A NOTE ON ENTIRE L-FUNCTIONS

ANDRES CHIRRE

ABSTRACT. In this paper, we exhibit upper and lower bounds with explicit constants for some objects related
to entire L-functions in the critical strip, under the generalized Riemann hypothesis. The examples include

the entire Dirichlet L-functions L(s, x) for primitive characters yx.

1. INTRODUCTION

Recently, new estimates for some objects related to L-functions have been given. In particular, we have
estimates for the Riemann zeta-function [3], 4} [5, [6], [7, 0] under the Riemann hypothesis. For a general family
of L-functions in the framework of [IT, Chapter 5], we have similar estimates in the critical line [5] [6] [8], [10]
under the generalized Riemann hypothesis. The purpose of this paper is to exhibit explicit bounds for a
family of entire L-functions in the critical strip. The proof of these estimates is motivated by the ideas of
Carneiro and Chandee [3], and Carneiro, Chirre and Milinovich [7] on the use of the Guinand-Weil explicit

formula applied to special functions with compactly supported Fourier transforms.

1.1. Entire L-functions. In this paper we study a family of entire L-functions that includes the Dirichlet
series L(s, x) for non-principal primitive characters y. Similar families of L-functions are studied in [, [12].
We adopt the notation

[gr(s) :=n"%%T (%) ,

where T is the usual Gamma function. Throughout this paper we consider that an entire function L(s,)

meets the following requirements (for some positive integer d):

(1) There exists a sequence {Ar(n)},>1 of complex numbers (A;(1) = 1) such that the series

A (n
3 n(s)

n=1

converges absolutely to L(s,7) on {s € C; Res > 1}.

(ii) For each prime number p, there exist o »(p), a2 x(p), ..., aq(p) in C such that |o; (p)| < 1, and

L(s,m) = Hf[ (1 - O‘j’”(p)>_1,

S
b 1 p

where the infinite product converges absolutely on {s € C;Res > 1}.
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(iii) For some positive integer N and some complex numbers p1, pa, . . ., ptqg with nonnegative real parts and

such that {u1, po, ..., pat = {@1, 02, - . ., a }, the complete L-function
d
A(Sa 71—) = NS/Q H FR(S + /u‘j)L(Sa 77)
j=1

is an entire function of order 1 having no zeros in 0 and 1. Furthermore, the function A(s,7) := A(S, )

satisfies the functional equation
A(s,m) =k A(1 — s,7),

for some complex number  of norm 1.

Now, by using the product expansion of L(s,7) and the inequality | »(p)] < 1 we obtain thatﬂ
d
|log |L(s, m)|| < dlog((Res) < 5ros (1.1)

for any s with Res > % Besides, we have that

r = Ax(n)
f(sﬂr)__; s

n

(1.2)

converges absolutely if Res > 1, and A, (n) = 0 if n is not a power of prime and A, (p*) = Z;l:l aj.(p)*logp

if p is prime and k is a positive integer. Thus

|Az(n)| < dA(n). (1.3)

2. MAIN RESULTS

Let n > 0 be an integer, % < o <1 be a real parameter, and L(s,7) be an entire L-function in the above
setting. For t € R (and ¢ not coinciding with the ordinate of a zero of L(s, ) when n = 0) we define the

iterates of the argument function as

N oo /
Sno(t,m) = _1Im{z'/ (u—0o)" Lf(u—i—itﬂr) du}.

71' n!
If ¢ is the ordinate of a zero of L(s,7) when n = 0 we define

So.0(t,m) = lim So,0(t+¢,7) -; Soo(t —&,m)
e—

Differentiating under the integral sign and using integration by parts, one can see that S, , (t,7) = Sp_1,,(t, )
for t € R (in the case n = 1 we may restrict ourselves to the case when t is not the ordinate of a zero of
L(s,7)). We finally define

/

1 L
S_1.(t,m) = ;Re f(a +it, ),

when ¢ is not the ordinate of a zero of L(s, 7). We can see that S{ ,(t,m) = S_1 ,(t,7), when ¢ is not the

ordinate of a zero of L(s, ).

Theorem [T] below provides estimates for the above mentioned objects and for the logarithm of the modulus

of L(s, ) in the critical strip. These results are based on the generalized Riemann hypothesis, which states

1Throughout the paper we use the notation f < g to mean that for a certain constant C > 0 we have f(t) < Cyg(t) for
t € Dom(f) N Dom(g). In the subscript we indicate the parameters in which such constant C' may depend on.
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that A(s,m) # 0 if Res # % As in [Bl [6, B, 0], the analytic conductor of L(s, ), which is defined by

d
H |it + 5] +3),

will appear in our results. For an integer n > 0 we introduce the function

o0 k
x
H,(x) = .
= (k+1)
In particular, when 0 < |z| < 1 we have that
log(l £«
e ] 2

Theorem 1. Let L(s,m) be an entire L-function satisfying the generalized Riemann hypothesis. Let ¢ > 0

be a given real number. Then, for % <o <1andteR in the range
(1 —0)%loglog C(t,7) > c,

we have the following uniform bounds:

(i) For the logarithm, E|

(log C(t, )22 d (o) (log C(t,))%=2° .
loglog C(t, ) +Oc((1 —0)?(loglog C(t,w))Q) < log|L(o +it, )|
4\ (logC(t,m))*~27 d(log C(t,m))%~2°
7 (®) loglog C(t, ) © ((1 —0)?(loglog C(t,w))Q)

—M; (t)

(ii) For n > —1 an integer,
(log C(t,7))?~2 O dp, 4(c) (log C(t, m))22% < Sa(tm)
(loglog C(t,m))n+1 \ (1= 0)2(loglog C(t, m))n+z ) = 7motb

(log C(t,m))?~2 o ( duj;d(a) (log O(t,w))?=2° )
(loglog C(t,m))n+1 (1 —0)2 (loglog C(t, m))"t2

_MT:,O'(t)

< M, (1)

The functions appearing above are given by
o For the logarithm,
1 d(20 —1 log(o — L
My(t) =5 H1(3F (logC(t,w))”Q") PACIA) (o) = [log(o — 3)
2 a(l—o0)
e Forn >1 odd,

1 (nt1)
Mia(t) = ontin <Hn+1(:l: (=1)=

e Forn=—1,

o d(20—1) B
(log C(t,m))' 72 ) + 0(1_0)) and uid(o) =1.

(1 ot m)=27) + L= ana 1, ) = (o~ 17

S
H_
5
N
Il
|

e Forn=0,

N

M, (1) = (2(M7, (1) + Mi, (1) M, (1) and i (o) = (20 = 1)+ 1.

2Throughout the paper we use the notation f = O(g) to mean that for a certain constant C > 0 we have |f(t)] < Cg(t) for ¢
sufficiently large. In the subscript we indicate the parameters in which such constant C' may depend on.

3



e Forn > 2 even,

M, (t) =

1
(%MﬁLAw+waHﬁw>M;L4wM;LAﬂ) ond it o(0) = (20— 1+ 1.

Mril,a(t) + M, ,(t)

When ¢ — % in the above theorem we obtain a sharpened version of the results in [5] [©, [8 [10] for
the case of entire L-functions with improved error terms (a factor logloglog C(t,w)% has been removed).

Furthermore, for a fixed 3+ < 0 < 1 we obtain bounds as C(t,7) — co.

Corollary 2. Let L(s,m) be an entire L-function satisfying the generalized Riemann hypothesis and let
n > —1. Let % <o <1 be a fivzed number. Then

. 1 2 — 1 (log C(t, m))*~>
log|L(o +it,m)| < 5 (1 +o(l)+d (cf(l_a) " 0(1)» Toglog )

and

o 201 o)) AesCtm
|Sn7o'(t)| S ontiy (1 + 0(1) + d (0(1 — U) + Hd,o (1)>) (loglog C(t,’/T))n+1

as C(t,m) — oo, where w, =1 and pq, =1 if n is odd, and w, = V2 and ta,e = (20 —1)d+1 if n is even.

3. PRELIMINARIES

The proof of Theorem [I] follows the same circle of ideas used to prove estimates for the Riemann zeta-
function in [7, I0]. First, we show the results for log |L(s, )| and S,(¢,7), when n > —1 odd. In these
cases, we need three ingredients: a suitable representation lemma for our objects, the Guinand-Weil explicit

formula connecting primes and zeros and some extremal bandlimited approximations.

3.1. Representation Lemma. The idea of the representation lemma is to have formulas of the objects to
be bounded, assuming the generalized Riemann hypothesis. Let m > 0 be an integer and % <o <1bea

real number. Consider the functions fs, fom+1,0, f1,0 : R = R defined by

1+ a2
fo(x) = log ((0—5)24‘3@2>7

3
5 2
ﬁmﬂﬁur=§/2m—UPMbg(1+x)dm
- (u

*%)2+£C2

and

N|—=

(-

(c- 02 +a

ffl,a(x) =

Lemma [3| has appeared in [7, Lemma 7] in the case o = % for the Riemann zeta-function. The proof for

entire L-functions follows the same outline (see [8, Lemma 4]).
Lemma 3. Let L(s,m) be an entire L-function satisfying the generalized Riemann hypothesis and m > 0 be
an integer. Then, for % <o <1 andteR we have

3_¢

log |L(o + it,7)| = (4 2) log C(t,7) — %ng(t —7) + O(d), (3.1)

4



5 o (epm 3 2m+21 g
it (T) = oo \3 7)) e

Sroltm) = —BOGT) Zf_lat— 0(d), (33)

where the sums run over all values of v such that L(§ + 7, ’R’) =0, counted with multiplicity.

Proof. First, we prove (3.1]). For % <o< % we have that

N(3/2+zt /2
N(17+7t)/2

(3 + it + p;)

1 'L(UJrit,W)
U—i—zt—i—,uj)

d
o lo
gL@+ﬁm) z:g
We treat each term on the right-hand side of (3.4). From Hadamard’s factorization formula [I1, Theorem
5.6 and Eq. (5.29)], the analyticity of L(s,7) and the generalized Riemann hypothesis, it follows that

Zl( )(t’”g ) (3.5)

+ (t—7)?

o Ao +it,m)
B gA@+ﬁm)

(3.4)

‘ Ao +it,m)
log 73 -
A(§ + Zt,ﬂ'

where the sums run over all values of + such that A( + iy, ) = 0, counted with multiplicity. A simple

computation of the second term show that

N (3/2+it)/2 3
To analyze the third term, we shall use the Stirling’s formula in the form
'y 1
=1 o(1 3.7
FE(5) = 5 logs + 0(1), (37)
which is valid for Re s > % Since Re p; > 0, we have
I‘\/
Re F—R(u + py +it) = 3 log(|,uj +it]+3) +O(1) (3.8)

uniformly in

Nl

3
2 I

(logTr(u + pj +it)) du = / Re F—R(u + pj +it) du
o R

+:Re/
R o

- (i - g) log (| + it] +3) + O(1).

For the left-hand side of (3.4)), using (1.1]) we get
log |L(3 +it,m)| = O(d). (3.10)

Finally, using (3.5)), (3-6)), (3.9) and (3.10) in (3.4) we obtain for £ <o < 2 and ¢ € R that

log|L(o +it,m)| = (3 — ) log C(t, ) Zl < 1:_)(:__{;)_ Y ) + O(d). (3.11)

This yields the desired result. In order to prove (3.2)), we use integration by parts and (|1.1) to get

(3.9)

3
Somi1,0(t,m) = 7(r(_21n)1)' {/2 (u — )*™ log | L(u + it,7r)|du} + O (d). (3.12)
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Then, inserting (3.11)) in (3.12) and straightforward computations will imply (3.2)). Finally, we prove (3.3]).
By the partial fraction descomposition of the logarithmic derivative of L(s, ) in [II, Theorem 5.6], we have

L , 1 1 log N LT ,
L(J+Zt’ﬂ)_z<0'—i“t?f—p+p>+B_ 9 —Zri(0+lt+ﬂj),
p Jj=1

where Re B = —Re o p~'. Then, taking the real part of this equation, considering that p = % + 4y and
using (3.8]) we obtain (3.3 as required. O

3.2. Guinand-Weil explicit formula. Note that in the above representations each object is written as a
sum of a translate of some function of a real variable over the non-trivial zeros of L(s, ) plus some known
terms and a small error. A useful tool one can use to evaluate sums over the non-trivial zeros of L(s,7) is
the Guinand-Weil explicit formula. In our setting of entire L-functions we shall use the following version

(the proof of the general version can be found in [8, Lemma 5]).

Lemma 4. Let L(s,m) be an entire L-function. Let h(s) be analytic in the strip Ims| < 3 + & for some
e >0, and assume that |h(s)| < (1 + |s|)~(*9) for some 6 > 0 when |Res| — co. Then

1 d S /
Z P — 5 _ logNA 1 Z FR 1 .
P " () o 2r no)+ & j=17 00 hlu) Re Tg (5 Ta Zu) du

i
1 1 ~ (logn ——~ (—logn
“a 2 (R () + AR () )

where the sum runs over all zeros p of A(s,m) and the coefficients Ar(n) are defined by (1.2).

3.3. Extremal functions. Observe that the functions f,, fom+1,0 and f_; , do not verify the required
smoothness properties to apply the Guinand-Weil formula. Then, we replace each of these functions by
appropriate extremal majorants and minorants of exponential type (thus with a compactly supported Fourier
transform by the Paley-Wiener theorem), that minimize the L!(R)-distance. These extremal functions may
be found by means of the Gaussian subordination framework of Carneiro, Littmann and Vaaler [9]. The
following lemma shows some properties of the extremal functions for f,. The proof of this result follows

from [2, Lemma 3.2] (see also [3, Lemma 5-8]).

Lemma 5. Let 1 <o <1 and A > 0.02 be real numbers and let (o) = |log(c — %)|. Then there is a pair

of real entire functions giA : C — C satisfying the following properties:

(i) For xz € R we have

- - < <gr : 1
1 + 1'2 < ga’7A($) = fo'(a:) = ga7A(‘r) < (O' _ %)2 + 1'2 (3 3)
Moreover, for any complex number z = x + iy we have
AQeQﬂA\m
- —_ 3.14
‘gU,A(2)| < (1 +A\Z|)7 ( )
and
Q(J)Azezwmm
+
’go,A(z)| < (1+A‘Z|) (315)



(ii) The Fourier transforms of mi are even continuous functions supported on the interval [—A, A]. For

0 < & < A these are given by

. = k+1) 1y
GEAO) = Z (il)ké;LkA)(e 2mle+kAl(0-3) _ 27r\§+kA\>. (3.16)

k=—o0

(iil) At & =0 we have

N 3 2 1F e—(20—1)7‘rA

Analogously, the next lemma gives some properties of the extremal functions for fa,,+1,,. The proof of

this result follows from [7, Lemma 10].

Lemma 6. Let m > 0 be an integer and let % <o <1 and A > 0.02 be real numbers. Then there is a pair

of real entire functions 9§m+1,a,a : C — C satisfying the following properties:

(i) For xz € R we have

— +
12 <Km ngJrl,cr,A(x) < famt1,0(7) < g2m+1,o’,A(x) <m 1t a2 (3.18)
Moreover, for any complex number z = x + iy we have
AQeQTrA|y|
+
_ 3.19
om0 <o (AR (3:19)

(ii) The Fourier transforms ofggtmﬂﬁ’A are even continuous functions supported on the interval [—A, A].

For 0 < £ < A these are given by

~F
92m+1,0,A(€) =

oo

1 Z (£1)F k+1 [ (2m)le2mls+kal(o—3) _le i 672w\5+km‘ <3_ )2m+1—j (3.20)
2 = |€ + kA (27|€ + kA])2mH ot (27|€ + kAT \ 2 ’

wherewz%,forOﬁjS%n-i—l.

(i) At & =0 we have

2m+2 3 —27m(u—3)A
~F ™ 3 1 2 9 1Fe 2
0) = - — - — — 1 —_— | du. 3.21
92m+1,o,A( ) @m +1)(2m + 2) (2 0) A (u—o) 0g ( 1Fe2mA u. )

Finally, the following lemma shows some properties of the extremal functions for f_; ,. The proof of this

result follows from [7, Lemma 9]. To simplify the notation we let § = o — %

Lemma 7. For 0 < g < %, we define the function

_ B
- 52-’—%2.

Let A > 0.02 be a real number. Then there is a pair of real entire functions mEEA : C — C satisfying the

hp(x) = f-1,0(2)

following properties:



(i) For x € R we have

_ 1
Moreover, for any complex number z = x + iy we have
_ ﬁA2e27rA\y|
‘mB,A(zﬂ < m, (3.23)
and
A2€27TA\y|
mhA(2)| €« ———. 3.24
| BA( )} B0+ Al]) ( )

(ii) The Fourier transforms of m?;A are even continuous functions supported on the interval [—A, Al.

For 0 < & < A these are given by

2mB(A—E) _ o-2mB(A=E)
< c ) (3.25)

mgA(f)—W< (ewﬁA$e—WﬁA)2

4. ASYMPTOTIC ANALYSIS

In order to prove Theorem [1} we shall first apply the Guinand-Weil explicit formula to the extremal
functions and then perform a careful asymptotic analysis of the terms appearing in the process. We use
this in the representation lemma and finally optimize the support of some Fourier transforms resulting from
the previous analysis to get the desired result. We highlight that one of the main technical difficulties of
our proof, when compared with results in [5, [6] 8, [10], is in the analysis of the sums over prime powers. To
obtain the exact asymptotic behavior of such tough terms we shall need explicit formulas for the Fourier
transforms of these extremal functions. In Appendix A (the last section) we collect some technical results
that will be needed.

Let m > 1 be an integer, and ¢ > 0, A > 0.02 and % < 0 < 1 be real numbers such that (1 — 0)?7A > c.
Let h% (s) be any of the six extremal functions referred to in Lemmas |§| and |7} and let ¢ € R. As explained
in the previous section, we replace each one of the functions f5, fom+1,, and f_1 , by its extremal functions in
Lemma This means that we must bound the sum h¥ (t—=). If we consider the function h:(s) := hE (t—s),
then hy(€) = hX(—€)e 2™t Tt follows from (B.13), (3-14), B.15), (3.18), B.19), -22), B-23), (3.24) and
an application of the Phragmén-Lindeldf principle that |h¢(s)] < (1 + |s|)™2 when |Re s| — oo in the strip

Im s| < 1. Therefore, the function h,(s) satisfies the hypotheses of Lemma [4] By the generalized Riemann

hypothesis and the fact that Ei are even functions we obtain that

_logN T
Sok(t-m == Z/ PE(t = w)Re £ (5 +py +iu) du
v

%Z S (IOgn)(Aﬂ(n)e_itlog"+A7r(n)ei“°g"),

where the sum runs over all values of v such that L( + iy, ) = 0, counted with multiplicity. We now

(4.1)

proceed to analyze asymptotically each term on the right-hand side of (4.1)).

4.1. First term. The first is given by (3.17)), (3.21)) and (3.25).
8




4.2. Second term. We first examine the functions gai’ A- It follows from (3.13)), for any « # 0, that

1 _ 1
—— K g, a@) < folz) K por

Hence, from (3.14)), we deduce
_ . 1
|95.A(z)| < min {?,Az}.
Then, using (3.7)) and the fact that A > 0.02, we see that
1 [ Iy .
—/ N )Re—R(é—i—,uj—i-zu)du

T J -0

= gy a(t —u)log |5 + pj 4 iu| du + O(A?)
2T ) 0™ (4.2)
1o~ , '
=5 gJ,A(u){ log(|p; + it| + 3) + O(log([u| + 2)) }du + 0(A?)
log wi + it +3)
(|J2 | )g ()—FO(AZ)
™
Similarly, the relation
. 1
974 (@)| < Qo) min { =, A%}
implies that
o I} log(|p; +it] + 3
/ gga(t—u)Re I‘R (3 + pj +iu) du = ( j2 | ) A(0) +0(Q(0)A?). (4.3)
—0o0 R ™
We next examine the functions g2m 1,00 Using (3.7) and - we obtain
> Iy , log(lp; + it +3)
/ Tt 1,0 (= )Re—(; + pj +iu) du = 327r Tt 1,0,4(0) + Om(1). (4.4)
— 00
Finally, we examine the functions mB,A' fo<g< % and |z| > 1 then
B8 1
h = < .
Hence we get from (3.22)) that
0< / mg a(2) log(2 + |z]) dz
0 1
< / hs () log(2 + |]) dar = / hs () log(2 + |2]) da +/ s () log (2 + |2]) dz = O(1),
PSS -1 |z|>1
and using (3.7) we get
I'y , log(|p; + it| + 3) .
/ m3 alt = w) Re 2 (5 + g+ i) du = <52 A0)+0(1). (4.5)
Similarly, E ) and (3.22)) imply
Ik _ log(|p; +it] +3) 1
/ mj A(t )Re—(%—&—uj—i—zu)du: 327r mj A(0)+ 0 5) (4.6)

4.3. Third term. We will make use of the explicit formula for the Fourier transforms of the extremal

2w A

functions. If we write = e*™>, since these Fourier transforms are supported on the interval [-A, A], the

third term is a sum that only runs for 2 < n < z. We start by examining the functions gi A- Observe first



that

b+ 1] —onjerkal o —2ma
Z m < e A, (4.7)
k=0 |€ + kA|

when 0 < £ < A. Using (1.3)), (3.16)), (4.7)) and the prime number theorem we find that

1 = L IOgTL —itlogn A () oitlogn
%aniA( 27 )(Aw(”)e ok 4 () eten )

n=2

A(n)| k (E+1) ( ognatio-1) - "
<9q S AR Lk B (o flogna¥|(o—1) _ —llogna*|
- n Z (1) | log na*| (e e )

n<x k=—o00

A(n)| e (k+ 1)e~llognatl(e=3)
<2d — +1 o(d).
24> m k;w( ) Togna +0(d)

It is now convenient to split the inner sum in the ranges &k > 0 and k < —2, and regroup them as

logn . .
+ itlogn itlogn
o E fg"A< >(Aw(n)e +Az(n)e )

(4.8)
kE+1 k+1
<2d k —~ + O(d).
ng; kzo 2 (log na*) (n:ck)a—% (log zht2 ) (ﬂ)‘f—% (d)
For the function ﬁ; A» using Appendices A.1 and A.2 in (4.8) we obtain that
— logn —itlogn A () pitlogn
ZWZ\f aA( 7T><A"(n)e tog "‘Aw(n)e“g )
1 noz
<2d - o(d 4.9
7;,: vn < =3 logn (210gx—10gn)a:2"_1>+ (@) 9
d (20_ _ 1) e(2—20)7‘rA de(2—20’)7‘rA
 o(l-o0) A ¢ ((1—0’)2A2)
For the function §;“ A, We isolate the term k = 0 and using Appendices A.2 and A.3 in (4.8) we get
IOgTL —itlogn A () Litlogn
32 3 i (B ) (atme o B e

d (20. _ 1) e(2—20’)7‘rA de(2—20')7'rA
o(l—o) TA C(( %)(10)2A2>

We next examine the case gétm +1.0.a- As we did in the previous case, using (1.3), (3.20), (4.7) and the prime

number theorem it follows that

logn —itlogn A () Litlogn
%Z N )(Aﬂm)e Dwar)

o0

k+1 k+1
<d(2m — + O, (d).
= Z Z (ognah 22 (uah = (1gg 2zomss (amyot || O
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We isolate the term & = 0 and using Appendices A.2 and A.3 we get

logn —itlogn A () yitlogn
%Z T s () (Al e 4 K e

d(2m)! (20 — 1) e(-20)mA
oc(l—0o) (2mA)2m+2

4.11
de(272a)7rA ( )

+ O (U_U)W> + O (d).

We finally examine the case mg’A. Note that in this case we have (3 — 8)?7A > c. Using the fact that ﬁzié‘
are nonnegative (see ([3.25)), by ([L.3) and Appendix A.4 we have that

1 = i 10gTL —itlogmn | A (.Y ,itlogn
g Dy L (5 (et e s R

d A(n) (27 nP
< — — — 4.12
= (emBA F e—mBA)2 T; NG (nﬁ b ( )
2 dﬂ e(l—2,8)7rA O ( dﬂ e(l—25)7rA )
= + O, .
(1= B2)(1F e—2nhB)2 (3= B)2A(1Fe2mPA)2
Therefore, for the function mgz o we obtain in (4.12) that

1 <1 ___ [logn —itlogn | N () oitlogn
%;\/ﬁmﬁ,a<%>(“<”>e w4 Re() et

(4.13)
2d 5 e(1-28)mA O dps e(1=28)TA
<o ()
As for the function 7} 1, considering that
: < ! <2
(1—e2m2) 7~ (1—¢8)? = B
we have
1 3 _—
2 Z fmﬁA< 0gn> (Aw(n) e—ztlogn —&-Aﬂ(n) eztlogn)
Y
(4.14)

- ) dﬁ 6(1726)71'A de(172,8)7rA
s O (5ra)

4.4. Final analysis.

4.4.1. Estimates for log|L(s,m)|. We first will prove the upper bound. From Lemma [3|and (3.13)) we get

3
log |L(o + it,m)| < ( — ) log C(¢, ) Z%A )+ O(d). (4.15)
In other hand, using and (4.9) in we obtain
_ logC(t,7) _ d (20 — 1) e(2—20)7A de(2—20)mA
D goalt—v #ga A0) — (<1 — 0)) —— O(dA?) + O, (W) (4.16)

Then, combining (3.17)), (4.16) and (5.13) in (4.15) we get

1 | 1 _’_67(20'71)71'A
A < 1+ e 274

d(20 =1 (2—20)mA d (2—20)wA
log |L(o +it,m)| < (20-1)e + C( € >

) log C(t,m) + o(l—o0) 27A (1-0)2A2
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Since loglog C(t,7) > loglog 3 > 0.09, we can choose 7A = loglog C(¢, 7). Then
de(2-20)7A
o 1 o)A’
and the desired result follows from . The proof of the lower bound is similar, combining , ,

(D). (@3, [C10). G-I with Lemma i1

4.4.2. Estimates for Som+1,0(t, 7). Let us first consider the case where m is even. We will prove the upper
bound. From Lemma [3|and (3.18)) we have that

log (1+e Q”A) log C(t, ) <

2m—+2
Som+1,0(t,m) < m (3 - a> log C(t,7) — (21m ' ZgzmHaA( Y) + Om(d).  (4.17)

Combining (3.21), @.1), (@4), (£.11) and (5.13) in [@.17) we get

3
1 5 1 —27m(u—3)A 2% — 1 (2—20)wA
Somiro(tym) < ABCET 20 oo <+e> ut LBo=D e + O (d)

(2m)! 2m2A 1+ e27A mo(l — o) (2rA)2m+2

d (2—20)mA
¢ ) (4.18)

(1— 0)2A2m+3
We now choose 7A = loglog C(t, 7). Using (5.13)) in (4.18)) leads us to

logC(t,m) [ om Con(u—1)A d(20 — 1) e@20)mA

08T - log (1 (=344

Gmyiana . (o) g (14 Jau+ mo(l— o) (2nA)zmTe
d6(2 20)TA

= 0-)2A2m+3>

o

S2m+1 O'(t 7T)

o

Finally, taking into account that

(o) |
_ 2m —Qﬂ(u——)A — (2m)
/a (u—0)"" log (1 te ) du (2rA)2m T £ L2m+2 ,

0 (_1)k+1 e—Qkﬂ'(O’—%)A

we obtain the desired result. The proof of the lower bound is obtained similarly, combining (3.18]), (3.21),

(4.1), (4.4), (4.11)), (5.13) with Lemma |3 When m is odd, the proof is similar, since only the roles of the
majorant g;m 41,04 and minorant g, ., ;A are interchanged due to the presence of the factor (—1)™ in

Lemma 3

4.4.3. Estimates for S_1,,(t, 7). Let us first prove the lower bound. From Lemma and ([3.22)) we have

logC (t,m)
ng Alt=7)+0(d) < Sy 4(t,7). (4.19)
Combining (3.25)), (4.1), (4.5)), (4.13]) in (4.19) we deduce that
1 —27BA 2 (1-28)wA (1-28)mA
S1o(t,m) = — 26Ot ) ( - 27rﬁA) - a0 2 c (dﬁle 2 ) + 0(d).
m l+e (5 = B2) (1 +e=2784) (3 —6)rPA

We now choose 7A = loglog C(t, 7). Recalling that 8 = o — %, by (5.13) this choice yields
log C'(t 2720 1 d(20 -1
Srottm o OoEC(Em) _— (20 -1) 2
m (1+(og C(t, ™)' =27) * 5(1 - 0) (1+(log C(t, 7)) ~27)

1o — ogCltm) >
+Oc< (1_02-)210g10gc(t77r) >

12



Observe that this estimate is actually slightly stronger than the one we proposed in Theorem For the

proof of the upper bound, as before, combining (3.22), (3.25), (4.1), (4.6), (4.14), (5.13) with Lemma and

choosing 7A = loglog C(t, 7) we obtain that

thmﬂ)g(bgcuﬂﬂy—%-< 1 N d(20 —1) )
o (4.20)

™ log C(t,m)'=27)  5(1—0)(1 — (log C(t, 7)) —2)*

d(log C(t,m))?~2°
O <(U -3 - 0)210g10g0(t777)) .

Finally, note that if we write 8 = log C(¢, ), then 6 > log3 > 1, and therefore

1-20 1 1
1-— < < < .
( - 9120)2> (o) S o—1200e0? < (o—5)2(ogd)
By applying this bound in (4.20]), we obtain the desired result.

5. INTERPOLATION TOOLS

In order to bound the functions Sa, »(t,7) when m > 0 is an integer, we follow a different argument to
the case of So;41,0(¢, ™). Although we can obtain a representation as in Lemma [3| (see [7, Lemma 7)), it is
unknown to find extremal majorants and minorants of exponential type for the associated functions in the
representation. Therefore, we adopt a different approach based on an interpolation argument. We follow the
same outline as in [7, Section 6], where similar functions associated with the Riemann zeta-function were
studied. Here we present the necessary changes to adapt the proof in [7] for our family of entire L-functions.
The main change consists in the suitable use of the mean value theorem, since the analytic conductor is not

sufficiently smooth.

Since we assume the generalized Riemann hypothesis and & < o < 1, we have that S}, f0tm) =
Somo(t,m) and S5, ,(t,7) = Sam—1,,(t,7) for all t € R. For n > 0 we consider the following functions

(log C(t,m))?~2% d(logC(t,m))?~%
(loglog C(t,m))" (1 —o)2(loglog C(t,m))""

Lpo(t) == Poo(t) ==

c/16

5.0.1. Estimates for So,(t,m). Let ¢ > 0 be a given real number. In the range (1 — 0)? > oglosCEm We
have already shown that
—My ,(t) la,5(t) + Oc(r3,5(t)) < S15(t,m) < Mffo(t) ly.5(t) + Oc(rs o (1)), (5.1)
and that
M~ (1) lo.o(t) + Oc(r1,6(t) < S-1,6(t, 7). (5.2)

Let (o,t) be such that (1 —o)? > oeloe oy BY Appendix A.5 we have that in the set {(o,p); t =25 <
u < t+ 25}, estimates (5.1) and (5.2) hold. Then, by the mean value theorem and (5.2]), we obtain for
0<h <25,

So,0(t, ™) —So,0(t —h,m) =hS_4,(t},,7) > —h M:Lo_(t;;) lo.o(th) + hOc(r1,6(t7))
= _hM:l,a(tZ) o,0(t1,) + h Oc(r1,6(t)),

13
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where t} is a suitable point in the segment connecting ¢ — h and ¢. We claim that
IMZ, 5 (8) bo,o () =M™y 5 (t,) Lo.o ()] < d prao, (5.4)

where (14, = (20 — 1)d 4+ 1. In order to prove this, we define the function

g1() = = ( L d(%l))z“a.

a\1+z1-20 " o(1—0)

Note that |g7(z)] < pa for z > 1, and g1(log C(¢, 7)) = M~ ,(t)£o,o(t). The mean value theorem applied
to the functions g; and the logarithm imply that

|g1(log C(t, 7)) — g1(log C(t5,,7))| < pa,0|log C(t,7) —log C(t,, )|

d
< piao Yy |log(|p; + it| + 3) —log(|u; + ith] + 3)]
j=1
d (5.5)
< prao Y |l +it] = |y + it |
j=1
d
S Hd,o Z |t - tm < d,u'd,cr
j=1
We thus obtain (5.4, and using (5.13)) we have that
|MZ, , (8) o6 () = MZy (1) Lo,o(t)| < prao71,0(1)- (5.6)
From (5.3) and (5.6) it follows that
So,0(t,m) = So0,0(t — h,m) > —~h M~y ,(t)£o,s(t) +hOclpido1,0(t)). (5.7)

Let v = v, (t) be a real-valued function such that 0 < v < 25. For a fixed ¢, we integrate (5.7]) with respect

to the variable h to obtain
So.o(t,7) > i/o So.o(t — By ) dh — % </0 hdh) M~y (1) oo (t) + % </0Vhdh> Ouljtas T1.0(8)
= (Su(tm) = S1(t = 1) = 5 M2y (0 o0(6) + Ol a1, (1).
From we then get
So.o(t,7) > % [ My (8.0 (8) = M (£ = 1) 2,0t = ) + Oulrs o (1)) + Oclrs ot — )]

= 5 M2, (1) oo (8) + Oclv pas m1.0(1))

_ 1 v oT3.o(t
= (M) + M2, 0] 5 aa(0) = § M 000400 (#2220 ) 500 00,
(5.8)
where the following was used
|M1+70(t) gg’g(t) — leg(t — V) Eg’a(t — V)’ < Hd,o 7‘3’U(t). (59)

We now prove (5.9). For > 0 define

(& d(20 — 1)) >
g2(z) = o (kz_o (k + 1)2z@o-Dk + o(l1—o0) ) (logz)?’

14



Note that M (t) l2,,(t) = g2(log C(t,7)). For each k > 0 and = > log3 > 1 put
1 220 I(k+1)(1_20)+1
2Dk (logz)2  (logx)?

Then, for > y > log 3 using the mean value theorem, we have that

fr(z)

> d (20 —
0:) =010 < 3 g ) ~ )]+ P o)~ )

oo

1
—|$—y<zk+1)2

k=0 (

2

el + “E g (5.10)

oo

(k+1D)(20-1)+1) d(20 —1)
kzzo (k12D (1gez T 1o >

where &, € €]y, [ for each k > 0. Observe now that by the mean value theorem

> (k4+1)(20 —1) +1) > (k+1)(20 —1) +1)
kZ:o (k + 1)2 §’(€k+1)(2a—1)(10g€k)2 < I;) (k+1)2 y(k+1)(20—1)(10gy)2

1 = 20 — 1 d(20 —1)
1 - 7
< (logy)2 |qu—:0 (k+ 1)y(k+1)(2071) +1+ 1—0 1

<<|fv—y|(

1 = 201 d(2c —1) ld.o
< 1 : .
= (logy)? [2 yFED T T T | S T o) (log y)?
Then, in (5.10)), by using a similar idea as in ({5.5)), we obtain
ta,o |logC(t,m) —log C(t — v, )|
(1-o0) (loglog C(t,m))?
d pia,o (log C(t,m))?=27
(1 0)2(loglog C(f, 7))
This proves (5.9). We now choose v = % in (5.8), where A, (¢) > 0 is a function to be determined.
This yields

\ g2(log C(t, 7)) — ga(log C(t — v, w))‘ <

<

M_l o ocT2,0
Soyt‘f(t) > = l(MLa(t) + lea(t)) )\Ul(t) + 72’ (t) Ad(t)‘| gl,d(t) + Oc <W> + OC(Md,J Aa(t) 7"210(15)).

The optimal A, (¢) minimizing the expression in brackets is

[ 2(M,(8) + M (1) 2
A"(t)_< MZ, ,(t) > '

(5.11)
and this leads to the bound

So.0(t) > — [Q(M;U(t) + M (1) M_’l)(,(t)} : 10 (t) + O, (W) + Oulitdo Ao () T2.0(1).  (5.12)
Finally, using some estimates for H,(z), one can show that % < Ao(t) < 2, which implies that indeed

0 < v <25, and allows us to write ((5.12)) in our originally intended form of
1

S0.0(t) 2 = [2(M7, (1) + Mo (1) M=y o) * £1.6(t) + Oclptao m2.0 (1)),

The proof of the upper bound for Sy () follows along the same lines.

15



5.0.2. Estimates for Sam, o (t, 7). The proof of this estimates follows the same outline in [7, Subsection 6.1].
The substantial changes in the use of the mean value theorem are similar with (5.5) and (5.10)).

APPENDIX A: CALCULUS FACTS

Throughout this paper we shall encounter the following setting in many situations: let ¢ > 0 be a given
real number, % <o <1 and x > 2 be such that

(1- J)Qlogsc > c.
Let us note that, if 0 < 64,05 are real numbers, it follows from the above inequality that

(1 - 0)91 (10g$)92 <Ke\81,62 z' 7. (513)

A.1l. For%<0<1and2§n§xwehm)e

_1
o3

OSZ(—l)k E+1 _ k+1 | < 11 _ n _
(log nzk) (nzk)7—2 (log wkn“ ) (z’;:r? )72 n°~zlogn (2logx —logn)x2o—

Proof. See [3l Eq. (2.14), (2.16) and Lemma 6].

|
A.2. Let ¢ > 0 be a given real and m > 0 be an integer or m = —%. For % <o <1andzx > 2 such that
(1 —0)%logx > ¢, we have the following asymptotic behaviors
Z A(n) _ l1-0o N 0 xl—o
= n7(logn)> 2~ (1—0)(logz)?m 2 " ¢\ (1= 0)2(log z)2m 3
and
1 Z A(n) B xl=e L0 xl=e
x2o—1 = nl=o(2logx —logn)2m+2  g(logx)2m+2 be (1 —o)2(logx)2m+3 | °
Proof. See [7, Appendix B.1, B.2].
|

A.3. Let ¢ > 0 be a given real number and m > 0 be an integer. For % <o <1andx > 2 such that

(1 —0)%logx > ¢, we have the following asymptotic behavior

o

— (xo—%)k — n no(klogx + logn)2m+2  z20-1pl=c((k + 2)logx — logn)2m+2
- l1-0
< 1= o) (log )3
Besides, we have that
o0
k+1 1 1
PN Z A(n) o T L 20-1,1-0
= (2772)" | = n?(klogz +logn) = nl=o((k + 2)logx — logn)
xlfa

S o= D)1 - 0)2(log2)?
16



Proof. See [7, Appendix B.3] for the first result. The proof of the second result follows the same outline.

O

A.4. Let ¢ >0 be a given real number. For 0 < 8 < % and x > 2 such that (% — B)2%logx > ¢, we have

A(n) (2% nf 2Bz Bz
S G i) 12 o (g

Proof. Tt follows by [7, Appendix B.4] and the mean value theorem.
O

A.5. Let z,w be complex numbers such that |w| < 25. Then

(log(|2 + w| +3))'® > log(|2| + 3).
Proof. If |z| > 25, then
(log(l2 + w| +3))'® > log(|2| — [w]| + 3)(log 3)"* > 4log(|z| — 22) > log(|2| + 3),
since (log3)!® > 4. On the other hand, if |z| < 25
(log(|z 4+ w| + 3))*® > (log3)'® > 4 > log(28) > log(|z| + 3).

O
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