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Abstract13

A new inversion method for determining near-surface shear currents from a measured14

wave spectrum is introduced. The method is straightforward to implement and starts15

from the existing state-of-the-art technique of assigning effective depths to measured wavenumber-16

dependent Doppler shift velocities. A polynomial fit is performed, with the coefficients17

scaled based on a simple derived relation to produce a current profile that is an improved18

estimate of the true profile. The method involves no user-input parameters, with the op-19

timal parameters involved in the polynomial fit being chosen based on a simple criterion20

involving the measured Doppler shift data only. The method is tested on experimental21

data obtained from a laboratory where current profiles of variable depth dependence could22

be created and measured by particle image velocimetry, which served as “truth” mea-23

surements. Applying the new inversion method to experimentally measured Doppler shifts24

resulted in a > 3× improvement in accuracy relative to the state-of-the-art for current25

profiles with significant near-surface curvature. The experiments are dynamically sim-26

ilar to typical oceanographic flows such as wind-drift profiles and our laboratory thus27

makes a suitable and eminently useful scale model of the real-life setting. Our results28

show that the new method can achieve improved accuracy in reconstructing near-surface29

shear profiles from wave measurements by a simple extension of methods which are cur-30

rently in use, incurring little extra complexity and effort. A novel adaptation of the nor-31

malized scalar product method has been implemented, able to extract Doppler shift ve-32

locities as a function of wavenumber from the measured wave spectrum.33

1 Introduction34

Characterizing near-surface ocean currents is of importance to a vast range of ap-35

plications. At a fundamental scientific level, near-surface currents influence the exchange36

of energy and momentum between the air and sea (Kudryavtsev et al., 2008; Terray et al.,37

1996), impacting climate models. At a more practical level, currents affect wave-body38

forces, and can be relevant for operational safety in coastal areas Dalrymple (1973); Zip-39

pel & Thomson (2017). Accurate measurements of the mean flow in the top meters of40

the water column are difficult to obtain, in large part due to the presence of waves which41

induce platform motions and additional sources of noise. Conventional methods such as42

acoustic Doppler current profiling (ADCP) typically discard data in the topmost few me-43

ters of the water column.44

An attractive alternative to in situ techniques is to deduce currents from measure-45

ments of waves, whose dispersion is altered by the presence of a background flow. The46

approach has the advantage of enabling remote sensing methods such as radar or optical-47

based detection, with the potential for mapping currents over a larger area (multiple km2)48

compared with point measurements. In addition, waves are most sensitive to currents49

near the free surface, precisely the regime where other conventional methods such as ADCP50

struggle. The vast majority of wave-based near-surface current measurements reported51

in the literature have used radar, including high frequency (HF) radar (e.g., Crombie,52

1955; Fernandez et al., 1996; Ha, 1979; Shrira et al., 2001; Stewart & Joy , 1974; Teague53

et al., 2001; Young & Rosenthal , 1985) and more recently X-band radar systems (e.g.,54

Campana et al., 2016,1; Gangeskar , 2002; Lund et al., 2015,1; Young & Rosenthal , 1985),55

also in some cases to reconstruct the bathymetry (e.g., Hessner & Bell , 2009; Hessner56

et al., 2014). Optical methods have also been used to a lesser extent (Dugan & Piotrowski ,57

2003; Dugan et al., 2001; Horstmann et al., 2017; Laxague et al., 2017,1).58

Though wave-based current measurements offer several distinct advantages com-59

pared to other methods, they have a number of inherent challenges. Firstly, determin-60

ing the current profile as a function of depth without stringent a priori assumptions as61

to the functional form requires the ability to measure waves over a spectrum of wave-62

lengths and directions. The quality of results is thus dependent on the sea state (Cam-63
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pana et al., 2016,1; Lund et al., 2015). Secondly and more fundamentally, the determi-64

nation of the current depth profile from wave dispersion measurements is a mathemat-65

ically ill-posed inverse problem. The inferred current profile is not mathematically unique,66

and noise in wave measurements gets amplified in the inversion process (Ha, 1979). As67

a result, a priori assumptions and constraints of the depth-dependence of the current pro-68

file based on physical intuition have typically been imposed.69

Despite these difficulties, wave-based current measurements have been used in the
field for many decades. The techniques involve reconstructing the near-surface current
from measured alterations to the wave frequency, and are termed “inversion methods.”
The most common and elementary methods involve determining a single current vector
representative of a weighted average of the near surface flow, with other more recent meth-
ods reconstructing some degree of detail as to the depth-dependence of the flow. In re-
viewing the previously developed inversion methods, we first consider the dispersion re-
lation for small-amplitude linear waves propagating atop a depth-varying flow, which can
be approximated as:

ωDR(k) = ω0(k) + k · c̃(k), (1)

where ωDR is the wave frequency, ω0 the frequency in quiescent waters, k = {kx, ky}
the wavevector, k = |k|, and c̃ a wavenumber-dependent Doppler shift velocity due to
the background current. The z = 0 plane is the undisturbed water surface and the bot-
tom is found at z = −h with h > 0. We shall mostly work in the deep water regime
kh & π where h = ∞ can be assumed. As first shown by Stewart & Joy (1974), the
Doppler shift can be approximated as a weighted average of the current profile as a func-
tion of depth as

c̃(k) = 2k

∫ 0

−∞
U(z)e2kzdz, (2)

where U(z) = [U(z), V (z)] is the current profile. The finite depth version of the Stew-70

art & Joy (SJ) approximation (2) was derived by Skop (1987) and extended by Kirby71

& Chen (1989). The weighting term decays exponentially with depth (in deep water),72

reaching a value of 0.2% of the surface value at a depth equal to half the wavelength (kz =73

−π). Short wavelengths are thus sensitive only to currents near the surface, whereas longer74

wavelengths are affected by currents at greater depths. The inversion method involves75

using values of c̃(k) obtained from experimental data to determine the unknown U(z).76

A word of warning is warranted when referring to c̃ as the “Doppler shift” as is con-77

ventional. While c̃ occurs in (1) exactly as would a Doppler frequency shift resulting from78

Galileian transformation upon changing reference system, it should not be interpreted79

as such. A misunderstanding has arisen from this name that the same Doppler shift should80

also be added to the wave’s group velocity to account for the shear, but this is not cor-81

rect as pointed out by Banihashemi et al. (2017). Rather, the group velocity remains dω/dk,82

for which taking the k-dependence of c̃ into account is key. We shall follow the numen-83

clatorial convention in the literature and refer to c̃ as the Doppler shift velocity while84

bearing this in mind.85

Various wave detection methods are sensitive to different spectral ranges of k and86

have led to the development of a number of inversion methods. In the case of HF radar,87

the detected signal is dominated by resonant Bragg scattering, effectively measuring the88

Doppler velocity of a surface wave with a wavelength half that of the radar system. Data89

reported from single-frequency HF radar is often referred to as the surface current, yet90

more precisely it is a weighted average of the current profile from (2), as it essentially91

measures c̃(kHF) (kHF being the wavenumber of the resonant wave) without information92

concerning the depth-dependence. Depth-profile information can be obtained by using93

multiple radar frequencies (Fernandez et al., 1996; Ha, 1979; Stewart & Joy , 1974; Teague94

et al., 2001) which probe different resonant wavenumbers. Similarly, other detection meth-95

ods such as X-band radar or optical techniques inherently measure a wide spectrum of96
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wavelengths, thus evaluating (2) at many k-values and enabling the use of inversion meth-97

ods to estimate the current depth-dependence.98

Inversion methods of determining U(z) from a set of measured values of c̃i = {c̃x,i, c̃y,i}99

at discrete wavenumbers ki can be carried out separately for each velocity component,100

i.e. U(z) can be found from c̃x,i, and V (z) from c̃y,i. To ease the notation, in the fol-101

lowing we outline the new inversion method using U(z) and c̃i to denote the flow veloc-102

ity and Doppler shift velocities, with the implicit understanding that they may corre-103

spond to either dimension in the horizontal plane. The subscript i indicates that the re-104

spective variable takes on a discrete set of values as may be extracted from experimen-105

tal data.106

Assuming a given functional form to the current profile, one can assign effective107

depths to the measured Doppler velocities based on the wavenumber by finding the depth108

at which the Doppler velocity is equal to the current, i.e. c̃i = U(Zeff(ki)). For the com-109

monly assumed case of a current profile which varies linearly with depth, U(z) = Sz+110

U0, where S is the vorticity and U0 the surface current. By the approximation (2) the111

Doppler shift is approximated as112

c̃i = − S

2ki
+ U0 = U

(
z = −(2ki)

−1
)
. (3)

The last form shows that assuming linear current, deep water and using the SJ approx-
imation, the appropriate effective depth is

Zeff,lin(k) = −(2k)−1. (4)

(In other words Zeff(k) is approximately 8% of the wavelength.) A similar relation can113

also be derived for a logarithmic profile (Plant & Wright , 1980). We refer to the method114

of estimating U(z) from a measured c̃i(k) using (3) or its sibling assuming a logarith-115

mic profile as the effective depth method (EDM). The EDM has been used extensively116

in the literature for estimating near-surface shear currents (e.g., Fernandez et al., 1996;117

Laxague et al., 2017,1; Lund et al., 2015; Stewart & Joy , 1974; Teague et al., 2001).118

A clear weakness of the EDM, however, is that it relies on assumptions as to the119

functional form of the depth dependence. Ha (1979) developed a method for inverting120

(2) directly based on a series of measured c̃ values, which was further developed and ap-121

plied to data from X-band radar by Campana et al. (2016). The method involves a Leg-122

endre quadrature approximation to the integral, with constraints on the curvature of the123

current profile as well as the distance from an initial guess in order to suppress the am-124

plification of experimental noise. The method avoids initial assumptions as to form of125

the current profile and yields current estimates at greater depths. The reconstructed U(z)126

has comparable accuracy relative to the EDM when compared against ADCP “truth”127

measurements.128

We present a new inversion method which is completely free of parameters. The129

method, which is derived assuming deep water, uses the current profile obtained by the130

EDM, and fits it to a polynomial function. The method then makes use of a simple re-131

lation which follows from (2) to construct an improved estimate of the true profile U(z)132

directly from the coefficients of the fit. The method is validated and tested on experi-133

mental data from a laboratory setup, where the background current velocity profile and134

wave spectrum could be well-controlled and characterized.135

In the following we describe the new method in Section 2, and examine its perfor-136

mance also in finite water depth. Section 3 describes the experimental setup and anal-137

ysis of the data, where an adapted version of a normalized scalar product (NSP) method138

is used to extract Doppler shifts from wave spectra. Section 4 demonstrates the use of139

the new inversion method on experimentally measured Doppler shifts, where in situ mea-140

surements of the current profile are used as “truth” measurements for validation. The141
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performance of the method is evaluated by considering the fractional decrease in error142

of the depth profile achieved by the new inversion method compared to the EDM.143

2 Polynomial effective depth method144

From experimental data of the wave spectrum, a set of Doppler shift velocities c̃i145

at unique wavevector magnitudes ki can be obtained by a number of methods such as146

least squares techniques (Campana et al., 2017; Senet et al., 2001), or a normalized scalar147

product (NSP) method (Huang et al., 2016; Huang & Gill , 2012; Serafino et al., 2010)148

used herein (described in section 3).149

Assuming a polynomial current profile of the form U(z) =
∑∞
n=0 unz

n in deep wa-
ter, evaluation of (2) yields the SJ approximation

c̃(k) =

∞∑
n=0

n!un

(
− 1

2k

)n
(5)

for the Doppler shift velocities. We notice that (−2k)−1 is equal to the mapping func-
tion Zeff,lin(k) used in the EDM assuming a linear frofile, equation (4). Using the EDM
with this mapping the estimated current profile is

UEDM(z) =

∞∑
n=0

n!unz
n. (6)

Thus, the mapped profile UEDM(z) is also of polynomial form with coefficients of the n-150

th order term differing by a factor n! from those of the true profile U(z). The estimated151

velocity profile UEDM(z) will suffer from inaccuracies since the mapping function is not152

the correct one. The new inversion method, referred to hereafter as the polynomial ef-153

fective depth method (PEDM), seeks to improve this by making use of the simple re-154

lationship between the coefficients in the series representation of UEDM(z) and the true155

profile U(z), namely that they differ by a factor n!.156

Explicitly, the PEDM procedure consists of the following three steps:157

1. For each of the measured values c̃i, assign effective depths zi = −(2ki)
−1 accord-158

ing to the EDM procedure of (3) and (4).159

2. Obtain UEDM(z) by fitting the set of points {zi, c̃i} to a polynomial of degree nmax:

UEDM(z) ≈
nmax∑
n=0

uEDM,nz
n, (7)

where uEDM,n are the coefficients obtained in the polynomial fit.160

3. Then the improved PEDM estimate is

UPEDM(z) =

nmax∑
n=0

1

n!
uEDM,nz

n. (8)

Equation (8) follows immediately from a comparison of (6) and (7), where uEDM,n =161

n!un.162

2.1 Theoretical limitations163

Two notable potential complications arise: finite depth where (5) and (6) are no164

longer strictly valid, and realistic situations where errors in experimentally measured Doppler165

shifts, which in addition are measured at a finite range of wavenumbers, lead to errors166

in the fitted polynomial coefficients rapidly increasing for higher values of n.167
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Figure 1. a) Relative root mean square (RMS) error between the PEDM and true profiles of

exponential form as a function of water depth normalized to the minimum mapped wavenumber.

b) Illustration of the parameters involved in practical implementation of the PEDM, as part of

the 6-step process described in section 2.1.2.

2.1.1 Performance for finite depth168

In the case of finite depth h, an explicit relation of the form of (6) cannot be de-169

rived since the mapping function Zeff(k) = −(2k)−1 tanh kh in finite depth cannot be170

solved with respect to k analytically, but must be inverted numerically. The approxima-171

tion (2), moreover, obtains a more complicated form less amenable to analytical treat-172

ment (Skop, 1987). To examine the effect of finite depth on the accuracy of the PEDM,173

we consider an exponential profile of the form U(z) = U0 exp(αz), with α= 8·min[ki]/ tanh(min[kih])174

to preserve the same functional form within the range of mapped depths regardless of175

the water depth, and U0 the surface current.176

We consider the implementation of the PEDM in finite depth with nmax = 10,177

simply using the finite depth mapping function in step 1 of section 2 to assign effective178

depths zi = −(2ki)
−1 tanh kih. Steps 2-3 of the PEDM procedure were unchanged. The179

fractional depth-integrated root mean square (RMS) error between UPEDM(z) and U(z)180

was calculated for cases over a range of water depth values min[ki]h, with the results shown181

in Figure 1a. For all but the shallowest depths considered here, the deep water mapping182

function results in errors at the 1% level. For most realistic combinations of water depth183

and relevant wavenumbers, Figure 1a indicates that the finite depth mapping function184

and (6) yield sufficient accuracy.185

2.1.2 Effect of limitations of measured Doppler shifts186

As mentioned, the fact that c̃i(k) is measured for a finite range of wavenumbers187

will affect accuracy. This is true of any inversion method for reconstructing U(z) from188

dispersion measurements.189

To handle the realistic case of experimentally measured Doppler shifts at a finite190

range of wavenumbers, we extend the three-step process described in section 2 to a 6-191

step process (the first three steps of which are illustrated schematically in Figure 1b):192

193
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1. Fit the mapped Doppler shifts to a polynomial of order nmax to produce the pro-194

file U init
EDM(z) (Steps 1-2 in section 2), using the finite depth mapping function if195

appropriate.196

2. Create additional velocity-depth pairs by linearly extrapolating up to the surface197

and down to cutoff depth zc. The extrapolation is performed based on a linear fit198

to U init
EDM(z) over a depth interval δzT and δzB at the shallow and deep end of the199

regime of mapped depths respectively, denoted in Figure 1b. The extrapolated points200

are shown as the black squares.201

3. Perform a second polynomial fit on the expanded set of points (also of order nmax)202

to produce the profile considered to be UEDM.203

4. Scale polynomial coefficients defining UEDM by n! as in (8) to produce a profile204

U init
PEDM(z).205

5. Create a new set of linearly extrapolated points down to zc based on a linear fit206

to U init
PEDM(z) over a depth region δzB/2 at the deep end of the regime of mapped207

depths. Extrapolation is not performed up to the surface (thus differing from step208

2).209

6. Perform a final polynomial fit on the set of points including U init
PEDM(Zeff(ki)) and210

the extrapolated points in Step 5, to produce UPEDM.211

The final current profile may be dependent on the parameters nmax, δzT , δzB , as
well as zc, and a method for choosing optimal values of these parameters is necessary.
To proceed, we note that when the exact form of the current profile U(z) is considered,
the Doppler shifts calculated using (2) or another suitable approximation method will
agree with the measured values save for experimental measurement errors. The process
of calculating the Doppler shifts given a prescribed current profile we refer to as the “for-
ward problem.” Though the accuracy of (2) and its finite depth counterpart (Skop, 1987)
is likely sufficient, we use a direct integration method of arbitrary accuracy due to Li &
Ellingsen (2019) to evaluate the Doppler shifts to avoid this unnecessary source of er-
ror. We define an RMS difference between the measured Doppler shifts and those cal-
culated by the forward problem (c̃F,i) as

εRMS =

√
(c̃i − c̃F,i)2, (9)

where the overbar represents an average over all wavenumbers. For accurate evaluation212

of c̃F,i, the cutoff depth was chosen as zc = 2(min[ki])
−1 (four times the deepest mapped213

depth), being set to the water depth in cases where the bottom was shallower than zc.214

Values of nmax, δzT , and δzB were in practice chosen to minimize εRMS to in a sense215

find the most probable current profile in the presence of experimental noise.216

3 Experimental and Data Analysis Methods217

We test and evaluate the accuracy of the PEDM on experimental data by measur-218

ing wave spectra of waves propagating atop a controlled background shear flow gener-219

ated in a small-scale laboratory setup, shown in Figure 2. The current depth-profile of220

the shear flow is measured by particle image velocimetry (PIV), which can be used as221

“truth” data to compare against the profiles obtained by the PEDM.222

The setup consists of a pump which drives laminar flow over a 2x2 meter trans-223

parent plate, where different shear profiles can be obtained by various methods of flow224

conditioning. One method consists of a sequence of honeycomb structures and a curved225

wire mesh (Dunn & Tavoularis, 2007), which distorts the streamlines of the flow pro-226

ducing a profile with peak velocity at the surface, and decreasing with depth with ap-227

proximately constant shear. The surface current and near-surface shear strength can be228

controlled by adjusting the water depth and pump power. It is noted that strong shear229

near the bottom due to the boundary layer is also created, yet for the depths (∼ 8 −230
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Figure 2. The laboratory setup used for measuring wave spectra in the presence of a control-

lable background shear flow.

10 cm) and wavelengths we consider the influence of the boundary layer on wave disper-231

sion is negligible. Another method is to make use of a region of flow where the water sur-232

face is nearly stagnant (at rest in the laboratory frame of reference) which occurs near233

the downstream end of the system due to the formation of a Reynolds ridge from sur-234

face contaminants (Scott , 1982). The region exhibits strong near-surface shear as the in-235

coming flow dips beneath the stationary viscoelastic surface layer to form a surface bound-236

ary layer. The upstream extent of this stagnation region can be increased by the inser-237

tion of a horizontal bar in the downstream end as shown in Figure 2. A laboratory co-238

ordinate system is defined as shown in Figure 2, with the x, y and z-axes aligned with239

the streamwise, spanwise and vertical dimensions respectively.240

The depth profile of the shear flow was measured at varying locations in the stream-241

wise and spanwise directions using a planar PIV setup with high power light-emitting242

diodes (LEDs) as the illumination source similar to the system of Willert et al. (2010).243

Emission from the LED’s (Luminus PB-120) was approximately collimated in one di-244

mension to produce a planar light sheet using either a fiber bundle splayed out into a245

linear array and a cylindrical lens, or a thin rectangular slit mounted above the LED ar-246

ray. The water was seeded with 40 µm diameter polystyrene spheres (Microbeads AS),247

and particle images were acquired by a camera mounted out of the plane as shown. Im-248

age pairs were processed to obtain the streamwise velocity as a function of depth. The249

setup could be translated to perform measurements at different positions in both hor-250

izontal dimensions.251

Waves were created using a vertical piston wavemaker mounted at the upstream252

end of the setup. The wavemaker was run at variable frequencies from 1 to 4 Hz as a func-253

tion of time, 10 s at each constant frequency in steps of 0.1 Hz, to produce a sufficiently254

wide spectrum in frequency-wavevector space. The waves were measured using a syn-255

thetic Schlieren (SS) method (Moisy et al., 2009), consisting of a random dot pattern256

mounted below the transparent bottom plate, and viewed from above by a camera mounted257

∼ 2 m optical path length from the free surface. The gradient of the free surface, ∇η(x, y, t) ≡258

[ηx(x, y, t), ηy(x, y, t)], can be found by digital image correlation (DIC), comparing cam-259

era frames of the dot pattern beneath a perturbed free surface to that of an unperturbed260
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reference frame. Uncertainty in the measured gradients was estimated to be 0.001 based261

on analysis of images taken with a still water surface. Typical measured root mean squared262

(RMS) gradients of the waves were between 0.02 – 0.1 in magnitude, resulting in a rel-263

ative uncertainty of 5% or less.264

The frequency-wavevector spectrum of the wave gradient field in a 10 s time win-265

dow roughly corresponding to a given driven wavemaker frequency was calculated as266

P l(kx, ky, ω) = |P lx(kx, ky, ω)|2 + |P ly(kx, ky, ω)|2, (10)

where P lx and P ly are the three dimensional discrete Fourier transforms in spatial and267

temporal dimensions of the surface gradient components obtained directly from the SS268

method, which are first multiplied with a spatiotemporal windowing filter prior to trans-269

formation,270

F (x, y, t) = exp

[
− 1

2σ2
m

(
x2

L2
x

+
y2

L2
y

+
t2

T 2

)]
, (11)

where Lx and Ly ∼ 0.5 m are the physical lengths of the spatial domain, T = 10 s271

the extent of the temporal domain, and σm = 1/4. The spatiotemporal domain is as-272

sumed to be centered around {x, y, t} = 0 such that F (x, y, t) is peaked in the center273

of the domain. The spectra P l for each time window were summed together to produce274

a single spectrum P =
∑
l P

l containing all frequency spectral components. For the275

purposes in this work, the fact that the wave spectrum is defined with the free surface276

gradient instead of the free surface elevation is insignificant, since the gradient field has277

the same periodicity in space and time as the surface elevation.278
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Figure 3. a) Calculated variation of the phase velocity across the streamwise dimension of the

measurement area for downstream propagating waves, due to the surface boundary layer devel-

opment as well as surface tension gradient. b) Azimuthally-averaged gradient spectra S(k) for

waves atop the four shear profiles considered here. The spectra are normalized by the peak value.

Assuming small wave-steepness, maximum values of the gradient spectrum P are
concentrated on the linear dispersion surface ωDR(kx, ky), which was assumed to be the
sum of two components, a quiescent water term and a term due to the subsurface flow
(1). The quiescent water dispersion relation ω0(k) is of the form

ω0(k) =

√(
gk +

σ

ρ
k3

)
tanh kh, (12)
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with g the gravitational constant, σ the surface tension constant, and ρ the water den-279

sity. The surface tension coefficient depends on the level of contamination of the water,280

and was determined by analyzing the wave spectrum recorded with the pump turned off281

using a pneumatic wavemaker discharging bursts of air at controlled frequencies of 5-10282

Hz. A set of frequency-wavenumber pairs {ki, ωi} were extracted by finding the peak wavenum-283

ber ki of the spectrum along various directions in k space for a given frequency ωi. The284

set of points was then fit to (12) with Γ ≡ σ/ρ the fitting parameter. For the stagna-285

tion region flows, contaminants become concentrated in the viscoelastic surface layer, and286

thus a notably different value of the surface tension coefficient may result when compared287

to quiescent waters where the contaminants disperse over the whole water channel sur-288

face. To obtain a representative value of the surface tension in the stagnation region, we289

insert horizontal bars dipping just below the surface at the upstream and downstream290

boundaries of the measurement region and spanning the entire width of the channel in291

the y-direction prior to turning the pump off. The bars prevent the spreading of the sur-292

face contaminants over the entire channel region when the pump is turned off. Within293

the stagnation region there is in fact a gradient in surface tension in the streamwise di-294

rection, necessary to balance the surface shear stress of the fluid (Harper & Dixon, 1974).295

Using values of the viscosity in clean water and the maximum measured surface shear296

based on profiles measured by PIV, we estimate the variation of the surface tension co-297

efficient σ to be 0.008 Nm−1 across the measurement area, or 8×10−6 m3s−2 in the value298

of Γ, a relative variation of ∼ 20%. We assume the measurements of Γ using the method299

described above to be representative of the spatially averaged value within the measure-300

ment region. The effect of the inaccuracy thus introduced on our results will be discussed301

shortly.302

The process here of determining the surface tension coefficient Γ is specific to the303

small-scale laboratory setup, as in most practical cases in the field the length scales of304

the measured waves are in the regime where surface tension forces can be neglected. In305

cases when investigating short wavelengths in the ocean (e.g., Laxague et al., 2017), a306

reasonable estimate to the surface tension coefficient and density can be assumed a pri-307

ori.308

Both (1) and (12) describe wave propagation assuming fluid properties (Γ, h, and309

U) to be invariant across horizontal spatial dimensions. However, for the case of the stag-310

nation region flows, both Γ and U(z) vary across the streamwise dimension, due to the311

surface shear stress balance and the development of the surface boundary shear layer re-312

spectively. To quantify the effect these variations have on wave dispersion, we calculate313

the difference in phase velocities for a wave propagating at the upstream versus down-314

stream ends of the measurement region. For the case of surface tension, we assume Γ to315

vary by 8×10−6 m3s−2, and for the surface boundary layer, the difference between the316

minimum and maximum values of the measured streamwise velocity measured in upstream317

versus downstream positions for the strongest shear current. The results are shown in318

Figure 3a as a function of wavenumber for waves propagating downstream (similar trends319

occur for upstream propagating waves). The variation of the current profile results in320

a greater variation in phase velocities (∼ 20 mm/s) across the measurement region com-321

pared to surface tension gradients where the variation is ≤10 mm/s for the wavenum-322

ber range shown. The values in Figure 3a place a bounds on potential variations and un-323

certainties of the extracted wave Doppler shifts c̃(k), though it is expected that Doppler324

shifts will be representative of the spatially averaged values across the measurement re-325

gion. For current profiles produced with the curved mesh configuration, significantly less326

variation across the measurement region is expected once the shear profile has reached327

a stable state within the measurement area, and there is in this case no streamwise gra-328

dient in surface tension.329
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The Doppler shift velocities as a function of wavenumber were extracted by ana-330

lyzing the gradient spectrum spectrum P . The range of wavenumbers to consider was331

chosen based on the azimuthally-averaged wave number spectrum:332

S(k) =

∫ 2π

0

∫ ∞
0

dωdθ
(
|Px(k, ω)|2 + |Py(k, ω)|2

)
, (13)

where k = {k cos θ, k sin θ} is defined in polar coordinates here where θ is the angle in333

the x, y plane from the positive x-axis. The spectra of waves atop the four current pro-334

files considered here are shown in Figure 3b as a function of wavenumber, scaled by their335

maximum value. The wavenumber range for extraction of Doppler shifts was chosen to336

be wavenumbers where S(k) was greater than 0.1 of the peak value for wavenumbers less337

than the peak value, and greater than 0.02 of the peak value for wavenumbers larger than338

the peak value. The minimum wavenumber was ∼20 rad·m−1 for all profiles, and the339

maximum between ∼120-190 rad · m−1. A set of wavenumbers ki was specified span-340

ning minimum to maximum values in steps of 2π/(10Lx).341

For each wavenumber ki, Doppler shift velocities were extracted by considering the342

signal P (k, ω) on a cylindrical surface of constant wavenumber magnitude ki in (k, ω)343

space, and using an NSP method (Huang et al., 2016; Huang & Gill , 2012; Serafino et al.,344

2010). The cylindrical surface as well as the dispersion surface from (1) is shown in Fig-345

ure 4a for the case of a depth-uniform current. The method works to effectively deter-346

mine the frequency of intersection ωDR(ki, θ) as a function of θ between the cylindrical347

surface and the dispersion relation surface (which corresponds to peak values of P ), where348

the wavevector arguments of ωDR are expressed in polar coordinates. From (1), it is ap-349

parent that in quiescent waters (c̃(k) = 0) the frequency of intersection is independent350

of azimuth angle, whereas in the presence of a current there is an additional oscillating351

component with amplitude and phase determined by c̃(k), as seen in Figure 4a as the352

dashed curve.353

We proceed by finding Doppler velocity components c̃x,i and c̃y,i at wavenumber354

ki. First, we define a characteristic function355

Gi(ω, θ, c̃x,i, c̃y,i) = exp

[
(ω − ωDR(ki, θ))

2

4a(θ)

]
, (14)

where a = (σmT )−2 is defined based on the Gaussian width in Fourier space given the
applied spatial Gaussian filter F defined in equation (11). Dependence on c̃x,i and c̃y,i
is implicitly included in ωDR. In addition, we consider the second harmonic spectral com-
ponents {2k, 2ω} and define a modified spectrum

P ′i (θ, ω) = 10 logP (ki cos θ, ki sin θ, ω) + 10 logP (2ki cos θ, 2ki sin θ, 2ω), (15)

where P ′i is then scaled such that the minimum value is zero. The signal at the higher356

harmonic is due to the weak non-linearity of the measured surface waves as well as non-357

linearities in the SS measurement system (Senet et al., 2001). Assuming the spectral peak358

associated with the second harmonic has comparable spectral width as the fundamen-359

tal harmonic, the contribution to the peak from the second term in (15) would have a360

smaller width in θ-ω space due to the factor two in the argument of P . Including the sec-361

ond harmonic may thus increase the sensitivity to currents by making the peak of P ′i more362

localized. Example values of P ′i on cylindrical surfaces of constant wavenumber are shown363

in Figure 4b and c for ki = 75 and 125 rad·m−1 respectively, as a function of θ and ω364

for waves atop a shear current. In both cases, the peak frequency as a function of θ dis-365

plays a clear oscillatory trend due to the presence of shear as expected.366

We find the Doppler shift velocities by maximizing the scalar product N between367

G and P ′i :368
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Figure 4. a) An illustration of the dispersion surface (1) and a cylindrical surface of constant

wavenumber, with the intersection shown as the dashed curve. b)-c) Values of the modified gra-

dient spectrum P ′i (ki cos θ, ki sin θ, ω) on the surface of constant wavenumber for ki = 75 and 125

rad · m−1, respectively. The frequency as a function of θ reflecting the extracted Doppler shifts is

shown as the dashed curve, while the frequency in quiescent waters is shown as the dotted line.

N(c̃x,i, c̃y,i) =
〈G(ω, θ, c̃x,i, c̃y,i)P

′
i (θ, ω)〉

〈G〉〈P ′〉
, (16)

where 〈...〉 indicates a double integral over θ and ω (the same integral as (13)). To avoid369

local maxima other than those associated with the dispersion relation, N is first eval-370

uated on a grid of points spanning expected values of the Doppler shift velocity compo-371

nents, with the Doppler shifts corresponding the maximum value of N used as an ini-372

tial guess for further optimization. The resulting curves ωDR(ki cos θ, ki sin θ) from the373

fitting routine are shown as the dashed lines in Figure 4b-c. The dotted lines show the374

frequency in quiescent waters. As can be seen, there is a distinct departure in the peak375

signal as a function of angle that is captured by the NSP fit, but inconsistent with the376

quiescent water frequency as it should be. The Doppler shifts as a function of wavenum-377

ber are expected to display a smooth functionality based on (2), and values were removed378

using an outlier filter. Both components were fit to a first order polynomial to produce379

functions c̃Ox (k) and c̃Oy (k). Outliers were identified by considering the set {c̃x,i−c̃Ox (ki)}380

(and the equivalent for the y-direction) and data lying more than 1.5 times the interquar-381

tile range below the first quartile and the same interval above the third quartile were re-382

moved.383
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Figure 5. Current profiles measured by PIV. The error bars denote the range of measured

velocities at different streamwise and spanwise positions within the wave measurement area. The

water depth was 95 mm for profiles a)-c) and 80 mm for Profile d).

Table 1. Summary of properties for the four laboratory current profiles.

Profile Flow Type Water Depth Flow rate Γ
[mm] [m3/s] ×10−5 [m3s−2]

a Stagnation region 95 0.021 3.8± 0.05
b Stagnation region 95 0.017 2.8± 0.1
c Stagnation region 95 0.014 2.7± 0.1
d Curved mesh 80 0.014 6.7± 0.1

4 Results and Discussion384

To validate and examine the accuracy of the PEDM, we apply it to Doppler shifts385

measured in the laboratory setup with the current profile measured by PIV used as “truth”386

measurements to compare against. We consider experimental data for waves atop 4 dif-387

ferent shear flows, referred to as profiles a-d), shown in Figure 5. Profiles a-c) are in the388

stagnation region at different flow rates which lead to varying near surface shear strengths389

and curvature. Profile d) was produced using the curved wire mesh, and had weaker sur-390

face shear strength and near-constant vorticity with depth. The parameters including391

the measured surface tension coefficient Γ are given in Table 1. The velocity was not mea-392

sured for the bottom ∼1-2 cm depth where the bottom boundary layer was located.393

The measured Doppler shifts using the NSP method described in section 3 for the394

four profiles are shown in Figure 6. Doppler shifts c̃Fx (k) calculated with theory assum-395

ing the measured PIV profile are shown as the dashed curves. As no mean flow in the396

y-direction was expected, the true values of the y-components of the Doppler shifts c̃y,i397

were assumed to be zero at all depths. Differences between experiment and theory are398

≤ 1 cm/s over most wavenumbers, except for a 1-2 cm/s bias for profile a). The rea-399

son for the bias is not known, yet could be a result of a greater streamwise variation in400

the shear profile given that the pump power was greatest for this profile.401
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Figure 6. Experimentally measured Doppler shifts as a function of wavenumber, for current

profiles a-d) shown in panels a-d) respectively. The x-marks are the x-component of the Doppler

shifts, while the circles are y-component. Calculated Doppler shifts from theory using the current

profile as measured by PIV are shown as the dashed curves.

The PEDM was implemented as described in section 2.1.2 for each component of402

the Doppler shifts separately. Current profiles UPEDM(z) were calculated with 900 com-403

binations of the parameters nmax, δzT , and δzB : 10 values of δzT and δzB each, rang-404

ing from 0.5-4 mm and 1-20 mm, respectively, and 9 values of nmax ranging from 2-10.405

For each combination, the RMS difference εRMS between the measured Doppler shifts406

and those from the forward problem with UPEDM(z) was evaluated. Profiles where the407

initial polynomial fit UEDM(z) was not monotonic were discarded. The combination of408

parameters that gave the lowest value of εRMS were used to produce a profile that was409

presumed to be the most probable estimate.410

The monotonic assumption was based on the fact that the Doppler shifts (of which411

UEDM(z) is based) can be viewed as a weighted average of the current depth-profile, thus412

resulting in a large degree of smoothing of oscillations in the true profile when consid-413

ering UEDM(z) obtained from the mapped depths. Over a finite range of wavenumbers,414

it is assumed that the true Doppler shifts are monotonic for most all realistic current pro-415

files, and that profiles UEDM(z) that are not monotonic result from errors in the Doppler416

shifts. It is however important to note that the monotonic assumption here does not also417

constrain the profile UPEDM(z), given the scaling of the polynomial coefficients.418

The process of calculating UPEDM(z) profiles and evaluating εRMS for the 900 com-419

binations of PEDM parameters with roughly 100 wavenumber-Doppler shift pairs took420

approximately 6 minutes on an Intel R©CoreTM i7-4770 3.40 GHz processor with 32 GB421

of RAM. However, the vast majority of time was spent evaluating εRMS using the direct422

integration method. It is noted that for cases where all wavenumbers can be assumed423
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Figure 7. Results of the PEDM applied to the x-components of the measured Doppler shifts

for profiles a-d). The profile measured by PIV U(z) is shown as the solid curve, with error bars

denoting the range of measured velocities at different streamwise and spanwise positions within

the wave measurement area. The initial mapped profile UEDM(z) is also shown for comparison.

The vertical depth-axis extends down to the greatest mapped depth, and the legend applies to all

panels. The shaded regions are bounds on the current strength based on all PEDM profiles using

parameter combinations (nmax, δzT , and δzB) where εRMS was within 10% of the minimum value.

to be in deep water and the approximation accuracy of (2) is deemed sufficient, (5) may424

be used to evaluate c̃F,i directly from the PEDM polynomial coefficients. When using425

(5), the same process took only 16 s.426

The results of applying the PEDM to the x-components of the Doppler shifts for427

the four profiles are shown in Figure 7. The black curve denotes the current profile as428

measured by PIV, the average over the spatial locations within the wave measurement429

area with the error bars denoting the maximum and minimum values measured by PIV430

over the spatial locations. Profiles UEDM(z) and UPEDM(z) using the optimal set of pa-431

rameters are shown as the dash-dotted and dashed curves respectively, along with the432

mapped Doppler shifts. For profiles a-c), the PEDM is a clear improvement over the EDM433

with notably increased accuracy over most all depths. Given the relatively strong cur-434

vature of the profiles, the assumption of a linear profile that was inherent in the map-435

ping function is not valid here, and the mapped Doppler shifts deviate notably compared436

to the measured current profile. The deviation is greatest for profile a) and successively437

decreases for profiles b) and c) which is expected based on the weakened curvature of438

these profiles. For profile d) where the true profile has near-constant vorticity, the as-439
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Table 2. Summary of the optimal parameters and results of the PEDM applied to x-

components of experimentally measured Doppler shifts.

Profile nmax δzT δzB ∆UEDM
RMS ∆UPEDM

RMS
∆UEDM

RMS

∆UPEDM
RMS

[mm] [mm] [mm/s] [mm/s]

a 8 0.5 17.9 34.2 8.9 3.8
b 8 0.5 3.1 21.9 4.3 5.1
c 10 1.7 5.2 14.2 3.0 4.8
d 3 4.0 7.3 3.0 3.4 0.9

sumption of a linear profile is largely valid and the PEDM offers negligible improvement440

in accuracy over the EDM as may be expected. The shaded regions are discussed shortly.441

To evaluate the improvement in accuracy of the PEDM, we calculate the depth-442

integrated RMS difference ∆URMS between UPEDM(z) or UEDM(z) and the profile mea-443

sured by PIV over the range of mapped depths. The results are summarized in Table444

2, along with the optimal PEDM parameters for each profile. The ratio shown in the right-445

most column is the degree of improvement in accuracy achieved by the PEDM relative446

to the EDM. An improvement of > 3× is achieved for profiles a-c), with a maximum447

improvement of 5.1× for profile b). For profile d), the PEDM is marginally less accu-448

rate than the EDM, yet the absolute value of ∆URMS remains small compared to the other449

profiles. For all profiles, the PEDM achieves a depth-integrated RMS absolute accuracy450

< 10 mm/s relative to the PIV profiles.451

4.1 Dependence on PEDM parameters452

By using the combination of parameters nmax, δzT , and δzB that give the mini-453

mum εRMS value, the values are thus set algorithmically during the running of the PEDM454

“algorithm” rather than as a required input determined prior to it. Thus from a user455

perspective the method is made effectively parameter free as we will now explain. It is456

noted that the same parameters are necessary in the use of the EDM as well, in creat-457

ing a smooth velocity profile to fit the set of mapped Doppler shifts.458

We examine the dependence of the results on the choice of the PEDM parameters459

by calculating ∆URMS for each combination of parameters for both UEDM(z) and UPEDM(z),460

and plotting ∆URMS against εRMS as is shown in Figure 8 for the four current profiles.461

Also shown are results assuming a depth-uniform profile (nmax = 0) and constant shear462

(nmax = 1) which are independent of the choice of δzT and δzB . It is noteworthy that463

∆URMS cannot be evaluated in realistic situations where “truth” measurements do not464

exist, so a criteria for choosing the optimal set of PEDM parameters to achieve a small465

value of ∆URMS is desired based on metrics such as εRMS that may be readily evaluated466

purely from the wave spectral data. The parameter combinations resulting in the min-467

imum value of εRMS are outlined with the open green squares in Figure 8, correspond-468

ing to the profiles UPEDM shown in Figure 7.469

Ideally, there would be a strong correlation between small values of εRMS, which470

can be calculated from the experimental data only, and ∆URMS for which it is our goal471

to minimize. In Figure 8a-b) for the profiles with the strongest curvature, there is no-472

ticeable correlation for the smallest values of εRMS. For those cases, various values of εRMS473

all yield values of ∆URMS that are a significant improvement over the EDM cases (shown474

as the circles). It is notable that for profile b) where the PEDM profile with lowest value475

of εRMS yielded a 5.1× reduction in ∆URMS relative to the EDM, other points near the476
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Figure 8. ∆URMS and εRMS for all PEDM parameter combinations for current profiles a-d).

Resulting profiles assuming depth-uniform flow (nmax = 0) and constant shear (nmax = 1)

are also shown. The legend applies to all panels. The open squares (green) mark the parameter

combination with minimum εRMS that was used for the UPEDM(z) curves shown in Figure 7.

minimum εRMS value still give a ∼3X or greater improvement in accuracy (the same be-477

ing true for profile a)). For profiles c) and d), there is significantly less correlation be-478

tween εRMS and ∆URMS. Nonetheless, for profile c), the minimum value of εRMS yields479

a value of ∆URMS that is notably less than that of the EDM and constant shear case.480

For profile d) there is no significant difference in ∆URMS between the EDM, PEDM, and481

constant shear cases considering the smallest values of εRMS, which may be expected given482

the approximately linear form of the current profile. For all cases, there is a distinct im-483

provement in accuracy relative to the depth-uniform assumption. In addition, for all pro-484

files the EDM displayed a similar level of accuracy relative to the case of constant shear,485

which is reasonable given that the same assumption was inherent to the EDM. Further-486

more, profiles a) and b) with the greatest degree of curvature display the largest improve-487

ment over the constant shear case considering the lowest values of εRMS.488

Choosing the optimal set of PEDM parameters based on εRMS in a sense can be489

considered to yield the most probable current profile, i.e. the profile that agrees to the490

greatest degree with the experimentally measured Doppler shifts. However, given exper-491

imental noise it is useful to examine the variation in current profiles for parameter com-492

binations that yield values of εRMS near the minimum value, as those profiles may be con-493

sidered nearly as probable. We calculate the bounds on the range of current values as494

a function of depth considering all profiles where εRMS is within 10% of the minimum495

value, and show these bounds as the shaded regions in Figure 7. For the stagnation re-496

gion profiles a-c), the spread is narrowest for a-b) which may be expected based on the497

stronger correlation between εRMS and ∆URMS as shown in Figure 8, where small val-498
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ues of εRMS yield a smaller spread in the values of ∆URMS. For profile c), the spread in499

∆URMS is much greater, and less accurate profiles with near constant shear are included.500

As Figure 8c shows, the lowest value of εRMS is much closer to that of the EDM even501

though the improvement in ∆URMS is very significant. Had the threshold for the shaded502

region been set lower, the least good, near-linear profiles would be excluded.503

Another potential reason for the increased spread in profile c) is the fact that the504

measured Doppler shifts appear slightly less smooth as a function of wavenumber when505

compared to profiles a-b). Furthermore, for profile a) where the measured Doppler shifts506

displayed a bias relative to those calculated from theory yet are relatively smooth as a507

function of wavenumber, the PEDM results in a very narrow spread around the most prob-508

able current profile that also has a corresponding bias towards reduced current strength509

near the surface compared to the PIV profile.510
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Figure 9. Same as Figure 7, for the y-components of the Doppler shifts. For this spanwise

direction, the current was assumed to be zero for all depths (not measured).

The same procedure and data analysis is applied to the y-components of the mea-511

sured Doppler shifts and shown in Figures 9 and 10. As there was expected to be no cur-512

rent in this direction for all cases, the results represent the case of a depth-uniform pro-513

file in a moving reference frame. As expected, there is negligible improvement in accu-514

racy using the PEDM relative to the EDM. The results serve as further important con-515

firmation that the PEDM results do not deviate significantly from the results of the EDM516

in cases where the assumptions of a linear profile are valid. As shown in Figure 10, as-517

sumption of constant shear results in roughly the minimum value of εRMS, with only a518

slight increase in ∆URMS relative to the depth-uniform current assumption. Due to ex-519

perimental noise, results for both the EDM and PEDM result in slightly sheared cur-520

rent profiles, yet absolute values of ∆URMS remain <1 cm/s for all parameter combina-521
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tions in the vicinity of the minimum εRMS value. Note that the range of values of the522

horizontal current strength axis in Figure 9 is reduced compared to Figure 7.523
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Figure 10. Same as Figure 8, for the y-components of the Doppler shifts.

4.2 Scalability and Applicability of the Results524

Given the small scale of the laboratory setup and the use of a different method to525

measure the wave spectrum than what may be used in the field, some discussion of the526

scalability and applicability of the results reported herein is warranted.527

The absolute accuracy achieved herein with the PEDM is related to the scale of528

the setup, as well as the characteristics of the wave spectrum. The more pertinent met-529

ric is the fractional improvement in accuracy relative to the EDM, which is expected to530

be scalable to larger measurement setups and different techniques of measuring the wave531

spectrum. The relative improvement using the PEDM is related to the form of the cur-532

rent profile. In cases where the profile is approximately linear over the range of depths,533

limited improvement is expected since the approximation to which the EDM’s mapping534

function was based is valid. In cases where the current profile has greater curvature near535

the surface, the PEDM is found to yield a greater fractional improvement in accuracy.536

The PEDM thus acts in a sense to improve the estimate to the current profile where pos-537

sible, while performing similarly with the EDM otherwise. Note that the shape of the538

lab current profiles in the stagnation region, profiles a-c) in Figure 5, are representative539

of a scaled-down surface shear layer such as may be produced in the wind-swept ocean540

Ekman layer or in a river delta plume such as reported by Kilcher & Nash (2010). They541

differ in shape only by a constant subtraction of the deep-water velocity which corresponds542

to a constant offset in Doppler shifts.543
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Figure 11. Doppler shift velocity bounds based on the pixel sizes in Fourier space, resulting

from the spatial and temporal extent of the measurement domain.

4.2.1 Resolution544

The absolute accuracy of the Doppler shifts is fundamentally determined by, among545

other factors, the size of the measurement domain Lx which sets the resolution in k-space,546

∆k= 2π/Lx. Herein, the extraction of the Doppler shift velocities was performed by eval-547

uating the wave spectrum on a surface in spatiotemporal Fourier space with wavenum-548

ber k kept constant, requiring interpolation between the available discrete values of {kx, ky}.549

A smaller value of ∆k reduces errors due to interpolation and also decreases the spec-550

tral leakage from neighboring wavenumber components. In an attempt to bound the un-551

certainties in Doppler shifts caused by interpolation we define a velocity shift ∆c∆k so552

that553

k∆c∆k(k) =
dω0(k)

dk
∆k. (17)

∆c∆k(k) is thus the depth-uniform current velocity that causes the linear dispersion sur-
face to move by approximately one pixel in k-space for the relevant constant frequency
ω0(k). The values of ∆c∆k over the range of wavenumbers where Doppler shifts were ex-
tracted are shown in Figure 11 (see also Figure 6 for the Doppler shift wavenumber range).
Another source of uncertainty in the Doppler shift involves the spread of the spectrum
in frequency space, related to ∆ω = 2π/T , where T is the total measurement period.
Again, we transform this quantity to a velocity:

∆c∆ω(k) = ∆ω/k, (18)

which is also shown in Figure 11. Given the sizes of our measurement domain in space554

and time, ∆c∆k is nearly an order of magnitude greater than ∆c∆ω over the range of rel-555

evant wavenumbers, indicating that resolution in k-space is the main contribution to un-556

certainties in the Doppler shifts. Examining the figure gives an estimate to the upper557

bounds to the uncertainties that can be expected in the Doppler shifts, and similarly the558

reconstructed profiles due to the finite spectral resolution. Comparing the values of ∆c∆k559

to the values of ∆URMS from the PEDM, it is evident that a great degree of sub-pixel560

resolution is achieved using the NSP and PEDM methods: ∆URMS is less than the min-561

imum value of ∆c∆k for all current profiles, being orders of magnitude less than values562

of ∆c∆k for the lower wavenumbers.563

We note that values of ∆c∆k and ∆c∆ω for full-scale measurements in the ocean564

using for example X-band radar are typically within an order-of-magnitude of the val-565

ues shown in Figure 11, assuming spatial domain size Lx ∼ 750 m, T ∼ 10 min, and566
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wavenumbers in the range of 0.05−0.3 rad·m−1 as is common (e.g. Lund et al., 2015).567

Thus, though values of ∆URMS from measurements in the ocean at large scales are ex-568

pected to be larger than those reported here, it is not expected that the errors will in-569

crease by orders-of-magnitude.570

4.2.2 Scalability571

Consider now how the small-scale experimental setup scales up to an oceanographic572

scale. First, it is obvious that the one effect which does not scale up, is that of surface573

tension, which is utterly negligible at the wavelengths measurable with e.g. X-band radar.574

In our experiment we do observe Bond number ρgλ2/σ . O(1) at the shortest wave-575

lengths, yet the majority of our spectrum lies in the gravity wave regime, thus being phys-576

ically directly comparable. This said, the PEDM method is not sensitive to whether or577

not the dispersion relation has capillary corrections at high k, and so the stringency of578

our testing is little altered by this.579

Assuming wavelengths to lie in the gravity wave regime, and assuming essentially
infinite depth as is approximately true of our experiment, the system scales in the fol-
lowing way. Now only a single nondimensional group remains, a shear-Froude number
based on three physical parameters: a typical wavelength of the spectrum, g, and a suit-
ably defined depth-averaged shear. A suitable definition is

FrS(k) =
1√
gk

∫ 0

−∞
dzk ·U′(z)e2kz =

〈S〉k
ω0(k)

, (19)

referred to as δ by Ellingsen & Li (2017). 〈S〉k is the depth averaged shear along k suit-580

ably weighted for wave number k. Full similarity can be obtained if, by scaling up the581

velocity profile to oceanographic scale, the range of important k-values in the wave spec-582

trum yields the same values of FrS . Let’s assume U(z) is the lab current, and an oceano-583

graphic current of the same shape is UO(z) = u∗U(δz) with δ a small parameter de-584

scribing the slower variation with depth and u∗ the fraction of the velocities at z = 0.585

To probe the velocity profile into the depth in a similar manner as before, a lower wave586

number (i.e. longer wavelength) k′ = δk is required. On the whole we obtain FrS →587

u∗
√
δFrS . In other words, similarity is in order if u∗

√
δ ∼ O(1).588

Our most strongly sheared velocity profile, in Figure 7a), resembles in shape and589

magnitude a very strong oceanographic velocity profile, such as that can be found in the590

Columbia River delta (Kilcher & Nash, 2010), if we let δ = 1/500 and u∗ = 12, for591

example, resulting in u∗
√
δ ∼ 0.54 and shear-Froude numbers of the same order of mag-592

nitude. Wavelengths 500 times those of the lab are reasonable for waves in the area, be-593

tween 8 and 80 m for the wave numbers of Figure 6. Hence we conclude that, while the594

strongest shear tested in the lab is a little stronger than can be expected of a particu-595

larly strong scaled-up equivalent, it is a satisfactory test of the PEDM theory in real-596

istic settings. Given the ease of high quality flow measurements, scaled-down lab exper-597

iments thus offer an ideal test-bed for studies of ocean wave propagation on shear cur-598

rents.599

We now comment on the range of depths at which the near-surface current pro-600

file is estimated. The depth range is determined directly by the range of mapped depths,601

and hence the range of wavenumbers in the measured spectrum. Though the choice of602

the mapping function is in a sense arbitrary, we argue the choice is reasonable based on603

intuition considering (2). At a depth (2k)−1 the cumulative integral of the weighting func-604

tion 2ke2kz is 0.63, i.e. a wave is influenced by roughly comparable amounts by currents605

at greater vs. shallower depths, indicating a reasonable choice of the depth assignment606

for most current profiles. Given the rapidly decreasing sensitivity of waves to currents607

at greater depths, the polynomial fits of the PEDM can be considered to be an expan-608

sion of the near-surface current profile in the top layer of the water column, valid over609

the depth range of the mapped Doppler shifts. As is well-known with polynomial fits,610
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large errors can result with extrapolation for prediction of currents at greater depths.611

In the laboratory experiments reported here, the depth range of the reconstructed flow612

is only a few centimeters, while in the ocean with wave spectra measured by X-band radar613

the depths may extend to tens of meters, given a roughly three orders of magnitude in-614

crease in the scale of the measured wavenumbers.615

4.2.3 Wave spectrum measurement616

For the laboratory results presented here, the wave spectrum was measured using617

a synthetic Schlieren method which measures directly the gradient components of the618

free surface, differing from methods that are practical for field measurements on a larger619

scale. However, for the purposes of inversion methods, all that is required is a signal that620

has the same periodicity in space and times as the wave spectrum. As mentioned in the621

introduction, various methods of measuring the wave spectrum in the radar and opti-622

cal regime have already been used in reconstructing near surface currents. The choice623

of the wave spectral measurement method affects primarily the range of wavenumbers624

that are probed and is relatively inconsequential in terms of the inversion method pro-625

cess, affecting only the details of extraction of the Doppler shifts. A main difference be-626

tween field measurement techniques such as X-band radar and the SS is that the map-627

ping of free surface elevation to measured signal is, to a greater degree, nonlinear. The628

nonlinearities result in a signal at higher harmonics in the wave spectrum, yet the fun-629

damental harmonic has the same periodicity in space and time as true wave component.630

Furthermore, the NSP method uses the signal at the second harmonic in determining631

the Doppler shifts. Thus, though the SS method employed in this work is impractical632

to be used in field measurements at larger scales, it can be viewed as an equivalent tech-633

nique to those used in the field for the purposes here of fundamentally studying inver-634

sion methods.635

4.2.4 Applications636

The PEDM method may be applied to Doppler shifts extracted from wave spec-637

tra obtained by observation techniques readily available with today’s technology, such638

as X-band radar or optical images of the ocean surface, as well as potential future meth-639

ods for remotely sensing the directional wave spectrum. The Doppler shifts may be ex-640

tracted by a number of means such as least squares techniques or the NSP method de-641

scribed and further developed herein.642

As demonstrated in figure 7, the PEDM offers greatest improvement in accuracy643

over the EDM in cases where the current profile has strong near-surface curvature within644

the range of mapped Doppler shifts. For the case of wave spectra measured by X-band645

radar where the mapped depths may typically be on the order of 2-10 m (e.g. Lund et al.,646

2015), current profiles with strong curvature are expected to occur in times of high winds,647

and at specific locations such as river deltas with strong shear currents driven by den-648

sity differences in the fluid (e.g. Kilcher & Nash, 2010). Use of the PEDM to achieve a649

more accurate current depth-profile under such circumstances could result in improved650

characterization of submesoscale currents (Lund et al., 2018),improved estimates of wave651

steepness for predicting breaking waves (Zippel & Thomson, 2017), and improved map-652

ping of shear currents for coastal engineering applications, for example. Under extreme653

sea states such as during hurricanes, improved accuracy in the reconstruction of remotely-654

sensed shear current profiles could allow for better prediction of wave and current forces655

on structures, where Dalrymple (1973) has shown that currents even with velocities small656

compared to the wave orbital velocities can result in a notable increase in the forces on657

structures. In the latter case, however, strong wave nonlinearity and imaging difficulties658

may make remote sensing difficult in practice.659

–22–



For wave spectra measured using optical-based methods, the range of mapped depths660

is typically significantly shallower than for X-band radar data, in some cases resolving661

the top few centimeters of the water column where the current may have strong curva-662

ture even under moderate conditions (Laxague et al., 2018). The PEDM has the poten-663

tial to improve the accuracy of the reconstruction in such cases, furthering applications664

such as studies of the air-sea interaction as well as the transport of contaminants near665

the ocean surface (Laxague et al., 2018).666

In conditions where the current profile is approximately depth-uniform over the range667

of mapped depths, the PEDM is not expected to increase the accuracy of the reconstructed668

currents compared to the EDM or other existing methods which assume depth-uniform669

flow, yet figure 9 demonstrates that the PEDM gives essentially identical results in such670

cases, eschewing the need to employ different methods in different conditions. By be-671

ing simple to employ and performing equally well or better than current methods, we672

propose that the PEDM can replace competing inversion methods in current use in most673

situations. The exception we can imagine is situations where calculation cost is a very674

severe restriction.675

4.2.5 Limitations and challenges676

As with all inversion methods, the absolute accuracy of the PEDM is affected by677

the wave spectrum bandwidth in terms of wavenumber and angular spread. Reconstruc-678

tion of the depth profile of the flow places more stringent demands on the wave spectrum679

having a broader range of wavenumbers and directions, when compared to methods aimed680

at estimating a single (depth-uniform) velocity vector, given the additional fitting pa-681

rameters associated with the PEDM method: the PEDM involves nmax+1 polynomial682

coefficients for each horizontal dimension, whereas depth-uniform estimation requires only683

one. The need for a sufficient spectrum of waves to be present, however, is due to fun-684

damental physics and will affect any method whereby currents are estimated from sur-685

face wave dispersion. If the currents have no surface imprint, clearly they simply can-686

not be inferred from surface measurement. Likewise, sufficient image quality is a fun-687

damental requirement for all methods.688

In addition, under some circumstances such as extreme sea states nonlinear wave689

interactions become more prevalent, in which case analysis of the wave spectrum becomes690

more complicated due to the presence of bound waves. The same complication has also691

been observed for moderate wave slopes in a wind wave tank (Laxague et al., 2017). An-692

alyzing the wave spectrum to extract the Doppler shifts corresponding to currents when693

nonlinear wave interactions are prevalent requires further study.694

The PEDM method, like other similar methods which it aspires to replace, assumes695

horizontally homogeneous currents. When the horizontal variation is not slow compared696

to all relevant wavelengths, such as will often be the case particularly in coastal areas,697

more advanced methods will be required, beyond the current state-of-the-art.698

5 Conclusions699

A new method for reconstructing near surface current profiles from measurements700

of the wave spectrum has been presented, demonstrated and carefully tested and com-701

pared to the state-of-the-art inversion method.702

The method is easy to implement. It takes the present state-of-the art technique703

of assigning effective depths to measured Doppler shift velocities (the effective depth method,704

EDM) as its starting point. A polynomial fit is made to the EDM profile from whose co-705

efficients a new velocity profile estimate of polynomial form is created via a simple de-706

rived relation. The resulting polynomial profile is an improved estimate to the true cur-707
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rent profile compared to state-of-the-art methods such as the EDM as it does not make708

any a priori assumptions on the general shape of the profile, and involves very little added709

complexity.710

Our new polynomial effective depth method (PEDM) was tested on data obtained711

from a laboratory setup where background currents of different depth profiles could be712

created in a controlled manner and measured independently using particle image velocime-713

try which was used as “truth” measurements. The laboratory setup is an ideal test-bed714

for further studies regarding remote sensing of near-surface shear currents given the large715

degree to which the current profile and wave spectrum can be controlled and the straight-716

forward scalability of the results up to oceanic scales. The PEDM offers a > 3× improve-717

ment in accuracy relative to the EDM for profiles with strong near-surface curvature.718

For cases where the true current profile has approximately constant shear, the assump-719

tions upon which the EDM is based are fulfilled, and the PEDM offers limited improve-720

ment in accuracy. The estimate produced is then similar to that of the EDM in accu-721

racy and shape, demonstrating the robustness of the method.722

A simple criterion was developed to determine optimal values for parameters in-723

volved in the polynomial fits to achieve the most probable current profile estimate. The724

criterion depends on the measured Doppler shift data only, and thus the PEDM involves725

no free parameters. A novel adaptation of the normalized scalar product method (NSP)726

was developed to extract Doppler shifts from wave spectra at multiple wavenumbers, in-727

cluding the second harmonic of the spectrum.728

The results indicate that the method can be applied to full scale field measurements729

to obtain higher accuracy in reconstructing near surface shear profiles from the wave spec-730

trum, beneficial across a wide variety of oceanic applications.731
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