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Abstract
Real-time measurements and adjustments of critical process parameters are essential for the precise control of fermentation
processes and thus for increasing both quality and yield of the desired product. However, the measurement of some crucial
process parameters such as biomass, product, and product precursor concentrations usually requires time-consuming offline
laboratory analysis. In this work, we demonstrate the in-line monitoring of biomass, penicillin (PEN), and phenoxyacetic acid
(POX) in a Penicillium chrysogenum fed-batch fermentation process using low-cost microspectrometer technology operating in
the near-infrared (NIR). In particular, NIR reflection spectra were taken directly through the glass wall of the bioreactor, which
eliminates the need for an expensive NIR immersion probe. Furthermore, the risk of contaminations in the reactor is significantly
reduced, as no direct contact with the investigated medium is required. NIR spectra were acquired using two sensor modules
covering the spectral ranges 1350–1650 nm and 1550–1950 nm. Based on offline reference analytics, partial least squares (PLS)
regression models were established for biomass, PEN, and POX either using data from both sensors separately or jointly. The
established PLS models were tested on an independent validation fed-batch experiment. Root mean squared errors of prediction
(RMSEP) were 1.61 g/L, 1.66 g/L, and 0.67 g/L for biomass, PEN, and POX, respectively, which can be considered an
acceptable accuracy comparable with previously published results using standard process spectrometers with immersion probes.
Altogether, the presented results underpin the potential of low-cost microspectrometer technology in real-time bioprocess
monitoring applications.
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Introduction

The precise control of bioprocesses is essential to achieve an
optimum quality and yield of the desired product. A key to
achieve this goal are analytical methods that provide real-time
information of the current process state and critical process
parameters. For some of these parameters such as pH, temper-
ature, and dissolved oxygen concentration, real-time measure-
ment techniques are readily available, while other parameters,
such as substrate and product concentrations, usually require
time-consuming offline measurements [1–3], which further-
more results in additional sources of analytical error due to
sampling and sample preparation.

Many efforts have beenmade in the past to enable real-time
monitoring of these parameters using different types of sen-
sors including optical [4], capacitance [5], and ultrasound-
based sensors [6] as well as nuclear magnetic resonance

Published in the topical collection Advances in Process Analytics and
Control Technology with guest editor Christoph Herwig.

* Markus Brandstetter
markus.brandstetter@recendt.at

1 RECENDT - Research Center for Non-Destructive Testing GmbH,
Altenberger Straße 69, 4040 Linz, Austria

2 Institute of Chemical, Environmental and Bioscience Engineering,
TU Wien, Getreidemarkt 9/166, 1060 Vienna, Austria

3 Camo Analytics, Gaustadalléen 21, 0349 Oslo, Norway
4 Department of Engineering Cybernetics, Norwegian University of

Science and Technology, O. S. Bragstads Plass 2D,
7034 Trondheim, Norway

Analytical and Bioanalytical Chemistry
https://doi.org/10.1007/s00216-019-02227-w

http://crossmark.crossref.org/dialog/?doi=10.1007/s00216-019-02227-w&domain=pdf
http://orcid.org/0000-0002-8679-8097
mailto:markus.brandstetter@recendt.at


measurements [7]. Also, spectroscopic measurement tech-
niques such as UV-Vis spectroscopy [8], fluorescence spec-
troscopy [9], and Raman spectroscopy [10] have already been
utilized for bioprocess monitoring in the past.

One of the most promising sensing approaches for in-line
application is near-infrared (NIR) and mid-infrared (MIR)
spectroscopy, which, combined with multivariate data analy-
sis, have been previously used for the real-time measurement
of various process parameters [11, 12]. Spectral information is
usually acquired using Fourier transform infrared (FTIR)
spectrometers combined with a probe immersed into the bio-
reactor [13, 14]. The advantages of spectroscopic methods for
bioprocess monitoring are manifold and include real-time ca-
pability, its non-destructive nature, easy maintenance, and the
possibility for simultaneous determination of multiple target
analytes in the complex fermentation broth. However, the
commonly used FTIR spectrometers and measurement probes
are costly and the probes usually have to be immersed into the
fermentation broth, which makes sterilization of the probes a
necessity.

With the recent advent of novel miniature spectrometer
technology (“microspectrometer”) based on micro-
electromechanical systems (MEMS), compact, robust, and
cost-effective NIR spectrometers became available and signif-
icantly lowered the hardware costs for multiple NIR sensing
applications [15]. This makes NIR spectroscopy much more
attractive and creates a potential to enable completely new
applications for the measurement technique. Different instru-
ment technologies are available, with the most widespread
being Fourier transform, Fabry-Pérot (FP), and dispersive
spectrometers [16]. In recent years, the potential of
microspectrometer technology has already been demonstrated
in spectroscopy [17, 18], hyperspectral imaging [19], and
compressive sensing [20] applications.

In this work, it will be demonstrated that FP-based
microspectrometers can be utilized for real-time bioprocess
monitoring, even without the need for an immersion probe
via measuring through the glass wall of a bioreactor in reflec-
tion geometry. This enables a completely non-invasive mea-
surement and therefore significantly increases the practicabil-
ity and convenience of NIR process monitoring.

Materials and methods

P. chrysogenum fermentation and reference analytics

Fed-batch experiments using a spore suspension of an indus-
trial Penicillium chrysogenum strain for penicillin production
were performed in a 2.7 L parallel bioreactor system
(Eppendorf AG, Germany). After increase in the pH level,
which indicates the end of the batch process, 300 mL of cell
broth was transferred to bioreactors filled with 1700 mL

defined fed-batch media (for the detailed composition of batch
and fed-batch media, the reader is referred to [21]).

Stirrer speed (350–850 rpm) and oxygen addition to
pressurized air were used to keep the dissolved oxygen
above 40%, while the aeration rate was kept constant at
1 vvm. During fermentation, the pH was sustained at 6.5
by addition of KOH and H2SO4 while the temperature was
controlled at 25 °C. The supplied feeds were glucose
(500 g/L), penicillin V precursor (80 g/L phenoxyacetate),
and the nitrogen source (100 g/L (NH4)2SO4). The process
was strictly glucose limited, whereas phenoxyacetate and
nitrogen were kept at non-limiting concentrations by
adjusting their feed rates.

Samples for offline reference measurements were taken
every 8–10 h during the fermentation process. Determination
of the penicillin V (PEN) and phenoxyacetate (POX) concen-
trations in the filtered broth was performed by high-
performance liquid chromatography (HPLC) using a
ZORBAX C-18 Agilent column and 28% acetonitrile, 6 mM
H3PO4, and 5 mM KH2PO4 as an elution buffer. POX eluted
after 2.75 min and was quantified between 0.00275 and
0.275 g/L. PEN eluted after 10.00 min and the calibration
range was between 0.00468 and 0.468 g/L. For analysis, a
1:40 dilution of media samples with 1% citric acid was
injected. For biomass determination, cells were separated
from a 5 mL culture broth using centrifugation at 4800 rpm
for 10 min at 4 °C, washed with 5 mL deionized water and
dried at 105 °C. The remaining substance was then measured
gravimetrically to get the amount of dried biomass.

NIR spectroscopy

Robust, compact, and low-cost NIR Fabry-Pérot (FP)
microspectrometers (NIRONE Sensors, Spectral Engines,
Finland) were attached to the glass wall of the bioreactors
before the fermentation process was started. Various types of
FP microspectrometers covering different wavelength regions
are available and the selection of the right wavelength range is
crucial for extracting relevant information. NIR monitoring of
biomass, PEN, and POX concentrations in the same fermen-
tation process using a broadband Fourier transform NIR spec-
trometer coupled to an immersion probe was already conduct-
ed in the past [22]. Therefore, the published results were used
to identify the most relevant wavelength regions for the
analytes of interest. It was concluded that the most relevant
available wavelength regions were 1350–1650 nm (“sensor
1”) and 1550–1950 nm (“sensor 2”). A photograph and a
schematic drawing of the experimental setup are shown in
Fig. 1. This setup enables a probeless and completely non-
invasive acquisition of NIR spectra in reflection geometry.
Spectra were taken every second and then averaged over ap-
proximately 60 s to lower the influence of short-lived distur-
bances such as air bubbles in the broth while still allowing for
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real-time monitoring of the fermentation process. As a light
source, the built-in halogen lamps of the microspectrometers
were used, which means no external light source was neces-
sary to conduct the measurements. In between the two moni-
tored fermentation processes, the spectral sensors were
completely removed and reattached to the bioreactor, possibly
resulting in slightly different sensor positions and/or orienta-
tions. The resulting differences in the recorded spectral signals
are eliminated by the calculation of absorbance spectra using
the spectrum before inoculation of the reactor with the
P. chrysogenum batch culture for each fermentation process
as reference as well as the applied spectral pre-processing.

Multivariate data analysis and partial least squares
regression

All spectra were pre-processed by calculating the 1st deriva-
tive and employing a 2nd-order polynomial fit on a window
size of five using a Savitzky-Golay (SavGol) filter. For the
monitoring of biomass concentration, additionally, a standard
normal variate (SNV) normalization was applied. For each
sensor, the entire spectral range was used for all calculations
and modelling procedures. Principal component analysis
(PCA) and partial least squares (PLS) regression were carried
out in Unscrambler X 10.5.1 (Camo Analytics, Norway). All
PLS models were fitted using data from one batch and vali-
dated using data from another, independent batch produced
two months later. A total of 18 and 15 reference values for
each analyte were available for the calibration and validation
batch, respectively. The number of latent variables used in the
PLS models was optimized using leave-one-out cross-
validation.

Results and discussion

Two full fermentation runs were pursued in order to test the
suitability of MEMS-based microspectrometer technology for
probeless monitoring of biomass, PEN, and POX in a

P. chrysogenum batch fermentation. Figure 2a shows raw
and smoothed (SavGol) 1st derivative spectra from sensor 1
and sensor 2 recorded over the course of the calibration batch.
The most prominent changes in the pre-processed spectra
were found around 1400 nm (sensor 1) and 1875 nm (sensor
2), which can be mainly attributed to CHx and ROH oscilla-
tions in the second and first overtone regions, respectively
[23]. This is in line with previous measurements done in a
similar process environment [22]. On the other hand, the
changes visible in the raw spectra are rather unspecific, and
can be mainly attributed to scattering effects. This nicely un-
derpins the importance of proper pre-processing in order to
uncover the relevant information in the spectra. A principal
component analysis (PCA) of the fused spectra of both sen-
sors was undertaken in order to investigate if the data from the
two batches are consistent (Fig. 2b). As expected, the time
evolution of the batches is captured by the first principal com-
ponent (PC1), which accounts for most of the observed vari-
ation (93%) in the data. Notably, the second batch trajectory
starts on a slightly lower and ends on a higher PC1 score. This
indicates a higher inoculum size and lower biomass in the
beginning and the end of the batch, respectively, which is
confirmed by the corresponding dry weight analysis (results
not shown). On the other hand, the first batch displays high
variability along PC3 towards the end of the batch, which can
be attributed to elevated scattering effects towards higher op-
tical densities (occurring at higher biomass concentrations).

The pre-processed spectra from the first batch process,
combined with the corresponding reference measurements,
were used to establish PLS models for the prediction of bio-
mass, PEN, and POX concentrations. Reference measure-
ments were done in triplicates and three subsequently record-
ed spectra were used for each averaged reference value in
order to facilitate the identification of potential outliers.
However, in the data presented herein, no clear outliers were
identified and all acquired data points were used for both
calibration and validation. In order to compare the two sensors
and identify the most suitable one, separate models were cal-
culated for each sensor individually. In addition, models based

Fig. 1 (Left) Photograph of the experimental setup, where the rightmost
bioreactor is monitored using the MEMS-based microspectrometers
(sensor 1 and sensor 2). The inset photograph shows a closer look on

the two sensors attached to the glass. (Middle) Schematic drawing of the
bioreactor with the attached sensors. (Right) Scheme of the key
components of the microspectrometer
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on the fused spectra from both sensors were established. The
regression coefficient vectors for biomass, PEN, and POX that
yield the best predictive performance are shown in Fig. 3. The
regression vectors for biomass and POXwere calculated using
spectral data from both sensors, utilizing three and four latent
variables (LVs), respectively. For the calculation of PEN, the
data from sensor 1 (i.e., the first 31 data points) was sufficient
and the best results were achieved using four LVs.

The regression coefficient vector for biomass determina-
tion has clear extrema at the positions of strongest changes
in the pre-processed spectra at around 1400 nm and 1875 nm

(Fig. 2), which are indicated with a gray background in Fig. 3.
The absorption at around 1400 nm has a negative and the
absorption around 1875 nm has a strong positive contribution.
Additionally, the extremum at 1640 nm is highlighted to em-
phasize the different spectral dependencies of the calculated
regression vectors for PEN, POX, and biomass. This indicates
that the models are responding to different chemical signa-
tures in the spectral data, despite them showing similar con-
centration trends as shown below in Fig. 5. The differences in
the spectral responses in the regression vectors fit nicely to the
observed differences in the absorption spectra of PEN and
POX in water published elsewhere [22]. The predictive

Fig. 3 Regression coefficient vectors for the three determined analytes.
X-variables represent the spectral axis with combined data from sensor 1
and sensor 2. Three exemplary wavelength regions showing the
differences in the spectral responses are indicated in gray and the
corresponding wavelengths are given

Table 1 PLS model statistics. The number of latent variables (# LVs),
coefficient of determination (R2), root mean squared error of cross-
validation (RMSECV), and root mean squared error of prediction
(RMSEP) are indicated for single and fused sensor models. The best
values for each analyte are highlighted in italics

Sensor Stats Biomass PEN POX

Sensor 1
(1350–1650 nm)

# LVs 2 4 2

R2 0.96 0.75 0.89

RMSECV (g/L) 2.19 1.57 0.47

RMSEP (g/L) 10.51 1.66 0.95

Sensor 2
(1550–1950 nm)

# LVs 4 3 3

R2 0.98 0.69 0.72

RMSECV (g/L) 2.48 1.95 0.93

RMSEP (g/L) 3.22 3.68 1.92

Sensor 1 + 2
(1350–1950 nm)

# LVs 3 2 4

R2 0.98 0.43 0.93

RMSECV (g/L) 1.64 1.38 0.40

RMSEP (g/L) 1.61 2.95 0.67

a b

Fig. 2 a Spectra used for multivariate calibration. (Top) Raw spectra.
(Bottom) Pre-processed spectra (for details, see text). In the left column,
spectra from sensor 1 and on the right spectra from sensor 2 are shown.
The spectra are color coded and chronologically ordered from blue to red.

b PCA of the pre-processed spectra of two independent batches. Scores
on the third principal component (PC3) are plotted against scores on PC1.
Dot size decreases with increasing time
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performance for each of the established models as well as the
number of latent variables (# LVs) is summarized in Table 1.

Except for PEN, the best correspondence between mea-
sured and predicted values in terms of coefficient of determi-
nation (R2) and cross-validation error (RMSECV) was obtain-
ed when fusing the spectra from both sensors achieving 0.98
and 0.93 (R2) and 1.64 g/L and 0.4 g/L (RMSECV) for bio-
mass and POX, respectively. When tested on data from the
second batch, the corresponding models achieved high accu-
racies for prediction of biomass and POX, clearly
outperforming the models established using only the spectra
from either one of the single sensors. In contrast, prediction of
PEN was most accurate when using only the sensor operating
in the 1350–1650 nm regime, whereas data fusion with the
spectra from the second sensor yielded poor predictive perfor-
mance irrespective of the number of LVs included in the mod-
el. This can also be seen in the graphs in Fig. 4 where the
values given by the regression models are plotted against the
corresponding reference measurements for both cross-
validation (blue) of the calibration data and predictions for
the validation batch (red).

A reasonably good RMSECV value of 2.19 g/L was also
achieved for the PLS model with only spectral data from sen-
sor 1 for the biomass content (upper left in Fig. 4), but when
the model was applied to data from the validation batch, poor
agreement between model and reference measurement was
observed (RMSEP = 10.51 g/L). Upon a closer look on the
data, it becomes clear that the main error in the model values

stems from an offset and a slightly wrong slope. As has been
shown elsewhere [24], additive PLS (aPLS) modelling can be
used in a scenario like this to significantly reduce the errors of
the model values by applying an additional PLS regression to
the residuals of the initial regression model. Indeed, if aPLS is
used to correct for the slight changes in measurement condi-
tions between the first and second batch, greatly improved
RMSEP values for the biomass content of about 1.56 g/L
can be achieved (regression curves not shown). This value is
on par with the RMSEP achieved with the PLS model using
fused spectral data from both spectral sensors, but requires an
additional modelling step.

Figure 5 shows the time-resolved predictions of the best
performing models (highlighted in gray in Fig. 4) along with
the offline reference values over the course of batch 2 (valida-
tion batch). It can be seen that biomass and PEN are
overestimated especially in the first 20 h of the fermentation,
while the penicillin V sidechain, POX, seems to be estimated
correctly in this timeframe. The subsequent sudden increase in
POX concentration, indicated by three of the measurements
between 20 and 60 h, points towards possible outliers since
they have quite a large estimated error and no significant POX
addition occurred in this timeframe.

The normalized root mean squared error (NRMSE) of the
models for the three analytes, biomass, PEN, and POX, was
calculated by normalizing the RMSEP with the total range of
the reference data. This calculation yielded values of 9.8%,
18.0%, and 15.9%, respectively.

Fig. 4 Model values vs. offline
measured concentrations for the
three investigated quantities
(biomass, PEN, and POX). The
data in the first, second, and third
columns were obtained using
spectral information from the first
sensor, second sensor, and both
sensors, respectively. Blue dots
show the cross-validation of the
calibration set and red dots show
the predictions on the validation
data set. The best PLS models are
shown with a gray background
with the achieved RMSEP values
indicated in the graph
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In order to judge the performance of the established PLS
models, the NRMSE of the validation batch was compared with
the estimated error of the reference analytics. This error was
assessed by analyzing the reference measurements from several
similar batch processes and calculating the mean relative stan-
dard deviation for each value. This leads to relative errors of
5.4%, 7.3%, and 5.7% for biomass, PEN, and POX, respectively.
The relative errors of the reference measurement follow a similar
trend as the NRMSE of the established models. In both cases,
PEN shows the largest while biomass shows the smallest relative
error. By multiplying these values with the mean reference value
for the validation batch, the absolute errors for this batch can be
estimated to be around 0.86 g/L, 0.39 g/L, and 0.15 g/L for
biomass, PEN, and POX, respectively.

It should be noted here, that since only one sample was
taken from the bioreactor for each measurement, the sampling
error, which is one of the main sources of error in analytical
chemistry, is not considered in this estimation. Here, only the

measurement error due to sample preparation and reference
instrumentation is covered by the stated error bars. Therefore,
this can only be seen as a lower boundary of the deviation
from the offline measurement to the actual value of the analyte
in the fermentation broth. The actual absolute errors of the
presented method can thus be expected to be even lower.

When comparing the achieved RMSEP values to previously
published prediction errors of models that were calculated using
NIR spectra acquired with an invasive in-line measurement
probe, the achieved values stack up even better. For example,
an RMSEP value of 1.39 g/L for biomass in a fed-batch
Escherichia coli process [14] and 2.62 g/L, 0.34 g/L, and
0.51 g/L for biomass, PEN, and POX, respectively, for a
P. chrysogenum fermentation [22] were reported. Except for the
prediction of the PEN concentration, the values achieved in this
work are on par with the previously reported results from inva-
sive NIR measurements.

Conclusions and outlook

The potential of non-invasive NIR spectroscopic measurements
in reflection geometry through the glass wall of a bioreactor for
real-time bioprocess monitoring was successfully demonstrated.
This was achieved by acquiring spectral data using novel NIR
microspectrometer technology that is both low-cost and robust.
Spectral data from twomicrospectrometer modules covering dif-
ferent wavelength ranges as well as offline reference data were
used for calibrating PLS regression models for three different
analytes (biomass, PEN, and POX) in a P. chrysogenum fed
batch process. Validation of the established models was carried
out using data from an independent batch process. Especially
with regard to cost, size, and contamination risk, this approach
is highly preferable over conventional NIR spectrometers con-
nected to a measurement probe submerged into the fermentation
broth while achieving similar performance. The reported ap-
proach is widely applicable and could give new insights into
various different bioprocesses used in different industrial as well
as scientific applications and allow for a cost-effective online
monitoring and process control.

Comparison of different PLS models calibrated with single
sensors and the fused spectral data of both NIR sensor mod-
ules showed that for two of the three analytes (biomass and
POX), the model calculated with the fused spectral data
showed the best performance. This hints towards the possibil-
ity to significantly improve the models when a third or fourth
spectral sensor is used to widen the observed spectral range.
This could also lead to better model performance for the de-
termination of PEN concentration which was slightly worse
than the one achieved previously via invasive measurements.

Another possibility would be to improve the performance of
the multivariate analysis by using more elaborate regression
methods than classical PLS. For example, domain invariant

Fig. 5 Values for biomass, PEN, and POX for the validation batch as a
function of process time. The red circles represent the offline reference
measurements and the blue line gives the values from the PLSmodel. The
error bars for each offline measurement shown in black give the standard
deviation of the three conducted measurements. For each of the analytes,
the best performing model was utilized
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PLS (di-PLS) which can be useful to decrease influence on the
model prediction quality stemming from changes in environmen-
tal conditions, instrumental response, or sample matrix [25],
could be applied to the data. This however is subject of future
research.
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