

Corrigendum: Genome-Based Genetic Tool Development for Bacillus methanolicus: Theta- and Rolling Circle-Replicating Plasmids for Inducible Gene Expression and Application to Methanol-Based Cadaverine Production

OPEN ACCESS

Edited and reviewed by:

Kian Mau Goh, University of Technology Malaysia, Malaysia

*Correspondence:

Volker F. Wendisch volker.wendisch@uni-bielefeld.de

Specialty section:

This article was submitted to Extreme Microbiology, a section of the journal Frontiers in Microbiology

Received: 21 January 2019 Accepted: 19 February 2019 Published: 12 March 2019

Citation:

Irla M, Heggeset TMB, Nærdal I,
Paul L, Haugen T, Le SB, Brautaset T
and Wendisch VF (2019)
Corrigendum: Genome-Based
Genetic Tool Development for Bacillus
methanolicus: Theta- and Rolling
Circle-Replicating Plasmids for
Inducible Gene Expression and
Application to Methanol-Based
Cadaverine Production.
Front. Microbiol. 10:425.

Marta Irla¹, Tonje M. B. Heggeset², Ingemar Nærdal², Lidia Paul¹, Tone Haugen², Simone B. Le², Trygve Brautaset^{2,3} and Volker F. Wendisch^{1*}

¹ Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, Bielefeld, Germany, ² SINTEF Materials and Chemistry, Department of Biotechnology and Nanomedicine, Trondheim, Norway, ³ Department of Biotechnology, Norwegian University of Science and Technology, Trondheim, Norway

Keywords: Bacillus methanolicus, thermophile, methylotroph, genetic tool box, theta-replicating plasmids, gene expression

A Corrigendum on

Genome-Based Genetic Tool Development for *Bacillus methanolicus*: Theta- and Rolling Circle-Replicating Plasmids for Inducible Gene Expression and Application to Methanol-Based Cadaverine Production

by Irla, M., Heggeset, T. M. B., Nærdal, I., Paul, L., Haugen, T., Le, S. B., et al. (2016). Front. Microbiol. 7:1481. doi: 10.3389/fmicb.2016.01481

In the original article, there was a mistake in **Table 2** as published. The cadaverine concentrations reported were miscalculated and overestimated by 41.6%, because the HPLC standard solution consisted of "cadaverine dihydrochloride (175.1 g/mol)" and not "cadaverine (102.18 g/mol)." The corrected **Table 2** appears below.

Because of the error reported above, a correction has been made to the **Abstract**:

1

"Bacillus methanolicus is a thermophilic methylotroph able to overproduce amino acids from methanol, a substrate not used for human or animal nutrition. Based on our previous RNA-seq analysis a mannitol inducible promoter and a putative mannitol activator gene mtlR were identified. The mannitol inducible promoter was applied for controlled gene expression using fluorescent reporter proteins and a flow cytometry analysis, and improved by changing the -35 promoter region and by co-expression of the mtlR regulator gene. For independent complementary gene expression control, the heterologous xylose-inducible system from B. megaterium was employed

Table 2 | Fed-batch methanol fermentation production data of strains MGA3(pBV2mp-cad/A) and MGA3 (pTH1mp-cad/A).

Strain	CDW ^a	μ ^b h ⁻¹	Asp ^c g/L	Glu ^c g/L	Ala ^c g/L	Lys ^c g/L	Cad ^c g/L
MGA3(pTH1mp- cadA)	65.5	0.45	1.5	71.8	10.2	0.0	6.5

Mean values of duplicate cultures for B. methanolicus MGA3(pBV2mp-cadA) are shown. Deviation did not exceed 10%. The MGA3(pTH1mp-cadA) data was imported from Nærdal et al. (2015). CDW, cell dry weight; µ, specific growth rate; Asp, L-aspartate; Glu, L-glutamate; Ala, L-alanine; Lys, L-lysine; Cad, cadaverine. ^aBiomass concentrations are maximum values from the stationary growth phase. ^bSpecific growth rates are maximum values calculated from the exponential growth period. ^cCadaverine and amino acid concentrations are maximum values and volume corrected.

and a two-plasmid gene expression system was developed. Four different replicons for expression vectors were compared with respect to their copy number and stability. As an application example, methanol-based production of cadaverine was shown to be improved from 6.5 to 10.2 g/L when a heterologous lysine decarboxylase gene cadA was expressed from a theta-replicating rather than a rolling-circle replicating vector. The current work on inducible promoter systems and compatible theta- or rolling circle-replicating vectors is an important extension of the poorly developed B. methanolicus genetic toolbox, valuable for genetic engineering and further exploration of this bacterium."

Additionally, a correction has been made to the Results, Cadaverine Production From Methanol by Expression of a Heterologous Lysine Decarboxylase Gene From a Theta-Replicating Plasmid:

"The plasmids pTH1mp and pBV2mp, containing the *mdh* promoter were used to study cadaverine production

REFERENCES

Nærdal, I., Pfeifenschneider, J., Brautaset, T., and Wendisch, V. F. (2015). Methanol-based cadaverine production by genetically engineered Bacillus methanolicus strains. *Microb. Biotechnol.* 8, 342–350. doi: 10.1111/1751-7915.12257. *Microb. Biotechnol.* 2019, 12, 182–183.

in B. methanolicus during fed-batch methanol fermentation. We have previously reported a methanol-based cadaverine production titer of 6.5 g/L by B. methanolicus MGA3 (pTH1mpcadA), a strain overexpressing the lysine decarboxylase cadA gene from E. coli (corrigendum to Nærdal et al., 2015). We compared cadaverine production in the strain overexpressing cadA from a theta-replicating plasmid during high cell density fed-batch fermentation. The B. methanolicus strain MGA3 (pBV2mpcadA) was tested in duplicates under comparable fermentation conditions. Samples for cadaverine and amino acid analysis, cell dry weight and OD₆₀₀ were taken throughout the cultivation. As presented in **Table 2**, we obtained a cadaverine production titer of 10.2 g/L based on the alternative theta-replicating pBV2mp plasmid. A substantial 55% production increase compared to the previously reported (pTH1mp-cadA)-based strain was observed. While biomass and by-product levels were similar between the two strains, the specific growth rate of MGA3 (pBV2mp-cadA) was lower than that of MGA3 (pTH1mpcadA) (Table 2)."

Lastly, in the original article, the reference for "(Nærdal et al., 2015)" was incorrectly written as "Nærdal, I., Pfeifenschneider, J., Brautaset, T., and Wendisch, V. F. (2015). Methanolbased cadaverine production by genetically engineered *Bacillus methanolicus* strains. *Microb. Biotechnol.* 8, 342–350. doi: 10.1111/1751-7915.12257".

It should be "Nærdal, I., Pfeifenschneider, J., Brautaset, T., and Wendisch, V. F. (2015). Methanol-based cadaverine production by genetically engineered *Bacillus methanolicus* strains. *Microb. Biotechnol.* 8, 342–350. doi: 10.1111/1751-7915.12257. *Microb. Biotechnol.* 2019, 12, 182-183".

The authors apologize for these errors and state that this does not change the scientific conclusions of the article in any way. The original article has been updated.

Copyright © 2019 Irla, Heggeset, Nærdal, Paul, Haugen, Le, Brautaset and Wendisch. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.