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Abstract 

The present geometallurgical study shows the application of a machine-learning 

methodology to the prediction of material properties from the Nabbaren nepheline syenite 

deposit in Norway. The approach used in this study created and tested a shallow neural 

network along with cluster analysis for the prediction of laboratory concentrate yield and 

modal mineralogy. The input is bulk chemistry data from the mining company open pit 

database. The methodology proposed unveils general trends in the deposit to a suitable 

operational scale for the open pit mine. The accuracy of the prediction models is acceptable, 

with one of the prediction models achieving a correlation coefficient 0.9. The application of a 

neural network approach showed a successful attempt in the prediction of concentrate yield 

and modal mineralogy in the Nabbaren nepheline syenite deposit. However, further 

investigations in terms of deposit internal variation and mineralogical studies are needed for 

utilising these prediction models, and further improve the modal mineralogy prediction model 

by better domaining and more representative distribution of samples used for modal 

mineralogy analyses.   
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1. Introduction 

Geometallurgy is a holistic discipline aiming to incorporate information from the entire mining 

value chain including data describing the characteristics of the raw material, intermediate 

and final products, and the processing involved. By incorporating all the information, it is 

possible to reduce operational risks and increase resource performance (Cropp et al., 2014; 

Dominy and O'Connor, 2016; Dunham et al., 2011; Lang et al., 2018; Lund and Lamberg, 

2014; Walters, 2011). The data used in geometallurgy is quantitative and georeferenced. In 

this way it can be integrated into a 3D model and used for production schedule development 

(Hunt and Berry, 2017; Lamberg, 2011). The acquisition of quantitative data is expensive 

both in terms of costs and time. Thus, data prediction through mathematical modelling is not 

only a way to overcome these inconveniences, but also an interesting field of research in the 

mining industry (Berry et al., 2015; Lund et al., 2015; Rosa et al., 2014; Suazo et al., 2010). 

These types of prediction models can also be regarded as geometallurgical models, which 

are developed through a geometallurgical program (Lishchuk et al., 2015a; Lishchuk et al., 

2015b) and visualized in a geometallurgical flowsheet (Lang et al., 2018). 
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To develop geometallurgical models it is necessary to quantify the different characteristic 

properties of the material of interest like bulk chemistry or modal mineralogy. For example, it 

is known that mineralogical information can be linked to mineral processing performance 

indicators, like concentrate yield and product quality (Brough et al., 2013; Lotter et al., 2018; 

Malvik, 2014; Petruk, 2000; Schapiro et al., 1981).  

Mineralogical quantifications like modal mineralogy and laboratory tests of mineral 

processing performance indicators are key geometallurgical features that are costly and 

time-consuming (e.g. sample preparation and data acquisition), thus any improvement 

during data acquisition implies an economical benefit, and a possibility for real-time raw 

material or product quality control. In this regard, finding a way to estimate results of 

laboratory tests of mineral processing performance and modal mineralogy data is a time and 

cost-effective alternative to time-consuming laboratory tests and modal mineralogy analysis 

of large representative sample increment sets.  

At industrial mineral operations, where product specifications are mainly based on chemical 

content, bulk chemical analyses and laboratory tests of processing performance are often 

more common than modal mineralogy analyses. To relate bulk chemistry to modal 

mineralogy estimations and results of laboratory tests of processing performance, would be 

beneficial. Modal mineralogy estimations based solely on chemistry are known as element-

to-mineral conversion (EMC), and have been developed during the last four decades (Berry 

et al., 2011; Berry et al., 2015; Bryan et al., 1969; Hestnes and Sørensen, 2012; Johnson et 

al., 1985; Parian et al., 2015; Whiten, 2007; Yvon et al., 1990). Often these are based on the 

assumption of a linear relationship between mineral processing performance indicators and 

mineralogy (Berry et al., 2011; Mena Silva et al., 2018; Whiten, 2007). However, mineral 

processing performance indicators can be explained with mineralogical data, unfortunately it 

often presents additivity issues (Dunham and Vann, 2007; Lishchuk et al., 2019). Examples 

of mineralogical data explaining processing performance are mineralogical textures and 

associations (Johnson et al., 2007; Koch et al., 2019; Lund et al., 2015; Mwanga et al., 

2015; Pérez-Barnuevo et al., 2018; Tøgersen et al., 2018). Usually, the relation between 

mineralogical data and mineral processing performance is non-linear relationship, thus a 

non-linear estimation technique, like an artificial neural network framework, could favourably 

be used. 

Pattern recognition or machine-learning techniques, like artificial neural networks, have been 

used in identification, prediction and control of properties (Bishop, 2016; Demuth et al., 2014; 

Goodfellow et al., 2016; Masters, 1993) in a broad variety of fields like banking, data mining, 

climate and medicine. In the case of mineralogical and mineral processing studies, machine-

learning techniques such as neural networks have been used in mineral classification based 

on X-ray data (Gallagher and Deacon, 2002; Koujelev and Lui, 2011; Rozel et al., 2014; 

Tsuji et al., 2010), mineral recognition in a frame of geometallurgy (Koch et al., 2019; Leroy 

and Pirard, 2019; Pérez-Barnuevo et al., 2018), in mineral exploration (Rigol-Sanchez et al., 

2003), and to relate spatially processing performance with ore characteristics (Lishchuk et 

al., 2019; Rajabinasab and Asghari, 2018). 

The present research aims to develop and test a neural network methodology, based on 

bulk chemistry measurements, for the prediction of two performance indicators: the mass 

recovered in the concentrate from the feed material in percentage from magnetic separation 

laboratory tests, which is defined as concentrate yield, and the modal mineralogy from 

reverse circulation drill-hole samples. The development of this methodology aims to use bulk 

chemistry measurements from reverse drill-hole samples and their corresponding 

measurements due to the number of available samples in the company database.  This kind 



of geometallurgical utilisation of this data set would represent the fastest and most cost-

efficient way of obtaining information on mineralogy and concentrate yield in many industrial 

mineral operations.  As a test case in this study an industrial mineral mine located in 

northern Norway and exploited because of the economical value associated to the nepheline 

and K-feldspar content in their raw material was chosen. The mine currently uses bulk 

chemistry and laboratory mineral processing concentrate yield, using laboratory dry 

magnetic separation tests, to define raw material quality as an input to production planning 

and quality control. The study focuses on a methodology to estimate laboratory processing 

concentrate yield based on three different data inputs; bulk chemical data from the company 

open pit database, a location class based on lithological map and estimated modal 

mineralogy.  

2. Background 

2.1. Geological framework 

The material in this study was obtained from the Nabbaren deposit, a nepheline syenite 

deposit, located on the Island of Stjernøy, Northern Norway (Fig. 1).  

 

Fig. 1. On the left: Geological interpretation of the Seiland igneous province, Northern Norway modified by Li 
(2013) after Robins and Gardner (1975). On the right: Simplified geological map of the Stjernøy island from Li 

(2013). 

The Nabbaren deposit is located within the Lillebukt alkaline complex in the Seiland 

province. The main rock types of the complex are hornblende clinopyroxenite, alkali syenite 

and carbonatite (Robins and Often, 1996). The main lithologies surrounding the deposit are 

nepheline-syenite gneiss to the northeast and amphibole-rich syenitic fenite to the southwest 



(Fig. 2). The deposit dips steeply and is elongated in a northwest-southeast direction, with a 

length of 1700 metres along strike and a width of 300 metres (Geis, 1979). 

 

Fig. 2. Detailed geological map of the Lillebukt alkaline complex on the Stjernøy Island from Li (2013).  

According to Geis (1979) the carbonatites and nepheline-rich gneisses are the main rock 

types on the northeast side of the Nabbaren deposit, whereas the south-western part is 

dominated by amphibole-rich lithologies.  

The Nabbaren nepheline syenite is in contact with a nepheline-syenite gneiss that has biotite 

and hornblende as the main mafic minerals, see Fig. 2. The nepheline-syenite gneiss has 

been referred to as either a skarn gneiss high in calc-silicates (Heier, 1961) or as a 

carbonatite-nepheline syenite (Oosterom, 1963) because of its characteristic nepheline-

albite and calcite rich bands (Heier, 1961). 

The hornblende-rich syenitic fenite located in the southeast of the Nabbaren deposit, is rich 

in magnesium and iron. The amount of biotite in the syenitic fenite is associated to 

desilication, which decreased the plagioclase and K-feldspar content that additionally 

enriched the biotite and amphibole with potassium (Robins and Tysseland, 1979).  

The two main minerals found in the Nabbaren deposit at Stjernøy are alkali feldspar (avg. 56 

wt. %) and nepheline (avg. 34 wt. %). Common accessory minerals in the deposit are biotite, 

plagioclase (albite), calcite, magnetite, clinopyroxene, hornblende and titanite (Geis, 1979; 

Heier, 1961). Trace minerals have been identified and are found in different zones in the 

deposit (e.g. faults, mafic dike, etc.). The trace minerals include Al2O3-rich salite (diopside), 

Ca-rich amphibole, apatite, ilmenomagnetite, ilmenite in hornblende clinopyroxenites, 

diaspore, natrolite and thomsonite, as well as stronalsite-banalite (Li, 2013; Robins and 

Often, 1996). The mineral chemistries from the Nabbaren deposit have been quantified in 

numerous studies (Barth, 1963; Heier, 1962, 1964, 1966; Li, 2013; Mena Silva et al., 2018; 

Mjelde, 1983; Sørensen, 2016). Investigations on the mineral chemistry variation in the 

deposit have been documented for K-feldspar, nepheline and albite in terms of Sr and Ba 

contents, as shown in Fig. 3. This variation in Sr and Ba could be associated to a magmatic 

fractionation process and the geological association of carbonatites with the nepheline 

syenite (Heier, 1964; Heier and Taylor, 1964). 



 

Fig. 3. Mineral chemistry variation of K-feldspar, nepheline and albite within the Nabbaren deposit. Top-subplots 
from Mjelde (1983) based on Heier (1964). Bottom-subplots from Mena Silva et al. (2018). 

2.2. Mining and Mineral Processing 

2.2.1. Mining and production planning 

The deposit is mined both from an open pit and an underground mine (i.e. using an adapted 

open stoping as extraction method), from which roughly 80% and 20% feeds the processing 

plant, respectively. Both feed sources add up to a total of 550 kt of run of mine.  Within the 

industrial mineral sector, production processes require strict quality control. Hence, strict 

mine planning and blending strategies are mandatory to avoid off-specification production or 

low product quality. According to Aasly and Ellefmo (2014), bad resource utilisation or 

worse, having an entire fully processed raw material batch discarded is a consequence of 

not reaching product specifications. 

As part of mine planning and grade control procedures, a drill-in-advance campaign (DIA) is 

conducted before each mining season to plan feed material blending strategies and perform 

deposit model reconciliation for each production level in the open pit. The DIA campaign is 

performed using reverse-circulation (RC) drilling to extract a sample 12 metres long from a 

10-by-10 metre grid. Each drill-hole extracts around 120 kilograms of drill cuttings. The 

drilling rig at the mine site does not collect material smaller than 75 µm. The drill cuttings 

from the reverse circulation drill-hole are split, and then characterised using concentrate 

yield from laboratory dry magnetic separation tests. Bulk chemistry quantifications are done 

on feed and concentrate (i.e. non-magnetic material) from the magnetic separation tests.  

2.2.2. Mineral processing 

Mineral processing at Stjernøy comprises comminution and mineral separation in a dry 

process to produce pure concentrates consisting mainly of nepheline and alkali feldspar (K-

feldspar). A key feature making the deposit economically feasible is the inexpensive removal 

of Fe-bearing minerals in the rock, mainly associated to magnetite, biotite, hornblende and 



clinopyroxene. The processing has multiple steps in comminution, particle size classification 

and magnetic separation. The mineral processing plant can be divided into (1) low-intensity 

magnetic separation for high magnetic susceptibility particles, and (2) high-intensity 

magnetic separation for low magnetic susceptibility particles. The plant annual production is 

more than 320 kt of mixed K-feldspar and nepheline concentrates. The concentrates are 

sold to a broad variety of industrial products like glass, ceramics and paint.  

2.3. Routine data acquisition 

2.3.1. Sample Preparation  

In the laboratory magnetic separation internal procedure from the company uses a 2 kg 

subsample from each drill-hole sample. The magnetic separation test consists of seven 

magnetic separation steps with different settings similar to the company processing plant. 

The test performance of the samples is measured by its concentrate yield, a relative value 

calculated as the mass recovered in the concentrate from the feed material in a standardized 

magnetic separation laboratory test. 

2.3.2. X-ray fluorescence (XRF) 

The bulk chemistry data, obtained from the company, is done on pressed powder pills. The 

pills consist of 0.78 g of Licovax C and 6.50 g of representative sample. The samples are 

milled with a Fritsch Pulverisette 7 planetary mill. The pills are pressed using a Fluxana 

Vaneox manual press. The equipment used for the measurements was an ARL AdvantX 

Sequential spectrometer with OXSAS 2.2 software. The X-ray source used was a copper 

cathode. 

The analytical routine is set up specifically for the nepheline syenite at Stjernøy and 

calibrated with a nepheline syenite reference provided by the British Ceramic Research and 

the Bureau of Analysed Samples, and labelled BCS-RM No 201a. The analyses are run with 

an electric current of 15 mA and a voltage of 40 kV. Acquisition time for each analysis is 242 

seconds.  

3. Experimental 

3.1. Materials 

The dataset used in this study corresponds to the DIA drill-hole bulk chemistry (XRF) and 

laboratory concentrate yield data collected between 2015 and 2017 campaigns. The total 

number of drill-holes is 1055, distributed in three production levels in the open pit. From 

those drill-holes 46 were selected at random for modal mineralogy measurements. The 

locations of these samples are displayed in Fig. 4. The company dataset used in this study 

contains analytical results of Fe2O3, TiO2, CaO, K2O, SiO2, Al2O3, MgO, Na2O, BaO and 

concentrate yield. As example, Fig. 5 shows the spatial distribution of MgO, Fe2O3, SiO2 and 

CaO in the deposit. The summary statistics of the bulk chemistry and concentrate yield of 

the DIA drill-holes are displayed in Table 1.  



  

Fig. 4. Sample position (in red) for modal mineralogy measurements in the detailed geological map of the Nabbaren 
nepheline syenite deposit. Geological map from Geis (1979) and updated by Sibelco Stjernøy with faults and the 
diabase dike swarm area.  



 

Fig. 5. Open pit top view of the bulk chemical distribution of a) MgO wt.%, b) CaO wt.%., c) Fe2O3 wt.%, and d) 
SiO2 wt.%. The shapes of the fault, mineable nepheline syenite area and mafic dike swarm areas vary with deposit 
depth. The legend in each plot is based on the histogram of every variable split into quartiles: the Q1 (lower quartile 
or 25th percentile of the data) is in the blue transition, the Q2 (median or 50th percentile) is in the purple transition, 
and the Q3 (upper quartile or 75th percentile) is in the yellow transition. The extreme values in the legend are a 
representation of the tails from each element histogram and correspond to the Q1 and Q3 values expanded by 0.5 
wt.%.  

The deposit presents a significant spatial variability in the bulk chemistry of the samples in 

the north-east and south-west direction, see Fig. 5. Table 1 shows lithology independent 

summary statistics of the whole dataset of the DIA campaign between  2015 to the 2017.  

Table 1 Summary statistics of the 1055 points from the bulk chemical database for the 2015-2017 DIA campaigns. 

Oxide, wt.%  Mean Std. dev. Skewness 

Al2O3  22.05 1.54 -2.98 

BaO  0.34 0.08 -0.08 

CaO  2.93 1.61 6.65 

K2O  8.09 0.88 -3.23 

MgO  0.82 0.97 4.04 

Na2O  7.32 0.79 -1.87 

SiO2  53.20 1.91 -3.97 

Fe2O3  3.16 1.25 2.88 

TiO2  0.70 0.32 3.21 

Concentrate yield %  64.63 1.94 -2.21 

In this study the mineable area was separated into the mineable nepheline syenite area and 

the mafic dike swarm area, and the data were assigned a location code, see Fig. 6. The 

mafic dike swarm area is a part of the nepheline syenite deposit where mafic dikes of 

variable thicknesses intersects the deposit (Ramsay and Sturt, 1970), resulting in an intimate 

mix of mafic dikes and nepheline syenite on a smaller scale than what can be separated by 

selective mining. From a mining perspective the area is mapped to signal an area where 



product yield will be reduced due to contamination of the mafic dikes if the material is feed to 

the processing plant, since the dike material will end up in the tailings. The distribution of the 

location classes is shown in Fig. 6. The classification was based on the original lithological 

map of the deposit (Geis, 1979) and updated information from the mining operations. The 

summary statistics of the bulk chemistry and magnetic separation concentrate yield of the 

location classes are given in Table 2.  

      

Fig. 6. Open pit top view of the DIA drill-holes distribution according to location classes: nepheline syenite and 
mafic dike swarm area. The shapes of the fault (black), mafic dike swarm (grey) and mineable nepheline syenite 
(green) areas vary with deposit depth.  

The location classes show differences in bulk chemistry. The nepheline syenite class has 

higher content of Al2O3, K2O, Na2O, lower content of CaO, MgO and Fe2O3, and lower 

standard deviation variability than the mafic dike swarm class. Contamination of mafic dikes 

in the ore can be considered in terms of Fe2O3 and MgO, which is higher in the mafic dike 

swarm than in the nepheline syenite class. The data variability in the mafic dike swarm 

samples is higher than in samples from the nepheline syenite class. This variability is 

partially due to the presence of other contaminants like single mafic dikes or alteration zones 

in the nepheline syenite, not possible to distinguish on the map.  

Table 2 Summary statistics of the nepheline syenite and mafic dike swarm location classes from SIBELCO 
Stjernøy database for the 2015-2017 DIA campaigns. 

Location Class  Nepheline syenite  Mafic dike swarm 
Points  846  209 

Oxide, wt.%  Mean Std. dev. Skewness  Mean Std. dev. Skewness 

Al2O3  22.21 1.31 -2.90  21.43 2.15 -2.39 

BaO  0.36 0.08 -0.15  0.28 0.07 -0.01 

CaO  2.87 1.39 7.25  3.19 2.29 5.01 

K2O  8.17 0.71 -2.93  7.78 1.34 -2.44 

MgO  0.67 0.69 4.24  1.42 1.55 2.58 

Na2O  7.45 0.67 -1.88  6.80 1.00 -1.38 

SiO2  53.14 1.69 -4.16  53.46 2.63 -3.49 

Fe2O3  3.05 1.03 2.88  3.64 1.83 2.07 

TiO2  0.67 0.27 2.58  0.80 0.44 3.22 

Concentrate yield %  66.53 9.73 -2.32  56.90 16.24 -1.44 

In order to implement the location class into the models, two extra columns were appended 

to the data for the nepheline syenite and mafic dike swarm classes. To indicate the class 

belonging to each point the corresponding column class had a 1 while the other class had a 

0. 

3.2. Methods 



3.2.1. X-ray diffraction (XRD) 

The modal mineralogy data was acquired with diffraction analyses and quantified with 

Rietveld refinement on samples consisting of approximately 1 g of micronized material. Each 

sample was micronized using a McCrone Micronizing Mill for 2.5 minutes after adding 10 mL 

of ethanol, producing an average P50 lower than 9.5 µm. The equipment used was a Bruker 

X-ray Diffractometer D8 Advance set to 40 kV and 40 mA. The X-ray source was a Cu 

anode generating K radiation with wavelengths Kα1 = 1.5406 Å and Kα2 = 1.54439 Å, and a 

Kα1/Kα2 ratio of 0.5. 

The 2θ range in the diffractograms was from 3° to 65° with a step size of in 0.01°, a spinning 

speed of 60 rpm and 0.6 seconds counting time per increment. The total analysis time per 

XRD scan was 71 minutes. Rietveld modal mineralogy quantifications were performed with a 

standardized MS-DOS and TOPAS4.2 script routine. The routine used a fixed mineral list to 

quantify the modal mineralogy of each sample. The mineral list used in the routine 

comprised the 10 main minerals present in the deposit: nepheline, K-feldspar (orthoclase), 

albite, clinopyroxene (augite), hornblende, biotite, titanite, magnetite, pyrrhotite, calcite, and 

natrolite (tetra-natrolite). The values correspond to semi-quantifications obtained from 

mineral identification in the Bruker EVA® that were manually adjusted using the Rietveld 

fitting in the Bruker TOPAS4.2 software (Cheary and Coelho, 1992).  

The mineral chemistry data obtained from mineral formula calculations based on EPMA 

analyses from Mena Silva et al. (2018) were included in the crystal structure models for 

Rietveld refinement. The crystal structures of the main minerals from the deposit were 

implemented instead of using standard values from the Bruker TOPAS4.2 software. 

3.2.2. Data correlation 

The relation between the measured modal mineralogy, concentrate yield and bulk chemistry 

data was calculated using three correlation coefficients: Pearson, Kendall and Spearman. 

These coefficients return values between -1 and 1. Coefficient values close to -1 or 1 

indicates a strong relationship between parameters, whereas a coefficient value closer to 0 

indicates a weak relationship. The sign of the coefficient value indicates whether the 

relationship is negative or positive. Pearson’s coefficient, also known as linear correlation 

coefficient, defines the level of association between continuous variables assuming normal 

distribution. Unfortunately, Pearson’s coefficient is seriously affected by the presence of 

outliers (Croux and Dehon, 2010). In this regard, Kendall and Spearman coefficients, known 

as rank correlation coefficients, have no dependency on the distribution of the 

measurements and estimate the level of association between ranked variables. The 

difference between Kendall and Spearman is that Kendall uses a relative order between 

ranks (i.e. qualitative), whereas Spearman is a linear correlation coefficient of the ranks (i.e. 

quantitative). Rank correlations are less sensitive to outliers in the dataset than linear 

correlations, more robust and efficient than linear correlations like Pearson’s (Croux and 

Dehon, 2010; Press et al., 2007). The Matlab-function used to calculate these coefficients is 

corr and it includes options to specify the correlation type. All information on the functions 

can be found in Mathworks (2018a), and further information can be found in Press et al. 

(2007).  

3.2.3. Data handling 

The prediction models in this study were created following different workflows according to 

their objective. The work flows are shown in Fig. 7 for modal mineralogy modelling, and in 

Fig. 8 for concentrate yield modelling. Further information on the main steps in the work flow 

is in the subsequent sections. 



       

Fig. 7. Data handling workflow for modal mineralogy modelling from Rietveld quantifications. * Processing (model 
definition) including number of neurons definition and network training.  



    

 

Fig. 8. Data handling workflow for concentrate yield modelling from the DIA database. * Processing (model 
definition) including number of neurons definition and network training. 

3.2.3.1. Pre-processing (standardization and definition of subsets)  

Before performing any estimation, data from both the DIA drilling campaign and Rietveld 

XRD mineralogy sets were standardized. The standardization procedure forces the input 

data to have zero mean and unit variance by subtracting the mean (µi dataset) from the 

measured feature (xi) in the dataset and dividing it by the standard deviation (σi dataset) of the 

measured feature in the dataset (Goodfellow et al., 2016), as shown in Eq. 1. The 

application of a standardization procedure is recommended in general for this kind of 

exercise because it makes the variables equally important, facilitates the interpretation of 

network weights (Goodfellow et al., 2016; Masters, 1993), and eases the learning process of 



the network (Ioffe and Szegedy, 2015; Lecun et al., 1998). Nonetheless, it is not strictly 

required as shown by Karunanithi et al. (1994). 

 𝑥𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑖 =  
𝑥𝑖 − µ𝑖 𝑑𝑎𝑡𝑎𝑠𝑒𝑡

𝜎𝑖 𝑑𝑎𝑡𝑎𝑠𝑒𝑡
 (1) 

The standardized datasets were split into three subsets: training, testing and validation 

(Maier et al., 2000). It is standard procedure to divide the dataset into training and validation 

sets, where the training data are used to create the model and the validation set to evaluate 

its performance. Subsequently, the validation set can be sub-divided into testing and 

validation subsets for model performance cross-validation. In this case the validation subset 

is used to monitor the model during training, whereas the testing subset is used after the 

model has been created to evaluate the model performance on untrained data (Maier et al., 

2000).  

A cluster analysis procedure was applied prior modelling to represent accurately the original 

datasets in each subset. The procedure used a hierarchical clustering using the inner 

squared distance between group pairs based on the Euclidean distance between points. 

This grouping technique is based on within cluster similarity (Ward, 1963) by merging groups 

according to any function reflecting the difference between groups (Ward, 1963), in this case 

the incremental sum of squares. The sum of squares is related to the distance between the 

components within the cluster and the cluster’s centroid, which increases as a consequence 

of group merging. The methodology used the Matlab-function linkage with ward as the 

algorithm for computing the distance between clusters. 

To define the number of clusters a cluster-tree or dendrogram (Fig. 9) was inspected 

visually. The number of clusters is defined according to the inconsistency (i.e. the heights or 

vertical lines) between cluster pairs (i.e. the links or horizontal lines), the higher the 

inconsistency the further apart the pair is from the rest. The number of clusters defined from 

the dendrogram visual inspection was afterwards used as the maximum number of clusters 

to set in the Matlab function cluster (i.e. using maxclust criterion). Once the number of 

clusters was defined, sample points were selected randomly from each cluster and allocated 

into each of the three subsets. The training, testing and validation subsets represented 50%, 

25%, and 25% of the original dataset points, respectively.  

 

Fig. 9. Dendrogram for hierarchical clustering of concentrate yield data. Max-clusters line indicates the number of 
clusters selected. 



In addition to the bulk chemical and modal mineralogy data, location classes (Fig. 6) and an 

unknown variable were added to the original data. The unknown variable, included as part of 

the bulk chemical data, represent all the elements not measured by the XRF analyses and 

the possible quantification errors, and was calculated by subtracting the sum of all the 

measured elements from the total, see Eq. 2. 

 𝑢𝑛𝑘𝑛𝑜𝑤𝑛 = 100% − ∑ 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 (2) 

3.2.3.2. Processing (model definition) 

To estimate concentrate yield and modal mineralogy a neural network methodology was 

selected because they are considered as a non-linear approach to estimate the relationship 

between datasets that perform better than linear approaches. An example of these 

differences has been shown by Mekanik et al. (2013).  

Fig. 10 illustrates the structure of a neural network where the input layer is the first layer to 

the network and consists of input features or input parameters (black-filled circles) such as 

TiO2, Fe2O3, etc. feeding the network structure. The hidden layers are the intermediate 

layers in the network and they consist of activation units or neurons (white-filled circles) that 

are functions relating the parameters or neurons from the previous to the next layer. The 

number of hidden layers and neurons in the hidden layers depend on the desired network 

structure. The output layer is the last layer in the network and consists of the features or 

parameters (grey-filled circles) such as concentrate yield, modal mineralogy, etc. predicted 

by the network. For more background information on neural network design see Demuth et 

al. (2014) or Goodfellow et al. (2016). 

   

Fig. 10. Structure scheme of a neural network. 

The model used in this study consisted of a feedforward neural network that was built with 

the fitnet Matlab-function. The fitnet function creates a network with a defined number of 

hidden sizes (or neurons) and a training function for its optimization. In this study two hidden 

sizes and the trainlm function were selected. The trainlm used the Levenberg-Marquardt 

algorithm (Demuth et al., 2014; Marquardt, 1963) as its function for optimization. 

Additionally, the algorithm was selected in accordance to recommendations from exercises 

of similar characteristics (Parian et al., 2015) and because of the efficiency of the 

Levenberg-Marquardt algorithm that works as a two-in-one algorithm comprising the 

steepest gradient decent and Newton-Gaussian methods (Mathworks, 2019). Once the 

network is defined, it requires training to generalize (or predict) the desired output from the 



given inputs. The training was done using the train Matlab-function. Complex network 

structures (i.e. many hidden layers and neurons) tend to perform well (Demuth et al., 2014; 

Maier et al., 2000), but neural networks with simpler structures tend to predict any output. 

This is the reason for the simple network structure chosen in this study.  

The number of neurons used in the hidden layer of each model were determined by 

evaluating the network performance. The number of neurons were selected by a visual 

assessment of the average performance based on the best compromise between training 

and test performances by number of neurons using the same sub-sets to avoid data-

leakage, as shown in Fig. 11. The performance of the models is measured in terms of mean 

square error (i.e. mse as the performance function of the network), see Eq.3. Where p 

measured and p estimated are the measured and estimated parameters respectively, R is the 

number of points used and ԑ is the mse. The network training process has multiple stopping 

criteria to avoid an excessive time consumption or unneeded optimized value. For further 

information regarding these criteria refer to Mathworks (2018b). 

 𝜀 =
∑ (𝒑𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 − 𝒑𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑)2

𝑅

𝑅
 (3) 

 

Fig. 11. Selection of neurons for the hidden layer based on the best compromise between training and test average 
performance.  

If the prediction models estimated any negative values this was considered a flaw. When a 

negative value was estimated by the prediction model the whole input and output point was 

tagged as negative due to the model failure in estimating mineral quantities, and to have an 

idea of the location and range of these points.  

3.2.3.2.1. Modal mineralogy estimations 

The modal mineralogy estimations were based on 46 randomly selected samples from the 

deposit and the locations shown in Fig. 4. The modal mineralogy neural network model (or 

NN1) was based on bulk chemistry (CaO, TiO2, Fe2O3, unknown, etc.),the location classes 

and the modal mineralogy measurements from Rietveld XRD refinement.  

3.2.3.2.2. Concentrate yield estimations and comparison 



Three estimation models were developed for laboratory concentrate yield, using three 

different input sets. The first model (NN2) used the location class and bulk chemistry. The 

second model (NN3) used the location class and estimated mineralogy (nepheline, biotite, 

titanite, etc.). The last model (NN4) used location class, bulk chemistry, and estimated 

mineralogy as input. A summary of the input data used in each concentrate yield estimation 

model is displayed in Table 3. 

Table 3 Input data for the concentrate yield estimation models. 

Model Input Data 

NN 2 2 Bulk chemistry, location class 

NN 3 3 Estimated mineralogy, location class 

NN 4 4 Bulk chemistry, estimated mineralogy, location class 

After creating and comparing the three concentrate yield models, the model with the lowest 

mse and fewest number of negative estimates was defined as the best model. The best 

model was further evaluated by checking the deviation between estimations and measured 

in ranges to see the samples by group. The ranges will group the estimated points according 

to their similarity towards the measured values, hence having an idea of how good the 

estimation was. According to the deviations four indicator groups were defined as displayed 

in Table 4. The reason for the creation of these groups is because the input data has a 

relationship with the performance of the model. The location of the input data in the deposit 

might indicate the reason of the estimation variation.  

Table 4 Indicator groups to evaluate estimation performance. 

Group Variability 

Best model Difference < 2σ 

+2sd indicator 2σ < Difference < 3σ 

+3sd indicator 3σ < Difference < 4σ 

+4sd indicator 4σ < Difference 

4. Results 

4.1. Mineralogy 

Summary statistics of the 46 samples Rietveld XRD measurements and for the same 

dataset split into the two location classes are given in Table 5. Mineralogy by location class 

shows differences that otherwise would be masked, like the higher concentration of feldspar 

and albite in the mafic dike and the higher concentration of nepheline and titanite in the 

nepheline syenite. Regardless of the location class the modal mineralogy shows high 

variability with high standard deviations and skewness deviating from zero. 

Table 5 Summary statistics of the full XRD Rietveld dataset, and the same dataset split by location class. Nph = 
nepheline, Fsp = K-feldspar, Ab = albite, Cpx = clinopyroxene, Hbl = hornblende, Bt = biotite, Ttn = titanite, Mgt = 
magnetite, Po = pyrrhotite, Cal = calcite, Ntr = natrolite, based on Whitney and Evans (2010) nomenclature. 

  Rietveld XRD dataset 
 Location class 

 Nepheline syenite   Mafic dike swarm 
Points  46  38  8 

Mineral, 
wt.% 

 Mean 
Std. 
dev. 

Skewness  Mean 
Std. 
dev. 

Skewness  Mean 
Std. 
dev. 

Skewness 

Nph  30.68 3.42 -1.94  31.11 3.46 -2.36  28.63 2.52 -2.11 

Fsp  41.81 3.40 -0.08  41.71 3.41 0.10  42.32 3.51 -1.22 

Ab  12.89 2.57 0.84  12.30 2.32 1.28  15.73 1.69 2.48 

Cpx  4.87 2.04 0.27  5.16 2.05 0.13  3.51 1.38 -0.28 

Hbl  2.99 3.11 2.29  2.96 3.09 2.43  3.11 3.41 2.16 

Bt  1.91 1.11 1.39  1.84 1.09 1.60  2.26 1.26 0.81 

Ttn  0.46 0.27 0.72  0.48 0.29 0.60  0.35 0.16 -0.48 



Mgt  0.98 0.22 0.64  1.01 0.23 0.37  0.84 0.07 0.17 

Po  0.30 0.10 -0.39  0.30 0.10 -0.33  0.29 0.11 -0.72 

Cal  1.86 0.56 0.58  1.88 0.60 0.54  1.78 0.35 -0.48 

Ntr  1.24 0.82 2.04  1.25 0.86 2.13  1.18 0.68 0.87 

4.2. Data correlation 

The correlation coefficients calculated between measured modal mineralogy, bulk chemistry 

and concentrate yield may indicate the type of relation between these parameters, and thus 

the type of methodology suitable to develop a prediction model. The values of the Pearson, 

Kendall and Spearman correlations are displayed in Table 6, Table 7 and Table 8, 

respectively.  

Table 6 Pearson correlation coefficient between mineralogy, bulk chemistry (including unknown) and concentrate 
yield. Nph = nepheline, Fsp = K-feldspar, Ab = albite, Cpx = clinopyroxene, Hbl = hornblende, Bt = biotite, Ttn = 
titanite, Mgt = magnetite, Po = pyrrhotite, Cal = calcite, Ntr = natrolite, based on Whitney and Evans (2010) 
nomenclature. 

Component, 
wt.% 

Al2O3 BaO CaO K2O MgO Na2O SiO2 Fe2O3 TiO2 Unknown 
Concentrate 

yield, % 

Nph 0.31 0.34 -0.15 0.25 -0.73 0.73 -0.04 -0.50 -0.40 0.22 0.51 

Fsp 0.67 -0.35 -0.59 0.74 -0.45 -0.06 0.64 -0.58 -0.60 -0.64 0.52 

Ab -0.31 -0.45 -0.08 -0.14 0.40 -0.08 0.10 0.16 0.08 0.01 -0.21 

Cpx -0.24 0.60 0.44 -0.27 -0.11 -0.10 -0.22 0.20 0.25 0.23 -0.16 

Hbl -0.53 -0.05 0.36 -0.58 0.77 -0.36 -0.42 0.68 0.65 0.23 -0.59 

Bt -0.44 -0.32 0.24 -0.39 0.83 -0.42 -0.27 0.54 0.40 0.09 -0.49 

Ttn -0.35 0.79 0.58 -0.48 -0.14 0.08 -0.53 0.29 0.49 0.58 -0.39 

Mgt 0.22 0.09 -0.11 0.23 -0.15 -0.08 0.17 -0.19 -0.27 -0.17 0.15 

Po -0.03 0.41 0.22 -0.01 -0.42 0.08 -0.04 -0.03 0.06 0.13 0.04 

Cal -0.37 0.40 0.52 -0.32 0.05 -0.04 -0.41 0.26 0.35 0.43 -0.28 

Ntr 0.39 -0.02 -0.04 0.05 0.05 -0.38 0.11 -0.06 -0.05 -0.31 -0.06 

Concentrate 
yield, % 

0.63 -0.38 -0.66 0.75 -0.65 0.52 0.50 -0.74 -0.76 -0.37 1.00 

Table 7 Kendall correlation coefficient between mineralogy, bulk chemistry (including unknown) and concentrate 
yield.  

Component, 
wt.% 

Al2O3 BaO CaO K2O MgO Na2O SiO2 Fe2O3 TiO2 Unknown 
Concentrate 

yield, % 

Nph 0.18 0.22 -0.08 0.16 -0.42 0.37 -0.02 -0.21 -0.20 0.10 0.26 

Fsp 0.51 -0.31 -0.56 0.65 -0.51 0.20 0.54 -0.59 -0.57 -0.50 0.45 

Ab -0.18 -0.31 -0.08 -0.06 0.21 -0.22 0.09 0.05 0.01 -0.05 -0.10 

Cpx -0.11 0.43 0.24 -0.17 -0.04 0.08 -0.15 0.10 0.16 0.18 -0.11 

Hbl -0.38 0.03 0.34 -0.48 0.62 -0.25 -0.35 0.45 0.45 0.23 -0.35 

Bt -0.19 -0.25 0.16 -0.21 0.50 -0.22 -0.12 0.28 0.21 0.01 -0.25 

Ttn -0.20 0.56 0.38 -0.39 0.10 0.07 -0.42 0.28 0.39 0.42 -0.34 

Mgt 0.13 0.10 -0.04 0.14 -0.11 0.07 0.10 -0.09 -0.13 -0.08 0.09 

Po -0.14 0.30 0.15 -0.08 -0.03 0.10 -0.07 0.10 0.17 0.12 -0.06 

Cal -0.33 0.28 0.36 -0.25 0.17 -0.15 -0.29 0.26 0.29 0.32 -0.23 

Ntr 0.26 0.02 -0.08 0.10 -0.07 0.04 0.12 -0.13 -0.06 -0.17 0.06 

Concentrate 
yield, % 

0.42 -0.29 -0.49 0.56 -0.50 0.32 0.37 -0.55 -0.57 -0.31 1.00 

Table 8  Spearman correlation coefficient between mineralogy, bulk chemistry (including unknown) and 
concentrate yield.  

Component, 
wt.% 

Al2O3 BaO CaO K2O MgO Na2O SiO2 Fe2O3 TiO2 Unknown 
Concentrate 

yield, % 



Nph 0.29 0.36 -0.11 0.24 -0.55 0.52 -0.03 -0.30 -0.29 0.15 0.35 

Fsp 0.70 -0.43 -0.73 0.82 -0.67 0.30 0.70 -0.71 -0.71 -0.67 0.61 

Ab -0.25 -0.46 -0.12 -0.06 0.27 -0.29 0.15 0.07 0.00 -0.08 -0.14 

Cpx -0.13 0.56 0.36 -0.23 -0.04 0.11 -0.20 0.16 0.23 0.26 -0.12 

Hbl -0.54 0.07 0.49 -0.63 0.81 -0.37 -0.52 0.62 0.63 0.35 -0.49 

Bt -0.26 -0.35 0.18 -0.24 0.66 -0.34 -0.17 0.37 0.27 0.02 -0.34 

Ttn -0.32 0.75 0.55 -0.53 0.16 0.10 -0.56 0.38 0.53 0.57 -0.44 

Mgt 0.18 0.15 -0.05 0.19 -0.16 0.12 0.11 -0.11 -0.16 -0.11 0.13 

Po -0.16 0.41 0.25 -0.10 -0.06 0.14 -0.10 0.14 0.22 0.19 -0.09 

Cal -0.44 0.42 0.53 -0.35 0.25 -0.22 -0.43 0.37 0.39 0.49 -0.31 

Ntr 0.37 0.04 -0.14 0.17 -0.14 0.04 0.17 -0.20 -0.12 -0.25 0.09 

Concentrate 
yield, % 

0.58 -0.40 -0.69 0.77 -0.68 0.43 0.53 -0.74 -0.78 -0.43 1.00 

Strong relationships are considered for any coefficient above 0.5 (or bellow -0.5). The 

strongest correlation values are observed between MgO with nepheline (negative), 

hornblende (positive), biotite (positive) and concentrate yield (negative); K2O with K-feldspar 

(positive) and yield (positive); Na2O with nepheline (positive); BaO with titanite (positive); 

TiO2 and Fe2O3 with concentrate yield (negative). Based on data from Table 1, Table 2 and 

Table 5 and the distribution describing in them it would realistic to assume the suitability of 

Spearman and Kendall over Pearson’s coefficients. This would indicate that the relationship 

between measured mineralogy, bulk chemistry and concentrate yield is mainly non-linear.  

4.3. Subset definition 

Cluster analysis was applied to the whole concentrate yield data from the company 

database, whereas to the Rietveld XRD data a cluster analysis was applied by location class 

(nepheline syenite and mafic dike swarm) because of the marked differences between one 

class to the other. From the cluster analyses six clusters were used for the concentrate yield, 

four clusters for the nepheline syenite class and three clusters for the mafic dike swarm 

class. An example of the similarity between subsets and original set distributions is shown in 

Fig. 12 and Table 9. 

 

Fig. 12. Concentrate yield histogram with the distribution of standardized points (counts) in the original set and its 
allocated subsets after cluster analysis. 



Table 9 Standardized concentrate yield summary statistics of the original set and its allocated subsets after 
cluster analysis.  

 Original set Training subset Test subset Validation subset 

Samples 1055 528 265 262 

Mean 2.8E-15 -1.4E-15 -2.4E-15 5.8E-17 

Standard Deviation 0.03 0.04 0.06 0.06 

Skewness -2.21 -2.20 -2.26 -2.21 

Minimum -5.31 -4.96 -5.36 -5.22 

Maximum 1.27 1.27 1.24 1.21 

4.4. Model structures and performances 

The number of neurons showing the best compromise between test and training 

performance, the final mse based on the test subset (i.e. untrained data) and the number of 

negative estimations from each model are displayed in Table 10. 

Table 10 Number of neurons, model performance and estimation of negatives. *Based on the average from each 
mineral.  

Model Input Output Neurons mse 
Negative 

estimations  
from DIA database 

NN 1 Bulk chemistry, location class Mineralogy 2 0.66* 11 

NN 2 Bulk chemistry, location class 
Concentrate 

yield 
2 0.16 0 

NN 3 Estimated mineralogy, location class 
Concentrate 

yield 
4 0.20 0 

NN 4 
Bulk chemistry, estimated mineralogy, location 

class 
Concentrate 

yield 
5 0.16 2 

4.5. Modal mineralogical estimations 

The correlation between measured and predicted mineralogical data can give an idea of the 

model performance. High positive correlation indicates good model performance. 

Differences between estimated and measured nepheline, hornblende, biotite, clinopyroxene, 

K-feldspar and albite are shown in (Fig. 13). 



     

Fig. 13. The Pearson correlation coefficient between the Rietveld refined XRD measurements and their respective 
estimated quantities from the NN1 model. Nepheline, hornblende, biotite, clinopyroxene, K-feldspar and albite are 
shown due to quantify range they cover which represent the performance of all the minerals used in this study  

The NN1 prediction model was applied to the full bulk chemical dataset of the company 

database to predict the mineralogy of each sample point. When applying the NN1 model to 

the whole bulk chemical dataset the modal mineralogy of 11 sample points were negatively 



predicted on one or several bulk chemical parameters. The sample points with negative 

estimated values are mainly located in areas further apart from the samples collected for 

Rietveld XRD quantification or along the northern boundary of the deposit and in the 

southern part of the mafic dike swarm area, as shown in Fig. 14. The distribution of 

estimated nepheline, K-feldspar, biotite, hornblende, clinopyroxene, albite, titanite and 

magnetite in the deposit are shown in Fig. 15.  

 

Fig. 14. Open pit top view of the modal mineralogy estimations from the NN1 model. Negative mineral estimates 
are displayed in red to illustrate their spatial distribution. Positive mineral estimations are not displayed. The shapes 
of the fault (black), mafic dike swarm (grey) and mineable nepheline syenite (green) areas vary with deposit depth. 



  

Fig. 15. Open pit top view of a) nepheline, b) K-feldspar, c) biotite, d) hornblende, e) clinopyroxene, f) albite 
estimations. The shapes of the fault, mineable nepheline syenite and mafic dike swarm areas vary with deposit 
depth. The legend in each plot is based on the histogram of every variable split into quartiles: the Q1 (lower quartile 
or 25th percentile of the data) is in the blue transition, the Q2 (median or 50th percentile) is in the purple transition, 
and the Q3 (upper quartile or 75th percentile) is in the yellow transition. The extreme values in the legend are a 
representation of the tails from each element histogram and correspond to the Q1 and Q3 values expanded by 0.5 
wt.%. 

4.6. Concentrate yield estimations and comparison 

The comparisons between measured and estimated concentrate yield from the three neural 

network models are shown in Fig. 16. The spatial distributions of the measured and 

estimated concentrate yield by model in the deposit are shown in Fig. 17.  



 

Fig. 16. Concentrate yield prediction performance applied to the company bulk chemical database by model a) 
NN2 model with bulk chemistry and location class as input, b) NN3 model with estimated mineralogy and location 
class as input, and c) NN4 model with bulk chemistry, estimated mineralogy and location class as input. 

 

Fig. 17. Open pit top view of the concentrate yield distribution by a) NN2 model prediction, b) NN3 model prediction, 
c) NN4 model prediction, and d) measured concentrate yield. The shapes of the fault, deposit production and mafic 
dike swarm areas vary with deposit depth. The legend in each plot is based on the histogram of every variable split 
into quartiles: the Q1 (lower quartile or 25th percentile of the data) is in the blue transition, the Q2 (median or 50th 
percentile) is in the purple transition, and the Q3 (upper quartile or 75th percentile) is in the yellow transition. The 
extreme values in the legend are a representation of the tails from each element histogram and correspond to the 
Q1 and Q3 values expanded by 0.5 wt.%. 

The concentrate yield prediction model NN2 had  no negative estimations and a mse of 0.16 

on data not used to train the model   This is considered as the best concentrate yield 

prediction model. The indicator group system from Table 4 was applied to the NN2 model 

concentrate yield predictions for further evaluation as shown in Fig. 18.  The +4sd indicator 



group has the highest differences between measured and estimated data. The points 

belonging to this group are mainly located in the periphery of the deposit, in the mafic dike 

location class and the proximities of fault crossing the deposit, whereas the other groups are 

randomly distributed in the whole deposit as shown in Fig. 19.  

     

Fig. 18. Concentrate yield correlation between measured and NN2 model estimated values, colour code according 
to indicator group and its influence in the overall correlation coefficient. 

 

Fig. 19. Open pit top view of the +2ds, +3ds and +4ds indicator groups from the NN2 model concentrate yield 
estimations. The shapes of the fault (black), mafic dike swarm (grey) and mineable nepheline syenite (green) areas 
vary with deposit depth. 

The summary statistics of the three indicator groups are displayed in Table 11. There are 

differences between each indicator group such as Al2O3, Fe2O3, and concentrate yield 

obtained with them, though other variables like estimated mineralogy do not show any 

particular differences.  



Table 11 Summary statistics of the indicator groups from the NN2 concentrate yield model. Nph = nepheline, Fsp 
= K-feldspar, Ab = albite, Cpx = clinopyroxene, Hbl = hornblende, Bt = biotite, Ttn = titanite, Mgt = magnetite, Po 
= pyrrhotite, Cal = calcite, Ntr = natrolite, based on Whitney and Evans (2010) nomenclature. 

Indicator group  +2sd  +3sd  +4sd 

Points  59  25  16 

Variable, wt.%  Mean 
Std. 
dev. 

Skewness 
 Mean 

Std. 
dev. 

Skewness 
 Mean 

Std. 
dev. 

Skewness 

Al2O3  21.32 2.41 -1.61  20.84 2.42 -0.94  21.52 1.67 -0.51 

BaO  0.31 0.09 0.02  0.35 0.09 -0.33  0.38 0.07 0.31 

CaO  3.69 2.58 3.63  3.98 1.48 1.41  3.38 0.85 0.44 

K2O  7.56 1.57 -1.85  7.36 1.16 -3.08  7.61 0.64 0.26 

MgO  1.40 1.90 2.57  1.80 2.17 2.69  1.12 0.76 0.53 

Na2O  6.93 1.09 -1.16  6.34 1.25 -1.21  6.92 1.19 -1.08 

SiO2  52.50 2.98 -2.68  52.13 2.02 -0.80  52.84 1.35 0.12 

Fe2O3  3.83 2.13 1.48  4.26 1.90 1.42  3.86 1.33 0.73 

TiO2  0.85 0.54 2.94  0.99 0.43 1.45  0.89 0.31 0.53 

Concentrate 
yield % 

 
54.65 19.24 -1.11 

 
45.96 16.13 -1.02 

 
40.59 15.87 -0.15 

Nph  29.14 2.65 -0.10  28.27 2.24 -0.26  28.88 2.90 -0.19 

Fsp  40.85 4.05 -0.52  39.61 3.83 0.21  39.92 4.18 -0.11 

Ab  14.32 3.58 0.53  15.52 3.12 0.23  14.90 3.74 0.56 

Cpx  4.48 0.97 1.76  4.30 0.91 0.63  4.58 1.23 1.05 

Hbl  3.87 2.77 0.56  4.79 2.43 0.20  4.34 2.88 0.56 

Bt  2.61 1.53 0.35  3.12 1.30 0.30  2.81 1.63 0.43 

Ttn  0.39 0.15 1.85  0.37 0.15 0.60  0.41 0.19 1.02 

Mgt  0.99 0.10 -0.40  0.96 0.10 0.38  0.97 0.11 0.26 

Po  0.29 0.09 0.79  0.26 0.08 0.18  0.29 0.10 0.56 

Cal  2.00 0.17 1.84  1.97 0.17 0.62  2.02 0.22 1.04 

Ntr  1.15 0.53 -0.51  0.99 0.51 0.24  1.03 0.55 -0.07 

5. Discussion 

5.1. Uncertainty in the data 

The modal mineralogy is assumed to be known from the XRD analyses, though there is no 

benchmark to compare against. Hence the assumed known mineralogy relied upon one 

technique. However, there are uncertainties associated to XRD analyses like the high 

detection limit where minerals quantities lower than 0.5-1.0 wt.% such as apatite and 

corundum have low precision, if detected at all, in bulk rock analyses. The methodology in 

the present study, used a predefined mineral list during Rietveld refinement that normalizes 

the minerals present in the samples and forces the analyses to fit 100 wt.%, thus neglecting 

the presence of minerals not considered in the mineral list. 

Despite the limitations mentioned, it is believed that the effect of the uncertainties will not 

have a large impact on the modal mineralogy estimation results nor the general trends 

observed from the estimated modal mineralogy in the deposit. Also, the use of a 

standardized procedure, as the one used in the present study, is desired towards the 

automation of the XRD refinement.  

Other aspects to consider is associated to the EPMA analyses used during Rietveld 

refinements. These analyses are also prone to subtle uncertainties and limitations that 

should be mentioned such as the inability to detect the lightest elements i.e. H and thus 

hydrous minerals, nor to differentiate element valence states e.g. Fe2+ or Fe3+ as described 

by Goldstein et al. (2003). Additionally, this technique is prone to underestimate light 

elements due to mobilisation, which can be induced by the electron beam during analyses 

as proven by Szalóki et al. (2001). Despite this, the use of EPMA analyses on the deposit 

material is preferred over standard mineral chemistry values from software packages 

because the EPMA mineral chemistry data represents better the minerals present in the 

Nabbaren deposit. 



Expanding the list of features to characterize the material is desirable and it could be 

relatively fast and cost efficient. Some examples are the use of loss-on-ignition (LOI), a 

major element list expansion i.e. by adding carbon, sulphur, etc., or minor element 

measurements. The LOI indicates the presence of volatile components in the material such 

as carbonates, hydrous minerals or sulphides; minor elements can provide proof of the 

presence of a certain mineral (i.e. similarly to the assumption of phosphorus to apatite). 

These extra measurements can improve the company database and could be included into 

the internal procedures. 

Other automated techniques, such as SEM automated mineralogy software, with lower 

detection limits and the capability to quantify other sample features (e.g. liberation degree, 

mineral associations, etc.) provide extra data to improve knowledge that can have a positive 

impact in the predictions. Nonetheless, this type of technique could struggle with perthitic 

textures (Hestnes and Sørensen, 2012; Smith and Brown, 1988), such as those from the 

Nabbaren deposit. 

5.2. Variability introduced from the acquisition method 

Previous geological investigations (Geis, 1979; Heier, 1961; Li, 2013; Oosterom, 1963; 

Robins, 1980; Robins and Often, 1996; Robins and Tysseland, 1979) indicate that 

amphibole-rich rocks like a syenitic fenite dominate southwest of the Nabbaren deposit, 

while carbonatites and nepheline-rich gneisses are dominant in the northeast. Observations 

from the company also explain part of the measured data variation with the observation of an 

area swarmed with diabase dikes crossing from north to south in the deposit and the faults, 

as shown in Fig. 4. 

The measured data of concentrate yield (Fig. 16 subplot D) and the bulk chemistry (Fig. 5) in 

the deposit could be influenced by the lithologies surrounding the deposit as illustrated in 

Fig. 2, since the sampling was not based on a map with a clear distinction between the 

nepheline syenite and surrounding lithologies, or of internal variations in the nepheline 

syenite. 

An aspect introducing variability in the data that could affect parameter correlations and the 

outcome of the prediction models could be the reverse-circulation drilling sample acquisition 

method. These samples do not represent a pure sample; on the contrary, the resulting 

samples might contain a mixture of lithologies likely from hanging-wall or footwall mixing in 

the periphery or mixed lithologies in the mafic dike swarm and fault. The two location classes 

defined in Fig. 6, the mafic dike swarm and the nepheline syenite areas, are both a mixture 

of mafic dikes and nepheline syenite. A lithological mixture can introduce unwanted variation 

to the data, and therefore make any prediction and interpretation harder to achieve. Still it is 

expected that underlying chemical and mineralogical patterns are detectable also when 

using this sample type. The reverse-circulation sample is the current sample type used by 

the company and thus comprising the whole database available for the deposit. It is 

reasonable for the company to use the samples available for a more in-depth 

characterization despite the problems associated with them.  

The presence of moderate amounts of mafic dikes should not impact the concentrate from 

magnetic separation according to Geis (1979), though the same cannot be stated about the 

impact on concentrate yield which evidently varies between the measured points located in 

the mafic dike swarm area, the nepheline syenite deposit and the rim of the deposit and 

shown in Fig. 16 (subplot D).  

5.3. Data correlation and model confirmation 



The correlations between measured data showed a relation between modal mineralogy, bulk 

chemistry and concentrate yield. Some of the highest correlation values from Table 6, Table 

7 and Table 8 are observed between concentrate yield and bulk chemistry, such as K2O 

(positive), TiO2, CaO and Fe2O3 (negative), and that between mineralogy and bulk chemistry 

like nepheline with MgO (negative) and Na2O (positive), K-feldspar with K2O, Al2O3 and SiO2 

(positive), hornblende with K2O (negative), MgO, TiO2 and Fe2O3 (positive), biotite with MgO 

(positive) and titanite with BaO (positive).  

The Pearson’s coefficient from Table 6 might indicate a linear type of relation between sets. 

However, this relation is not entirely true, as this coefficient is highly influenced by the 

presence of extreme values in the data. In most variables, Kendall and Spearman 

coefficients showed similar or higher coefficients than Pearson’s. This indicates that the 

relation between modal mineralogy, bulk chemistry and concentrate yield might be better 

suited for a non-linear prediction models such as a neural network.  

Unfortunately, often the relation between datasets cannot be explained only by modal 

mineralogy and bulk chemistry. There are multiple influencing factors such as mineral 

textures (Lund et al., 2015; Tøgersen et al., 2018) mineral associations and the degree of 

liberation (Hunt et al., 2011; Johnson et al., 2007; Minz et al., 2013). These properties were 

not measured in this study, though they should be considered in future geometallurgical 

investigations due to the impact they might have in characterizing the material and its 

processability (Lamberg, 2011; Williams, 2013). 

5.4. The prediction models 

The performance of the prediction models is reflected in the obtained mse, which are 

associated to the selected model structure. Less complex structures such as a one-hidden 

layer with an optimal number of neurons tend to predict any function (Demuth et al., 2014; 

Maier et al., 2000), in this case bulk chemistry to concentrate yield and modal mineralogy. 

The predictions for the different minerals, had different performances (Fig. 13). Most of the 

minerals predicted by the NN1 model seem to fall on the 1-to-1 line, except for 

clinopyroxene, which showed a rather biased prediction of the measured data. Many factors 

can influence the model bias such as a lack of variability shown in the data as displayed in 

Table 5, with clinopyroxene skewness close to zero, a biased training set from the allocation 

of samples after clustering, an optimal model found after training failed to find a better 

solution without decreasing the overall performance of the model thus compromising 

clinopyroxene predictions, a low number of available samples (diabase dike swarm area had 

9 samples), just to mention some reasons.  

Despite the possible biases from the NN1 model, when applying the model to the bulk 

chemical database of the deposit, only 9 points predicted negative mineralogy i.e. at least 

one negative mineral for the sample. Fig. 14 shows the location of these 9 points, which 

could be linked to the diabase dike swarm area or to the nepheline syenite rim. The negative 

predictions in these points can be expected due to an extrapolation of the model to samples 

different from the training set. This is a consequence of the area covered by the sample 

used for modal mineralogy studies (see Fig. 4) and the data variability (see Table 2 and 

Table 5).  

The prediction of modal mineralogy could suffer from lack of sample representativeness in 

parts of the location areas and surrounding rock, due to the spatial constraints of the data 

set, and limited number of samples in some areas.  



One way to deal with the lack of representativeness is by measuring extra samples for a re-

evaluation and confirmation of the models, which can be done by the company in further 

investigations. For example, by studying samples at different locations in the open pit or by 

re-sampling using a more compact sampling grid over certain areas. Alternatively, the use of 

artificial samples based on original dataset statistics could be an option to increase the 

number of points to create the prediction model as done by Lachtermacher and Fuller 

(1994). However, an accurate modal mineralogy model is not so critical for the mafic dike 

area of the present study. The most important aspect with distinguishing this location class 

was to remove the impact of the mafic dikes on the variations in the main nepheline syenite 

deposit.   

The concentrate yield prediction models did not have the same lack of representativeness 

problem as the modal mineralogy prediction models. The database consisting of 1055 

measured points in the open pit was large enough to cluster and representatively allocate 

concentrate yield points into the different subsets prior to modelling, as illustrated in Fig. 12. 

The prediction from the NN2, NN3 and NN4 models (Fig. 16) showed that the best 

performing model is the NN2 (Table 10). The distribution of the predicted and measured 

concentrate yield points in the open pit (Fig. 17) show the differences between models. The 

model input data had certainly impacted the model prediction performance like in the NN3 

model, the worst performing model, which used as input data of the estimated modal 

mineralogy from the NN1 model. The NN2 model only used measured bulk chemical data to 

estimate concentrate yield and this was the best performing model. Despite the performance 

shown by the concentrate yield prediction models, the results might indicate a risk of 

overestimation that has to be considered in a future application of this type of model.   

The processing behaviour, such as the magnetic separation concentrate yield, may be 

explained using bulk chemical data, although mineralogical data is generally regarded as 

more suitable for this type of task (Evans et al., 2011; Lotter et al., 2011; Lund and Lamberg, 

2014; Petruk, 2000). Mineralogical information should provide a more meaningful input to the 

processing prediction; however, the input data should be measured instead of estimated. 

Nonetheless, the use of bulk chemical data is a good starting point for a prediction model. 

Further mineralogical characterization might help understanding the underlying processes 

involving and influencing processing behaviour. This type of information should be 

considered by the company in the future development of the mine, processing plant and any 

prediction model attempt. 

When studying further the prediction accuracy of the NN2 model it is expected for the data 

regarded as outliers to be somehow influenced by their location. In general, the further the 

estimation is from the centre of the deposit, the further the estimation is from the one-to-one 

line in Fig. 18. The impact of the outliers or indicator groups in the overall correlation 

between measured and estimated concentrate yield is particularly interesting because these 

groups influence the correlation between measured and predicted points. Removing these 

more extreme values increases the correlation from 0.90 to 0.94. Most of the outliers belong 

to the mafic dike swarm area, the rim of the nepheline syenite and the fault, as shown in Fig. 

19. These locations are most likely heavily influenced by lithologies not well represented in 

the dataset due to the location of the measured sample points and a possible lithological 

mixing, as previously mentioned.  

The model structure like a one-hidden layer neural network is another aspect to consider. 

This type of structures can predict basically any output, though the predictions can be 

improved by using more complex structures (Maier et al., 2000; Mhaskar and Poggio, 2016). 

The compromise between the complexity of the model and the predicting performance is a 



subject under constant development in the field of deep learning (Bishop, 2016; Goodfellow 

et al., 2016).  

The neural network methodology implemented for the prediction of concentrate yield and 

modal mineralogy show potential for improvement and implementation in operations for fast-

track data. For example, the use of predicted modal mineralogy can be of great use for the 

interpretation of any underlying geological information that otherwise would be invisible with 

bulk chemical data. This type of information can help differencing and interpreting geological 

features, which has potential in mine planning or resource assessment e.g. defining a 

meaningful classification system for the deposit based on the database. The predicted 

concentrate yield has even more potential because the model can be implemented for fast-

tracking results that otherwise would take an extensive amount of time in the laboratory. This 

type of information has also the potential to be used in blending strategies, as a plant 

forecasting performance indicator, and as a resource assessment indicator for different 

production levels e.g. to implement geometrical models of the deposit.  

5.5. Trends revealed from the prediction models NN1 and NN2 

To be of use in the quality control and raw material blending of an industrial mineral deposit, 

the modal mineralogy and concentrate yield prediction models do not need to accurately 

predict all samples, but they need to be close on average on a blast scale and reflect the 

real trends in the deposit.  In addition, they might reveal other aspects that could be 

examined by further studies to improve the knowledge of the quality parameters of the 

deposit. 

The modelled variation in modal mineralogy of the nepheline deposit with surrounding areas 

is a function of the mineralogical variation of the nepheline syenite (Heier, 1961; Mjelde, 

1983; Robins and Gardner, 1975), the mineral chemistry variation of the deposit (Heier, 

1964; Mena Silva et al., 2018; Mjelde, 1983), the surrounding lithologies in samples located 

in the proximities of the deposit rim (Appleyard, 1974; Geis, 1979; Heier, 1961; Robins, 

1980; Skogen, 1980), and the number of samples analysed in the different areas for the 

present study.  

In spite of the potential representativity problems associated with the modal mineralogy 

prediction model due to the sample locations and low number of modal mineralogy analyses, 

the modal mineralogy predictions in the deposit (Fig. 15) showed interesting results in 

accordance with the observed bulk chemical variation and the lithologies surrounding the 

deposit. The variation in the deposit showed a differentiation between the northeastern and 

southwestern parts of the deposit. The northeastern part of the deposit had higher 

concentrations of nepheline, clinopyroxene and titanite, while the southwestern part of the 

deposit had higher concentrations of K-feldspar, albite, biotite, and magnetite. The 

differentiation between the distributions of biotite and clinopyroxene is expected from 

previous deposit descriptions (Geis, 1979; Heier, 1961). The association between 

clinopyroxene and titanite has been highlighted in the first descriptions of the deposit by 

Heier (1961) that reported a positive correlation between these minerals.  

The representativity problem of the modal mineralogy prediction model is especially 

important in areas with mixed lithologies, as at the rims of the deposit and in the mafic dike 

swarm area. 

The nepheline syenite area is in contact with different lithologies such as carbonatite and 

nepheline-rich gneiss in the northeast, and syenitic fenite in the southwest. Considering the 

sample location, the modal mineralogy of these rim areas might be influenced by the location 

and number of samples analysed. For instance in Fig. 4, due to the mineralogical 



characteristics of carbonatite and nepheline-rich gneiss (Geis, 1979; Heier, 1961; Oosterom, 

1963; Robins and Gardner, 1975; Skogen, 1980), they can be considered as the main 

lithologies mixing in the northern part of the nepheline syenite deposit, influencing the 

estimated calcite and nepheline concentrations. In the southwestern part of the deposit and 

the diabase dike areas with fewer modal mineralogy analyses, estimated biotite, plagioclase 

and K-feldspar might be influenced by the contacting syenitic fenite located in the southern 

part of the deposit (Geis, 1979; Heier, 1961; Ramsay and Sturt, 1970).  

The measured modal mineralogy showed a difference between the nepheline syenite and 

mafic dike swarm areas, as displayed in Table 5. The same is reflected in the predicted 

modal mineralogy model. The nepheline syenite area had higher estimated concentrations of 

nepheline, clinopyroxene and calcite, whereas the diabase dike swarm area had higher 

concentrations of K-feldspar, albite, and biotite.  

In addition to this, the modelled mineralogy of the mafic dike area showed a spatial 

differentiation. In the south the mafic dike area splits between a western and an eastern part. 

The samples belonging to the western part show similar values to the ones located in the 

north of the mafic dike swarm, while samples belonging to the eastern part show values 

similar to what is expected in the nepheline syenite area. This shows the true nature of the 

mafic dike area, as an area with varying densities of mafic dykes cutting the nepheline 

syenite, unlike the more schematic representation of the mafic dike swarm area shown in 

Fig. 6. A more detailed mapping of this area could improve the potential for selective mining 

of this area. 

The concentrate yield distribution in the deposit portrays a general variation of the modal 

mineralogy and bulk chemical data in the deposit and the different areas within it. The mafic 

dike swarm area has higher concentrations of CaO, MgO, Fe2O3 and a lower concentrate 

yield, whereas the nepheline syenite area has higher concentrations of Al2O3, K2O, Na2O 

and a higher concentrate yield (Table 2).  

The estimated concentrate yield is in general in very good agreement with the measured 

values, suggesting that model NN2 based on bulk chemistry could be used as a proxy for 

concentrate yield within the investigated area. 

The variation in the characteristics from both location classes and the whole dataset indicate 

that the current company quality map could benefit from a better definition of domain 

boundaries and understanding of the internal quality variations of the quality domains. This 

applies to both the nepheline syenite and the mafic dike swarms.  

 Further work regarding prediction models and deposit characterization should address the 

modal mineralogy representativity issue, focusing on deposit domaining, and additional 

mineralogical studies. Additional modal mineralogy measurements covering a larger area in 

the deposit should be carried out based on a reconciled geological map using the available 

bulk chemistry database.  Evaluating other neural network architectures to increase the 

precision of the predictions could be a further task to compare performances with simpler 

structures as the one from the present study, but simple structures seem to give useful 

results given sufficient data covering the sampled area. The measurement of extra input 

features (like LOI and mineral texture) towards a more complete material characterization 

could be considered by the company in future sampling campaigns and operations.  

6. Conclusion 

The present research aimed at developing and testing prediction models using a neural 

network framework for mineral processing performance indicators such as concentrate yield 



and modal mineralogy based on bulk chemistry. To use bulk chemistry data from existing 

reverse-circulation samples, was of particular interest because to use this data set would 

represent the fastest and most cost-efficient way of obtaining information on mineralogy and 

concentrate for the company.  

From the present study it is possible to conclude:  

By using a neural network approach a model was obtained which predicts concentrate yield 

accurately based on bulk chemistry by achieving a correlation coefficient of 0.9 between 

estimated and measured values.  

The relation between concentrate yield, sample bulk chemistry and modal mineralogy is 

better described in non-linear terms based on the different correlation coefficients tested. 

From the non-linearity premise, a neural network approach was evaluated to be preferred to 

predict concentrate yield and modal mineralogy on bulk chemistry.  

The estimation of modal mineralogy showed biased predictions, though it is expected that 

the bias is influenced by the location and number of samples used as input. Nonetheless, 

the modal mineralogy predictions have potential for improvement if more samples are 

collected and included during model training. 

From the measured data it was possible to recognize a trend from the southwestern to the 

northeastern part of the deposit, assumed to be related to the variation in mineralogy and 

mineral chemistry, as well as due to influence from surrounding lithologies and internal fault 

zone and mafic dikes.  

The use of reverse circulation samples has its limitations but is believed to reveal the true 

trends of the studied deposit. 

The distribution of the predicted and measured data in the deposit indicate that the current 

quality map describing the deposit could benefit from a better definition of domain 

boundaries and understanding of the internal quality variations of the quality domains, due to 

inconsistencies between the current map features and the distribution of the measured and 

predicted data. 

The application of a neural network approach showed a successful attempt in the prediction 

of concentrate yield and modal mineralogy in the Nabbaren nepheline syenite deposit. 

However, further investigations in terms of deposit internal variation and mineralogical 

studies are needed for utilising these prediction models, and further improve the modal 

mineralogy prediction model.   
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