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Vińıcius Ramos Rosac, Bruno Ferreira Vieirad, Alex Furtado Teixeirad

aDepartment of Automation and Systems Engineering, Federal University of Santa
Catarina, Cx.P. 476, Florianópolis, SC 88040-900, Brazil
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Abstract

Most of the literature on short-term production optimization concerns the
computation of optimal system settings for steady-state operations. Such
methodologies are applicable when the scales of time are faster than reser-
voir dynamics, and slower than the dynamics of top-side equipment. Ef-
fectively static problems are solved over time in response to changes in the
prevailing conditions, which will remain persistent for long periods. How-
ever, when platform conditions change frequently or suddenly possibly due
to reduced processing capacity, the dynamics of wells should not be ne-
glected and well operations should be scheduled over time. To this end,
this paper proposes a novel mathematical formulation for production opti-
mization when dynamics matters, specifically when wells are shut-in (due to
processing capacity drops) and restarted later as the normal conditions are
recovered. The effectiveness of the methodology to schedule well operations
is assessed by simulation of synthetic and field cases involving an offshore
production platform.
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1. Introduction

Oil production in offshore fields is a complex enterprise that involves
several disciplines and heterogeneous subsystems with rather different dy-
namics. At the upstream end of the production chain, the dynamics of fluid
flow in the reservoir is usually slower than in the rest of the production
system, remaining steady from weeks up to months. From the wells and
gathering networks up to the topside facilities, the dynamics are faster and
require new operating setpoints daily or even more than once a day. In this
sense, reservoir dynamics can be assumed at steady-state conditions for the
gathering network. Further down the production chain, in the separation
and processing facilities of the platform, the dynamics are much faster and
their control usually require automatic routines to compute new operating
settings while ensuring stability and safety.

In order to cope with the complexity and sheer size of the production
chain, the oil industry has adopted the decomposition of asset management
into layers, each concerned with decisions that take place at different time
scales. The layers are arranged in the control hierarchy depicted in Figure
1 [11], which illustrates the decisions taking place within the layers, along
with the information and control signals communicated between them. The
control hierarchy helps to position the works from the literature, and in-
dicate the advancement towards integration and extension of the decision
layers [9], such as is the case in the present work.

Despite the relevance of process dynamics to the choice of the model
and methodology employed in optimization, the time scale and planning
horizon are also relevant for decision making in each layer. One issue that
naturally arises is whether a dynamic model should be adopted or a static
model suffices, a topic that was the focus on an extensive discussion in [10]
which based itself on realistic case studies from production optimization.
In [10], Foss et al. claim that most production optimization problems can
be solved using steady-state models and static optimization methods, with
exceptions being the cases involving transients such as well startup and
shut-in operations, cyclic behavior, and situations of fast reservoir dynamics
found for instance in shale gas formations, among others.

In such situations near wellbore dynamics can matter, thus an appro-
priate description of pressures and flows require the use a reservoir model
coupled to a dynamic well model. Nennie et al. [25] and more recently, da
Silva et al. [6] have discussed the conditions when connecting both mod-
els is suitable. However, the increased complexity of such coupled models
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can make difficult, if not intractable, their use in the solution of practical
problems, for instance, well operations scheduling with integer decisions.
Additionally, maintaining accurate reservoir and dynamic well models is by
itself a challenging undertaking.

In this paper we focus on a practical approach to deal with well startup
and shut-in operations in offshore production platforms, which are recurrent
in the face of unexpected equipment failure, especially of rotary machines
such as compressors. Such situations also arise in planning for preventive
maintenance to reduce equipment wear and extend their lifetime. Moreover,
oil wells cannot produce uninterruptedly during all field development phases
and will invariably undergo shut-in and startup operations.
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Figure 1: Multilevel control hierarchy, adapted from Foss and Jensen [11].

Motivation. Operators at offshore platforms are often faced with the failure
of compressors, and other process equipment, that invariably reduces the
handling capacity of fluids and gas. Such unexpected events require timely
decisions to handle a sudden capacity reduction and the surplus of gas that
arrives later, resulting from the return of lift-gas, which triggers a sequence
of operations to reduce gas injection rates, constraint production valves,
and shut in wells until the nominal system conditions are recovered. At
that stage, the operators will be in a position to start up the wells that
were previously shut in, a procedure that evolves in time according with
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complex dynamics. The need of a software tool to support the scheduling
of the operations motivated the development of a methodology to account
for the well transients approximately, as a sequence of steady-state regimes,
while maximizing total oil production. This methodology and software tools
are the focus of this work.

Another use of the decision-support tool is in the planning of oper-
ations for preventive maintenance, which is scheduled to take place during
a given time window. The analysis and synthesis of a course of action in
response to simulated failures can also be addressed by the software tool.

Literature Review. Most of the literature and field applications in short-
term production optimization focus on steady-state models to plan the daily
and weekly operations. The optimization approaches vary depending on
the existence of analytic models, simulation software, data, and whether
or not discrete decisions are involved. In [14], Grimstad et al. present
a framework for optimizing multiphase flow networks considering discrete
decisions, in which B-splines and a MINLP solver are combined into a global
solver for production optimization. In [4], Codas et al. rely on piecewise-
linear approximation of fluid flow behavior and well production functions,
implemented in simulation software, to convert a conceptual MINLP into a
MILP for oil production in the Urucu Field. The strategy of using piecewise-
linear approximation and MILP optimization has become popular in the
industry, in part for its robustness but also for the ability of dealing with
models available in simulation software [2]. At the other end, one can find
applications of derivative-free algorithms that work directly with simulators
of oil production systems [16]. Derivative-free approaches are rather flexible,
but suffer from slow convergence and do not scale well with problem size.
Owing to the inherently complexity of production optimization, most of
the applications consist of advisory systems that recommend decisions and
course of actions to human operators [9].

The sample of works above is small but representative of the literature on
short-term production optimization. To the best of our knowledge, most of
the works in the production optimization layer (see Figure 1) rely on steady-
state models, arguably due to the difficulty of solving complex MINLP
problems, let alone problems accounting for dynamics over time.

At the bottom of the control hierarchy, the focus is on the fast dynamics
of processes and stabilization for safety operations. In [18], Jahanshahi
and Skogestad develop an active control strategy to prevent severe slugging
flow in wells and risers. Their strategy consists of model identification and
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PID controllers that proved to be effective at stabilizing well dynamics. In
[27], Peixoto et al. develop an extremum-seeking controller to maintain oil
production of a gas-lifted well around the optimum point. Their method
injects periodic perturbations into the plant in order to obtain gradient
information on the well-performance curve.

On the other hand, Codas et al. [5] attempt the system-wide optimiza-
tion and control of production processing, considering multiple wells and
surface facilities. Their work presents a nonlinear model predictive con-
troller (NMPC) to stabilize and optimize an oil gathering network with two
wells, riser, and separator. The approach consist of an economic NMPC
derived from multiple shooting optimal control and Kalman filtering. The
high computational cost of the multiple shooting NMPC motivated Diehl
et al. [7] to develop a more practical NMPC, which performs dynamic lin-
earization along the predicted trajectory in a manner akin, but simpler than
sequential quadratic programming. In simulated experiments using the dy-
namic model developed in [8], the proposed NMPC was shown to improve
the operation and production of an otherwise unstable oil well.

Attempts to integrate the layer of production optimization with the
layer of automation and control are few and far between, and which typ-
ically result from the extension of dynamic control strategies to account
for steady-state objectives from the upper layer. Put another way, the
attempts are mostly on integrating real-time optimization (RTO) with ad-
vanced control strategies such as Model Predictive Control (MPC), but not
concerning discrete decisions. An exception is [21, 20], in which Knudsen et
al. derive a linear dynamic proxy model for shale wells to be embedded in
the problem of scheduling operations, which accounts for pipeline routing
and shut-in/startup well operations.

In [3], Campos et al. discuss the benefits of real-time optimization and
advanced control for production optimization, however stress the techno-
logical challenges for effective and practical applications. In [22], Krish-
namoorthy et al. propose a model updating for RTO using dynamic models
and transient measurements, which improves model adaptation for real-time
optimization while keeping complexity controlled by not solving dynamic
optimization problems.

In [6], da Silva et al. present a review of coupled dynamic well-reservoir
models. In [31, 25, 28], the authors discuss the interplay of well and reservoir
phenomena in the context of several production and natural behaviors.

The fast dynamics are typical of shale-gas reservoirs and conventional

5



reservoirs with conning behavior, whereas shut-in and restart operations
arise in the event of compressor failure or preventive maintenance in gas-
lifted wells. With respect to shale-gas production systems, some recent
works have contributed to the operations by considering fast dynamics and
model reduction techinques. For instance, in [15], Gu and Hoo develop a
model-based control strategy for the fracture geometry and proppant dis-
tribution of a hydraulic fracturing process. In [24], Narasingam and Kwon
obtain reduced-order linear models for nonlinear dynamics, which enabled
a feedback controller of a hydraulic fracturing process.

Interestingly, some applications in shale-gas relate to our work by con-
sidering the scheduling of operations. In [26], Ondeck et al. use a MILP
formulation to schedule field-development operations, which are required to
deploy a shale-gas pad and also optimize the production from the wells. In
[1], Cafaro et al. propose a continuous-time model for the scheduling of
multiple refracturing operations over the life span of shale gas wells.

Now considering conning behavior, in [30], Siddhamshetty and Kwon
derive a proxy model for the conning phenomena from simulation data,
which is used in a MPC framework for NPV maximization with real-time
measurements. In [23], Lerlertpakdee et al. develop a reduced-order model
for production optimization preserving some of the underlying physics, but
unlike our work concerns mid-term optimization. For startup operations of
a single well, Schietz [29] coupled a reservoir model to a wellbore flow model
in order to optimize its production.

The latest developments bring about the relevance of modeling dynamics
in production optimization, a trend which is backed by the advances in
technology and the increasing complexity of operations. To this end, Foss
et al. [10] present an extensive study of the role of dynamics in production
optimization. By showing two rather different cases, the authors argue that
in most cases static optimization is sufficient for real-time optimization, with
the exception being the cases where the reservoir dynamics change rapidly
or the wells are shut-in and restarted within the optimization window.

Paper Contribution. This work contributes to the field of production op-
timization by introducing a proxy model for well transients that enables
production planning of gas-lifted systems over a time horizon, accounting
for well shut-in and startup operations. Such conditions result, for instance,
from unexpected failures in compression units or when planning ahead for
preventive maintenance of equipment, which invariably reduce processing
capacity.
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2. Problem Statement

This work aims to optimize the production of offshore platforms over
a certain planning horizon considering the scheduling of well shut-in and
restart operations. Such well operations occur relatively frequently in off-
shore platforms deployed to the Campos Basin, either in response to failure
of compression units or in planning ahead for scheduled maintenance of
equipment, which curtail the platform processing capacity.

In platforms of the Campos Basin, satellite gas-lifted wells produce most
of the hydrocarbons which are gathered by the processing facilities, and then
separated in oil, gas, and water streams. Water is treated before discharge
or reinjected into the reservoir for pressure maintenance. The produced oil
is transferred to onshore terminals by vessels. The gas exceeding the needs
of electric turbines is exported by subsea pipelines or otherwise flared. The
latter recourse is only used as a safety measure, when there is an excess of
gas that cannot be compressed, and might be subjected to penalties by the
regulating agency. Actually the sudden excess of produced gas in the event
of a compressor failure, combined with the lack of it during well restart
operations and the time lag from gas-lift injection and its return to the well
head, makes the scheduling of operations a challenging problem.

The present work addresses the problem of scheduling operations, follow-
ing a methodology that uses state variables to couple a sequence of static
problems in time, and in which the dynamics of well shut-in and restart
operations are approximated. The purpose is not to fully automate the
processes, but rather assist engineers in making informed decisions at times
of contingencies and in anticipation of preventive maintenance.

2.1. Assumptions

For managing the limited resources and scheduling the operations as a
sequence of problems, the surrogate models for the dynamics of well startup
should be restricted to the main production profiles, in face of the complex-
ity of the problems involved. Aligned with this premise, the surrogate model
was not derived from a dynamic well-reservoir model, but rather obtained
from both the knowledge of engineers and up-to-date steady-state produc-
tion curves to empirically reflect the main production profile of well startup.
The assumptions of the mathematical model presented in the following sec-
tions are:

1) The well transients can be approximated with a static curve based on
the experience and knowledge of operators about the process.
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2) After a compression capacity drop, the return time to a steady-state
operation is relatively short and is known.

3) In the event of a well shut-in, the platform has means and equipment to
restart the well.

4) The planning horizon window is fixed and known a priori, during which
the system limits and capacities are given for each period of time.

5) The well parameters such as productivity index, gas-oil ratio, and water
cut do not change during the planning horizon.

6) At termination of the planning horizon the system conditions will reach
a steady-state, meaning that the limits and capacities will no longer
change.

3. Mathematical Formulation

The daily production optimization consists of computing the optimal
operating setpoints for a set of wells, while managing the platform limited
resources, and complying with operational and regulatory limits [17]. For
the time scale of a day or couple of days it is reasonable to assume that
the operating conditions will remain steady, thus the dynamics of flows
and pressures can be neglected. Under such assumptions, operators are
concerned with the static optimization problem which can be formulated
as:

Ps : max
x,u

fs(x,u;θ) (1a)

s.t. : x ∈ X , u ∈ U (1b)

Fs(x,u;θ) = 0 (1c)

Gs(x,u;θ) ≤ 0 (1d)

in which fs defines the overall economic or production goal of the platform.
State and control variables, x and u respectively, are vectors containing
both pressures and flows, and potentially discrete decisions such as routing
and well shut-in operations. The vector θ denotes the parameters of the
problem. The sets X ⊆ Rpx × Zqx and U ⊆ Rpu × Zqu are the domain for
x and u respectively. Finally, the vector functions Fs and Gs collect the
system equations and constraints.

For the short-term production optimization of an oilfield exploited through
gas-lifted satellite wells, a typical representation of fs is the aggregated oil
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production:

fs ≡
∑
n∈N

qno (2a)

where qno is the oil rate produced by well n. The vector function Fs aggre-
gates well production curves and system constraints such as flow conserva-
tion and pressure balance. For instance,

Fs ≡



∑
n∈N

qng − qexp − qflare − qturbine = 0

qno − q̂ no (qngl, p
n
wh) · ln = 0, ∀n ∈ N

qnw −
bswn

1− bswn
· qno = 0, ∀n ∈ N

qng − gorn · qno = 0, ∀n ∈ N

(2b)

(2c)

(2d)

(2e)

in which qng is the gas produced by well n, qexp is the exported gas, qflare is
gas burned in the flare only to ensure the safety and integrity of the system,
and qturbine is the gas used to generate electricity for the platform. The oil
and water produced by well n are qno and qnw. This work considers that the
wells are operated with gas-lift as the artificial lifting mechanism, which
can be applied to improve production of surgent wells or enable production
from mature wells. However, the methodology to be presented can cope
with other lifting techniques.

The well production curve is then modeled by the function q̂ no (qngl, p
n
wh)

with qngl being the lift-gas injection rate and pnwh the well-head pressure. In
order to account for the shutting in of a well, the binary variable ln takes on
value 1 when the well is producing and 0 otherwise. Under static conditions,
the water cut bswn and the gas-oil ratio gorn are assumed constant and
known.

Completing the model, Gs imposes pressure and flow limits on the wells
and the processing facilities. For example,

Gs ≡



∑
n∈N

(
qng + qngl

)
− qflare − qmax

gtc ≤ 0∑
n∈N

(qno + qnw)− qmax
l ≤ 0

qflare − qmax
flare ≤ 0

(2f)

(2g)

(2h)

in which qmax
gtc is the gas compression capacity, qmax

l is the limit on liquid
handling by the platform, and qmax

flare is the limit of gas that can be flared
9



which is imposed by the regulatory agency to comply with environmental
legislation. Generally there are also upper and lower bounds on qngl and pnwh

and an upper bound on qexp, that here are omitted for brevity.
The control variables can be lumped together in a vector u = (qngl, p

n
wh, l

n :
n ∈ N )∪(qexp, qflare), and likewise the state variables in vector x = (qno , q

n
g , q

n
w :

n ∈ N ). Finally, the parameters are given in vector θ = (bswn, gorn : n ∈
N ) ∪ (qturbine, q

max
gtc , q

max
l , qmax

flare).

3.1. Sequence of Static Problems

Very often short-term optimization can be treated with static models,
provided that a well-defined interface between reservoir and production net-
work is established. Since the dynamics in reservoirs are usually slower than
in gathering networks, an inflow performance relationship can be adopted
together with a steady-state model for the network. Under this assumption
the well performance curves can be estimated by their productivity index,
gas-oil ratio, and water cut at given reservoir conditions.

However, dynamics between reservoir and networks become relevant
when the reservoir boundary conditions vary rapidly over time. Such an
interplay between dynamics emerges in shale gas reservoirs, where there is
gas or water coning near the production wells [19]. Also, from the network
side, dynamics matter when transients are relevant for the advanced control
of the wells, in particular when the wells need to be shut-in and restarted
in response to maintenance operations or equipment failure.

Even when model dynamics are negligible, the schedule of decisions over
time can become relevant in some industrial applications. In these settings
the solution of a sequence of static optimization problems can be applied,
particularly to handle constraints that span over time and which couple the
problems, as exemplified below.

Let us recall the gas-lift distribution problem stated as Ps in Eq. (1).
Suppose that the operations engineers aim to determine the best setpoints
for the platform, in anticipation to a compression capacity drop that would
extend for a whole week for preventive maintenance. In this context, a
solution can be obtained by solving a sequence of static problems. Although
dynamic effects could be disregarded, a conventional coupling constraint
that ties the problems all together is the total volume of gas that can be
flared monthly according to environmental regulations. A reasonable policy
is to consider varying bounds for flaring that respect the monthly limit.
According to this practice a sequence of static problems Ps, one for each
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time step τ ∈ T , can be defined by Pτ as follows:

Pτ : max
xτ ,uτ

fs(xτ ,uτ ;θτ ) (3a)

s.t. : xτ ∈ X , uτ ∈ U (3b)

Fs(xτ ,uτ ;θτ ) = 0 (3c)

Gs(xτ ,uτ ;θτ ) ≤ 0 (3d)

where xτ , uτ , and θτ are the states, controls, and parameters within time
step τ . The same functions fs, Fs, and Gs defined in the static problem Ps

are applied for different states, controls and parameters in each time step
τ ∈ T . In regards to the monthly total volume of gas that can be flared,
the operations engineers would have to determine the maximum daily flare
rate over time, which translates into setting in Uτ the value qmax

flare,τ , for each
time step τ .

Despite this strategy being effective in practice, the imposition of bounds
on flaring invariably prevents the outcome from being optimal. Instead the
bounds in each period should be tied together by the original coupling
constraint, allowing the optimization of the profile of the gas burned in the
flare. In this context, the solution of a sequence of static problems with a
coupling constraint is more realistic and can mitigate economic losses.

3.2. Pseudo-Dynamic Model

This section proposes a pseudo-dynamic model to cope with coupling
constraints, and further account for dynamic effects that might impact the
decision process, such as well shut-in and restart operations.

Besides the coupling constraints, in some situations the effects of tran-
sients become relevant to the extent that the solutions obtained by solving
the sequence of uncoupled static problems Pτ can be suboptimal, or even
infeasible. For instance, in the event of a compression maintenance planned
over a short horizon, some wells may have to be shut-in and then restarted
later when the system is brought back to full capacity. During a restart
operation, a well will undergo complex dynamic behavior for several time
periods until it reaches a steady state. In this context, the shut-in and
restart operations should be scheduled in order to mitigate the effects of
transients, such as the delay between the time lift-gas is injected and the
moment it returns to the well head. Transients can also impact the coupling
constraint on the total volume of flared gas, as the surplus of lift-gas not
reinjected due to a shut-in operation may have to be flared over a short
period of time.
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When a production system undergoes transients due to shut-in and
restart operations, the decisions taken now may have severe impact in the
future, particularly so on delayed operations and coupling constraints. As
previously mentioned, an alternative to handle such effects is to incorpo-
rate detailed dynamics of the transients into the optimization model. The
drawback is the complexity of the resulting model, which according to Foss
et al. [10] can limit the scalability of the problems that can be solved.

Inspired from a practical application from assets in Petrobras, we pro-
pose a different approach to handle the critical effects of dynamics. Our
proposal consists in keeping whenever possible the static models and adding
surrogate models to approximate the transients, leading to a pseudo-dynamic
model for planing operations. The advantages include the ability to han-
dle coupling constraints in a more realistic manner while retaining model
scalability.

By incorporating the transients, each step becomes dependent of other
time steps which couples the sequence of static problems Pτ . To this end,
state vectors for each time step should be augmented with new entries to
capture the relevant dynamics between consecutive periods. When model-
ing dynamics, new degrees of freedom appear in the formulation, which may
require the control space to be extended with additional variables. Another
difference is that the model response becomes dependent of the system ini-
tial conditions x0, since previous states also impact in the current state.
For instance, a shut-in well cannot be brought back to full production im-
mediately, but rather the well will undergo dynamics to restart operations
until reaching a steady state. In a general form, the pseudo-dynamic model
can be cast as:

Pd : max
X,U

fd(X,U; Θ) (4a)

s.t. : (X,U) ∈ Dd (4b)

C(X,U; Θ) ≤ 0 (4c)

where:

• X ∈ Xd := X̃ |T | is an augmented matrix spanning the vector of states
over the planing horizon, where X̃ := X × (Rncx×Znix). The columns
of X contain the state variables xτ in all time periods τ ∈ T , aug-
mented with ncx continuous and nix integer variables to capture the
dynamics of transients. For instance, the startup stage of a well is an
additional variable required to compute the pressure and flow rates
during a restart operation.
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• U ∈ Ud := Ũ |T | is an extended matrix containing the controls uτ for
all time periods, along with additional controls that play a part when
dynamics are involved, where Ũ := U × (Rncu ×Zniu). When a well is
shut-in, hydrates may arise which requires pipeline cleaning within a
critical time frame, a process that must be controlled with additional
variables.

• Θ ∈ R(|θ|+nθ)×|T | is the augmented matrix with nθ additional param-
eters over the planing horizon. To account for variations from the
dynamics, the parameters become time dependent and embedded in
the matrix Θ such as the maximum compression capacity qmax

gtc (τ).
Also Θ can contain additional parameters, such as the system initial
condition x0.

• Dd is the feasible domain for the states and control variables consid-
ering both static and dynamic behavior. To this end,

– the feasible domain for the static behavior is Dst
d := {(X,U) ∈∏

τ∈T Dst
τ }, with Dst

τ := {(xτ ,uτ ) ∈ X × U : Fst
s (xτ ,uτ ;θτ ) =

0,Gst
s (xτ ,uτ ;θτ ) ≤ 0} in which Fst

s and Gst
s are derived from

Fs and Gs by discarding the equations that no longer comply
with steady state conditions. For instance, the static gas balance
equation (2b) should be dropped in order to account for dynamic
effects, such as the delay from the time gas-lift is injected and
returned to the processing facility, which can span over multiple
time steps.

– the feasible domain for the dynamic behavior Ddyn
d := {(X,U) ∈

Xd × Ud : Fdyn
s (X,U,Θ) = 0,Gdyn

s (X,U,Θ) ≤ 0}, where Fdyn
s

and Gdyn
s yield the modeling of dynamic behaviors, which were

previously in steady-state and dropped from Fs and Gs. Further,
Fdyn

s and Gdyn
s also contain additional equations with regards to

the transients. The production function of a well during a startup
operation requires additional equations to capture the transients
involved until reaching a steady-state.

Having introduced the above notation and sets, the feasible domain
for the pseudo-dynamic model is defined as Dd = Dst

d ∩ D
dyn
d .

• C(X,U; Θ) is a vector function that contains the coupling constraints
not represented in the dynamic modeling.
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• Finally, the objective function fd(X,U; Θ) can be defined for our
problem as fd(X,U; Θ) =

∑
τ∈T fs(xτ ,uτ ;θτ ), but more general func-

tions are admissible.

Formulation (4) represents the framework that combines surrogate dy-
namic models with static models in a sequence over a planning horizon. This
general framework holds under the assumptions stated in Section 2.1. For
typical instances of short-term production optimization, such as the case
study to be developed below, the static models are considerably complex
given the nonlinear nature of the process functions and discrete decisions.
Introducing detailed well-reservoir dynamics for scheduling well operations
under varying process conditions would render the problem intractable.

Instead, by using an empirical model to capture the main profile of
well startup operations, a practical optimization formulation is derived for
scheduling operations which can be efficiently solved. In what follows, a case
study is presented for the particular application of production optimization
of an offshore platform, under conditions of equipment maintenance with
well shut-in and restart operations. Derived by field engineers and using
information from up-to-date steady-state production models, the surrogate
model approximates the production profile with a static curve that consists
of a ramp-up curve to render the problem tractable.

4. Case Study: Problem Setup

Herein, we develop a concrete instance of the pseudo-dynamic model Pd

to optimize the production of an offshore platform under conditions of short-
term compression maintenance. Over a prediction horizon, the optimization
consists in determining the best operating settings for the wells, such as lift-
gas injection rates, well-head pressures, and well shut-in and restart times.
As stated in Assumptions 4 and 6, the planning horizon T is assumed known
and sufficiently long to cover the period during which the production system
undergoes deviations from the nominal operation. In this sense, a steady
state should be reached at the end of the horizon, when the production
system has recovered from the shortage in processing capacity. The short-
term optimization problem in the static form is the one given by Equations
(2).

Let us recall how the pseudo-dynamic problem Pd is derived from the
static optimization problem Ps. The well variables and parameters of the
static model Ps are spanned over time and the constraints cast in the pseudo-
dynamic model. As discussed above, some constraints remain in the feasible
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subset of static constraints, while others are redesigned to incorporate the
transients and additional equations that represent the dynamics.

The controls at one time step τ are defined as uτ := [qgl,pwh, l, qexp,qflare]
where the first three entries have the gas-lift rates, the well-head pressures
and the status for all wells n ∈ N , and the last two are the gas exported
and flared, respectively. The one-step states are defined as xτ := [qo,qg,qw]
where each entry has the oil, gas and water flow rates for all wells. The pa-
rameters at one step τ are stated as θτ := [bsw, gor, qturbine, q

max
flare, q

max
l , qmax

gtc ,x0]
where the entries are the base sediment and water ratio and the gas-oil ratio
for all the wells, the rate of gas used for generating energy, and the limits
on gas to be flared, liquid to be processed, and gas to be compressed, as
well as the system initial conditions. Notice that Assumption 4 is met given
that the parameters θτ are known at each time step of the planing horizon.
For this case study, the parameters in θτ remain the same for all τ , apart
from qmax

gtc , which actually varies through the horizon of the experiment.
The duration of the time steps τ are typically given in hours or fractions.
Yet their length remain the same for the entire horizon, which should not
extend for more than a day.

The problem goal is modified to account for the overall oil production
over the planning horizon:

ftime = max
∑
τ∈T

∑
n∈N

qno (τ) (5)

Now let us define the four blocks of constraints Fst
d , Gst

d , Fdyn
d , Gdyn

d

that determine the feasible space Dd for the states and controls. The vector
function Fst

d contains the static equality functions from Fs that remain in
their original form in all time steps τ ∈ T :q

n
w(τ)− bswn

1− bswn
· qno (τ) = 0

qng (τ)− gorn · qno (τ) = 0

(6a)

(6b)

in which the parameters bswn and gorn are assumed time-invariant over
the horizon, as stipulated by Assumption 5. Likewise Gst

d has the static
inequalities from Gs expanded for all time steps τ ∈ T :

∑
n∈N

(qno (τ) + qnw(τ))− qmax
l ≤ 0

qflare(τ)− qmax
flare ≤ 0

(7a)

(7b)
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and like before the bounds on flaring qmax
flare and liquid handling qmax

l remain
fixed during the horizon. The constraints on liquid handling and flare capac-
ity must reflect Assumption 3, meaning that the platform has the resources
necessary to restart wells.

The dynamic blocks of constraints Fdyn
d and Gdyn

d have the equations
from the static blocks that become dynamic and some additional equations
to represent the well transients. First let us introduce a new state variable,
qngl,rec(τ), that represents the rate of gas-lift being recovered from a given
well n at time step τ :

qngl,rec(τ) = qngl(τ − τndyn) (8)

where τndyn is a new parameter that measures the average time for the gas-
lift to travel through the production system of well n, thereby introducing
a time lag. The above equation means that the gas injected at given time
step τ will return to the processing facility at a future time step (τ + τndyn).

4.1. Platform Constraints

The constraints that model flow conservation, pressures and operational
conditions of the platform are presented below. The equations (2b) and
(2f), which respectively model flow balance and gas-compression capacity,
are recast in dynamic form:∑

n∈N

[qng (τ) + qngl,rec(τ)− qngl(τ)]− qexp(τ)− qflare(τ)− qturbine = 0 (9a)∑
n∈N

(
qng (τ) + qngl,rec(τ)

)
− qflare(τ)− qmax

gtc (τ) ≤ 0 (9b)

The former equation differs from its static counter-part, as the flow of gas-
lift received at time τ is not equal to the injected gas due to the dynamic
effects. The latter equation is as before but replicated over time. As stated
in Assumption 3, the demand on gas for electric power generation and the
total compression capacity are assumed sufficient for well startup. Any drop
in compression capacity expressed by qmax

gtc (τ) is expected to be short and
known, according with Assumption 2.

4.2. Well Surrogate Dynamic Model

This work represents well restart operations with a surrogate model that
captures that trends in flows as a function of time, according with the ex-
pertise of field operators. This empirical model presented below serves for
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the scheduling of operations while accouting from limited resources. The
surrogate model has two phases: the first consists of a period of zero produc-
tion (“dead time”), whereas during the second phase the production starts
and increases until reaching the steady state (“ramp-up”), which is defined
by the final operating conditions. This model complies with Assumption 1
by enabling the production engineer to approximate the production profile
with any static curve which, in the case of the work at hand, consists of
a linear ramp-up curve. Notice that from the flexible nature of the MILP
formulation, any other shape of the production profile could be modeled.
Figure 2 illustrates the surrogate model for an arbitrary well n. Starting
as a shut-in well, the restart operation is initiated at time step τ1 when the
lift-gas rate qngl is injected (the target condition). After τndyn units of time
have elapsed, the well starts producing at time τ2 and increases steadily for
τnramp unit steps until reaching the steady state at time τ3.

qngl

pnwh

qno

τ

In
p
u
t

O
u
tp

u
t

τ1 τ2 τ3

τndyn τnramp

Figure 2: Well startup model.

In order to capture the dynamics of operational states of wells, which
may undergo shut-in and restart phases, a set of logic dynamic variables are
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introduced. During each time period τ ∈ T , a well n ∈ N must be in one
of the following conditions c ∈ C:

• [c = 1]: Steady state condition before a shut-in operation;

• [c = 2]: Shut-in;

• [c = 3]: Restart operation;

• [c = 4]: Steady state condition after the completion of a restart oper-
ation.

These conditions are regulated by a set of binary variables, whereby znc (τ) =
1 if, and only if, well n is operating according with condition c at time step τ .
The logic variables znc (τ) signal the dynamic conditions of wells, which follow
a certain precedence triggered by events to be explained below. Figure 3
illustrates the signal profile of a well that goes through all conditions c ∈ C:
a) starting from steady state conditions for τ ∈ {1, 2, 3}, zc1(τ) = 1; b)
the well is shut-in during τ ∈ {4, 5}, zc2(τ) = 1; c) undergoes a restarting
operation during τ ∈ {6, . . . , 10}, zc3(τ) = 1; and d) returns to a steady
state condition at time τ ≥ 11, zc4(τ) = 1.

For each well n ∈ N , the logic conditions on these binary variables are
established by the following equations:

• First, all variables are binary:

znc (τ) ∈ {0, 1}, τ ∈ T , c ∈ C. (10)

• Exactly one of the signals should assume a non-zero value at each time
period: ∑

c∈C

znc (τ) = 1, τ ∈ T . (11)

• The signal zn1 (τ) starts with 0 or 1 depending on the previous state
ζn ∈ {0, 1} of well n, and if it assumes value 0 at some time period τ ,
it then remains zero until the end of the horizon:

zn1 (1) ≤ ζn, (12a)

zn1 (τ) ≥ zn1 (τ + 1), τ = 1, . . . , T − 1, (12b)
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Figure 3: Signal profile znc (τ) for a given well n and conditions c. Also all the indicator
signals φn(τ), which flag the first time steps a well n is down, the time step the well is
at each startup phase s, and when the well is back up, producing at steady-state

• The behavior of the well shut-in signal zn2 (τ) is ensured by the follow-
ing equations:

φndown(τ) ∈ {0, 1}, τ ∈ T (13a)

φndown(1) = 1− zn1 (1) (13b)

φndown(τ) = zn1 (τ − 1)− zn1 (τ), τ = 2, . . . , T (13c)

zn2 (τ) ≥ φndown(τ), τ ∈ T (13d)

zn2 (τ) ≥ zn2 (τ + 1)− zn1 (τ), τ = 1, . . . , T (13e)

according to which φndown(τ) takes on value 1 precisely at the first time
period τ when zn1 (τ) assumes value 0, a condition enforced by Eqs.
(13b)-(13c). Eq. (13d) indicates that zn2 (τ) becomes 1 at the time
period τ when φndown(τ) = 1. In Figure 3, notice that φndown(τ) = 1 at
the same time τ = 4, thereby flagging the transition of zn2 (τ) from 0
to 1.

19



Finally, Equation (13e) ensures that once zn2 (τ) drops to 0, after
being on state 1, it will remain 0 until the end of the planning horizon.
However, zn1 (τ) is subtracted on the right-hand size to render the in-
equality innocuous when the well is initially operating in steady-state,
which allows zn2 (τ) to switch from 0 to 1 (start a shut-in operation).

• The behavior of the restart signal zn3 (τ) is given by the following equa-
tions:

φn,sstart(τ) ∈ {0, 1}, τ ∈ T , s = 1, . . . , T nstart (14a)

φn,sstart(1) = 0, s = 1, . . . , T nstart (14b)

φn,1start(τ) = zn2 (τ − 1)− zn2 (τ) + φndown(τ), τ = 2, . . . , T (14c)

zn3 (τ) ≥ φn,sstart(τ), s = 1, . . . , T nstart, τ ∈ T (14d)

zn3 (τ) ≥ zn3 (τ + 1)− zn2 (τ), τ = 1, . . . , T − 1 (14e)

φn,sstart(τ) = φn,s−1
start (τ − 1), τ = 2, . . . , T, s = 2, . . . , T nstart (14f)

where T nstart = (τndyn+τnramp) is the number of periods to perform a start
up operation until well n reaches a steady state, and φn,sstart(τ) = 1 if
and only if the start up operation of well n is at stage s during period
τ . Notice that φn,sstart(1) = 0 to indicate that the well is in the steady
state or shut-in condition at the beginning of the planing horizon, as
imposed by Eq. (14b). From Eq. (14c), variable φn,1start(τ) takes value
1 when zn2 (τ) switches to value 0 at time τ from value 1 at time τ − 1,
namely when zn3 (τ) = 1, as modeled by Equation (14c). (The variable
φndown(τ) is added to the right-hand side to ensure consistency when
the well is shut-in at time τ but operating at time τ − 1.)

Equation (14d) establishes the consistency between the condition
variable zn3 (τ) and the variables φn,sstart(τ) that keep track of the well
startup stage. Equation (14e) states that once the well terminates
a startup operation at time τ , as signaled by zn3 (τ) = 0, the signal
variables zn3 (τ ′) = 0 for τ ′ > τ . (The variable zn2 (τ) is deducted
in right-hand side to not enforce this condition when the well is un-
dergoing a shut-in operation. Otherwise the equation would prevent
zn3 (τ + 1) to switch to 1 from zn3 (τ) = 0 if the well was shut-in at
period τ , as signaled by zn2 (τ) = 1.)

Equation (14f) guarantees the sequence of restart signals from
the well. If a startup operation begins in stage s = 1 at period τ ,
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then the well will progress to the next stages in a sequence for Tstart

periods.

• If the well initiates a restart phase, the operation must be carried out
during a specified number of time steps:∑

τ∈T

zn3 (τ) = T nstart ·
∑
τ∈T

φn,1start(τ) (15)

Notice that, if the well n is reopened, φn,1start(τ) assumes value 1 exactly
once at the first instant τ at which zn3 (τ) = 1.

• The behavior of the signal zn4 (τ), which regulates the steady state
reached after a startup operation, is ensured by the following equa-
tions:

φnup(τ) ∈ {0, 1}, τ ∈ T (16a)

zn4 (τ) ≤ zn4 (τ + 1), τ = 1, . . . , T − 1, (16b)

φnup(1) = 0 (16c)

φnup(τ) = zn3 (τ − 1)− zn3 (τ) + φn,1start(τ), τ = 2, . . . , T (16d)

whereby φnup(τ) takes on value 1 at the time τ when the well reaches
the steady state after a startup operation, when zn3 (τ − 1) = 1 and
zn3 (τ) = 0. In Figure 3, the signal variable φnup(τ) = 1 at time step
τ = 11 when zn3 (τ) is switched to 0 and well n arrives at a steady
state.

Equation (16b) ensures that once the well reaches a steady state
after a startup operation, at time τ , it remains in this state thereafter
as signaled by zn4 (τ) = 1. Equation (16c) states the initial condition of
φnup(τ). Equation (16d) enforces φnup(τ) to assume value 1, at time τ ,
when the well reaches a steady state condition after a startup opera-
tion. The term φn,1start(τ) is added to the right-hand side of the equation
for consistency when the well leaves the shut-in condition and begins
a startup operation.

4.3. Well Production

The oil produced by a well n at a given time-step τ depends on the
operating condition c ∈ C. For well n ∈ N and time τ ∈ T , the production
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is given by the following equations:

qno (τ) =
∑
c∈C

qn,co (τ) (17a)

qn,co (τ) = q̂ no (qngl(τ), pnwh(τ)) · znc (τ), c ∈ {1, 4} (17b)

qn,2o (τ) = 0 (17c)

qn,3o (τ) =
∑
s∈Sn

q̂ n,so (qngl(τ), pnwh(τ)) · φn,sstart(τ) (17d)

ln(τ) = zn1 (τ) + zn4 (τ) +
∑
s∈S

φn,sstart(τ) (17e)

The oil production results from the sum of production in all conditions c,
as stated in Eq. (17a). Steady state production is induced by the function
q̂ no (qngl(τ), pnwh(τ)) of the lift-gas injected and well-head pressure in Eq. (17b).
Equation (17c) ensures zero production during well shut-in. Equation (17d)
gives the production achieved during each stage of a startup operation.
Equation (17e) defines the variable ln(τ), which flags oil production by well
n during period τ , as a function of the condition signals.

4.4. Additional Behavior Modeling

This section presents constraints that impose desired behaviors on tran-
sients, which arise from the modeling of dynamics. Of relevance for the case
study, limits on variation of the lift-gas injection and well-head pressure are
imposed by the following equations:

qngl(τ)− qngl(τ − 1) = ∆qngl(τ), τ = 2, . . . , T (18a)

−qmax,n
gl · δn(τ) ≤ ∆qngl(τ) ≤ δn(τ) · qmax,n

gl , τ = 2, . . . , T (18b)

pnwh(τ)− pnwh(τ − 1) = ∆pnwh(τ), τ = 2, . . . , T (18c)

−pmax,n
wh · δn(τ) ≤ ∆pnwh(τ) ≤ δn(τ) · pmax,n

wh , τ = 2, . . . , T (18d)

T∑
t=2

δn(τ) ≤ δmax,n (18e)

in which ∆qnql(τ) and ∆pnwh(τ) are the variation in lift-gas rate and well-head
pressure at time step τ , δmax,n is the maximum number of changes to well
controls for the prediction horizon, and δn(τ) is a binary variable that flags
a change in well control at time step τ .
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4.5. MILP Formulation for Pseudo-Dynamic Optimization

Having introduced the functions and process models, the pseudo-dynamic
problem Pd can be obtained by putting together the objective (5) and the
constraint equations (6) through (18). The resulting Pd is a conceptual
problem in the sense that the model functions are not explicitly given, for
instance the functions q̂no and q̂n,so that model well production. A concrete
MINLP formulation would arise by expressing the process functions from
first-principles or fitting nonlinear curves to simulated or real data [13].
This approach is rather general and can benefit from existing models, how-
ever the solutions approaches are complex and prone to terminate at a local
solution that can be far from the optimum.

Derivative-free methods have been applied when simulation models are
available for the oil production processes [16, 12]. These methods bring
about great flexibly for making mild assumptions, particularly so the model-
free algorithms that rely on sampling of the simulated functions. This flexi-
bility comes with a price though, namely high computational cost and slow
convergence to local solutions.

A popular alternative is the MILP formulation resulting from piecewise-
linear approximation with the given process data points, which can be ob-
tained from real measurements and simulation analysis [17]. The piecewise-
linear approximation proved to be very effective in academic and real-world
applications, in part for not depending on model fitting but also for the
robustness of MILP technology. For these desirable features, Petrobras
has adopted such strategies for its in-house production optimization sys-
tem (BR-SiOP), which is routinely used by engineers to optimize diverse
operations [2].

Since the case study considers scenarios from BR-SiOP, the pseudo-
dynamic model is approximated with a MILP problem resulting from the
piecewise-linear approximation of the well production functions q̂o (in steady
state) and q̂n,so (during startup). The resulting MILP is denoted hereafter

by P̃d.

4.6. Remarks and Extensions

In order to capture relevant static and dynamic behavior in a real-world,
the resulting pseudo-dynamic model can be rather complex such as the one
considered in the case study. Actual operations may account for additional
behaviors that can be handled by existing framework, a direct result of the
flexibility of the pseudo-dynamic model and MILP optimization.
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This paper restricted itself to the most representative behaviors, such as
the scheduling of shut-in and startup operation, in order to keep the model
manageable and the presentation as succinct as possible. Some additional
features and processes that can be of concern include: multiple production
streams that are handled by independent compressors and separators; pro-
duction wells with dual completion, typically with ESPs and gas-lift; subsea
layout with a mix of satellite wells and wells that share a manifold and riser;
and the scheduling of clean-up operations to prevent the formation of hy-
drates when a well is shut-in for prolonged periods.

5. Case Study: Analysis

This section is devoted to the analysis of the pseudo-dynamic optimiza-
tion methodology for scheduling operations in production platforms. The
resulting problem P̃d is instantiated for the case study introduced in the
previous section, considering data from an oilfield and also sampled from
simulation models. The analysis is divided in two parts to better elicit the
features of pseudo-dynamic optimization. The first part relies on a compact,
and representative scenario derived from the real-world case to illustrate key
features and behaviors that are captured by the proposed methodology. The
second part analyzes the results obtained with the pseudo-dynamic method-
ology against field data from the real-world operations of a platform that
undergoes a shortfall in gas compression capacity.

5.1. Production Platform

The platform of interest is a Floating Production Storage and Offloading
(FPSO) operating in the Campos Basin, Brazil. Figure 4 has a simplified
schematic of the production system. At the topside, three compressors
supply high-pressured gas to thirteen gas-lifted oil wells. The gas-injection
rate and well-head pressure can be used to control the well production over
time. Though every well is equipped with a gas-lift valve some of them could
operate in surgency. The mixed stream of oil, water, and gas produced by
each satellite well converge to a separator at the processing facilities. After
treatment, the water is disposed while oil is stored. For the gas stream, a
limited amount can be flared, the remaining going through the compression
system. The pressurized gas that is not used for power generation or as
lift-gas is then exported onshore through a pipeline network.

At steady-state, when gas compression and exportation are at full capac-
ity, not all of the wells can produce at their maximum. Thus, the lift-gas has
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Figure 4: Simplified schematic of the production platform.

to be properly allocated in order to optimize production. In that regard, en-
gineers are advised by an in-house optimization software (BR-SiOP), which
uses data of well performance curves from simulators that are routinely cal-
ibrated with test data. As mentioned in Section 4.5, the same modeling
strategy is employed to obtain the data needed for the studies, and cast the
MILP production optimization problem P̃d. The remaining well parame-
ters concern their dynamic behaviors, namely dead-time and average ramp
time which are estimated by analyzing historical production records during
startup procedures and combining it with the knowledge of the engineers
about the field.

5.2. Numerical Studies

By simulation analysis, the benefits of the proposed optimization method-
ology is assessed in the scheduling of well operations under full and par-
tial compression capacity due to unexpected contingencies. The simulation
testbed is composed of a subset of 3 satellite wells, with platform process-
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ing constraints adjusted to fit the overall production. The scenarios are
illustrative and aim to highlight operational circumstances in which the op-
timization tool could be beneficial. Although the scenarios are synthetic,
the well production curves and other well parameters are realistic since they
were drawn from an in-house simulator currently in use at Petrobras, which
is tuned to reproduce the field measurements.

Three scenarios are presented in this study: in the first two the com-
pressor undergoes a partial capacity drop, whereas the last consists of a full
capacity drop. In the first scenario, the drop in compression capacity is not
sufficiently severe to cause the shut-in of wells.

Figure 5 shows normalized values of the optimal oil production, lift-
gas injection rates and well-head pressures of the wells. The capacity drop
occurs in the beginning of the optimization window and remains until the
third time period. Because the gas handling capacity drops considerably,
the lift-gas rate is decreased in wells 1 and 3 to keep the wells opened, while
well 2 produces without artificial-lift support until the compressor returns
to normal operating conditions at time period 4. Because there is no shut-in
of wells, the optimal solution is equivalent to the one that would have been
obtained by solving a sequence of static problems, one for each time period.

In the second scenario, the compression capacity drops to the extent
that it becomes infeasible to process the gas produced from all the wells.
The normalized oil production, lift-gas rates and well-head pressures of the
wells are plotted in Figure 6. According to the optimal solution, wells 1 and
2 are shut-in during the gas-compression capacity shortfall, being restarted
at the forth and third time steps, respectively. Because it can operate in
surgency, well 2 is restarted one time step before the compression system
returns to full capacity, unlike well 1 which requires lift-gas to operate. On
the other hand, well 3 is not shut-in but its production is decreased by
approximately 10% during the capacity drop, after which both the lift-gas
injection and oil production rates return to their maximum values.

The third and last scenario addresses the problem of well operations
scheduling after a full compression capacity drop, as can be seen in Figure 7.
All wells remain shut-in for the first two time periods, since the compressor is
down and thereby no produced gas can be processed by the facilities. Well 2
restarted in surgency mode one time period ahead of the other wells, as they
require lift-gas injection to operate. The platform reaches full production
at the seventh time period, when the transients are damped and the wells
return to their steady-state operation, which were the prevailing conditions
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Figure 5: Operations schedule with partial compression capacity drop.

before the compressor shutdown. It is apposite to remark the difficulty, even
for an experienced operator, to make the best decisions under such distinct
scenarios without the support of such a mathematical optimization tools.

5.3. Field Studies

In order to further assess the use of the proposed methodology in a real
application, field measurements obtained during an unexpected failure of
the entire compression system are compared against optimization results
subjected to the same sequence of events. The scenario comprises the shut-
down of the three gas compressors. The high-pressure gas shortage extends
for 6 hours, after which one equipment is release for restart. Two hours
later the compression system returns to operate at full capacity. At the
moment of shutdown all the wells are shut-in. Afterwards, as compressors
become ready for use, the wells are started according to a pre-established
schedule defined by the operators.
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Figure 6: Operations schedule with partial compression capacity drop and shut-in of
wells.

On-site measurements over time are available for the well inputs, i.e.
well-head pressure and lift-gas rate, and the aggregated of oil, water and
gas. Figure 8 has the time line of events from one hour before the shutdown
up to 16 hours after the event. The gas compression capacity over time,
qmax

gtc (τ), is represented by shades of gray at the back of the charts. The
normalized controls for 4 of the 13 wells are depicted in Figure 8. The data
is averaged by 10 minutes to reduce measurement noise and make the trends
clearer.

Notice that some operational practices applied to the well controls de-
viate from the proposed controls in surrogate dynamic model, in Figure
2). The differences are due to neglected startup dynamics, disregarded for
building a simpler representation. For instance, unlike the model, which
assumes wells are brought up using a single gas-lift injection step, opera-
tors might increase the gas rate gradually as the wells start producing, as
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Figure 7: Operations schedule to recover from a full compression capacity drop.

depicted in the third plot, n = 7. Also, they might overshoot the target gas
injection rate as shown in the second and fourth plots of Figure 8, n = 6
and 13. Another operational behavior that differs from the dynamic model
regards the well-head pressure. At startup the wells are closed at the tree
level and not opened until pressure exceeds a threshold. Then, at each well-
head valve the flow is initially limited, imposing a higher pressure before
the target well-head pressure is set. Evidently, such procedures are not ex-
pected to be present in the result of the optimization problem, since they
were not considered in the surrogate model.

The MILP problem is modeled using GAMS modeling language and
solved with CPLEX 12.7.1. The instance has over 4M constraints, 3.5M
continuous variables and 17k integer variables. The optimal solution, for a
0.01% gap, is retrieved in less than 1 hour using an IntelR© XeonR© CPU E5-
2630 v4 @ 2.20GHz, and 4GB RAM. Figure 9 has the operational schedules
in the field study. For each well, the upper bar indicates the operations
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Figure 8: Well input measurements.

executed over time at the platform, while the lower bar has the ones obtained
with the optimization model. A well can be either operating at steady state
(green), shut-in (red), or at startup (yellow). Comparing the results, the
proposed methodology suggest 3 wells to keep the same procedures, 3 should
be postponed, and 7 anticipated.

Finally, Figure 10 compares the trend of the aggregated oil production
measured at the platform, the blue line, with the estimated production to
be obtained if the optimization controls are to be employed, in yellow. The
volume of oil generated by the optimization results is 0.83% higher than
the volume measured in the field during the time window considered. It is
worth mentioning that in practice this percentage should be higher because
the production engineer is only given guidelines by the optimization model.
The engineer can implement adjustments that will enhance production.
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the ones obtained with the optimization model (lower bars). The platform is recovering
from a full compression capacity drop.

6. Conclusions

By modeling the approximate dynamics of well startup, we are able to
determine the best operations schedule of a platform when some wells are
shut-in and restarted due to a varying compression capacity. Therefore,
the proposed formulation can be employed to support operations both in
response to unexpected contingencies or in the case of a planned shutdown
of the compression system for preventive maintenance. Additionally, with
the use of the proposed formulation, it is possible to handle operational
issues that are not typically represented in optimization models, such as
well cleaning, restart scheduling priority or even production optimization
during the transients.

The simulated results demonstrated that the proposed methodology pro-
31



Real Optimization qmax
gtc (τ) ∈ [0, 100%]

0.75

1.00

0.00

0.25

0 t[h]6 8 16

∑
n∈N

qno (t)

Figure 10: Comparison of the aggregated oil production over time between platform
measurements and optimization results.

duces consistent operations plans, which reflect chief behavior involving well
transients that impact the operations scheduling. The production volumes
achieved with the optimized schedule were slightly above the volumes ob-
served by a baseline schedule implemented in practice though. This exper-
iment indicates that better results can be achieved when the methodology
is supported by more accurate simulation models and systems parameters.
Nevertheless, given the high number of decisions involved in this kind of
problem, even for small instances (with few wells and time steps), the pro-
posed decision-support tool can help even skilled engineers to optimize oil
production.

In view of the related literature, future work could look into field appli-
cations in which dynamic well-reservoir models are involved. Such an in-
vestigation would attempt to derive approximate models from the dynamic
models, aiming to augment the proposed framework to better capture rele-
vant behavior, while not compromising problem complexity.
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