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ABSTRACT

People counting in high density crowds is emerging as a new
frontier in crowd video surveillance. Crowd counting in high
density crowds encounters many challenges, such as severe
occlusions, few pixels per head, and large variations in per-
son’s head sizes. In this paper, we propose a novel Density
Independent and Scale Aware model (DISAM), which works
as a head detector and takes into account the scale variations
of heads in images. Our model is based on the intuition that
head is the only visible part in high density crowds. In or-
der to deal with different scales, unlike off-the-shelf Convo-
lutional Neural Network (CNN) based object detectors which
use general object proposals as inputs to CNN, we generate
scale aware head proposals based on scale map. Scale aware
proposals are then fed to the CNN and it renders a response
matrix consisting of probabilities of heads. We then explore
non-maximal suppression to get the accurate head positions.
We conduct comprehensive experiments on two benchmark
datasets and compare the performance with other state-of-the-
art methods. Our experiments show that the proposed DISAM
outperforms the compared methods in both frame-level and
pixel-level comparisons.

Index Terms— Crowd counting, Convolution networks,
Head detection, Classification

1. INTRODUCTION

With increase in population and rapid urbanization, crowd oc-
currences are regularly observed during concert, political and
religious gatherings. Although these gatherings serve peace-
ful purposes, yet crowd disasters still occur. To ensure public
safety, it is critical to understand crowd dynamics and con-
gestion circumstances at crowded scenes [1][2][3]. Crowd
analysis can be used in numerous applications, for example,
in detecting critical crowd levels, detecting anomalies, and
tracking individuals or group of individuals. Among them,
the most important and emerging application is to count the
number of people in the scene.

Crowd counting can provide useful piece of information
for future event planning and public space design. Crowd
counting can substantially reduce the cost by deploying ex-
act number of security personnel required for public safety
and security. Though crowd counting has numerous advan-
tages and has become the prime focus of many researchers,
localization in high density images has received least attenta-
tion from the research community. Localization provide exact
location of the people in the scene. With the localization in-
formation, one can find out the distribution of people in the
environment which is very crucial for crowd managers. Lo-
calization information can be used to detect and track a person
in dense crowds [4]. Localization can also be used to rectify
counting errors from automated counting algorithms. Local-
ization provides the estimated locations (bounding boxes or
dots) of the individuals in the image and the analyst can eas-
ily find and remove false positives. This process can also help
the analyst annotating high density images efficiently and ef-
fectively.

In this paper, we propose a novel model for crowd count-
ing and localization of people in a crowd image. Our goal is
to detect and estimate the location of human heads as head is
the only visible feature in high density crowd images. In or-
der to achieve this goal, we propose a model that is composed
of three components. First component is a Convolution Neu-
ral Network that acts as a head detector. In the second com-
ponent, we generate scalemap and obtain scale aware head
proposals by using scalemap. We then feed each proposal
to the CNN and obtain classification score for each proposal.
After processing all proposals, a response matrix is obtained,
where higher responses indicate high probabilities of heads.
Finally, non-maximal suppression is applied to the response
matrix and final detection results are produced at the original
resolution.

The proposed model has following contributions: (1)
the ability to count and localize human head in high den-
sity crowd images; (2) handles scale variations in head sizes
appearing in image; and (3) generates density maps which
give the distribution of humans in the scene. Unlike previous



crowd counting models that only estimate the crowd count,
our method handles counting and localization problems si-
multaneously.

2. RELATED WORKS

Deep learning has achieved tremendous success in the recent
years. In the literature, various deep learning models are pro-
posed for image segmentation, object classification and de-
tection with excellent results. Inspired by the success of deep
learning, the CNN models have been proposed in literature
to estimate the count of people from the image. Generally
deep learning models for crowd counting can be classified
into two major categories, 1) Regression based methods, 2)
Detection based methods. Regression based methods esti-
mate the crowd count by performing regression between the
image features and crowd size. In CNN based methods, den-
sity maps are generated from the image and count is obtained
by performing integration over the density map. A Multi-
column Convolutional Neural Network (MCNN) is proposed
in [5], which utilizes three columns with filter size of dif-
ferent receptive field to compensate for perspective distor-
tion. The CNN regression model with two configurations [6]
estimates the number of people in a single image. Switch-
CNN [7] uses multiple CNN based crowd counting architec-
tures and proposes switching strategy to select one network
based on the performance. Contextual Pyramid CNN [8] es-
timates the count by generating high-quality crowd density
by incorporating global and local contextual information of
crowd images. Different density estimation methods are com-
pared in [9]. Crowd density is estimated in [10] by using dif-
ferent regression networks. Although the Regression based
methods work well in high density situations as they cap-
ture generalized density information from the crowd image
yet they suffer from the following limitations. 1) The perfor-
mance of these methods degrade when applied to low density
situations due to overestimating the count. 2) These methods
can not localize pedestrian in the scene and thus provide no
information about the distribution of pedestrians in the envi-
ronment which is very crucial for the crowd managers and
security personnel.

On the other hand, detection based methods [11, 12, 13],
train object detectors to localize the position of each person,
where crowd count is the number of detections in the scene.
A hybrid method is proposed in [14] that incorporates both re-
gression and detection based counting and adaptively decide
the appropriate counting mode for different image locations.
Our proposed model is similar to [12] in a way that we also
train a head detector. Unlike feeding general object proposal
to the network as proposed in [12], we generate scale-aware
proposals by using a scale map. Scale map estimates the ob-
ject scales and use them to guide proposals rather than ex-
haustive searching on all scales. From our experiments, we
observed that generating scale-aware proposals are very ef-

fective and can reduce the search space and ignores false pos-
itives at improper scales.

3. PROPOSED METHODOLOGY

In this work, to count and localize the people in images with
large scale variations, we propose a new Density Independent
and Scale Aware Model (DISAM). The pipeline of our pro-
posed model is shown in Figure 1. It comprises of three main
components which are described in the following sections.

Fig. 1. Pipeline of Density Independent and Scale Aware
Model (DISAM).

3.1. Generating Scale Aware Object Proposals

Object proposal generation is a pre-processing step and has
been widely used in modern object detection pipelines. Ob-
ject proposals are used to guide the search of objects and
avoid exhaustive search across all the image locations.

Fig. 2. Density Independent and Scale-Aware proposal gen-
eration pipeline.

Several object proposal methods are reported in literature.
In DeepProposal [15] method, object proposals are generated
by an inverse cascade from the final to the initial layer. Multi-
Box [16] and SSD [17] extract object regions by bounding
box regression based on CNN features maps. However, in



high density crowded scenes, where the people are usually
stand very close to each other and due to the high occlusions,
head is the only visible part. The small size of the head makes
the detection even much worse. Consequently, the current
state-of-the-art region proposal methods are less effective and
usually results in low Recall rates when applied to high den-
sity images. To address this problem, we propose different
strategy for generating object proposals to capture range of
scales for smaller objects as shown in Figure 2.

To generate object proposals, the first step is to estimate a
scale map S for the input image I . In order to generate a scale
map, we need to consider the effects of perspective. Inspired
by [18], for each scene, we randomly select a group of adults
between the two extremes (up and down) of the image and
label their heads by drawing a straight line between the two
points on the head. The line represents the size of the head
as shown in Figure 2 (zoomed view) of portion of an image.
We then approximate the scale map by linearly interpolating
between two extremes of image. The scale map shown in Fig-
ure 2, where the red colors shows bigger size of head while
smaller head sizes are highlighted in blue color. The verti-
cal bar shows the range of scales in the input image. After
generating the scale map S, the next step is to generate ob-
ject proposals. For this, we overlaid a gird G of points on the
image. Ideally, the resolution of the grid G and scale map S
are the same as the resolution of the input image I . Let S(pi)
represents the size of head (in pixels) at location pi. For every
point pi ∈ G, we generate bounding box of size S(pi) with
point pi as its center. As we are interested in head detection,
we keep the square-like aspect ratios<∈ [ 2

3 ,
3
2 ] for all bound-

ing boxes and refer them as candidates. From the Figure 2, it
is obvious that the size of proposals in the down extreme of
the image are bigger attributing to the bigger size of the head
while the size of proposals becomes smaller as we move up.

3.2. Head Detection

Our head detector follows the model of R-CNN [19] and uses
scale-aware proposals instead of selective search proposals to
capture head with different scales. For each input proposal,
we extend the bounding box with small margin to capture lo-
cal image context around the head. The corresponding image
patch is then re-sized to 224 x 224 pixels to fit the input layer
of the CNN. Our R-CNN model is based on the architecture
of Oquab et al. [19] extended by one fully-connected layer
with 2048 nodes that are initialized randomly and followed
by ReLu and DropOut. Oquab et al. [19] is initially trained
on ImageNet and then fine tuned on images of human faces
extracted from HollywoodHeads dataset [20]. In its original
form, however, this head detector is of limited use to us since
we are working with very high density images and in high
density images human head barely spans a few pixels and
face is almost unrecognizable. Therefore we fine-tuned the
network on training images from WorldExpo’10 [6] data set.

To train the network, we use stochastic gradient descent
(SGD) with momentum to optimize the parameters by min-
imizing the sum of independent log-losses. For training we
extracted scale-aware patches that only contain one head and
feed them to the network as positive sample. Negative sample
were generated from the background and visible human torso,
since we want our head detector to give high response only on
heads and not on other body parts. Unlike traditional R-CNN
that uses SVM for second pass of training, we use the output
of CNN to score the proposals. After feeding all the proposal
to the network, the output is the response map M(pi), where
M(p) is the score of the proposal and pi ∈ G is the location
in the image. The higher values of the response map indicate
the presence of head while lower values represent the back-
ground.

3.3. Localization

For the localization task, to get the precise location of the
heads, we post-process the response map by finding local
peaks/ maximums base on fixed threshold. This process
is also known as non-maixmal suppression. We use 1-1
matching strategy to compare the predicted locations with the
ground truth locations and use Precision and Recall metrics
for evaluation. The performance of the localization task is
mainly affected by changing the threshold value. Therefore,to
find an optimal strategy for localization is an important re-
search direction.

4. EXPERIMENTS

We evaluate the performance of our proposed DISAM us-
ing two challenging crowd counting datasets, i.e, UCSD
dataset [18] , and WorldExpo’10 [6] dataset. We use Mean
Absolute Error (MAE) as an evaluation measure to compare
the counting performance of the DISAM against the state-of-
the-art methods and is defined as.

MAE =
1

T

T∑
t=1

|µt −Gt| (1)

Where T is the total number of testing frames. While µt and
Gt are the predicted and ground-truth count of pedestrians re-
spectively at frame t. The UCSD data set consists of 2000
frames of size 238 x 158 captured from a single camera. We
split the dataset into training and testing images in the same
way as [18]. On the other hand, WorldExpo’10 is a large
scale dataset contains 1132 annotated video sequences cap-
tured by 108 surveillance cameras. The test set is 5 hour long
video sequence from five different scenes with frame size of
576 x 720 pixels. We perform experiments on all five scenes
of WorldExpo’10 data set. The quantitative results for both
datasets are reported in Table 1. From the table, it is obvious
that our DISAM outperforms other competitive methods with



Table 1. Comparative analysis with other methods in term
of Mean Absolute Error (MAE) are presented considering
UCSD [18] and WorldExpo’10 [6] datasets.

Methods WorldExpo’10 [6] UCSD [18]
Zang et al. [6] 12.9 1.60
M-CNN [5] 11.6 1.07
Kang et al. [9] 13.4 1.12
Switching CNN [7] 9.4 1.62
CP-CNN [8] 8.86 -
DecideNet [14] 9.23 -
Liping et al. [10] - 1.03
Proposed DISAM 8.65 1.01

Table 2. Localization performance of different methods in
terms of Average Precision (Avg), Average Recall (AvR) and
Area Under Curve (AUC). The values of AvP and AvR are
represented in percentages.

Methods WorldExpo’10 UCSD
AvP AvR AUC AvP AvR AUC

Zang et al. [6] 45.87 39.23 0.45 65.64 59.65 0.64
M-CNN [5] 55.24 52.28 0.51 69.74 65.67 0.71
Kang et al. [9] 42.98 39.27 0.41 67.28 55.32 0.67
Switching CNN [7] 58.29 45.39 0.54 63.87 55.63 0.61
CP-CNN [8] 63.65 58.67 0.61 60.42 49.82 0.58
DecideNet [14] 61.37 53.61 0.57 64.75 59.64 0.63
Liping et al. [10] 65.72 47.91 0.58 71.73 68.68 0.72
Proposed DISAM 69.46 67.65 0.69 73.58 71.68 0.74

lowest MAE of 1.01 and 8.65 for UCSD and WorldExpo’10
datasets, respectively.

We also quantify and compare the localization perfor-
mance of our method with other state-of-the-art methods. In
order to quantify the localization error, we associate the cen-
ter of estimated bounding box with the ground truth location
(single dot) through 1-1 matching strategy. We then com-
pute Precision and Recall at various thresholds and report the
overall localization performance in terms of area under the
curve. In order to estimate the location, we use the same den-
sity maps generated by state-of-the-art methods followed by
non-maxima suppression algorithm. The results are reported
in Table 2. It is obvious that our proposed model presents
higher Precision and Recall rates as compared to the state-
of-the-art methods. These results attribute to the fact that
our model generates scale-aware proposals that capture wide
range of head sizes in each image. It can also be observed
that all other methods present lower rates for WorldExpo’10
dataset as compared to UCSD dataset. This is due to the fact
the WorldExpo’10 dataset contains more dense images with
heavy occlusions as compared to UCSD. We also show some
qualitative results of our proposed method in Fig. 3. The first
row depicts the sample images from the UCSD dataset which

Fig. 3. Results of samples frames from UCSD and World-
Expo’10 data sets. The yellow dot represents the groundtruth
while the red bounding box is the predicted location by our
approach. The Figure can be best viewed in color.

represents low density scene and the second row depicts the
sample images from two different scenes of WorldExpo’10
dataset representing relatively more complex and high density
scenes. It is worth noticing that our method performs well
in both high and low density scenes and it is independent of
the scene density. As it is clear from the figure, that in most
of cases, our proposed method precisely localizes the heads
even in the complex scenes.

5. CONCLUSION

This paper presented a novel DISAM to estimate the count
by detecting and localizing the human heads in dense crowd
scenes. To tackle the problem of scale variations, we gen-
erated scale-aware head region proposals by exploiting the
perspective effects. This strategy has significantly reduced
the classification time and also resulted in boosting the de-
tection accuracy. We evaluated SADM on two datasets, i.e,
UCSD, and WorldExpo’10 and have achieved noticeable im-
provements in the results.

In our future work, we would further improve the localiza-
tion results since the localization accuracy is mainly affected
by the post-processing step (non-maxima suppression in our
case).
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