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Abstract: A method for determining the hyperfine anomaly, without using the nuclear magnetic
moments, is used on a series of unstable isotopes of Eu. The large number of experimental
data in Eu makes it possible to extract the hyperfine anomaly for a number of unstable isotopes.
Calculations of the Bohr–Weisskopf effect and hence the hyperfine anomaly are performed using the
particle-rotor formalism. The result from the calculations and experiments is compared with other
theoretical calculations and the empirical Moskowitz–Lombardi formula. The results show that the
Moskowitz–Lombardi formula is not universal.
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1. Introduction

The study of hyperfine structure (hfs) in atoms has provided information of the electromagnetic
moments of the nucleus, as well as information on the electronic properties’ of atoms [1,2].
The magnetic hfs has in addition proven to give information on the distribution of magnetization in
the nucleus through the so called Bohr–Weisskopf effect (BW effect) [3–5]. The influence of the finite
size of the nucleus on the hyperfine structure was first considered by Bohr and Weisskopf [3]. They
calculated the hyperfine interaction (hfi) of s1/2 and p1/2 electrons in the field of an extended nucleus
and showed that the magnetic dipole hyperfine interaction constant (A) for an extended nucleus is
generally smaller than that expected for a point nucleus. The extended charge distribution of the
nucleus gives rise to the so-called Breit–Rosenthal effect (BR effect) [6–9]. In this case, the differential
BR effect is assumed to be negligible when two isotopes are compared, as expected in the case of light
nuclei. Inclusion of the BR effect will not have any influence on the results, since the BW and BR effects
show the same behavior. The BR effect is therefore not considered in the following discussion.

Isotopic variations of nuclear magnetic dipole moments become larger than those in the point
dipole interaction when there are different contributions to the hfs from the orbital and spin parts of
the magnetization in the case of extended nuclei. The fractional difference between the point nucleus
hfi constant (Apoint) and the constant obtained for the extended nuclear magnetization is commonly
referred to as the Bohr–Weisskopf (BW) effect [5]. The hfi constant A can therefore be written as:

A = Apoint (1 + εBW) (1)

where εBW is the BW effect and Apoint is the A constant for a point nucleus. The BW effect is dependent
on both nuclear properties, as well as atomic properties, i.e., the electron density within the nucleus.
The nuclear part, i.e., the distribution of nuclear magnetization, can be calculated using different
nuclear models [4,5]. Because electronic wavefunctions cannot be calculated with high accuracy in
complex atoms, as they can be in hydrogen-like ions and muonic atoms, it is not always possible
to determine εBW directly. However, it is possible to determine the difference of the BW effect in
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two isotopes, the so-called (differential) hyperfine anomaly (hfa). Where one compares the ratio of
the measured hfs constants for two isotopes with the independently measured ratio of the nuclear
magnetic dipole moments to extract the hfa, 1∆2, for the isotopes 1 and 2, and a given atomic state:

1 + 1∆2 =
A(1)

A(2)

µ
(2)
I /I(2)

µ
(1)
I /I(1)

≈ 1 + ε
(1)
BW − ε

(2)
BW (2)

where µI is the nuclear magnetic dipole moment and Ithe nuclear spin. For electrons with a total
angular momentum j>1/2, the anomalies may be disregarded as the corresponding wavefunctions
vanish at the nucleus. The hfa can show a dependence of the atomic state, a state dependent hfa,
where the values for different states can vary significantly. The reason is that the hyperfine interaction
consists of three parts [10,11], orbital, spin-orbit, and contact (spin) interaction, where only the contact
interaction contributes to the hfa. It is suitable to rewrite the dipole hyperfine interaction constant as:

A = Anc + Ac (3)

where Ac is the contribution due to the contact interaction of s (and p1/2) electrons and Anc is
the contribution due to non-contact interactions. The experimental hfa, which is defined with the
total magnetic dipole hyperfine constant A, should then be rewritten to obtain the relative contact
contribution to the hfa:

1∆2
exp = 1∆2

c
Ac

A
(4)

where 1∆2
c is the hfa due to the contact interaction, that is for an s- or p1/2-electron. So far, we have

considered direct interactions between the electron and the nucleus, but we should also include
electron-electron interactions. One interaction, which can influence the hyperfine interaction, is the
polarization of the electron core [10], which may give a substantial contribution to the experimental
hfa [5]. Core polarization can be seen as an excitation of a d-electron, which will not itself give any
contribution to the hfa, to an s-electron, which gives a large hfa. Since 1∆2

s is independent of n in the
first approximation, it is possible to use it to obtain values of the core polarization [5,12].

From the discussion, one is led to the conclusion that one needs independent measurements of
the nuclear magnetic moments and the A constants in order to obtain the hfa; however, this is not true.
It has been shown by Persson [13] that it is possible to extract the anomaly solely from the A constants
of two different atomic levels, provided the ratio

(
As
A

)
differs substantially for the different levels.

Comparing the A constant ratios, for two isotopes, at two atomic levels, gives:

A(1)
B /A(2)

B

A(1)
C /A(2)

C

≈ 1 + 1∆2
s (

AB
s

AB − AC
s

AC ) (5)

where B and C denote different atomic levels and 1 and 2 denote different isotopes. The ratio between
the two A constant ratios for the isotopes will only depend on the difference of the contact contributions
of the two atomic levels and the hfa for the s electron. It should be noted that the ratio

(
As
A

)
is isotope

independent. Once determined for one isotopic pair, the ratio can be used for all pairs, which is useful
in the study of hfa in radioactive isotopes. The ratio can be determined in two different ways; either by
making an analysis of the hyperfine interaction or by using a known hfa as a calibration. It should be
pointed out that the atomic states used must differ significantly in the ratio

(
As
A

)
, as a small difference

will lead to an increased sensitivity to errors, as can be deduced from Equation (5) [13].
Since the hfa is normally very small (1% or less), it is necessary to have high accuracy, better than

10−4 [5]. In the case of stable isotopes, there is no major problem to measure the nuclear magnetic
dipole moment, with nuclear magnetic resonance (NMR) or atomic beam magnetic resonance (ABMR),
while unstable isotopes are more difficult. In most cases, there does not exist any high precision
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measurements of the nuclear magnetic dipole moment. However, there might exist measurements of
two A constants, if the unstable isotopes’ nuclear charge radius has been measured by means of laser
spectroscopy [1]. In order to obtain the hfa, one needs to measure the A constants with an accuracy
better than 10−4. This can be done by laser spectroscopy when the A constant is larger than about
1000 MHz.

As pointed out in a review on hfa [5], off-diagonal hyperfine interactions may simulate an hfa.
However, corrections due to off-diagonal hyperfine interaction affect mainly the electric quadrupole
hyperfine interaction constants, unless the correction is very large, in which case the experimental
error in the A constants is large. In most cases, the correction is smaller than the experimental error
and can be neglected, especially with laser spectroscopy where the error is of the order of 1 MHz.
In the present study, the experimental errors in the A constants are so large that off-diagonal hyperfine
interaction corrections can be neglected.

Hyperfine Structure Measurements in Eu

Europium has been subject to many investigations since the measurements of Schüler and Schmidt
in 1935 [14]. Since then, many measurements have been performed using a variety of different methods,
for example; Fabry–Perot spectroscopy [15], atomic beam magnetic resonance [16], level crossing
spectroscopy [17], laser atomic beam spectroscopy [18,19], laser-rfdouble resonance [20], and in an
ion trap [21]. In total, the hfs has been determined in over 30 atomic states and 15 states in Eu+.
The high accuracy in some measurements has made it possible to determine the hyperfine anomaly.
One problem with a complex atom like Eu is that the hyperfine anomaly is state dependent and has
to be analyzed to give the correct value [5]. A case study of the hyperfine anomaly was done by
Büttgenbach in his review article [5], where he found the values of the s-electron hyperfine anomaly
(151∆153

s ) to be −0.64(3)%, −0.66(3)%, and −0.59(5)%, depending on the states and experimental
method used. The average value −0.64(4)% is probably a very good approximation, since the value
obtained from Fabry–Perot measurements in the ion (−0.59(5)%) is probably too low. The accurate
measurements using an ion trap by Becker et al. [21] obtained an uncorrected, i.e., state dependent,
value of −0.663(18)% for the hyperfine anomaly in the ground state of Eu+. The uncertainty in this
value originates mainly from the nuclear magnetic dipole moment measurements [16]. The hfs in
this state is not entirely due to contact interaction, but has a small non-contact interaction, as can be
deduced from the experimental gJ factor. Since these contributions have the opposite sign, the state
dependent hfa is slightly larger than the contact hfa.

There is no doubt that the high accuracy of the ion trap will give very precise values for the
hyperfine anomaly, once the accuracy of the nuclear magnetic dipole moment can match the accuracy
of the A constant (≈10−8) in ion trap measurements [22] or if the A constant can be measured at
another level, atomic or double-ionized, with matching accuracy.

In a paper by Asaga et al. [23], a theoretical study of the hyperfine anomaly in odd isotopes of Eu
was performed. They addressed the question of the universality of the empirical Moskowitz–Lombardi
formula [24]. In this article, the method of Persson [13] is applied to the measurements of
Ahmad et al. [25] and Hühnermann et al. [26] in order to give an estimate on the validity of the
Moskowitz–Lombardi formula in Eu. In addition, a calculation of the hyperfine anomaly using the
particle-rotor model is presented.

2. Hyperfine Anomaly in Unstable Eu Isotopes

The unstable Eu isotopes have been studied using laser spectroscopy by Ahmad et al. [25],
Hühnermann et al. [26], and by Dörschel et al. [27]. Measurements have also been performed by
Enders et al. [28–30] using a Paul-trap, to obtain the hyperfine structure constants in the ground and
first metastable states of Eu+. The high precision values from the ion trap measurements cannot,
for the time being, be used to extract the hyperfine anomaly, as the s-electron contribution is almost
the same at these levels [13].
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2.1. Measurements Done by Hühnermann et al.

Hühnermann et al. [26] obtained information of the hyperfine anomaly by defining an angular
factor f (1, 2), where 1 and 2 are two different isotopes, which was found from a fit of the experimental
A constants. The factor f (1, 2) was defined as:

1∆2
exp =− cs · f (1, 2)/a(2) (6)

where cs =
(J(J+1)−L(L+1)+S(S+1)

2J(J+1) and a(2) the experimental A constant for a state in Isotope 2. In this
way, an experimental value of f (151, 153) = −0.551(3) MHz was obtained [26].

The factor f (1, 2) can be expressed using the normal nomenclature, with the experimental,
i.e., state dependent, hyperfine anomaly 1∆2

exp, as [13],

1∆2
exp =

as

aexp
· 1∆2

s (7)

and the factor cs as the total angular part of the contact interaction in the parametrization of the hfs [2],
provided that the states investigated are purely LS-coupled. This leads to:

f (1, 2) = a(2)s ·1 ∆2
s . (8)

Note that the (contact) factor a(2)s must be corrected, so that it only takes into account the
angular parts for the electrons influenced by the hyperfine anomaly, that is s-electrons. The states
Hühnermann et al. studied, the 4 f 75d 9DJ=2...6 in Eu+, are close to pure LS-coupling. However, there
are no free s-electrons in this configuration, which is why the hyperfine anomaly arises from core
polarization. The core polarization can be expressed as an excitation of an d-electron to an s-electron,
thus showing a hyperfine anomaly. Since the hyperfine anomaly, due to core polarization, shows the
same angular dependence as the contact interaction, one can use the hyperfine anomaly to find the
core polarization [5,12]. The factor a(2)s should then be the core polarization contribution to the hfs.
An analysis of this case has been performed by Persson [12]. Using his value (a(151)

s = −669(40) MHz)
and the angular part for the d-electron ( 1

8 of the total angular contribution), one finds that:

f (1, 151) = −669/8·1∆2
s . (9)

yielding 151∆153
s = −0.659(4)(40)%, where the error is experimental and from the analysis, respectively,

in agreement with other results. The values of f (1, 2) for other isotopes from Hühnermann et al. [26]
are given in Table 1 together with the derived hyperfine anomaly, 1∆2

s . Note that the sign of f (1, 2)
was different in the original article, since the factor cs was defined in a different way in this article.

Table 1. Hyperfine anomalies for Eu isotopes, obtained from the work of Hühnerman et al. [26].
Only experimental errors are given.

A f (151, A) 151∆A
s (%)

145 0.07(20) −0.08(24)
146 −0.11(37) 0.13(44)
147 −0.31(40) 0.37(48)
151 0 0.00
152 −0.42(5) 0.50(6)
153 0.551(3) −0.659(4)

2.2. Measurements Done by Ahmad et al.

The values of Ahmad et al. [25] are used directly together with Equation (3) in order to obtain
the hyperfine anomaly. In their study of nuclear spins, moments, and changes of the mean square
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charge radii, they used two atomic transitions, 459.4 nm and 462.7 nm, connecting the atomic ground
state (4 f 76s2 8S7/2) with two excited states (4 f 76s6p 8P9/2,7/2). Since these transitions were studied
with higher accuracy by Zaal et al. [18], there exists a calibration of the hyperfine anomaly for the
stable isotopes.

The hfs of the ground state was not resolved in the measurements [25], which is why the A
constants of the excited states were used. Using the measured A constants for the 8P9/2,7/2 states
from [25] and Equation (3), it is possible to deduce the hyperfine anomaly, for most unstable isotopes,
using the −0.64(4)% value for the hyperfine anomaly between the stable isotopes as a calibration. The
result is presented in Table 2. Comparing the results in Tables 1 and 2 shows an agreement within
errors. The values for 147Eu, still within errors, differ in sign, something that can be explained by the
large experimental errors.

Table 2. Magnetic moments and hyperfine anomalies for Eu isotopes, obtained from Ahmad et al. [25].

A I µI
151∆A

s (%)

142 1 1.536(19) −0.14(1.18)
142m 8 2.978(11) −0.08(31)
143 5/2 3.673(8) −0.06(17)
144 1 1.893(13) −0.19(48)
145 5/2 3.993(7) −0.08(15)
146 4 1.425(11) 0.12(50)
147 5/2 3.724(8) −0.12(17)
148 5 2.340(10) 0.08(31)
149 5/2 3.565(6) −0.19(16)
150 5 2.708(11) 0.08(28)
151 5/2 3.4717(6) 0.00
153 5/2 1.5330(8) −0.64(4)

As can be seen, the errors are larger than the actual values except for 149Eu (Table 2) and 152Eu
(Table 1), which makes it difficult to draw any deeper conclusions, other than the general trends.

From the experimental values in Table 2, there seems to be an odd-even staggering, which changes
sign at the N = 82 (A = 145) neutron shell closure, but the uncertainties are too large to be able to be
sure about this. The drastic change in nuclear magnetic dipole moment between N = 88 (A = 151) and
N = 90 (A = 153) due to the shape transition is also reflected in the hyperfine anomaly. The hfa for
the lighter isotopes is fairly constant, indicating that the magnetization does not change much from
the spherical 145Eu nucleus to 151Eu. With these experimental results, we can make comparisons with
theoretical calculations.

3. Calculations of the Hyperfine Anomaly

The Bohr–Weisskopf effect, and thereby the hyperfine anomaly, was investigated by making
particle-rotor calculations based on the modified oscillator (Nilsson) potential, using standard
parameters [31] as much as possible. As the nuclear magnetic moment and the Bohr–Weisskopf effect
calculations are mainly analogous, it is sensible to adjust the parameters in the calculation so that both
the energy levels and nuclear magnetic moments fit well with the experimental values. The calculated
hyperfine anomalies in the odd isotopes are given in Table 3. As expected, the Bohr–Weisskopf effect,
and thus the hyperfine anomaly, stayed fairly constant from A = 145 to A = 151 with an abrupt change
at the shape transition between A = 151 and 153.

For the odd isotopes, Asaga et al. [23] did a theoretical study and calculated the BW effect,
and thus the hyperfine anomaly. Since they addressed the question on the validity of the empirical
Moskowitz–Lombardi formula [24], which was used to estimate the hyperfine anomaly:
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εBW =
α

µI
, (10)

the hyperfine anomaly was also calculated using this formula. The constant α was taken to be 0.015 n.m.
It should be noted that this value of α is close to the value of Hg [24] and close to the values obtained
for Ir [32,33] and Au [34]; however, the sign is different.

The results are presented in Table 3 together with the experimental values obtained from the
measurements of Ahmad et al. [25].

Table 3. Hyperfine anomaly in Eu, experimental and calculations. MO denotes values obtained
from Particle-rotor calculations, I and II values from [23], and ML values obtained from the
Moskowitz–Lombardi formula [24].

151∆A
exp(%) 151∆A

MO(%) 151∆A
I (%) 151∆A

II(%) 151∆A
ML(%)

Exp. Calc. Calc. Calc. Calc.
145Eu −0.08(15) 0.000 0.021 0.031 0.056
147Eu −0.12(17) 0.002 0.010 0.008 0.029
149Eu −0.19(16) 0.002 0.007 0.006 0.011
151Eu 0 0.0 0 0 0.000
153Eu −0.64(4) −0.768 −0.127 0.003 −0.546
155Eu −0.768 −0.127 −0.001 −0.555

Clearly, the theoretical calculations managed to reproduce the trend of the hyperfine anomaly,
even if the values from Asaga et al. [23] were too small. It is interesting to note that the empirical
Moskowitz–Lombardi (ML) formula seemed to be able to reproduce the hfa for Eu and not only for
elements around Z = 80 (Ir,Au,Hg). However, the change in sign of α was an indication that this might
be a coincidence.

If we inspect the actual values of the Bohr–Weisskopf effect (Table 4) instead of just looking at
the hyperfine anomaly, we find a significant difference in the values obtained from the two methods
of calculation. As we had an experimental value of the BW effect in 151Eu from muonic X-ray [35]
measurements, εBW = −0.63(13)%, it is possible to further discuss the methods. It is clear that
the particle-rotor calculations showed a better agreement with experiment at least for the hyperfine
anomaly. The BW effect was more difficult to calculate as there seemed to be an “offset” in the
calculated results. The agreement with the experiment in Eu might be a coincidence, as preliminary
calculations in Gd and Sm showed a more complex situation.

Table 4. Magnetic moments and Bohr–Weisskopf effect for odd Eu isotopes. MO denotes values
obtained from particle-rotor calculations and I and II values from [23].

A µI (exp) µI (MO) ε(%) (MO) ε(%)I ε(%)II

145 3.993 3.773 −1.001 −1.067 −1.067
147 3.724 3.720 −1.003 −1.056 −1.044
149 3.565 3.552 −1.003 −1.053 −1.042
151 3.4717 3.506 −1.004 −1.046 −1.036
153 1.5330 1.532 −0.236 −0.919 −1.039
155 1.52 1.529 −0.236 −0.919 −1.035

The Empirical Moskowitz–Lombardi Formula

The empirical ML formula was established in 1973 as a rule for the s-electron BW effect in mercury
isotopes [24].

εBW=
α

µI
, α = ±1.13 · 10−2µN , I = l ± 1

2
(11)
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where l is the orbital momentum for the odd neutron. It turned out that the empirical rule provided
a better agreement with experimental hfa than the theoretical calculations performed by Fujita and
Arima [4] using microscopic theory. The rule can be qualitatively explained by the microscopic theory
used by Fujita and Arima [4], where the parameter α is more state independent than given by the theory.
Further investigations gave an analogous expression for the odd-proton nuclei 191,193Ir, 197,199Au, and
203,205Tl, but also for the doubly-odd 196,198Au nuclei. The results indicated that the spin operators
g(i)s Σ(1)

i were state independent for these nuclei. It is worth noting that all nuclei discussed lied close to
the doubly closed shell nucleus 208Pb, where one would expect the single particle model to provide a
good description of the nucleus. It is not apparent that the rule was applicable to lighter nuclei. Using
the ML formula, the BW effect in 151Eu attained a value of 0.325% compared to the experimental value
of −0.63(13)% [35].

With the data presented here, it is possible to make a comparison with other lanthanide nuclei.
As was shown in Eu, the ML formula seemed to account for the hfa, even though the obtained value of
the BW effect differed more from the experimental value of 151Eu. It should be noted that the sign of α

was different from the value obtained for nuclei close to 208Pb, indicating that the ML rule was not
universal. In order to further test the ML formula, the values of α were deduced from the experimental
values of the hfa and nuclear magnetic moments in Nd, Gd [36,37], and Eu, using:

1∆2 = α

(
1

µI,1
− 1

µI,2

)
(12)

If the ML rule showed some sort of general validity, the values of α should stay fairly constant and
show a different sign between Eu (odd-proton) and Nd and Gd (odd-neutron). The obtained values are
shown in Table 5. As can be seen, there were no indications that the ML rule was applicable for these
nuclei. The conclusion would be that one cannot use the ML rule for lighter nuclei. The experimental
evidence indicated that the ML formula was only valid around Z = 80. The ML rule could not therefore
be used when obtaining values for the nuclear magnetic dipole moment for unstable isotopes using
hyperfine structure measurements.

Table 5. Hyperfine anomaly in the lanthanides.

µI,1 µI,2
1∆2

s (%) α
(
10−2)

143,145
60 Nd −1.065 −0.656 0.2034 0.35
151,153
63 Eu 3.4717 1.533 −0.64 1.76
157,155
64 Gd −0.3387 −0.2572 0.106 0.11

4. Conclusions

The method of Persson [13] was applied to Eu and provided preliminary values of the hyperfine
anomaly, the experimental data were not precise enough for all isotopes. The values obtained were
in agreement with the particle-rotor calculations and the theoretical predictions of the trends by
Asaga et al. [23]. A comparison with the empirical ML formula indicated that it could be used for Eu;
however, the constant α attained a different sign compared with the values for Ir, Au, and Hg, and a
comparison with Nd and Gd showed that the ML formula is not applicable. This was clear evidence
that the ML formula was not universal. There also seemed to exist an odd-even staggering of the
hyperfine anomaly in Eu, similar to what was found in Au [34]. This analysis showed that there is a
need for further studies of the hyperfine anomaly in Eu. The application of ion traps in measuring the
A constants of unstable Eu isotopes [29,30] showed an excellent accuracy and will, when high accuracy
measurements of the nuclear magnetic dipole moments are available or A constants in suitable atomic
or ionic levels, give a deeper understanding of the hyperfine anomaly in Eu and hopefully to all nuclei.
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As was shown in the case of Eu, it was possible to obtain information on the hfa without knowing
the nuclear magnetic moment of the isotopes under study. It was also shown that the ML rule was
not universal.

Funding: This research received no external funding.
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References

1. Otten, E.W. Nuclear Radii and Moments of Unstable Isotopes. In Treatise on Heavy Ion Science;
Bromley, D.A., Ed.; Springer: Boston, MA, USA, 1989; pp. 515–638.

2. Lindgren, I.; Rosen, A. Relativistic self-consistent field with application to hyperfine interactions. Case Stud.
At. Phys. 1974, 4, 97–298.

3. Bohr, A.; Weisskopf, V.F. The influence of nuclear structure on the hyperfine structure of heavy elements.
Phys. Rev. 1950, 77, 94–98. [CrossRef]

4. Fujita, T.; Arima, A. Magnetic hyperfine structure of muonic and electronic atoms. Nucl. Phys. 1975, 254,
513–541. [CrossRef]

5. Büttgenbach, S. Magnetic hyperfine anomalies. Hyperfine Int. 1984, 20, 1–64. [CrossRef]
6. Rosenthal, J.E.; Breit, G. The Isotope Shift in Hyperfine Structure. Phys. Rev. 1932, 41, 459–470. [CrossRef]
7. Crawford, M.; Schawlow, A. Electron-Nuclear Potential Fields from Hyperfine Structure. Phys. Rev. 1949,

76, 1310–1317. [CrossRef]
8. Ionesco-Pallas, N.J. Nuclear Magnetic Moments from Hyperfine Structure Data. Phys. Rev. 1960, 117, 505–510.

[CrossRef]
9. Rosenberg, H.J.; Stroke, H.H. Effect of a Diffuse Nuclear Charge Distribution on the Hyperfine-Structure

Interaction. Phys. Rev. A 1972, 5, 1992–2000. [CrossRef]
10. Lindgren, I.; Morrison, J. Atomic Many-Body Theory; Springer: Berlin, Germany, 1983.
11. Sandars, P.G.H.; Beck, J. Relativistic effects in many electron hyperfine structure I. Theory. Proc. R. Soc. Lond.

1965, 289, 97–107.
12. Persson, J.R. Determination of core polarization in Eu+ using the hyperfine anomaly. Phys. Scr. 2007, 76,

449–451. [CrossRef]
13. Persson, J.R. Extraction of hyperfine anomalies without precise values of the nuclear magnetic dipole

moment. Eur. Phys. J. 1998, 2, 3–4. [CrossRef]
14. Schüler, H.; Schmidt, T. Über Abweichungen des Atomkerns von der Kugelsymmetrie. Z. Phys. 1935, 94,

457–468. [CrossRef]
15. Müller, W.; Steudel, A.; Walther, H. Die Hyperfeinstruktur in den 4 f 76s6p-Termen des Eu I und die

elektrischen Kernquadrupolmomente von Eu151 und Eu.153 Z. Phys. 1965, 183, 303–320. [CrossRef]
16. Evans, L.; Sandars, P.G.H.; Woodgate, G.K. Relativistic effects in many electron hyperfine structure III.

Relativistic dipole and quadrupole interaction in europium and remeasurement of the nuclear magnetic
dipole moments of 151Eu and 153Eu. Proc. R. Soc. Lond. Ser. A 1965, 289, 114–121.

17. Champeau, R.J.; Handrich, E.; Walther, H. The hyperfine structure of the y8P-multiplet of 4 f 7(8S)6s6p in
EuI. Z. Phys. 1973, 260, 361–365. [CrossRef]

18. Zaal, G.J.; Hogervorst, W.; Eliel, E.R.; van Leeuwen, K.A.H.; Blok, J. A high resolution study of the transitions
4 f 76s2 − 4 f 76s6p in the Eu I-spectrum. Z. Phys. 1979, 290, 339–344. [CrossRef]

19. Eliel, E.R.; van Leeuwen, K.A.H.; Hogervorst, W. Hyperfine anomaly in the z6P7/2 level of the 4 f 76s6p
configuration of europium I. Phys. Rev. 1980, 22, 1491–1499. [CrossRef]

20. Sen, A.; Childs, W.J. Hyperfine structure of metastable levels in 151,153Eu+ by collinear laser-rf
double-resonance spectroscopy. Phys. Rev. 1987, 36, 1983–1993. [CrossRef]

21. Becker, O.; Enders, K.; Werth, G.; Dembczynski, J. Hyperfine-structure measurements of the 151,153Eu+

ground state. Phys. Rev. 1993, 48, 3546–3554. [CrossRef]
22. Trapp, S.; Tommaseo, G.; Revalde, G.; Stachowska, E.; Szawiola, G.; Werth, G. Ion trap nuclear resonance on

151Eu+. Eur. Phys. J. 2003, 26, 237–244.
23. Asaga, T.; Fujita, T.; Ito, K. Hyperfine structure constants for Eu isotopes: is the empirical formula of HFS

anomaly universal? Z. Phys. 1997, 359, 237–242. [CrossRef]

http://dx.doi.org/10.1103/PhysRev.77.94
http://dx.doi.org/10.1016/0375-9474(75)90234-1
http://dx.doi.org/10.1007/BF02043319
http://dx.doi.org/10.1103/PhysRev.41.459
http://dx.doi.org/10.1103/PhysRev.76.1310
http://dx.doi.org/10.1103/PhysRev.117.505
http://dx.doi.org/10.1103/PhysRevA.5.1992
http://dx.doi.org/10.1088/0031-8949/76/5/008
http://dx.doi.org/10.1007/s100500050081
http://dx.doi.org/10.1007/BF01330611
http://dx.doi.org/10.1007/BF01393264
http://dx.doi.org/10.1007/BF01397960
http://dx.doi.org/10.1007/BF01408393
http://dx.doi.org/10.1103/PhysRevA.22.1491
http://dx.doi.org/10.1103/PhysRevA.36.1983
http://dx.doi.org/10.1103/PhysRevA.48.3546
http://dx.doi.org/10.1007/s002180050396


Atoms 2020, 8, 5 9 of 9

24. Moskowitz, P.A.; Lombardi, M. Distribution of nuclear magnetization in mercury isotopes. Phys. Lett. 1973,
46, 334–336. [CrossRef]

25. Ahmad, S.A.; Klempt, W.; Ekström, C.; Neugart, R.; Wendt, K. ISOLDE Collaboration, Nuclear spins,
moments, and changes of the mean square charge radii of 140−153Eu. Z. Phys. 1985, 321, 35–45. [CrossRef]

26. Hühnermann, H.; Möller, W.; Alkhazov, G.; Panteleev, V. Hyperfine-structure anomaly, its determination
solely from A-factors, and nuclear moments of europium nuclei. Inst. Phys. Conf. Ser. 1992, 132, 209–211.

27. Dörschel, K.; Heddrich, W.; Hühnermann, H.; Peau, E.W.; Wagner, H.; Alkhazov, G.D.; Berlovich, E.Y.;
Denison, V.P.; Panteleev, V.N.; Polyakov, A.G. Investigations of europium isotopes with neutron numbers
between 84 and 93 by collinear laser ion-beam spectroscopy. Z. Phys. 1984, 317, 233–234. [CrossRef]

28. Enders, K.; Becker, O.; Brand, L.; Dembczynski, J.; Marx, G.; Revalde, G.; Rao, P.B.; Werth, G.
Hyperfine-structure measurements in the ground state of radioactive 150Eu+ ions. Phys. Rev. 1995, 52,
4434–4438. [CrossRef] [PubMed]

29. Enders, K.; Stachowska, E.; Marx, G.; Zölch, C.H.; George, U.; Dembczynski, J.; Werth, G. The ISOLDE
Collaboration, Ground-state hyperfine-structure measurements of unstable Eu+ isotopes in a Paul ion trap.
Phys. Rev. 1997, 56, 265–269. [CrossRef]

30. Enders, K.; Stachowska, E.; Marx, G.; Zölch, C.H.; Revalde, G.; Dembczynski, J.; Werth, G. The ISOLDE
Collaboration; Hyperfine structure measurements in the 7S3 metastable finestructure level in stable and
unstable Eu+ isotopes. Z. Phys. 1997, 42, 171–175.

31. Semmes, P.; Ragnarsson, I. The Particle + Rotor Model and Its Applications. In Proceedings of the Hands-on
Nuclear Structure Theory Workshop, Risö, Denmark, 15–26 June 1992; unpublished.

32. Büttgenbach, S.; Dicke, R.; Gebauer, H.; Kuhnen, R.; Träber, F. Hyperfine structure of six low-lying fine
structure levels of 191Ir and 193Ir and the 191∆193

s hyperfine anomaly. Z. Phys. 1978, 286, 333–340. [CrossRef]
33. Moskowitz, P.A. Extension of magnetic anomaly rule. Phys. Lett. 1982, 118, 29–32. [CrossRef]
34. Ekström, C.; Robertsson, L.; Ingelman, S.; Wannberg, G.; Ragnarsson, I. Nuclear ground-state spin of 185Au

and magnetic moments of 187,188Au: Further evidence for coexisting nuclear shapes in this mass region.
Nucl. Phys. 1980, 348, 25–44. [CrossRef]

35. Engfer, R.; Schneuwly, H.; Vuilleumier, J.L.; Walter, H.K.; Zehnder, A. Charge-distribution parameters,
isotope shifts, isomer shifts, and magnetic hyperfine constants from muonic atoms. At. Data Nucl. Data
Tables 1974, 14, 509–597. [CrossRef]

36. Persson, J.R. Hyperfine Anomalies in Gd and Nd. Atoms 2018, 6, 63. [CrossRef]
37. Persson, J.R. Table of hyperfine anomaly in atomic systems. At. Data Nucl. Data Tables 2013, 99, 62–68.

[CrossRef]

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/0370-2693(73)90132-9
http://dx.doi.org/10.1007/BF01411941
http://dx.doi.org/10.1007/BF01421259
http://dx.doi.org/10.1103/PhysRevA.52.4434
http://www.ncbi.nlm.nih.gov/pubmed/9912780
http://dx.doi.org/10.1103/PhysRevA.56.265
http://dx.doi.org/10.1007/BF01408893
http://dx.doi.org/10.1016/0370-2693(82)90595-0
http://dx.doi.org/10.1016/0375-9474(80)90543-6
http://dx.doi.org/10.1016/S0092-640X(74)80003-3
http://dx.doi.org/10.3390/atoms6040063
http://dx.doi.org/10.1016/j.adt.2012.04.002
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Hyperfine Anomaly in Unstable Eu Isotopes
	Measurements Done by Hühnermann et al.
	 Measurements Done by Ahmad et al.

	Calculations of the Hyperfine Anomaly
	Conclusions
	References

