
A NOTE ON ENTIRE L-FUNCTIONS

ANDRÉS CHIRRE

Abstract. In this paper, we exhibit upper and lower bounds with explicit constants for some objects related

to entire L-functions in the critical strip, under the generalized Riemann hypothesis. The examples include

the entire Dirichlet L-functions L(s, χ) for primitive characters χ.

1. Introduction

Recently, new estimates for some objects related to L-functions have been given. In particular, we have

estimates for the Riemann zeta-function [3, 4, 5, 6, 7, 10] under the Riemann hypothesis. For a general family

of L-functions in the framework of [11, Chapter 5], we have similar estimates in the critical line [5, 6, 8, 10]

under the generalized Riemann hypothesis. The purpose of this paper is to exhibit explicit bounds for a

family of entire L-functions in the critical strip. The proof of these estimates is motivated by the ideas of

Carneiro and Chandee [3], and Carneiro, Chirre and Milinovich [7] on the use of the Guinand-Weil explicit

formula applied to special functions with compactly supported Fourier transforms.

1.1. Entire L-functions. In this paper we study a family of entire L-functions that includes the Dirichlet

series L(s, χ) for non-principal primitive characters χ. Similar families of L-functions are studied in [1, 12].

We adopt the notation

ΓR(s) := π−s/2 Γ
(s

2

)
,

where Γ is the usual Gamma function. Throughout this paper we consider that an entire function L(s, π)

meets the following requirements (for some positive integer d):

(i) There exists a sequence {λπ(n)}n≥1 of complex numbers (λπ(1) = 1) such that the series

∞∑
n=1

λπ(n)

ns

converges absolutely to L(s, π) on {s ∈ C ; Re s > 1}.

(ii) For each prime number p, there exist α1,π(p), α2,π(p), . . . , αd,π(p) in C such that |αj,π(p)| ≤ 1, and

L(s, π) =
∏
p

d∏
j=1

(
1− αj,π(p)

ps

)−1

,

where the infinite product converges absolutely on {s ∈ C; Re s > 1}.
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(iii) For some positive integer N and some complex numbers µ1, µ2, . . . , µd with nonnegative real parts and

such that {µ1, µ2, . . . , µd} = {µ1, µ2, . . . , µd}, the complete L-function

Λ(s, π) := Ns/2
d∏
j=1

ΓR(s+ µj)L(s, π)

is an entire function of order 1 having no zeros in 0 and 1. Furthermore, the function Λ(s, π̃) := Λ(s, π)

satisfies the functional equation

Λ(s, π) = κΛ(1− s, π̃),

for some complex number κ of norm 1.

Now, by using the product expansion of L(s, π) and the inequality |αj,π(p)| ≤ 1 we obtain that 1

| log |L(s, π)|| ≤ d log ζ(Re s)� d

2Re s
(1.1)

for any s with Re s ≥ 3
2 . Besides, we have that

L′

L
(s, π) = −

∞∑
n=2

Λπ(n)

ns
(1.2)

converges absolutely if Re s > 1, and Λπ(n) = 0 if n is not a power of prime and Λπ(pk) =
∑d
j=1 αj,π(p)k log p

if p is prime and k is a positive integer. Thus∣∣Λπ(n)
∣∣ ≤ dΛ(n). (1.3)

2. Main results

Let n ≥ 0 be an integer, 1
2 ≤ σ ≤ 1 be a real parameter, and L(s, π) be an entire L-function in the above

setting. For t ∈ R (and t not coinciding with the ordinate of a zero of L(s, π) when n = 0) we define the

iterates of the argument function as

Sn,σ(t, π) := − 1

π
Im

{
in

n!

∫ ∞
σ

(u− σ)n
L′

L
(u+ it, π) du

}
.

If t is the ordinate of a zero of L(s, π) when n = 0 we define

S0,σ(t, π) := lim
ε→0

S0,σ(t+ ε, π) + S0,σ(t− ε, π)

2
.

Differentiating under the integral sign and using integration by parts, one can see that S′n,σ(t, π) = Sn−1,σ(t, π)

for t ∈ R (in the case n = 1 we may restrict ourselves to the case when t is not the ordinate of a zero of

L(s, π)). We finally define

S−1,σ(t, π) :=
1

π
Re

L′

L
(σ + it, π),

when t is not the ordinate of a zero of L(s, π). We can see that S′0,σ(t, π) = S−1,σ(t, π), when t is not the

ordinate of a zero of L(s, π).

Theorem 1 below provides estimates for the above mentioned objects and for the logarithm of the modulus

of L(s, π) in the critical strip. These results are based on the generalized Riemann hypothesis, which states

1Throughout the paper we use the notation f � g to mean that for a certain constant C > 0 we have f(t) ≤ Cg(t) for
t ∈ Dom(f) ∩Dom(g). In the subscript we indicate the parameters in which such constant C may depend on.
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that Λ(s, π) 6= 0 if Re s 6= 1
2 . As in [5, 6, 8, 10], the analytic conductor of L(s, π), which is defined by

C(t, π) = N

d∏
j=1

(|it+ µj |+ 3),

will appear in our results. For an integer n ≥ 0 we introduce the function

Hn(x) :=

∞∑
k=0

xk

(k + 1)n
.

In particular, when 0 < |x| < 1 we have that

log(1± x)

x
= ±H1(∓x). (2.1)

Theorem 1. Let L(s, π) be an entire L-function satisfying the generalized Riemann hypothesis. Let c > 0

be a given real number. Then, for 1
2 < σ < 1 and t ∈ R in the range

(1− σ)2 log logC(t, π) ≥ c,

we have the following uniform bounds:

(i) For the logarithm, 2

−M−σ (t)
(logC(t, π))2−2σ

log logC(t, π)
+Oc

(
dµ(σ) (logC(t, π))2−2σ

(1− σ)2(log logC(t, π))2

)
≤ log |L(σ + it, π)|

≤M+
σ (t)

(logC(t, π))2−2σ

log logC(t, π)
+Oc

(
d (logC(t, π))2−2σ

(1− σ)2(log logC(t, π))2

)
.

(ii) For n ≥ −1 an integer,

−M−n,σ(t)
(logC(t, π))2−2σ

(log logC(t, π))n+1
+Oc

(
dµ−n,d(σ) (logC(t, π))2−2σ

(1− σ)2(log logC(t, π))n+2

)
≤ Sn,σ(t, π)

≤M+
n,σ(t)

(logC(t, π))2−2σ

(log logC(t, π))n+1
+Oc

(
dµ+

n,d(σ) (logC(t, π))2−2σ

(1− σ)2 (log logC(t, π))n+2

)
.

The functions appearing above are given by

• For the logarithm,

M±σ (t) =
1

2

(
H1

(
∓ (logC(t, π))1−2σ

)
+
d (2σ − 1)

σ(1− σ)

)
and µ(σ) =

| log(σ − 1
2 )|

σ − 1
2

.

• For n ≥ 1 odd,

M±n,σ(t) =
1

2n+1π

(
Hn+1

(
± (−1)

(n+1)
2 (logC(t, π))1−2σ

)
+
d (2σ − 1)

σ(1− σ)

)
and µ±n,d(σ) = 1.

• For n = −1,

M±−1,σ(t) =
1

π

(
H0

(
± (logC(t, π))1−2σ

)
+
d (2σ − 1)

σ(1− σ)

)
and µ±−1,d(σ) = (σ − 1

2 )∓1.

• For n = 0,

M±0,σ(t) =
(

2
(
M+

1,σ(t) +M−1,σ(t)
)
M−−1,σ(t)

) 1
2

and µ±n,d(σ) = (2σ − 1)d+ 1.

2Throughout the paper we use the notation f = O(g) to mean that for a certain constant C > 0 we have |f(t)| ≤ Cg(t) for t
sufficiently large. In the subscript we indicate the parameters in which such constant C may depend on.
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• For n ≥ 2 even,

M±n,σ(t) =

(
2
(
M+
n+1,σ(t) +M−n+1,σ(t)

)
M+
n−1,σ(t)M−n−1,σ(t)

M+
n−1,σ(t) +M−n−1,σ(t)

) 1
2

and µ±n,d(σ) = (2σ − 1)d+ 1.

When σ → 1
2 in the above theorem we obtain a sharpened version of the results in [5, 6, 8, 10] for

the case of entire L-functions with improved error terms (a factor log log logC(t, π)
3
d has been removed).

Furthermore, for a fixed 1
2 < σ < 1 we obtain bounds as C(t, π)→∞.

Corollary 2. Let L(s, π) be an entire L-function satisfying the generalized Riemann hypothesis and let

n ≥ −1. Let 1
2 < σ < 1 be a fixed number. Then

log |L(σ + it, π)| ≤ 1

2

(
1 + o(1) + d

(
2σ − 1

σ(1− σ)
+ o(1)

))
(logC(t, π))2−2σ

log logC(t, π)
,

and

|Sn,σ(t)| ≤ ωn
2n+1π

(
1 + o(1) + d

(
2σ − 1

σ(1− σ)
+ µd,σ o(1)

))
(logC(t, π))2−2σ

(log logC(t, π))n+1

as C(t, π)→∞, where ωn = 1 and µd,σ = 1 if n is odd, and ωn =
√

2 and µd,σ = (2σ− 1)d+ 1 if n is even.

3. Preliminaries

The proof of Theorem 1 follows the same circle of ideas used to prove estimates for the Riemann zeta-

function in [7, 10]. First, we show the results for log |L(s, π)| and Sn(t, π), when n ≥ −1 odd. In these

cases, we need three ingredients: a suitable representation lemma for our objects, the Guinand-Weil explicit

formula connecting primes and zeros and some extremal bandlimited approximations.

3.1. Representation Lemma. The idea of the representation lemma is to have formulas of the objects to

be bounded, assuming the generalized Riemann hypothesis. Let m ≥ 0 be an integer and 1
2 < σ ≤ 1 be a

real number. Consider the functions fσ, f2m+1,σ, f1,σ : R→ R defined by

fσ(x) = log

(
1 + x2(

σ − 1
2

)2
+ x2

)
,

f2m+1,σ(x) =
1

2

∫ 3
2

σ

(u− σ)2m log

(
1 + x2

(u− 1
2 )2 + x2

)
du,

and

f−1,σ(x) =
(σ − 1

2 )

(σ − 1
2 )2 + x2

.

Lemma 3 has appeared in [7, Lemma 7] in the case σ = 1
2 for the Riemann zeta-function. The proof for

entire L-functions follows the same outline (see [8, Lemma 4]).

Lemma 3. Let L(s, π) be an entire L-function satisfying the generalized Riemann hypothesis and m ≥ 0 be

an integer. Then, for 1
2 < σ ≤ 1 and t ∈ R we have

log |L(σ + it, π)| =
(

3

4
− σ

2

)
logC(t, π)− 1

2

∑
γ

fσ(t− γ) +O(d), (3.1)
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S2m+1,σ(t, π) =
(−1)m

2π(2m+ 2)!

(
3

2
− σ

)2m+2

logC(t, π)− (−1)m

π(2m)!

∑
γ

f2m+1,σ(t− γ) +Om(d), (3.2)

S−1,σ(t, π) = − logC(t, π)

2π
+

1

π

∑
γ

f−1,σ(t− γ) +O(d), (3.3)

where the sums run over all values of γ such that L
(

1
2 + iγ, π

)
= 0, counted with multiplicity.

Proof. First, we prove (3.1). For 1
2 ≤ σ ≤

3
2 we have that

log

∣∣∣∣L(σ + it, π)

L( 3
2 + it, π)

∣∣∣∣ = log

∣∣∣∣Λ(σ + it, π)

Λ( 3
2 + it, π)

∣∣∣∣+ log

∣∣∣∣N (3/2+it)/2

N (σ+it)/2

∣∣∣∣+

d∑
j=1

log

∣∣∣∣ΓR
(

3
2 + it+ µj

)
ΓR(σ + it+ µj)

∣∣∣∣. (3.4)

We treat each term on the right-hand side of (3.4). From Hadamard’s factorization formula [11, Theorem

5.6 and Eq. (5.29)], the analyticity of L(s, π) and the generalized Riemann hypothesis, it follows that

log

∣∣∣∣Λ(σ + it, π)

Λ
(

3
2 + it, π

) ∣∣∣∣ = −1

2

∑
γ

log

(
1 + (t− γ)2(

σ − 1
2

)2
+ (t− γ)2

)
, (3.5)

where the sums run over all values of γ such that Λ
(

1
2 + iγ, π

)
= 0, counted with multiplicity. A simple

computation of the second term show that

log

∣∣∣∣N (3/2+it)/2

N (σ+it)/2

∣∣∣∣ =

(
3

4
− σ

2

)
logN. (3.6)

To analyze the third term, we shall use the Stirling’s formula in the form

Γ′R
ΓR

(s) =
1

2
log s+O(1), (3.7)

which is valid for Re s ≥ 1
2 . Since Reµj ≥ 0, we have

Re
Γ′R
ΓR

(u+ µj + it) =
1

2
log(|µj + it|+ 3) +O(1) (3.8)

uniformly in 1
2 ≤ u ≤

3
2 , so that

log

∣∣∣∣ΓR
(

3
2 + it+ µj

)
ΓR(σ + it+ µj)

∣∣∣∣ = Re

∫ 3
2

σ

(log ΓR(u+ µj + it))′ du =

∫ 3
2

σ

Re
Γ′R
ΓR

(u+ µj + it) du

=

(
3

4
− σ

2

)
log(|µj + it|+ 3) +O(1).

(3.9)

For the left-hand side of (3.4), using (1.1) we get

log |L( 3
2 + it, π)| = O(d). (3.10)

Finally, using (3.5), (3.6), (3.9) and (3.10) in (3.4) we obtain for 1
2 ≤ σ ≤

3
2 and t ∈ R that

log |L(σ + it, π)| =
(

3

4
− σ

2

)
logC(t, π)− 1

2

∑
γ

log

(
1 + (t− γ)2(

σ − 1
2

)2
+ (t− γ)2

)
+O(d). (3.11)

This yields the desired result. In order to prove (3.2), we use integration by parts and (1.1) to get

S2m+1,σ(t, π) =
(−1)m

π(2m)!

{∫ 3
2

σ

(u− σ)2m log |L(u+ it, π)|du

}
+Om(d). (3.12)
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Then, inserting (3.11) in (3.12) and straightforward computations will imply (3.2). Finally, we prove (3.3).

By the partial fraction descomposition of the logarithmic derivative of L(s, π) in [11, Theorem 5.6], we have

L′

L
(σ + it, π) =

∑
ρ

(
1

σ + it− ρ
+

1

ρ

)
+B − logN

2
−

d∑
j=1

Γ′R
ΓR

(σ + it+ µj),

where ReB = −Re
∑
ρ ρ
−1. Then, taking the real part of this equation, considering that ρ = 1

2 + iγ and

using (3.8) we obtain (3.3) as required. �

3.2. Guinand-Weil explicit formula. Note that in the above representations each object is written as a

sum of a translate of some function of a real variable over the non-trivial zeros of L(s, π) plus some known

terms and a small error. A useful tool one can use to evaluate sums over the non-trivial zeros of L(s, π) is

the Guinand-Weil explicit formula. In our setting of entire L-functions we shall use the following version

(the proof of the general version can be found in [8, Lemma 5]).

Lemma 4. Let L(s, π) be an entire L-function. Let h(s) be analytic in the strip |Im s| < 1
2 + ε for some

ε > 0, and assume that |h(s)| � (1 + |s|)−(1+δ) for some δ > 0 when |Re s| → ∞. Then

∑
ρ

h

(
ρ− 1

2

i

)
=

logN

2π
ĥ(0) +

1

π

d∑
j=1

∫ ∞
−∞

h(u) Re
Γ′R
ΓR

(
1
2 + µj + iu

)
du

− 1

2π

∞∑
n=2

1√
n

{
Λπ(n) ĥ

(
log n

2π

)
+ Λπ(n) ĥ

(
− log n

2π

)}
,

where the sum runs over all zeros ρ of Λ(s, π) and the coefficients Λπ(n) are defined by (1.2).

3.3. Extremal functions. Observe that the functions fσ, f2m+1,σ and f−1,σ do not verify the required

smoothness properties to apply the Guinand-Weil formula. Then, we replace each of these functions by

appropriate extremal majorants and minorants of exponential type (thus with a compactly supported Fourier

transform by the Paley-Wiener theorem), that minimize the L1(R)-distance. These extremal functions may

be found by means of the Gaussian subordination framework of Carneiro, Littmann and Vaaler [9]. The

following lemma shows some properties of the extremal functions for fσ. The proof of this result follows

from [2, Lemma 3.2] (see also [3, Lemma 5-8]).

Lemma 5. Let 1
2 < σ < 1 and ∆ ≥ 0.02 be real numbers and let Ω(σ) = | log(σ − 1

2 )|. Then there is a pair

of real entire functions g±σ,∆ : C→ C satisfying the following properties:

(i) For x ∈ R we have

− 1

1 + x2
� g−σ,∆(x) ≤ fσ(x) ≤ g+

σ,∆(x)� Ω(σ)

(σ − 1
2 )2 + x2

. (3.13)

Moreover, for any complex number z = x+ iy we have∣∣g−σ,∆(z)
∣∣� ∆2e2π∆|y|

(1 + ∆|z|)
, (3.14)

and ∣∣g+
σ,∆(z)

∣∣� Ω(σ)∆2e2π∆|y|

(1 + ∆|z|)
. (3.15)
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(ii) The Fourier transforms of m±∆ are even continuous functions supported on the interval [−∆,∆]. For

0 < ξ < ∆ these are given by

ĝ±σ,∆(ξ) =

∞∑
k=−∞

(±1)k
(k + 1)

|ξ + k∆|

(
e−2π|ξ+k∆|(σ− 1

2 ) − e−2π|ξ+k∆|
)
. (3.16)

(iii) At ξ = 0 we have

ĝ±σ,∆(0) = 2π

(
3

2
− σ

)
− 2

∆
log

(
1∓ e−(2σ−1)π∆

1∓ e−2π∆

)
. (3.17)

Analogously, the next lemma gives some properties of the extremal functions for f2m+1,σ. The proof of

this result follows from [7, Lemma 10].

Lemma 6. Let m ≥ 0 be an integer and let 1
2 < σ < 1 and ∆ ≥ 0.02 be real numbers. Then there is a pair

of real entire functions g±2m+1,σ,∆ : C→ C satisfying the following properties:

(i) For x ∈ R we have

− 1

1 + x2
�m g−2m+1,σ,∆(x) ≤ f2m+1,σ(x) ≤ g+

2m+1,σ,∆(x)�m
1

1 + x2
. (3.18)

Moreover, for any complex number z = x+ iy we have∣∣g±2m+1,σ,∆(z)
∣∣�m

∆2e2π∆|y|

(1 + ∆|z|)
. (3.19)

(ii) The Fourier transforms of g±2m+1,σ,∆ are even continuous functions supported on the interval [−∆,∆].

For 0 < ξ < ∆ these are given by

ĝ±2m+1,σ,∆(ξ) =

1

2

∞∑
k=−∞

(±1)k

 k + 1

|ξ + k∆|

(
(2m)! e−2π|ξ+k∆|(σ− 1

2 )

(2π|ξ + k∆|)2m+1
−

2m+1∑
j=0

γj e
−2π|ξ+k∆|

(2π|ξ + k∆|)j

(
3

2
− σ

)2m+1−j
) , (3.20)

where γj = (2m)!
(2m+1−j)! , for 0 ≤ j ≤ 2m+ 1.

(iii) At ξ = 0 we have

ĝ±2m+1,σ,∆(0) =
π

(2m+ 1)(2m+ 2)

(
3

2
− σ

)2m+2

− 1

∆

∫ 3
2

σ

(u− σ)2m log

(
1∓ e−2π(u− 1

2 )∆

1∓ e−2π∆

)
du. (3.21)

Finally, the following lemma shows some properties of the extremal functions for f−1,σ. The proof of this

result follows from [7, Lemma 9]. To simplify the notation we let β = σ − 1
2 .

Lemma 7. For 0 < β < 1
2 , we define the function

hβ(x) := f−1,σ(x) =
β

β2 + x2
.

Let ∆ ≥ 0.02 be a real number. Then there is a pair of real entire functions m±β,∆ : C → C satisfying the

following properties:
7



(i) For x ∈ R we have

0 < m−β,∆(x) ≤ hβ(x) ≤ m+
β,∆(x)� 1

β(1 + x2)
. (3.22)

Moreover, for any complex number z = x+ iy we have∣∣m−β,∆(z)
∣∣� β∆2e2π∆|y|

(1 + ∆|z|)
, (3.23)

and ∣∣m+
β,∆(z)

∣∣� ∆2e2π∆|y|

β(1 + ∆|z|)
. (3.24)

(ii) The Fourier transforms of m±β,∆ are even continuous functions supported on the interval [−∆,∆].

For 0 ≤ ξ < ∆ these are given by

m̂±β,∆(ξ) = π

(
e2πβ(∆−ξ) − e−2πβ(∆−ξ)

(eπβ∆ ∓ e−πβ∆)
2

)
. (3.25)

4. Asymptotic analysis

In order to prove Theorem 1, we shall first apply the Guinand-Weil explicit formula to the extremal

functions and then perform a careful asymptotic analysis of the terms appearing in the process. We use

this in the representation lemma and finally optimize the support of some Fourier transforms resulting from

the previous analysis to get the desired result. We highlight that one of the main technical difficulties of

our proof, when compared with results in [5, 6, 8, 10], is in the analysis of the sums over prime powers. To

obtain the exact asymptotic behavior of such tough terms we shall need explicit formulas for the Fourier

transforms of these extremal functions. In Appendix A (the last section) we collect some technical results

that will be needed.

Let m ≥ 1 be an integer, and c > 0, ∆ ≥ 0.02 and 1
2 < σ < 1 be real numbers such that (1− σ)2π∆ ≥ c.

Let h±∆(s) be any of the six extremal functions referred to in Lemmas 5, 6 and 7, and let t ∈ R. As explained

in the previous section, we replace each one of the functions fσ, f2m+1,σ and f−1,σ by its extremal functions in

Lemma 3. This means that we must bound the sum h±∆(t−γ). If we consider the function ht(s) := h±∆(t−s),
then ĥt(ξ) = ĥ±∆(−ξ)e−2πiξt. It follows from (3.13), (3.14), (3.15), (3.18), (3.19), (3.22), (3.23), (3.24) and

an application of the Phragmén-Lindelöf principle that |ht(s)| � (1 + |s|)−2 when |Re s| → ∞ in the strip

|Im s| ≤ 1. Therefore, the function ht(s) satisfies the hypotheses of Lemma 4. By the generalized Riemann

hypothesis and the fact that ĥ±∆ are even functions we obtain that

∑
γ

h±∆(t− γ) =
logN

2π
ĥ±∆(0) +

1

π

d∑
j=1

∫ ∞
−∞

h±∆(t− u) Re
Γ′R
ΓR

(
1
2 + µj + iu

)
du

− 1

2π

∞∑
n=2

1√
n
ĥ±∆

(
log n

2π

)(
Λπ(n) e−it logn + Λπ(n) eit logn

)
,

(4.1)

where the sum runs over all values of γ such that L
(

1
2 + iγ, π

)
= 0, counted with multiplicity. We now

proceed to analyze asymptotically each term on the right-hand side of (4.1).

4.1. First term. The first is given by (3.17), (3.21) and (3.25).
8



4.2. Second term. We first examine the functions g±σ,∆. It follows from (3.13), for any x 6= 0, that

− 1

x2
� g−σ,∆(x) ≤ fσ(x)� 1

x2
.

Hence, from (3.14), we deduce

|g−σ,∆(x)| � min
{ 1

x2
,∆2

}
.

Then, using (3.7) and the fact that ∆ ≥ 0.02, we see that

1

π

∫ ∞
−∞

g−σ,∆(t− u) Re
Γ′R
ΓR

(
1
2 + µj + iu

)
du

=
1

2π

∫ ∞
−∞

g−σ,∆(t− u) log
∣∣ 1

2 + µj + iu
∣∣du+O(∆2)

=
1

2π

∫ ∞
−∞

g−σ,∆(u)
{

log(|µj + it|+ 3) +O(log(|u|+ 2))
}

du+O(∆2)

=
log(|µj + it|+ 3)

2π
ĝ−σ,∆(0) +O(∆2).

(4.2)

Similarly, the relation

|g+
σ,∆(x)| � Ω(σ) min

{ 1

x2
,∆2

}
implies that ∫ ∞

−∞
g+
σ,∆(t− u) Re

Γ′R
ΓR

(
1
2 + µj + iu

)
du =

log(|µj + it|+ 3)

2π
ĝ+
σ,∆(0) +O(Ω(σ)∆2). (4.3)

We next examine the functions g±2m+1,σ,∆. Using (3.7) and (3.18) we obtain∫ ∞
−∞

g±2m+1,σ,∆(t− u) Re
Γ′R
ΓR

(
1
2 + µj + iu

)
du =

log(|µj + it|+ 3)

2π
ĝ±2m+1,σ,∆(0) +Om(1). (4.4)

Finally, we examine the functions m±β,∆. If 0 < β < 1
2 and |x| ≥ 1 then

hβ(x) =
β

β2 + x2
≤ 1

1 + x2
.

Hence we get from (3.22) that

0 ≤
∫ ∞
−∞

m−β,∆(x) log(2 + |x|) dx

≤
∫ ∞
−∞

hβ(x) log(2 + |x|) dx =

∫ 1

−1

hβ(x) log(2 + |x|) dx+

∫
|x|≥1

hβ(x) log(2 + |x|) dx = O(1),

and using (3.7) we get

1

π

∫ ∞
−∞

m−β,∆(t− u) Re
Γ′R
ΓR

(
1
2 + µj + iu

)
du =

log(|µj + it|+ 3)

2π
m̂−β,∆(0) +O(1). (4.5)

Similarly, (3.7) and (3.22) imply

1

π

∫ ∞
−∞

m+
β,∆(t− u) Re

Γ′R
ΓR

(
1
2 + µj + iu

)
du =

log(|µj + it|+ 3)

2π
m̂+
β,∆(0) +O

(
1

β

)
. (4.6)

4.3. Third term. We will make use of the explicit formula for the Fourier transforms of the extremal

functions. If we write x = e2π∆, since these Fourier transforms are supported on the interval [−∆,∆], the

third term is a sum that only runs for 2 ≤ n ≤ x. We start by examining the functions g±σ,∆. Observe first
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that ∑
k 6=0

|k + 1|
|ξ + k∆|

e−2π|ξ+k∆| � e−2π∆, (4.7)

when 0 < ξ < ∆. Using (1.3), (3.16), (4.7) and the prime number theorem we find that∣∣∣∣∣ 1

2π

∞∑
n=2

1√
n
ĝ±σ,∆

(
log n

2π

)(
Λπ(n) e−it logn + Λπ(n) eit logn

)∣∣∣∣∣
≤ 2 d

∑
n≤x

Λ(n)√
n

∣∣∣∣∣
∞∑

k=−∞

(±1)k
(k + 1)

| log nxk|

(
e−| lognxk|(σ− 1

2 ) − e−| lognxk|
)∣∣∣∣∣

≤ 2 d
∑
n≤x

Λ(n)√
n

∣∣∣∣∣
∞∑

k=−∞

(±1)k
(k + 1)e−| lognxk|(σ− 1

2 )

| log nxk|

∣∣∣∣∣+O(d).

It is now convenient to split the inner sum in the ranges k ≥ 0 and k ≤ −2, and regroup them as∣∣∣∣∣ 1

2π

∞∑
n=2

1√
n
ĝ±σ,∆

(
log n

2π

)(
Λπ(n) e−it logn + Λπ(n) eit logn

)∣∣∣∣∣
≤ 2 d

∑
n≤x

Λ(n)√
n

∣∣∣∣∣∣
∞∑
k=0

(±1)k

 k + 1

(log nxk) (nxk)σ−
1
2

− k + 1(
log xk+2

n

)(
xk+2

n

)σ− 1
2

∣∣∣∣∣∣+O(d).

(4.8)

For the function ĝ−σ,∆, using Appendices A.1 and A.2 in (4.8) we obtain that∣∣∣∣∣ 1

2π

∞∑
n=2

1√
n
ĝ−σ,∆

(
log n

2π

)(
Λπ(n) e−it logn + Λπ(n) eit logn

)∣∣∣∣∣
≤ 2 d

∑
n≤x

Λ(n)√
n

(
1

nσ−
1
2 log n

− nσ−
1
2

(2 log x− log n)x2σ−1

)
+O(d)

=
d (2σ − 1)

σ(1− σ)

e(2−2σ)π∆

π∆
+Oc

(
d e(2−2σ)π∆

(1− σ)2∆2

)
.

(4.9)

For the function ĝ+
σ,∆, we isolate the term k = 0 and using Appendices A.2 and A.3 in (4.8) we get∣∣∣∣∣ 1

2π

∞∑
n=2

1√
n
ĝ+
σ,∆

(
log n

2π

)(
Λπ(n) e−it logn + Λπ(n) eit logn

)∣∣∣∣∣
≤ d (2σ − 1)

σ(1− σ)

e(2−2σ)π∆

π∆
+Oc

(
d e(2−2σ)π∆

(σ − 1
2 )(1− σ)2∆2

)
.

(4.10)

We next examine the case g±2m+1,σ,∆. As we did in the previous case, using (1.3), (3.20), (4.7) and the prime

number theorem it follows that∣∣∣∣∣ 1

2π

∞∑
n=2

1√
n
ĝ±2m+1,σ,∆

(
log n

2π

)(
Λπ(n) e−it logn + Λπ(n) eit logn

)∣∣∣∣∣
≤ d (2m)!

∑
n≤x

Λ(n)√
n

∣∣∣∣∣∣
∞∑
k=0

(±1)k

 k + 1

(log nxk)2m+2 (nxk)σ−
1
2

− k + 1(
log xk+2

n

)2m+2(xk+2

n

)σ− 1
2

∣∣∣∣∣∣+Om(d).
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We isolate the term k = 0 and using Appendices A.2 and A.3 we get∣∣∣∣∣ 1

2π

∞∑
n=2

1√
n
ĝ±2m+1,σ,∆

(
log n

2π

)(
Λπ(n) e−it logn + Λπ(n) eit logn

)∣∣∣∣∣
≤ d (2m)! (2σ − 1)

σ(1− σ)

e(2−2σ)π∆

(2π∆)2m+2
+Om,c

(
d e(2−2σ)π∆

(1− σ)2∆2m+3

)
+Om(d).

(4.11)

We finally examine the case m±β,∆. Note that in this case we have ( 1
2 −β)2π∆ ≥ c. Using the fact that m̂±β,∆

are nonnegative (see (3.25)), by (1.3) and Appendix A.4 we have that∣∣∣∣∣ 1

2π

∞∑
n=2

1√
n
m̂±β,∆

(
log n

2π

)(
Λπ(n) e−it logn + Λπ(n) eit logn

)∣∣∣∣∣
≤ d

(eπβ∆ ∓ e−πβ∆)2

∑
n≤x

Λ(n)√
n

(
xβ

nβ
− nβ

xβ

)

≤ 2 d β e(1−2β)π∆

( 1
4 − β2)(1∓ e−2πβ∆)2

+Oc

(
d β e(1−2β)π∆

( 1
2 − β)2 ∆ (1∓ e−2πβ∆)2

)
.

(4.12)

Therefore, for the function m̂−β,∆ we obtain in (4.12) that∣∣∣∣∣ 1

2π

∞∑
n=2

1√
n
m̂−β,∆

(
log n

2π

)(
Λπ(n) e−it logn + Λπ(n) eit logn

)∣∣∣∣∣
≤ 2d β e(1−2β)π∆

( 1
4 − β2)(1 + e−2πβ∆)2

+Oc

(
d β e(1−2β)π∆

( 1
2 − β)2 ∆

)
.

(4.13)

As for the function m̂+
β,∆, considering that

1(
1− e−2πβ∆

)2 � 1(
1− e−β

)2 � 1

β2
.

we have ∣∣∣∣∣ 1

2π

∞∑
n=2

1√
n
m̂+
β,∆

(
log n

2π

)(
Λπ(n) e−it logn + Λπ(n) eit logn

)∣∣∣∣∣
≤ 2 d β e(1−2β)π∆

( 1
4 − β2)(1− e−2πβ∆)2

+Oc

(
d e(1−2β)π∆

β ( 1
2 − β)2 ∆

)
.

(4.14)

4.4. Final analysis.

4.4.1. Estimates for log |L(s, π)|. We first will prove the upper bound. From Lemma 3 and (3.13) we get

log |L(σ + it, π)| ≤
(

3

4
− σ

2

)
logC(t, π)− 1

2

∑
γ

g−σ,∆(t− γ) +O(d). (4.15)

In other hand, using (4.2) and (4.9) in (4.1) we obtain∑
γ

g−σ,∆(t− γ) ≥ logC(t, π)

2π
ĝ−σ,∆(0)− d (2σ − 1)

σ(1− σ)

e(2−2σ)π∆

π∆
+O(d∆2) +Oc

(
d e(2−2σ)π∆

(1− σ)2∆2

)
. (4.16)

Then, combining (3.17), (4.16) and (5.13) in (4.15) we get

log |L(σ + it, π)| ≤ 1

2π∆
log

(
1 + e−(2σ−1)π∆

1 + e−2π∆

)
logC(t, π) +

d (2σ − 1)

σ(1− σ)

e(2−2σ)π∆

2π∆
+Oc

(
d e(2−2σ)π∆

(1− σ)2∆2

)
.
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Since log logC(t, π) ≥ log log 3 > 0.09, we can choose π∆ = log logC(t, π). Then

1

2π∆
log
(
1 + e−2π∆

)
logC(t, π)� d e(2−2σ)π∆

(1− σ)2∆2
,

and the desired result follows from (2.1). The proof of the lower bound is similar, combining (3.13), (3.17),

(4.1), (4.3), (4.10), (5.13) with Lemma 3.1.

4.4.2. Estimates for S2m+1,σ(t, π). Let us first consider the case where m is even. We will prove the upper

bound. From Lemma 3 and (3.18) we have that

S2m+1,σ(t, π) ≤ 1

2π(2m+ 2)!

(
3

2
− σ

)2m+2

logC(t, π)− 1

π(2m)!

∑
γ

g−2m+1,σ,∆(t− γ) +Om(d). (4.17)

Combining (3.21), (4.1), (4.4), (4.11) and (5.13) in (4.17) we get

S2m+1,σ(t, π) ≤ logC(t, π)

(2m)! 2π2∆

∫ 3
2

σ

(u− σ)2m log

(
1 + e−2π(u− 1

2 )∆

1 + e−2π∆

)
du+

d (2σ − 1)

πσ(1− σ)

e(2−2σ)π∆

(2π∆)2m+2
+Om(d)

+Om,c

(
d e(2−2σ)π∆

(1− σ)2∆2m+3

)
. (4.18)

We now choose π∆ = log logC(t, π). Using (5.13) in (4.18) leads us to

S2m+1,σ(t, π) ≤ logC(t, π)

(2m)! 2π2∆

∫ ∞
σ

(u− σ)2m log
(

1 + e−2π(u− 1
2 )∆
)

du+
d (2σ − 1)

πσ(1− σ)

e(2−2σ)π∆

(2π∆)2m+2

+Om,c

(
d e(2−2σ)π∆

(1− σ)2∆2m+3

)
.

Finally, taking into account that∫ ∞
σ

(u− σ)2m log
(

1 + e−2π(u− 1
2 )∆
)

du =
(2m)!

(2π∆)2m+1

∞∑
k=1

(−1)k+1 e−2kπ(σ− 1
2 )∆

k2m+2
,

we obtain the desired result. The proof of the lower bound is obtained similarly, combining (3.18), (3.21),

(4.1), (4.4), (4.11), (5.13) with Lemma 3. When m is odd, the proof is similar, since only the roles of the

majorant g+
2m+1,σ∆ and minorant g−2m+1,σ∆ are interchanged due to the presence of the factor (−1)m in

Lemma 3.

4.4.3. Estimates for S−1,σ(t, π). Let us first prove the lower bound. From Lemma 3 and (3.22) we have

− logC(t, π)

2π
+

1

π

∑
γ

m−β,∆(t− γ) +O(d) ≤ S−1,σ(t, π). (4.19)

Combining (3.25), (4.1), (4.5), (4.13) in (4.19) we deduce that

S−1,σ(t, π) ≥ − logC(t, π)

π

(
e−2πβ∆

1 + e−2πβ∆

)
− 2 d β e(1−2β)π∆

π( 1
4 − β2)

(
1 + e−2πβ∆

)2 +Oc

(
d β e(1−2β)π∆

( 1
2 − β)2∆

)
+O(d).

We now choose π∆ = log logC(t, π). Recalling that β = σ − 1
2 , by (5.13) this choice yields

S−1,σ(t, π) ≥ − (logC(t, π))2−2σ

π

(
1(

1+(logC(t, π))1−2σ
)+

d (2σ − 1)

σ(1− σ)
(
1+(logC(t, π))1−2σ

)2
)

+Oc

(
d (σ − 1

2 )(logC(t, π))2−2σ

(1− σ)2 log logC(t, π)

)
.
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Observe that this estimate is actually slightly stronger than the one we proposed in Theorem 1. For the

proof of the upper bound, as before, combining (3.22), (3.25), (4.1), (4.6), (4.14), (5.13) with Lemma 3, and

choosing π∆ = log logC(t, π) we obtain that

S−1,σ(t, π) ≤ (logC(t, π))2−2σ

π

(
1(

1− (logC(t, π))1−2σ
) +

d (2σ − 1)

σ(1− σ)
(
1− (logC(t, π))1−2σ

)2
)

+Oc

(
d (logC(t, π))2−2σ

(σ − 1
2 )(1− σ)2 log logC(t, π)

)
.

(4.20)

Finally, note that if we write θ = logC(t, π), then θ ≥ log 3 > 1, and therefore(
1− 1(

1− θ1−2σ
)2
)
� θ1−2σ(

1− θ1−2σ
)2 � 1

(σ − 1
2 )2(log θ)2

� 1

(σ − 1
2 )2(log θ)

.

By applying this bound in (4.20), we obtain the desired result.

5. Interpolation tools

In order to bound the functions S2m,σ(t, π) when m ≥ 0 is an integer, we follow a different argument to

the case of S2m+1,σ(t, π). Although we can obtain a representation as in Lemma 3 (see [7, Lemma 7]), it is

unknown to find extremal majorants and minorants of exponential type for the associated functions in the

representation. Therefore, we adopt a different approach based on an interpolation argument. We follow the

same outline as in [7, Section 6], where similar functions associated with the Riemann zeta-function were

studied. Here we present the necessary changes to adapt the proof in [7] for our family of entire L-functions.

The main change consists in the suitable use of the mean value theorem, since the analytic conductor is not

sufficiently smooth.

Since we assume the generalized Riemann hypothesis and 1
2 < σ < 1, we have that S′2m+1,σ(t, π) =

S2m,σ(t, π) and S′2m,σ(t, π) = S2m−1,σ(t, π) for all t ∈ R. For n ≥ 0 we consider the following functions

ln,σ(t) :=
(logC(t, π))2−2σ

(log logC(t, π))n
rn,σ(t) :=

d (logC(t, π))2−2σ

(1− σ)2(log logC(t, π))n
.

5.0.1. Estimates for S0,σ(t, π). Let c > 0 be a given real number. In the range (1 − σ)2 ≥ c/16
log logC(t,π) we

have already shown that

−M−1,σ(t) `2,σ(t) +Oc(r3,σ(t)) ≤ S1,σ(t, π) ≤M+
1,σ(t) `2,σ(t) +Oc(r3,σ(t)), (5.1)

and that

−M−−1,σ(t) `0,σ(t) +Oc(r1,σ(t)) ≤ S−1,σ(t, π). (5.2)

Let (σ, t) be such that (1 − σ)2 ≥ c
log logC(t,π) . By Appendix A.5 we have that in the set {(σ, µ); t − 25 ≤

µ ≤ t + 25}, estimates (5.1) and (5.2) hold. Then, by the mean value theorem and (5.2), we obtain for

0 ≤ h ≤ 25,

S0,σ(t, π)− S0,σ(t− h, π) = hS−1,σ(t∗h, π) ≥ −hM−−1,σ(t∗h) `0,σ(t∗h) + hOc(r1,σ(t∗h))

= −hM−−1,σ(t∗h) `0,σ(t∗h) + hOc(r1,σ(t)),
(5.3)
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where t∗h is a suitable point in the segment connecting t− h and t. We claim that

|M−−1,σ(t) `0,σ(t)−M−−1,σ(t∗h) `0,σ(t∗h)| � dµd,σ, (5.4)

where µd,σ = (2σ − 1)d+ 1. In order to prove this, we define the function

g1(x) =
1

π

(
1

1 + x1−2σ
+
d (2σ − 1)

σ(1− σ)

)
x2−2σ.

Note that |g′1(x)| � µ d for x > 1, and g1(logC(t, π)) = M−−1,σ(t) `0,σ(t). The mean value theorem applied

to the functions g1 and the logarithm imply that∣∣g1(logC(t, π))− g1(logC(t∗h, π))
∣∣� µd,σ| logC(t, π)− logC(t∗h, π)|

≤ µd,σ
d∑
j=1

∣∣ log(|µj + it|+ 3)− log(|µj + it∗h|+ 3)
∣∣

� µd,σ

d∑
j=1

∣∣|µj + it| − |µj + it∗h|
∣∣

≤ µd,σ
d∑
j=1

|t− t∗h| � dµd,σ.

(5.5)

We thus obtain (5.4), and using (5.13) we have that∣∣M−−1,σ(t) `0,σ(t)−M−−1,σ(t∗h) `0,σ(t∗h)
∣∣� µd,σ r1,σ(t). (5.6)

From (5.3) and (5.6) it follows that

S0,σ(t, π)− S0,σ(t− h, π) ≥ −hM−−1,σ(t) `0,σ(t) + hOc(µd,σ r1,σ(t)). (5.7)

Let ν = νσ(t) be a real-valued function such that 0 < ν ≤ 25. For a fixed t, we integrate (5.7) with respect

to the variable h to obtain

S0,σ(t, π) ≥ 1

ν

∫ ν

0

S0,σ(t− h, π) dh− 1

ν

(∫ ν

0

hdh

)
M−−1,σ(t) `0,σ(t) +

1

ν

(∫ ν

0

hdh

)
Oc(µd,σ r1,σ(t))

=
1

ν

(
S1,σ(t, π)− S1,σ(t− ν, π)

)
− ν

2
M−−1,σ(t) `0,σ(t) +Oc(ν µd,σ r1,σ(t)).

From (5.1) we then get

S0,σ(t, π) ≥ 1

ν

[
−M−1,σ(t) `2,σ(t)−M+

1,σ(t− ν) `2,σ(t− ν) +Oc(r3,σ(t)) +Oc(r3,σ(t− ν))
]

− ν

2
M−−1,σ(t) `0,σ(t) +Oc(ν µd,σ r1,σ(t))

= −
[
M−1,σ(t) +M+

1,σ(t)
] 1

ν
`2,σ(t)− ν

2
M−−1,σ(t) `0,σ(t) +Oc

(
µd,σ r3,σ(t)

ν

)
+Oc(ν µd,σ r1,σ(t)),

(5.8)

where the following was used∣∣M+
1,σ(t) `2,σ(t)−M+

1,σ(t− ν) `2,σ(t− ν)
∣∣� µd,σ r3,σ(t). (5.9)

We now prove (5.9). For x > 0 define

g2(x) =
1

4π

( ∞∑
k=0

(−1)k

(k + 1)2x(2σ−1)k
+
d (2σ − 1)

σ(1− σ)

)
x2−2σ

(log x)2
.
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Note that M+
1,σ(t) `2,σ(t) = g2(logC(t, π)). For each k ≥ 0 and x ≥ log 3 > 1 put

fk(x) =
1

x(2σ−1)k

x2−2σ

(log x)2
=
x(k+1)(1−2σ)+1

(log x)2
.

Then, for x > y ≥ log 3 using the mean value theorem, we have that

|g2(x)− g2(y)| �
∞∑
k=0

1

(k + 1)2

∣∣fk(x)− fk(y)
∣∣+

d (2σ − 1)

(1− σ)
|f0(x)− f0(y)|

= |x− y|
( ∞∑
k=0

1

(k + 1)2

∣∣f ′

k(ξk)
∣∣+

d (2σ − 1)

1− σ
∣∣f ′0(ξ)

∣∣)

� |x− y|
( ∞∑
k=0

((k + 1)(2σ − 1) + 1)

(k + 1)2 ξ
(k+1)(2σ−1)
k (log ξk)2

+
d (2σ − 1)

1− σ

)
,

(5.10)

where ξk, ξ ∈ ]y, x[ for each k ≥ 0. Observe now that by the mean value theorem

∞∑
k=0

((k + 1)(2σ − 1) + 1)

(k + 1)2 ξ
(k+1)(2σ−1)
k (log ξk)2

≤
∞∑
k=0

((k + 1)(2σ − 1) + 1)

(k + 1)2 y(k+1)(2σ−1)(log y)2

� 1

(log y)2

[ ∞∑
k=0

2σ − 1

(k + 1)y(k+1)(2σ−1)
+ 1 +

d (2σ − 1)

1− σ

]

≤ 1

(log y)2

[ ∞∑
k=0

2σ − 1

y(k+1)(2σ−1)
+ 1 +

d (2σ − 1)

1− σ

]
� µd,σ

(1− σ)(log y)2
.

Then, in (5.10), by using a similar idea as in (5.5), we obtain∣∣∣g2(logC(t, π))− g2(logC(t− ν, π))
∣∣∣� µd,σ

(1− σ)

| logC(t, π)− logC(t− ν, π)|
(log logC(t, π))2

� dµd,σ (logC(t, π))2−2σ

(1− σ)2(log logC(t, π))3
.

This proves (5.9). We now choose ν = λσ(t)
log logC(t,π) in (5.8), where λσ(t) > 0 is a function to be determined.

This yields

S0,σ(t) ≥ −

[(
M−1,σ(t) +M+

1,σ(t)
) 1

λσ(t)
+
M−−1,σ(t)

2
λσ(t)

]
`1,σ(t) +Oc

(
µd,σ r2,σ(t)

λσ(t)

)
+Oc(µd,σ λσ(t) r2,σ(t)).

The optimal λσ(t) minimizing the expression in brackets is

λσ(t) =

(
2
(
M−1,σ(t) +M+

1,σ(t)
)

M−−1,σ(t)

) 1
2

. (5.11)

and this leads to the bound

S0,σ(t) ≥ −
[
2
(
M−1,σ(t) +M+

1,σ(t)
)
M−−1,σ(t)

] 1
2
`1,σ(t) +Oc

(
µd,σ r2,σ(t)

λσ(t)

)
+Oc(µd,σ λσ(t) r2,σ(t)). (5.12)

Finally, using some estimates for Hn(x), one can show that 1
2 ≤ λσ(t) ≤ 2, which implies that indeed

0 < ν ≤ 25, and allows us to write (5.12) in our originally intended form of

S0,σ(t) ≥ −
[
2
(
M−1,σ(t) +M+

1,σ(t)
)
M−−1,σ(t)

] 1
2
`1,σ(t) +Oc(µd,σ r2,σ(t)).

The proof of the upper bound for S0,σ(t) follows along the same lines.
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5.0.2. Estimates for S2m,σ(t, π). The proof of this estimates follows the same outline in [7, Subsection 6.1].

The substantial changes in the use of the mean value theorem are similar with (5.5) and (5.10).

Appendix A: Calculus facts

Throughout this paper we shall encounter the following setting in many situations: let c > 0 be a given

real number, 1
2 < σ < 1 and x ≥ 2 be such that

(1− σ)2 log x ≥ c.

Let us note that, if 0 ≤ θ1, θ2 are real numbers, it follows from the above inequality that

(1− σ)θ1 (log x)θ2 �c,θ1,θ2 x
1−σ. (5.13)

A.1. For 1
2 < σ < 1 and 2 ≤ n ≤ x we have

0 ≤
∞∑
k=0

(−1)k

 k + 1

(log nxk) (nxk)σ−
1
2

− k + 1(
log xk+2

n

)(
xk+2

n

)σ− 1
2

 ≤ 1

nσ−
1
2 log n

− nσ−
1
2

(2 log x− log n)x2σ−1
.

Proof. See [3, Eq. (2.14), (2.16) and Lemma 6].

�

A.2. Let c > 0 be a given real and m ≥ 0 be an integer or m = − 1
2 . For 1

2 < σ < 1 and x ≥ 2 such that

(1− σ)2 log x ≥ c, we have the following asymptotic behaviors∑
n≤x

Λ(n)

nσ(log n)2m+2
=

x1−σ

(1− σ)(log x)2m+2
+Ol,c

(
x1−σ

(1− σ)2(log x)2m+3

)
and

1

x2σ−1

∑
n≤x

Λ(n)

n1−σ(2 log x− log n)2m+2
=

x1−σ

σ(log x)2m+2
+Ol,c

(
x1−σ

(1− σ)2(log x)2m+3

)
.

Proof. See [7, Appendix B.1, B.2].

�

A.3. Let c > 0 be a given real number and m ≥ 0 be an integer. For 1
2 < σ < 1 and x ≥ 2 such that

(1− σ)2 log x ≥ c, we have the following asymptotic behavior

∞∑
k=1

k + 1(
xσ−

1
2

)k
∣∣∣∣∣∑
n≤x

Λ(n)

(
1

nσ(k log x+ log n)2m+2
− 1

x2σ−1 n1−σ((k + 2) log x− log n)2m+2

)∣∣∣∣∣
�c

x1−σ

(1− σ)2(log x)2m+3
.

Besides, we have that

∞∑
k=1

k + 1(
xσ−

1
2

)k
∣∣∣∣∣∑
n≤x

Λ(n)

(
1

nσ(k log x+ log n)
− 1

x2σ−1 n1−σ((k + 2) log x− log n)

)∣∣∣∣∣
�m,c

x1−σ

(σ − 1
2 )(1− σ)2(log x)2

.
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Proof. See [7, Appendix B.3] for the first result. The proof of the second result follows the same outline.

�

A.4. Let c > 0 be a given real number. For 0 < β < 1
2 and x ≥ 2 such that ( 1

2 − β)2 log x ≥ c, we have

∑
n≤x

Λ(n)√
n

(
xβ

nβ
− nβ

xβ

)
=

2βx
1
2

1
4 − β2

+Oc

(
βx

1
2

( 1
2 − β)2 log x

)
.

Proof. It follows by [7, Appendix B.4] and the mean value theorem.

�

A.5. Let z, w be complex numbers such that |w| ≤ 25. Then

(log(|z + w|+ 3))16 ≥ log(|z|+ 3).

Proof. If |z| > 25, then

(log(|z + w|+ 3))16 ≥ log(|z| − |w|+ 3)(log 3)15 > 4 log(|z| − 22) ≥ log(|z|+ 3),

since (log 3)15 > 4. On the other hand, if |z| ≤ 25

(log(|z + w|+ 3))16 ≥ (log 3)16 > 4 > log(28) ≥ log(|z|+ 3).

�
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