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Abstract—A multilayer perceptron can behave as a generative
classifier by applying bidirectional learning (BL). It consists of
training an undirected neural network to map input to output and
vice-versa; therefore it can produce a classifier in one direction,
and a generator in the opposite direction for the same data. The
learning process of BL tries to reproduce the neuroplasticity
stated in Hebbian theory using only backward propagation
of errors. In this paper, two novel learning techniques are
introduced which use BL for improving robustness to white noise
static and adversarial examples. The first method is bidirectional
propagation of errors, which the error propagation occurs in
backward and forward directions. Motivated by the fact that
its generative model receives as input a constant vector per
class, we introduce as a second method the hybrid adversarial
networks (HAN). Its generative model receives a random vector as
input and its training is based on generative adversarial networks
(GAN). To assess the performance of BL, we perform experiments
using several architectures with fully and convolutional layers,
with and without bias. Experimental results show that both
methods improve robustness to white noise static and adver-
sarial examples, and even increase accuracy, but have different
behavior depending on the architecture and task, being more
beneficial to use the one or the other. Nevertheless, HAN using
a convolutional architecture with batch normalization presents
outstanding robustness, reaching state-of-the-art accuracy on
adversarial examples of hand-written digits.

Index Terms—adversarial example defense, noise defense, bidi-
rectional learning, hybrid neural network, Hebbian theory

I. INTRODUCTION

Deep neural networks present impressive performance in
computer vision tasks, such as image classification and object
detection [1], [2], but they are vulnerable to small designed
perturbations and visually unrecognizable images giving high
confidence predictions [3], [4]. This vulnerability can cause se-
vere security issues. Just imagine a self-driving car controlled
by these neural networks. Are they reliable? In computer
vision literature, there are attacking methods for crafting small
perturbations that are imperceptible by the human eye, but
result in deep neural networks incorrectly identifying them
with absolute certainty [4]. The images produced by those
attacking methods are called adversarial examples. Other
methods produce unrecognizable images for which deep neural
networks give highly confident predictions [3].

The idea of bidirectional learning (BL) is to make the output
layer of a discriminative neural network only active when real
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input data is given, like the behavior of a generative classifier.
That is done by teaching the same model to learn how to
”read” (discriminative) and ”write” (generative). Because of
that, an undirected neural network can be a classifier and a
generator at the same time and thereby improve classifier’s ro-
bustness to random noise and adversarial examples. Our goal is
to make multilayer perceptrons behave as a generative classi-
fier, such as radial basis function [5], [6], deep Bayes classifier
[7], and many others. Generative classifiers were identified as
robust to adversarial examples [7]. Weights and bias adaptation
of multilayer perceptrons under BL is performed only by
backward propagation of errors (backpropagation). Only real
data is utilized for training the neural networks.

The main contribution of this paper is the introduction of
two BL methods.1 The first method, called bidirectional prop-
agation of errors, trains a hybrid undirected neural network to
map images to labels (classifier) and labels to images (genera-
tor) in the opposite direction. The second method replaces the
training of its generator by using the framework of generative
adversarial networks (GAN) introduced by Goodfellow et al.
[8]. This leads to hybrid adversarial networks (HAN), where
the generator that has as input a latent variable and is trained
by an adversarial discriminator. The HAN classifier uses the
transposed weights of the generator. Therefore it contains
a hybrid model which merges the generator and classifier.
To evaluate the performance of these two approaches, we
perform experiments on many models for measuring accu-
racy on unmodified test data, test data with noise addition,
and adversarial test data. We also assess the robustness of
the models to white noise static by checking their rates of
maximum output for noise data over real test data.

II. RELATED WORK

Bidirectional learning has similarities to deep belief net-
works (DBNs) [9] because they are also hybrid models.
However, DBNs perform a pre-training phase with restricted
Boltzmann machines (RBM) [9], [10] for an unsupervised
input reconstruction layer-by-layer, from training data input
layer to a final associative memory. Then an output layer
for the discriminative model is added representing the ground
truth, and backpropagation is executed for a fine-tuned clas-
sification training. Some autoencoder frameworks contain en-
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coder and decoder sharing their weights for dimensionality
reduction tasks. Such ”mirrored” autoencoders are described
in [11], [12]. There exist also deep hybrid models [13] where
discriminative and generative models share the same latent
variables. Another similar method, called Eigenboosting [14],
which its authors present a generative classifier by its hybrid
training with Harr-like features [15].

Since the discovery that deep neural networks for image
classification can be easily fooled by random noise; unrec-
ognizable images; and adversarial examples [3], [4], several
defensive and attacking strategies were described in literature
[16]–[18]. One way to make neural networks more robust is
adversarial re-training [17], [19], [20]. It consists of generating
adversarial examples every epoch or iteration, and using them
as training data. Another defensive strategy is adding an aux-
iliary classifier for adversarial examples detection [20]–[22].
Since the creation of adversarial examples is by adding noise
into real data, a denoising method can be useful. Therefore
[23] applies denoising autoencoder before feeding the data
into a classifier. There are defensive methods that use genera-
tive adversarial networks. Adversarial perturbation elimination
with GAN (APE-GAN) uses the generator of GAN as a
denoising autoencoder [24], [25]. Another method using GAN
is the Generative Adversarial Trainer [24], [26] which the
generator of GAN produces adversarial perturbations into the
training set. These previous defensive methods use adversarial
examples during training, so those neural networks can be
biased to the method which designs the adversarial examples.

The method of network distillation increases the robustness
without the need for adversarial examples in training set [20],
[27]. Its idea is to train a neural network to behave as another
trained neural network. Instead of giving hard labels to a
neural network, the temperature-controlled softmax output of
the trained neural network is given as ground truth. However,
[28] verified that network distillation is still vulnerable to
adversarial examples. A generative classifier presented as a
defensive method to adversarial examples is called Gaussian
process hybrid deep neural networks [20], [29]. The last
layer of that robust convolutional neural network architecture
consists of radial basis function kernels. Therefore it behaves
as a generative classifier. The authors state that their deep ar-
chitecture knows when it doesn’t know. A biologically inspired
defense against adversarial examples for deep neural networks
is presented by [24], [30]. Its principle is the creation of
highly nonlinear neural networks which produces a saturated
weight distribution found in the brain. All these three previous
methods do not use adversarial examples during training and
that is also our goal in this work.

III. BIDIRECTIONAL LEARNING

Bidirectional learning produces a classifier and a generator
in undirected neural network using backward propagation of
errors in both directions. So each direction of this network
has its own biases and the weights are shared. The idea
is that the same positive weights of the last layer of a
generator for producing white pixels can be the first layer of

a classifier for identifying white pixels. Negative weights are
similar regarding black pixels. Formally and over-simplified,
any perceptron without bias that contains a weight vector
w ∈ {−1, 1},∃w = 1 and an input x ∈ {0, 1} which its
output y = f(w · x), where f is the threshold activation
function defined by

f(a) =

{
0 if a ≤ 0

1 if a > 0
(1)

The perfect activation input x̂ = argmaxx w · x must
have active inputs for positive weights and inactive inputs
for negative weights, therefore x̂ = max(w, 0). It shows
w can also be adapted to be a contrast template of x̂, so
the perceptron becomes a generative classifier with that fast
adaptation procedure by ”copying” its input when an activation
occurs, as the Hebbian theory states [31]. In biology, a real
neuron produces a back-propagating action potential where
the activation that goes through the axon back-propagates to
its dendrites for plasticity regulation [32]. When the activation
output of x̂ is back-propagated, the result is equal to itself and
expressed by

x̂ ≡ f(wT · f(w · x̂)). (2)

When different activation functions and multilayers are
used, 2 becomes an approximation. So bidirectional learning
forces equivalence in these cases. We infer that adding a
supporting backpropagation to a classifier in the opposite
direction that it is normally used can make the classifier’s
outputs less active when non-real data are given as input
and avoid the vulnerability to adversarial examples. Since
biological neurons learn by inputs, bidirectional learning uses
a common training algorithm of artificial neural networks for
trying to mimic Hebbian learning to the excitatory synapses
(positive weights), because ”neurons wire together if they
fire together” [33]; and for anti-Hebbian learning [34] to the
inhibitory ones, because negative weights are strengthened
when classifier’s inputs remain inactive.

A. Bidirectional propagation of errors

Our supervised learning approach for both directions of a
hybrid undirected neural network is the bidirectional propa-
gation of errors. It consists of using backward propagation of
errors (backpropagation) for mapping data to ground truth, and
then ground truth to data. The mapping order can be reverted.
The same batch of pairs of data and labels is utilized in normal
and reversed backpropagation in a training iteration. Fig. 1
shows how it works.

B. Hybrid adversarial networks

The previous method explained in Section III-A has a
limitation because the generator is trained with constant input
per class. To avoid that, the hybrid adversarial networks (HAN)
are introduced. There are three models in this framework based
on GAN [8]: classifier C, generator G that shares the same
weights of C, and discriminator D for being an adversary to
G. The input of G is a random vector z of size equal to the



Fig. 1. Illustration of one training iteration in bidirectional propagation
of errors. Dark green arrows represent the training with backpropagation
(backprop) of discriminative model. Dark blue arrows represent the training of
generative model. Same data and class labels are used for both in an iteration.

number of classes for C. While C is trained normally, D and
G compete in a minimax game where G tries to reproduce
the real data to increase the error of D, and D learns how to
distinguish real data and data from G.

Our hybrid model merges G and C, so the generator of
GAN can be trained simultaneously as a transposed classifier
for more robustness because we infer it can produce neurons
that become active when images look ”realistic”. Fig. 2
presents this framework. The training order in an iteration is
C, then D, finishing with G.

Fig. 2. Illustration of hybrid adversarial networks. Same color scheme is used
in the hybrid model. Dark green arrow represents the discriminative model
(classifier). Dark blue arrow represents the generative model.

IV. EXPERIMENTS

These two methods were evaluated using the architectures
with and without bias described in Table I. The architectures
without bias are introduced to force all neurons in the network
to have the same likelihood of activation and thereby in-
creasing robustness. Architectures have been trained by mini-
batch gradient descent with Adam optimizer [36] and mini-
batch size of 100 data samples with ground truth (one mini-
batch means one iteration). Bidirectional propagation of errors
was trained with 50,000 iterations and HAN with 500,000
iterations because the adversarial training in HAN takes more
time to converge. The implementation is based on TensorFlow
1.7 [37]. The datasets used in the experiments are MNIST [38]
and CIFAR-10 [39]. Training set consists of 60,000 samples

and test set of 10,000 samples. The adversarial attacking
method to test the robustness of bidirectional learning is the
fast gradient sign method (FGSM) [17], [18]. It disturbs real
images to fool the classifier to make predictions for wrong
classes. The equation for disturbing an image x is

xadv = x+ ε ∗ sign(∇xJθ(x, y)), (3)

where the adversarial image xadv is produced by adding to
the normal image x with the sign method result of the gradient
ascent ∇ for x of the loss function J for model θ when image
x and label y are given. This addition is limited by ε which
is the maximum change in the pixels of x. The method which
we use is from CleverHans v2.0.0 [18]. The testing images
were modified by FGSM with a max-norm epsilon (ε) of 0.3
for MNIST, and 0.03 for CIFAR-10. Minimum and maximum
pixel values of disturbed images are 0 and 1, respectively. We
tested the robustness to white noise static by adding 10 % of
it into the test set for accuracy verification, and giving 100%
of that noise as classifier’s input for measuring the sigmoid
[40] and softmax [41] output layer. The maximum output for
random noise xnoise is divided by the maximum output for real
test data xtest. Both xnoise and xtest have the same shape.
That gives a rate of outputs to white noise static over real
data. The sigmoid rate is for measuring output layer activity
and expressed by

rsigmoid =
max(Csigmoid(xnoise))

max(Csigmoid(xtest))
. (4)

The softmax rate for classification probability and formally
denoted as

rsoftmax =
max(Csoftmax(xnoise))

max(Csoftmax(xtest))
. (5)

All architectures with and without biases were trained by:

1) Backpropagation (BP)
2) Bidirectional learning on first half of iterations, then

backpropagation (BL then BP)
3) Bidirectional learning (BL)

V. RESULTS

This section presents the results of our two methods on
MNIST and CIFAR-10 dataset. It contains the accuracy for
real test data, for test data with noise addition, and for test data
modified by FGSM. The desired accuracy is 1.0 or 100 %.
We measure robustness to white noise static with sigmoid
(activity) and softmax (class probability) rate of noise over
real test data. The desired sigmoid output for noise data is 0.0
(fully inactive) and for test data is 1.0 (fully active). Therefore,
the desired sigmoid rate is 0.0. Since we use datasets with ten
classes, the desired softmax output for noise data is 0.1 or
10 % confidence, and for test data is 1.0 or 100 %. It means
a softmax rate of 0.1.



TABLE I
DESCRIPTION OF ARCHITECTURES USED ON TWO METHODS WITH AND WITHOUT BIAS. NN STANDS FOR FULLY CONNECTED NEURAL NETWORK AND

CNN FOR CONVOLUTIONAL NEURAL NETWORK. CONVOLUTIONAL LAYERS ARE DESCRIBED BY THE NUMBER OF KERNELS, INSIDE THE PARENTHESIS IS
THE KERNEL SIZE AND ITS STRIDE (STR).

Method Architecture Units in discriminative hidden layer
NN no hidden layer -

Bidirectional NN one hidden layer 16
propagation NN two hidden layers 16,16
of errors NN four hidden layers 200,100,60,30

CNN three conv. layers 4 (5x5str1), 8(5x5str2),12(4x4str2),200
Hybrid NN one hidden layer 128
generative nets CNN two conv. layers infoGAN architecture for MNIST [35]

A. Results of bidirectional propagation of errors

Table II shows in the first row the architecture with most
relative improvement in accuracy on adversarial examples.
It is the architecture without hidden layer and bias, then it
is a linear classifier. Backpropagation presents accuracy on
adversarial examples of 4.17 %, while bidirectional learning
shows 60.14 %. Since this is a simple architecture, the learned
weights are easy to understand and to verify the causes of
difference in robustness. Fig. 3a shows that for MNIST dataset
including adversarial examples and generated images for each
class. The second row of Table II shows the best result
regarding robustness to white noise static measured by the
sigmoid and softmax rate of maximum output for noise over
test data. The learning method that reached that was BL. The
value of sigmoid rate is 0.5 which is a low value for sigmoid,
meaning that the input for this activation function was zero.
The value of softmax rate was the best value possible, 0.1 or
10 %.

Table III shows the results of bidirectional propagation of
errors for CIFAR-10 dataset. The first row contains the best
relative accuracy improvement on adversarial examples. It is
reached by the architecture trained by BL. Its weights, ad-
versarial examples and generated images of all three learning
methods are in Fig. 3b. The order of CIFAR-10 classes is:
airplane, automobile, bird, cat, deer, dog, frog, horse, ship,
and truck. The weights of BP are noisy representations of
those classes, but when we check the weights learned by BL,
they are smooth and recognizable. We can see, for example,
the weights of the blue color channel with high values for
representing the sky and sea in airplane and ship classes. The
second architecture in Table III presents an increase of 2.25 %
accuracy on test data when trained partially by BL compared
with only BP. The architecture with two hidden layers and
no bias is not shown here, but the training with BL then
BP increases the accuracy on normal test data as well when
compared to the results with BP.

B. Results of hybrid adversarial networks

Table IV shows the best robustness of all experiments
performed in this work. Hybrid adversarial networks on the
architecture of infoGAN for MNIST [35] achieved that. The
model trained by BL then BP and without biases reached the
95.92 % on adversarial examples of MNIST test set, while BP
presented 5.08 %. Even though there was a small reduction

of accuracy on real test set compared with BP, from 99.21 %
to 98.49 %. Fig. 4a shows the adversarial examples for this
architecture and the images generated by a random vector.
That presents that HAN can also be a generative method when
trained with BL.

Table V is for the results of HAN on CIFAR-10 dataset.
These results are not as good as the ones of HAN on MNIST
dataset. The reason is that accuracy on real test set reduced
drastically while presenting small improvement in robustness.
However, Fig. 4 presents that generator of HAN trained by BL
has recovered the data distribution of CIFAR-10. Even though
a generative model was not our goal.

VI. ANALYSIS AND DISCUSSION

We can see in Fig. 3a that backpropagation in the archi-
tecture without layer and no bias presents a noisy represen-
tation for each digit of MNIST dataset. Disturbances can be
manually designed to this neural network; for example, the
weights for number two have high positive values in the
right. These positive weights in this part do not represent the
most important white pixels in images with number two, but
backpropagation identifies that part as the most relevant white
pixels to recognize an image as number two. When increasing
the pixel values in that part of an image with a different class,
the resulting disturbed image can be recognized as number
two. The adversarial examples generated by FGSM show that
as well, and how noisy adversarial examples can be. Partial
bidirectional learning (BL then BP) is similar to backpropa-
gation, the only difference is that it knows that the pixels of
the border are black because of high negative weights in that
region. On the other hand, bidirectional learning performed in
all iterations increased the robustness of this neural network.
We can easily see the reasons in the learned weights, the
adversarial examples, and the images generated by the label
of each class. The creation of adversarial examples for BL
became harder. FGSM tries in some of the test images to draw
another number for fooling the neural network trained by BL.

By analysis of these characteristics, we infer the biological
function of neural networks is not of a fine-tuned universal
function approximator [42], but it is of a multilayer contrast
matching algorithm like a multilayer of Harr-like features from
Viola-Jones object detection framework [15]. The reason is
that more robust weights present the characteristics of Harr-
like features and that explains how real neurons learn so fast



TABLE II
MOST SIGNIFICANT RESULT OF BIDIRECTIONAL PROPAGATION OF ERRORS ON MNIST. SELECTED ITERATION WITH BEST ACCURACY TEST. BOLD

NUMBERS ARE THE BEST RESULTS FOR EACH MODEL.

Model Learning Accuracy Accuracy Accuracy Sigmoid Softmax
test noisy adversarial rate rate

Fully connected BP 0.9273 0.7138 0.0417 3.34E-12 1
no hidden BL then BP 0.9265 0.3216 0.045 0 1

layer & no bias BL 0.8781 0.6419 0.6014 0 1
Fully connected BP 0.9456 0.6502 0.0318 0.9983 0.984

one hidden BL then BP 0.9338 0.3807 0.06 0.9923 0.6429
layer & no bias BL 0.905 0.5148 0.0814 0.5 0.1

TABLE III
MOST SIGNIFICANT RESULT OF BIDIRECTIONAL PROPAGATION OF ERRORS ON CIFAR-10. SELECTED ITERATION WITH BEST ACCURACY TEST. BOLD

NUMBERS ARE THE BEST RESULTS FOR EACH MODEL.

Model Learning Accuracy Accuracy Accuracy Sigmoid Softmax
test noisy adversarial rate rate

Fully connected BP 0.3769 0.373 0.1853 0.9999 0.996
no hidden BL then BP 0.374 0.3678 0.1882 0 0.9725

layer & no bias BL 0.3211 0.3203 0.2711 0 0.9999
Fully connected BP 0.4208 0.4137 0.351 0.9791 0.8627

four hidden BL then BP 0.4433 0.4334 0.3658 0.9911 0.8359
layers & no bias BL 0.4314 0.4283 0.3596 0.9807 0.8289

TABLE IV
MOST SIGNIFICANT RESULT OF HYBRID ADVERSARIAL NETWORKS ON MNIST. SELECTED ITERATION WITH BEST ACCURACY TEST. BOLD NUMBERS

ARE THE BEST RESULTS FOR EACH MODEL.

Model Learning Accuracy Accuracy Accuracy Sigmoid Softmax
test noisy adversarial rate rate

CNN BP 0.9925 0.9913 0.0477 1 1
two conv. BL then BP 0.9854 0.9783 0.9375 1 1

layers BL 0.9823 0.9696 0.9084 1 1
CNN BP 0.9921 0.9906 0.0508 1 1

two conv. BL then BP 0.9849 0.9768 0.9592 1 1
layers & no bias BL 0.9829 0.9491 0.9566 1 1

TABLE V
MOST SIGNIFICANT RESULT OF HYBRID ADVERSARIAL NETWORKS ON CIFAR-10. SELECTED ITERATION WITH BEST ACCURACY TEST. BOLD NUMBERS

ARE THE BEST RESULTS FOR EACH MODEL.

Model Learning Accuracy Accuracy Accuracy Sigmoid Softmax
test noisy adversarial rate rate

CNN BP 0.7101 0.6973 0.161 1 1
two conv. BL then BP 0.574 0.5645 0.258 1 1

layers BL 0.565 0.5429 0.2445 1 1
CNN BP 0.7134 0.7067 0.1733 1 1

two conv. BL then BP 0.5419 0.531 0.3366 1 1
layers & no bias BL 0.4264 0.4114 0.1981 3.61E-07 0.9014

new complex patterns, just by ”copying” the contrast of input
that produces activation. The neurons of the primary visual
cortex, from the retina through the lateral geniculate nucleus
of the thalamus to V1 visual cortex [43], have the attributes
for contrast detection of the weights trained by bidirectional
learning or of the Harr-like features. The activation of a neuron
depends on inputs with negative weights remaining inactive
and inputs with positive weights being active. That also gives
some light to the functionality of Hebbian and anti-Hebbian
learning. The exclusion of bias makes neural networks more
robust since it reduces the difference of neurons for activation
likelihood. Therefore it tries to maintain neurons with equal
importance in the network. Results on CIFAR-10 dataset show

there are some architectures that when trained with full or
partial BL can increase the accuracy on normal test data.
Batch normalization also works to balance the neurons by
keeping their inputs for activation function closer to zero.
HAN results of infoGAN architecture without bias on MNIST
dataset supports our analysis for equality in neuron importance
and that a hybrid undirected neural network can be robust to
adversarial examples.

VII. CONCLUSION AND FUTURE WORK

Bidirectional learning produces a classifier and a genera-
tor in an undirected neural network, giving benefits to the
classification task which is our main goal; moreover, it can
also support generation of images too. Producing supporting



(a) MNIST

(b) CIFAR-10

Fig. 3. Weights of the first layer, generated adversarial examples and images generated by a class label in bidirectional propagation of errors with a fully
connected architecture without hidden layer and bias in all three learning methods on each row.

methods and alternatives to backpropagation algorithm regard-
ing robustness is essential for a reliable neural network. The
defensive and learning method proposed in this paper was
created by only adding a generative backpropagation in a
discriminative multilayer perceptron. However, the difference
of results on MNIST and CIFAR-10 dataset and on different
architectures should be investigated.

For future work, we list the following advances possible
after the proposal of bidirectional learning:

• application of BL on different datasets and architectures;
• the generator of bidirectional propagation of errors re-

ceiving as an input the label and the image together, then
giving some variation to the generator’s input and because

of that it becomes an autoencoder;
• hybrid adversarial networks framework can be improved

like its first version for generation [8] because several
improvements to GAN appeared since its introduction
and they can be applied to extend HAN as well, but for
classification purposes;

• the decoder (generator) of an autoencoder as a transposed
classifier;

• weight decay can improve accuracy for data with white
noise static and mimic non-Hebbian learning for posi-
tive weights and Hebbian learning for negative weights,
because they can reduce weight of connections with,
respectively, constantly active and inactive inputs, since



(a) MNIST (b) CIFAR-10

Fig. 4. Generated adversarial examples and images generated by latent variable of hybrid adversarial networks in a CNN with two convolutional layers.

constant inputs are meaningless for neurons like random
inputs;

• HAN can be verified as a generative method;
• other tasks can be performed by coding input or desired

output as images or binary strings;
• alternatives to backward propagation of errors can be

verified by analysis of BL behavior.
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