure equations.

In Paper VIII, we presented an early two-level version of adaptive coars-
ening, and combined it with a dG(1) discretization. Paper IX presents a
multilevel generalization of the same method. The method has few re-
strictions and assumptions on the grid levels, except that they must form a
succession of increasingly coarser resolutions. However, in the special case
that the coarse partitions are nested, one can avoid a lot of the bookkeeping
that would otherwise be necessary, and further reduce the computational
overhead of the dynamic grid adaption by precomputing several quantities
needed for the coarse-scale discretization [83]. The paper therefore focuses
on validating the method in this case, and also combines it with the local-
ized nonlinear transport solver. Figure 6.9 illustrates the framework for a
small PEBI grid.

For simplicity, Paper IX only includes examples with immiscible two-
phase flow. Robust dynamic coarsening is significantly more challenging
for compositional flow, especially mapping of variables between different
dynamic grids. Moreover, mapping intercell fluxes from the fine grid to
a coarsened grid tends to introduce connected components in the intercell
flux graph, even though the flow is unidirectional on the fine grid. This
means that applying the local nonlinear solver based on reordering will
not give as good speedup factors as for the underlying fine-scale model.
To fully utilize the combination of these two methods, improved and more
robust mapping of variables between different grid levels therefore needs
to be investigated further.
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Chapter 7

Concluding Remarks and
Future Work

7.1 Concluding remarks

This thesis comprises work on various topics in reservoir simulation, with
an overarching goal of developing accurate and efficient discretization and
solution strategies by exploiting the physical and mathematical structure
of the underlying problem. In particular, the thesis discusses gridding,
discretizations, and linear and nonlinear solvers, both for fully implicit
and sequential implicit solution strategies. From a mathematical point of
view, we study two different types of equations that have distinctly dif-
ferent character in the incompressible limit: Elliptic equations governing
fluid pressure are linear and have infinite speed of propagation, whereas
the nonlinear hyperbolic equations governing transport of components or
fluid phases have finite speed of propagation and typically exhibit discon-
tinuous solutions. When solved separately in a sequential solution pro-
cedure, one benefits from using specialized solvers that target and utilize
features of each equation.

Papers I – III of the thesis focus on problems that are fundamental to
reservoir simulation – accurate description of reservoir geology and well
paths in the simulation grid, and consistent discretizations for the pres-
sure part of the flow problem. Papers IV – IX focus on efficient, specialized
solvers. The primary target of the thesis was to develop robust and efficient
nonlinear solvers for water-based EOR, a goal that in the author’s opinion
has been achieved by the adaptive trust-region solver introduced in Pa-
per V and Paper VI, and the localized nonlinear solver based on optimal
reordering of grid cells, discussed in Papers VII – IX.
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Reproducible and transparent research

Particular effort has been made to ensure that the research in this thesis is
reproducible and transparent. To this end, all the proposed solution strate-
gies are implemented in the open-source MRST framework (see Chapter 5).
The implementation of VEM and the new method for constrained Voronoi
mesh generation have already been published online as the add-on mod-
ules vem and upr to MRST. Likewise, we plan to release the implemen-
tation of discontinuous Galerkin discretization, nonlinear solvers based on
reordering, and the dynamic coarsening framework. However, these codes
need to be cleaned up and documented better to be accessible and useful
to others. Work on this is in progress at the time of writing, but not yet
finished. Moreover, to investigate the efficacy of the proposed solution
strategies, a large number of numerical experiments have been conducted.
It has always been a priority to come up with examples that challenge the
new methods, and make sure to also report cases when they do not work
well. With this in mind, we have made an effort to include examples with
a high degree of realism, both in terms of fluid physics, geological models,
and wells/injection strategies. On these grounds, it is my sincere opinion
that the research presented herein to a large degree is both reproducible
and transparent.

7.2 Future work

In the author’s experience, working with one new research idea tends to
spawn at least two new ones. The fact that this thesis spans a wide range of
different topics therefore means that there are many ideas that could not be
pursued within the timeframe of a 3-year scholarship. Below is therefore
a non-exhaustive presentation of research ideas that the author hopes to
follow up on in later work.

Localized nonlinear solvers

Scalability of the localized nonlinear solver used in this thesis is an open
question, in particular because of the causality requirement that makes this
solution strategy strictly serial. Vikøren [183] investigated a strategy that
treats the entire problem in parallel in his master’s thesis, but observed
no speedup. Another possible approach is to use domain decomposition,
and initiate the local solver on each subdomain simultaneously. When a
domain is finished, updated boundary conditions can be communicated
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to downstream subdomain neighbors, before restarting a new sweep. Do-
main decomposition strategies for the transport solver are used in commer-
cial simulators [99], and results of using the block-wise reordering solver,
reported in Papers VII – IX, indicate that using a localized nonlinear solver
in each domain can significantly speed up the simulation.

The local nature of the transport equations means that different subdo-
mains will converge at a very different rate, especially in the beginning of a
simulation. Idle processor time can then be reduced by employing a paral-
lelization approach called work-stealing, in which an idle process ”steals”
work from the stack (i.e., list of cells to be solved for) of a busy process [28].

As pointed out by Wong [194], the sequentially implicit (SI) method
can be used as an efficient nonlinear block Gauss–Seidel preconditioner for
Newton’s method applied to the outer iteration in a sequentially fully im-
plicit (SFI) formulation. This results in a nonlinear multiplicative Schwarz
preconditioning method [36]. The localized nonlinear transport solver fits
very well into this framework, and using it in such a setting is a natural
extension of the work presented here.

Multirate methods exploit the local nature of the transport subprob-
lem: The entire domain is first solved with the same timestep, after which
a subset of the grid cells are identified based on an error indicator, and
solved using a local, smaller timestep [158, 52]. Linga et al. [117] recently
presented a truly local timestepping approach that uses the local nonlinear
solver with reordering to solve each (super)node, or block of (super)nodes,
in the total-flux graph using a locally determined subdivision of a global
timestep. We plan to develop this method further, and research how it can
be combined with higher-order spatial discretizations and dynamic coars-
ening.

Spatial discretizations

Elliptic discretizations in subsurface flow are typically used to discretize
the pressure equation in multiphase flow simulations. However, consis-
tent discretizations for elliptic problems have primarily been studied for
the pressure equation alone, possibly with examples of how they affect
the solution accuracy of the transport problem. In Paper III, we pointed
out that different pressure discretizations will also affect the performance of
the nonlinear solver used to compute the transport solution. We therefore
intend to study how different elliptic discretizations affect the qualitative
transport properties of the induced flux fields, measured using, e.g., tracer
transport, residence-time distributions, interwell connections, and other
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types of flow diagnostics [111, Chap. 13]. Likewise, we will study how
discretizations affect the number, distribution, and size of the connected
components in the flux graph, which not only determine the efficiency of
localized nonlinear solvers, but may also affect the convergence of global
Newton-type solvers.

Papers VII and VIII discuss some aspects on how to tailor dG meth-
ods to realistic reservoir simulations. High spatial accuracy is particularly
important to reduce numerical smearing and capture linear or weakly non-
linear waves, e.g., to correctly resolve their effect on increased recovery in
EOR models, and to accurately track the propagation of different species
in compositional simulations. A particular challenge with dG for composi-
tional flow is how to robustly handle the flash calculations associated with
the equation of state. Continued research on dG methods, and in partic-
ular their application to compositional flow and complex grid geometries,
as well as robust handling of spurious oscillations, is therefore natural.

As mentioned in Chapter 6, it is not evident how to combine higher-
order WENO methods with the local nonlinear solver because WENO,
and similar schemes like TVD methods with slope/flux limiters introduce
downstream dependencies in the discretization stencil. Modifying WENO
for reordering is therefore a possible future research topic. First of all, Lie
et al. [116] demonstrated that using only a subset of the neighbors of a cell
to reconstruct interface quantities still gives high-quality results. Likewise,
Mykkeltvedt et al. [137] suggested to lag the evaluation of the nonlinear
WENO weights (and TVD limiters) in the higher-order spatial reconstruc-
tion over the time step as a means to alleviate some of the added nonlin-
earity. This will also eliminate downstream dependency in the nonlinear
weights in the discretization stencil. Unfortunately, as pointed out later by
Lie et al. [116], this approach seems to only work well when the displace-
ment profile between injector and producer consists of a concatenation
of waves with increasing wave speeds, and fails to work, e.g., for water-
alternating-gas injections and other displacement scenarios involving sig-
nificant wave interactions. Instead, Lie et al. [116] claim that: ”Lagging
the evaluation in the nonlinear iteration process does not seem to cause similar
breakdown, but has little effect on the computational efficiency.” This conclusion
refers to the use of a global nonlinear solver, and an interesting question
is whether significant speedup can be achieved by introducing a localized
solver. Lie et al. [116] think so, and continue: ”We believe a better approach
would be to localize reconstruction to regions with significant fluid movement
(. . . ), and try to reuse previous nonlinear weights for stencils where changes in
cell averages are below a prescribed value.” We believe that it may be possible
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to use cell indicators discussed in Paper IX to mark cells that need implicit
WENO weights and group these into supernodes in the flux graph. Like-
wise, one could use causality to systematically pick stencils that predomi-
nately involve upstream cells only. However, whether this will work well
and provide significant speedup remains to be seen.

Adaptivity

The dynamic coarsening framework presented in Paper IX is an interest-
ing candidate for high-resolution reservoir simulation. However, further
research on robust, mass-conservative prolongation and restriction of vari-
ables between grid blocks of different resolution (i.e., blocks originating
from different partition levels) remains to be worked out, in particular for
compositional flow. This includes developing strategies to mitigate the cre-
ation of (spurious) cycles in the interblock flux graph.

As mentioned in the conclusions of Paper IX, another possible topic of
future research is to use adaptive coarsening as a nonlinear preconditioner
for the fine-scale solution to the transport problem. It also seems possible
to use arguments and indicators from [117] to ensure that dynamic coarse
blocks have reasonable CFL numbers.

The multiscale method with dynamically adapted partitions introduced
in Paper IV was only applied as the elliptic solver in a CPR preconditioner.
Only lack of time has prevented us from investigating use of the same ideas
within a sequentially fully implicit (SFI) framework. Moreover, combining
the method with the localized nonlinear solver and dynamic coarsening
seems like a promising candidate for highly efficient SI and SFI simula-
tions. The dynamic coarsening framework can also be used here to con-
struct high-quality multiscale partitions.

Altogether, I believe that further research on the topics presented in
this thesis will result in a powerful suite of technologies that can be used
in highly efficient next-generation reservoir simulators.

The research output of this thesis may also have applications in areas
outside petroleum recovery – we mentioned simulation of geothermal en-
ergy systems, CO2 storage, and freshwater aquifer management in Chap-
ter 1. Moreover, whereas tailored for flow and transport in porous me-
dia, the local nonlinear solver strategy discussed in this work is generally
applicable to implicit discretizations of transport problems with a strong
(unidirectional) hyperbolic nature, whereas dynamic and feature-enriched
multiscale methods may have applications to other elliptic Poisson-type
problems in which the coefficients have abrupt spatial variations. Finally,
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other researchers can leverage from the work in this thesis by use and fur-
ther development of the published open-source software.
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