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Abstract. Let S(σ, t) = 1
π

arg ζ(σ + it) be the argument of the Riemann zeta function at the point σ + it

of the critical strip. For n ≥ 1 and t > 0 we define

Sn(σ, t) =

∫ t

0
Sn−1(σ, τ) dτ + δn,σ ,

where δn,σ is a specific constant depending on σ and n. Let 0 ≤ β < 1 be a fixed real number. Assuming

the Riemann hypothesis, we show lower bounds for the maximum of the function Sn(σ, t) on the interval

Tβ ≤ t ≤ T and near to the critical line, when n ≡ 1 mod 4. Similar estimates are obtained for |Sn(σ, t)|
when n 6≡ 1 mod 4. This extends the results of Bondarenko and Seip [7] for a region near the critical line.

In particular we obtain some omega results for these functions on the critical line.

1. Introduction

In this paper, following similar ideas from Bondarenko and Seip [7], we obtain new estimates for extreme

values of the argument of the Riemann zeta function and its antiderivatives near the critical line assuming

the Riemann hypothesis. Our main tools are convolution formulas for the functions Sn(σ, t) and the version

of the resonance method of Bondarenko and Seip given in [7].

Let us begin by defining the main objects of our study and some results of them.

1.1. Background. Let ζ(s) denote the Riemann zeta function. For 1
2 ≤ σ ≤ 1 and t > 0 we define

S(σ, t) = 1
π arg ζ

(
σ + it

)
,

where the argument is obtained by a continuous variation along straight line segments joining the points 2,

2 + it and σ + it, assuming that this path has no zeros of ζ, with the convention that arg ζ(2) = 0. If this

path has zeros of ζ (including the endpoint σ + it) we set

S(σ, t) = 1
2 lim
ε→0
{S(σ, t+ ε) + S(σ, t− ε)} .

Useful information on the qualitative and quantitative behavior of S(σ, t) is encoded in its antiderivatives.

Setting S0(σ, t) := S(σ, t), for n ≥ 1 we define, inductively, the functions

Sn(σ, t) =

∫ t

0

Sn−1(σ, τ) dτ + δn,σ ,

where δn,σ is a specific constant depending on σ and n. These are given by

δ2k−1,σ =
(−1)k−1

π

∫ ∞
σ

∫ ∞
u2k−1

. . .

∫ ∞
u3

∫ ∞
u2

log |ζ(u1)|du1 du2 . . . du2k−1
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for n = 2k − 1, with k ≥ 1, and

δ2k,σ = (−1)k−1
∫ 1

σ

∫ 1

u2k

. . .

∫ 1

u3

∫ 1

u2

du1 du2 . . . du2k =
(−1)k−1(1− σ)2k

(2k)!

for n = 2k, with k ≥ 1.

Let n ≥ 0 be an integer and 1
2 ≤ σ ≤ 1 be a fixed real number. We extend the functions t 7→ Sn(σ, t) to

R in such a way that Sn(σ, t) is an odd function when n is even or is an even function when n is odd.

1.2. Behavior on the critical line. When σ = 1
2 , we use the classical notation Sn( 1

2 , t) = Sn(t) and

S0(t) = S(t). In 1924, J. E. Littlewood [16, Theorem 11] established, under the Riemann hypothesis (RH),

the bound1

Sn(t) = On

(
log t

(log log t)n+1

)
, (1.1)

for n ≥ 0. The order of magnitude of (1.1) has never been improved and the efforts have been concentrated

on optimizing the value of the implicit constants. The best known result for n = 0 and n = 1 is due to

Carneiro, Chandee and Milinovich [10] and for n ≥ 2 is due to Carneiro and Chirre [11].

On the other hand, for n = 0 we have the following omega results2

S(t) = Ω±

(
(log t)

1
2

(log log t)
1
2

)
, (1.2)

established by Montgomery [19, Theorem 2], under RH. It is likely that the estimate (1.2) is closer to the

behavior of the function S(t) than the estimate (1.1). In fact, a heuristic argument by Farmer, Gonek and

Hughes [13] suggests that S(t) grows as (log t log log t)
1
2 . Similarly, for the function S1(t) Tsang [23, Theorem

5] established, under RH, that

S1(t) = Ω±

(
(log t)

1
2

(log log t)
3
2

)
.

For the case n ≥ 2, there are no known omega results for Sn(t).

Recently, Bondarenko and Seip used their version of the resonance method with a certain convolution

formula for ζ(s) to produce large values of the Riemann zeta function on the critical line [7]. Besides, using a

convolution formula for log ζ(s), they obtained similar results for the functions S(t) and S1(t). They showed

the following theorem.

Theorem 1 (cf. Bondarenko and Seip [7]). Assume the Riemann hypothesis. Let 0 ≤ β < 1 be a fixed real

number. Then there exist two positive constants c0 and c1 such that, whenever T is large enough,

max
Tβ≤t≤T

|S(t)| ≥ c0
(log T )

1
2 (log log log T )

1
2

(log log T )
1
2

and

max
Tβ≤t≤T

S1(t) ≥ c1
(log T )

1
2 (log log log T )

1
2

(log log T )
3
2

.

1The notation f = O(g) (or f � g) means |f(t)| ≤ C g(t) for some constant C > 0 and t sufficiently large. In the subscript we
indicate the parameters in which such constant C may depend on.
2The notation f = Ω+(g) means f(t) > C g(t) for some constant C > 0 and for some arbitrarily large values of t. The notation
f = Ω−(g) means f(t) < −C g(t) for some constant C > 0 and for some arbitrarily large values of t. The notation f = Ω±(g)

means that f = Ω+(g) and f = Ω−(g).
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Theorem 1 implies the following omega result3 for S(t):

S(t) = Ω

(
(log t)

1
2 (log log log t)

1
2

(log log t)
1
2

)
.

This result can be compared with the Ω± results of Montgomery. For S1(t), Theorem 1 improved the Ω+

result given by Tsang by a factor (log log log t)
1
2 .

1.3. Behavior in the critical strip. Recently Carneiro, Chirre and Milinovich [12, Theorem 2] showed

new estimates for Sn(σ, t) similar to (1.1). In particular, for a fixed number 1
2 < σ < 1, under RH, we have

that

Sn(σ, t) = On,σ

(
(log t)

2−2σ

(log log t)n+1

)
,

for n ≥ 0. On the other hand, under RH, Tsang [23, Theorem 2 and p. 382] states the following lower bound

sup
t∈[T,2T ]

±S(σ, t) ≥ c (log T )
1
2

(log log T )
1
2

, (1.3)

for 1
2 ≤ σ ≤ 1

2 + 1
log log T , T sufficiently large and some constant c > 0. This result shows extreme values

for S(σ, t) near the critical line. For the critical strip, a result of Montgomery [19] states that, for a fixed
1
2 < σ < 1, we have

S(σ, t) = Ω±

(
(σ − 1

2 )2
(log t)1−σ

(log log t)σ

)
.

The main result of this paper is to show lower bounds for Sn(σ, t) near the critical line, similar to (1.3).

Theorem 2. Assume the Riemann hypothesis. Let 0 ≤ β < 1 be a fixed number. Let σ > 0 be a real number

and T > 0 sufficiently large in the range

1

2
≤ σ ≤ 1

2
+

1

log log T
.

Then there exists a sequence {cn}n≥0 of positive real numbers with the following property.

(1) If n ≡ 1 mod 4:

max
Tβ≤t≤T

Sn(σ, t) ≥ cn
(log T )1−σ(log log log T )σ

(log log T )σ+n
.

(2) In the other cases:

max
Tβ≤t≤T

|Sn(σ, t)| ≥ cn
(log T )1−σ(log log log T )σ

(log log T )σ+n
.

Note that when σ = 1
2 and n = 0 or 1, we recover Theorem 1. Moreover, we obtain the new omega results

on the critical line.

Corollary 3. Assume the Riemann hypothesis. Then

(1) If n ≡ 1 mod 4:

Sn(t) = Ω+

(
(log t log log log t)

1
2

(log log t)n+
1
2

)
.

3The notation f = Ω(g) means that limt→∞ f(t)/g(t) 6= 0.
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(2) In the other cases:

Sn(t) = Ω

(
(log t log log log t)

1
2

(log log t)n+
1
2

)
.

1.4. Strategy outline. Our approach is motivated by the ideas of Bondarenko and Seip [7] on the use of

their version of the resonance method and a convolution formula for log ζ(s). Soundararajan [21] introduced

the resonance method to produce large values of the Riemann zeta function on the critical line and large

and small central values of L-functions. Also, this method has been the main tool for finding large values for

the Riemann zeta function, L-functions and other objects related to them, in the critical strip (for instance

in [1, 2, 3, 4, 5, 6, 7, 8, 9, 15, 18]). The main idea of the resonance method is to find a certain Dirichlet

polynomial which “resonates” with the object to study. The use of this Dirichlet polynomial is the principal

difference between [7] and the works of Selberg and Tsang, where they used estimates of high moments to

detect large values of Dirichlet series. Also, in contrast to the resonance method of Soundararajan [21],

Bondarenko and Seip used significantly larger primes and a longer Dirichlet polynomial in the resonator. We

will construct this Dirichlet polynomial in Section 4.

The strategy can be broadly divided into the following three main steps:

1.4.1. Step 1: Some results for Sn(σ, t). The first step is to show bounds for Sn(σ, t) and for their moments.

Bondarenko and Seip only needed to use the Littlewood’s estimate (1.1) and bounds of Selberg [22] for the

moments of S(t) and S1(t), assuming the Riemann hypothesis. In our case, we will use a weaker version of

the result of Carneiro, Chirre and Milinovich [12], to estimate the function Sn(σ, t) uniformly in the critical

strip. As a simple consequence of this result, we will obtain an estimate for its first moment. Finally, we will

extend the convolution formula for log ζ(s) given in [23, Lemma 5] for the function Sn(σ, t). Although we

restrict our attention to a region close to the critical line, we will show the bounds for Sn(σ, t) in the critical

strip, which may be of interest for other applications.

1.4.2. Step 2: The resonator. The construction of our resonator is similar to that made by Bondarenko and

Seip [7, Section 3]. In particular, when σ = 1
2 we obtain the resonator used by them. A deeper analysis in

[7, Lemmas 3 and 4] allows us to show these results for a region close to the critical line. This implies that

the main relation between the resonator and the convolution formula of Sn(σ, t) will follow immediately in

the same way as obtained in the case σ = 1
2 [7, Lemma 7].

1.4.3. Step 3: Proof of Theorem 2. We follow the same outline in the proof of [7, Theorem 2]. We will

estimate the error terms in the integral that contains the resonator and the convolution formula of Sn(σ, t).

The main difference in our proof with that of Bondarenko and Seip is in the choice of the sign for a certain

Gaussian kernel. This choice will depend on the remainder of n modulo 4. In particular, this allows to obtain

Ω+ results for Sn(t) when n ≡ 1 mod 4 and Ω results in the other cases.

Throughout this paper we will assume the Riemann hypothesis. Besides, for f ∈ L1(R), we define the

Fourier transform f̂ by

f̂(ξ) =

∫ ∞
−∞

f(x)e−2πiξxdx,

for ξ ∈ R.
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2. Some results for Sn(σ, t)

The main goal in this section is to show bounds for the functions Sn(σ, t) and some convolution formulas

of these functions with certain kernels. Throughout this section we let n ≥ 0 be an integer and 0 < δ ≤ 1
2

be a real number.

2.1. Bounds for Sn(σ, t). The bounds that we will use for the functions Sn(σ, t) will be a weaker version

of a result of Carneiro, Chirre and Milinovich [12].

Theorem 4. Assume the Riemann hypothesis. We have the uniform bound

Sn(σ, t) = On,δ

(
(log t)2−2σ

(log log t)n+1

)
in 1

2 ≤ σ ≤ 1− δ < 1 and t > 0 sufficiently large. In particular, we obtain for all t ∈ R that

Sn(σ, t) = On,δ(log(|t|+ 2)). (2.1)

Proof. It is enough to show when σ > 1
2 . For t sufficiently large we have that

(1− σ)2 log log t ≥ δ2 log log t ≥ 1.

Then, by [12, Theorem 2] we have(
− C−n,σ(t) +On,δ(1)

) (log log t)2−2σ

(log log t)n+1
≤ Sn(σ, t) ≤

(
C+
n,σ(t) +On,δ(1)

) (log log t)2−2σ

(log log t)n+1
, (2.2)

where C±n,σ(t) are positive functions. For n ≥ 1 odd, these functions are given by:

C±n,σ(t) =
1

2n+1π

(
Hn+1

(
± (−1)

n+1
2 (log t)1−2σ

)
+

2σ − 1

σ(1− σ)

)
, (2.3)

where

Hn(x) = 1 +

∞∑
k=1

xk

(k + 1)n
.

Note that when m ≥ 2, we have the bounds

1− 1

2m
≤ Hm(x) ≤ ζ(m),

for |x| ≤ 1. Therefore, we obtain in (2.3) for n ≥ 1 odd and t sufficiently large

an,δ ≤ C±n,σ(t) ≤ bn,δ, (2.4)

for some positive constants an,δ and bn,δ. Using (2.2) we obtain the desired result in this case. For n ≥ 2

even, these functions C±n,σ(t) are given by:

C±n,σ(t) =

(
2
(
C+
n+1,σ(t) + C−n+1,σ(t)

)
C+
n−1,σ(t)C−n−1,σ(t)

C+
n−1,σ(t) + C−n−1,σ(t)

) 1
2

.

Since (2.4) holds for C±n−1,σ(t) and C±n+1,σ(t), we have a similar estimate for C±n,σ(t), and this implies the

desired result in this case. When n = 0 we have that

C±0,σ(t) =
(

2
(
C+

1,σ(t) + C−1,σ(t)
)
C−1,σ(t)

) 1
2

,
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where the function C−1,σ(t) is defined by

C−1,σ(t) =
1

π

(
1

1 + (log t)1−2σ
+

2σ − 1

σ(1− σ)

)
.

Using (2.4) and a simple bound for C−1,σ(t), we bound C±0,σ(t) and we conclude. Thefefore, it follows easily

that (2.1) is valid for t ≥ t0 where t0 is sufficiently large, and using the fact that the functions Sn(σ, t) are

bounded in [ 12 , 1− δ]× [0, t0] we conclude the proof. �

As a simple consequence we have the following estimate∫ T

0

|Sn(σ, t)|dt = On,δ(T log T ), (2.5)

uniformly in 1
2 ≤ σ ≤ 1− δ < 1 and T ≥ 2. Although this estimate is weak, it is sufficient for our purposes.

For the case σ = 1
2 , better estimates are given by Littlewood [17, Theorem 9 and p. 179] for all n ≥ 0.

2.2. Convolution formula. Now, we will obtain convolution formulas for the functions Sn(σ, t) with certain

kernels. The next lemma was introduced by Selberg [22], and was also used by Tsang to study the functions

S(t) and S1(t) [23, 24]. Since we assume the Riemann hypothesis, the factor that contains the zeros outside

the critical line disappears.

Lemma 5. Assume the Riemann hypothesis. Suppose that 1
2 ≤ σ ≤ 2, and let K(x + iy) be an analytic

function in the horizontal strip σ − 2 ≤ y ≤ 0 satisfying the growth estimate

Vσ(x) := max
σ−2≤y≤0

|K(x+ iy)| = O

(
1

|x| log2 |x|

)
when |x| → ∞. Then for every t 6= 0, we have∫ ∞

−∞
log ζ(σ + i(t+ u))K(u)du =

∞∑
m=2

Λ(m)

mσ+it logm
K̂

(
logm

2π

)
+O

(
Vσ(−t)

)
. (2.6)

Proof. See [23, Lemma 5]. �

It is clear that the above lemma gives a convolution formula for the function S(σ, t). To obtain a similar

formula for the function Sn(σ, t) when n ≥ 1, we need an expression that connects the function Sn(σ, t) with

log ζ(s).

Lemma 6. For 1
2 ≤ σ ≤ 1 and t 6= 0 we have

Sn(σ, t) =
1

π
Im

{
in

(n− 1)!

∫ ∞
σ

(u− σ)
n−1

log ζ(u+ it) du

}
.

Proof. This follows from [12, Lemma 6] and integration by parts. �

Using this expression we obtain the following convolution formula. This generalizes Tsang’s conditional

formula in [24] (or [7, Eq. (10)].

Proposition 7. Assume the Riemann hypothesis and the same conditions for the function K(x+ iy) as in

Lemma 5. Suppose further that K is an even real-valued function (or odd real-valued function). Then for
1
2 ≤ σ ≤ 1 and t 6= 0, we have∫ ∞

−∞
Sn(σ, t+ s)K(s)ds =

1

π
Im

{
in
∞∑
m=2

Λ(m)

mσ+it(logm)n+1
K̂

(
logm

2π

)}
+On

(
V 1

2
(t) + ||K||1

)
.
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Proof. For the case n = 0, we only need to take imaginary parts in (2.6). For n ≥ 1, by Lemma 6 we get

Sn(σ, t) =
1

π
Im

{
in

(n− 1)!

∫ 2

σ

(u− σ)
n−1

log ζ(u+ it) du

}
+On(1).

Plugging this in Lemma 5 we obtain∫ ∞
−∞

Sn(σ,t+ s)K(s)ds

=
1

π

∫ ∞
−∞

Im

{
in

(n− 1)!

∫ 2

σ

(u− σ)
n−1

log ζ(u+ i(t+ s)) du

}
K(s)ds+On

(
||K||1

)
=

1

π
Im

{
in

(n− 1)!

∫ 2

σ

(u− σ)
n−1

(∫ ∞
−∞

log ζ(u+ i(t+ s))K(s)ds

)
du

}
+On

(
||K||1

)
=

1

π
Im

{
in

(n− 1)!

∫ 2

σ

(u− σ)
n−1

( ∞∑
m=2

Λ(m)

mu+it logm
K̂

(
logm

2π

))
du

}
+On

(
V 1

2
(t) + ||K||1

)
=

1

π
Im

{
in

(n− 1)!

∞∑
m=2

Λ(m)

mit logm
K̂

(
logm

2π

)(∫ 2

σ

(u− σ)
n−1

mu
du

)}
+On

(
V 1

2
(t) + ||K||1

)
,

(2.7)

where the interchange of the integrals is justified by Fubini’s theorem, considering the estimates [20, Theorem

13.18, Theorem 13.21]. Using [14, §2.321 Eq.2]) we obtain that∫ 2

σ

(u− σ)n−1

mu
du =

βn−1
mσ(logm)n

− 1

m2

n−1∑
k=0

βk
(logm)k+1

(2− σ)n−1−k,

where βk = (n−1)!
(n−1−k)! . This implies that for each m ≥ 2 we get∫ 2

σ

(u− σ)n−1

mu
du =

(n− 1)!

mσ(logm)n
+On

(
1

m
3
2 (logm)n

)
.

Inserting this in (2.7), and considering that ||K̂||∞ ≤ ||K||1, we obtain the desired result. �

3. The Resonator

In this section we will construct the resonator. The construction of our resonator is similar to the resonator

developed by Bondarenko and Seip [7, Section 3]. The results presented here are extensions of their results,

for a region near the critical line. The resonator is the function of the form |R(t)|2, where

R(t) =
∑
m∈M′

r(m)m−it,

and M′ is a suitable finite set of integers. Let σ be a positive real number and N be a positive integer

sufficiently large, such that

1

2
≤ σ ≤ 1

2
+

1

log logN
. (3.1)
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Our resonator will depend on σ and N . For simplicity of notation, we write log2 x := log log x and log3 x :=

log log log x. Let P be the set of prime numbers p such that

e logN log2N < p ≤ exp
(
(log2N)1/8

)
logN log2N. (3.2)

We define f(n) to be the multiplicative function supported on the set of square-free numbers such that

f(p) :=

(
(logN)1−σ(log2N)

σ

(log3N)1−σ

)
1

pσ (log p− log2N − log3N)
,

for p ∈ P and f(p) = 0 otherwise. For each k ∈
{

1, · · ·,
[
(log2N)1/8

]}
we define the following sets:

Pk :=
{
p : prime number such that ek logN log2N < p ≤ ek+1 logN log2N

}
,

Mk :=

{
n ∈ supp(f) : n has at least αk :=

3(logN)2−2σ

k2(log3N)2−2σ
prime divisors in Pk

}
,

M ′k :=
{
n ∈Mk : n only has prime divisors in Pk

}
.

Finally, we define the set

M := supp(f)\
[(log2N)1/8]⋃

k=1

Mk.

Note that if m ∈M and d|m then d ∈M.

Lemma 8. We have that

|M| ≤ N,

where |M| represents the cardinality of M.

Proof. The proof follows the same outline that [5, Lemma 2]. The main difference is the appearance of the

term (log3N)2σ−1, which is well estimated, whenever (3.1) holds. It allows us to obtain the same estimate

for the cardinality of M as the case σ = 1
2 . By [5, Eq. (9)-(10)], we have that(

[x]

[y]

)
≤ exp

(
y(log x− log y) + 2y + log x

)
,

for 1 ≤ y ≤ x and

2

(
m

n− 1

)
≤
(
m

n

)
,

for 3n− 1 ≤ m. By the prime number theorem, the cardinality of each Pk is at most ek+1 logN . Therefore,

using the above inequalities and (3.1)

|M| ≤
[(log2N)1/8]∏

k=1

[αk]∑
j=0

([
ek+1 logN

]
j

)
≤

[(log2N)1/8]∏
k=1

2

([
ek+1 logN

]
[αk]

)

≤ exp

(
[(log2N)1/8]∑

k=1

3(logN)2−2σ

(log3N)2−2σ

(
1

k
+

3 + 2 log k

k2
+

(2σ − 1) log2N

k2
+

(2− 2σ) log4N

k2

)
+ 3k + log2N

)

≤ exp

((
3

4
+ o(1)

)
(logN)2−2σ(log3N)2σ−1

)
≤ exp

((
3

4
+ o(1)

)
(logN)(log3N)2/ log2N

)
.

Then, for N sufficiently large we get that |M| ≤ N . �
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Lemma 9. For all k = 1, · · ·, [(log2N)1/8] we have, as N →∞∑
p∈Pk

1

p2σ
= (1 + o(1))

∫ ek+1 logN log2N

ek logN log2N

1

y2σ log y
dy,

where o(1) is independent of k. In particular, we have that

(d+ o(1))
1

(log2N)2σ
<
∑
p∈Pk

1

p2σ
< (2 + o(1))

1

(log2N)2σ
, (3.3)

for some constant 0 < d < 1.

Proof. Using [20, Theorem 13.1], under the Riemann hypothesis we have

π(x) =

∫ x

2

1

log y
dy +O

(
x

1
2 log x

)
,

where π(x) is the function that counts the prime numbers not exceeding x. Then, using integration by parts

we get ∑
p∈Pk

1

p2σ
=

∫ ek+1 logN log2N

ek logN log2N

1

y2σ log y
dy +O

(∫ ek+1 logN log2N

ek logN log2N

log y

y2σ+
1
2

dy

)

=

(
1 +O

(
1

(logN)1/4

))∫ ek+1 logN log2N

ek logN log2N

1

y2σ log y
dy.

Now we can see that∫ ek+1 logN log2N

ek logN log2N

1

y2σ log y
dy ≤ ek logN log2N(e− 1)

(ek logN log2N)2σ log
(
ek logN log2N

) < 2

(log2N)2σ
.

On the other hand, we know that (ek logN)2σ−1 < (logN)4σ−2 ≤ e4 for all 1 ≤ k ≤ [(log2N)1/8]. Therefore∫ ek+1 logN log2N

ek logN log2N

1

y2σ log y
dy ≥ ek logN log2N(e− 1)

(ek+1 logN log2N)2σ log
(
ek+1 logN log2N

) > d

(log2N)2σ
,

for some constant 0 < d < 1. �

The following lemma can be considered as an extension of [7, Lemma 4] to the region (3.1).

Lemma 10. We have

1∑
l∈N

f(l)2

∑
n∈M

f(n)2
∑
p|n

1

f(p) pσ
≥ c (logN)1−σ(log3N)σ

(log2N)σ
,

for some universal constant c > 0.

Proof. The proof is similar to [7, Lemma 4]. For each k ∈
{

1, · · ·,
[
(log2N)1/8

]}
we define the following sets:

Lk :=

{
n ∈ supp(f) : n has at most βk :=

d (logN)2−2σ

12k2(log3N)2−2σ
prime divisors in Pk

}
,

where d is the constant mentioned in Lemma 9, and

L′k :=
{
n ∈ Lk : n only has prime divisors in Pk

}
.
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Finaly, we define the set

L :=M\
[(log2N)1/8]⋃

k=1

Lk.

Now to prove the lemma, it is enough to show that

1∑
l∈N

f(l)2

∑
n/∈L

f(n)2 = o(1), N →∞. (3.4)

Indeed, using (3.4) and the fact that L ⊂M we get

1∑
l∈N

f(l)2

∑
n∈M

f(n)2
∑
p|n

1

f(p) pσ
≥ 1∑

l∈N
f(l)2

∑
n∈M

f(n)2 min
n∈L

∑
p|n

1

f(p) pσ

≥
(
1− o(1)

)
min
n∈L

∑
p|n

1

f(p) pσ

=
(
1− o(1)

) [(log2N)1/8]∑
k=1

d (logN)2−2σ

12k2(log3N)2−2σ
min
p∈Pk

1

f(p) pσ

≥
(
1− o(1)

) [(log2N)1/8]∑
k=1

d (logN)2−2σ

12k2(log3N)2−2σ

(
k(log3N)1−σ

(logN)1−σ(log2N)σ

)

≥ c (logN)1−σ(log3N)σ

(log2N)σ
,

for some constant c > 0. Therefore, it remains to prove (3.4). Since

L := supp(f)\
[(log2N)1/8]⋃

k=1

(
Mk ∪ Lk

)
,

it is enough to prove that when N →∞

1∑
l∈N

f(l)2

[(log2N)1/8]∑
k=1

∑
n∈Lk

f(n)2 = o(1), (3.5)

and

1∑
l∈N

f(l)2

[(log2N)1/8]∑
k=1

∑
n∈Mk

f(n)2 = o(1). (3.6)

First we will prove (3.5). For each k ∈
{

1, · · ·,
[
(log2N)1/8

]}
and for any 0 < b < 1 we have

1∑
l∈N

f(l)2

∑
n∈Lk

f(n)2 =
1∏

p∈Pk

(1 + f(p)2)

∑
n∈L′k

f(n)2 ≤ b−βk
∏
p∈Pk

(
1 + bf(p)2

)
(1 + f(p)2)

≤ b−βk exp

(
(b− 1)

∑
p∈Pk

f(p)2

1 + f(p)2

)
.

(3.7)
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Since f(p) ≤ 1, using the left-hand side inequality of (3.3) we get∑
p∈Pk

f(p)2

1 + f(p)2
≥ 1

2

∑
p∈Pk

f(p)2 =

(
(logN)2−2σ(log2N)

2σ

2(log3N)2−2σ

) ∑
p∈Pk

1

p2σ (log p− log2N − log3N)2

≥
(

(logN)2−2σ

8k2(log3N)2−2σ

)
(d+ o(1)).

This implies in (3.7) that

1∑
l∈N

f(l)2

∑
n∈Lk

f(n)2 ≤ exp

((
d

8
(b− 1)− d

12
log b+ o(1)

)
(logN)2−2σ

k2(log3N)2−2σ

)
.

Therefore, choosing b close to 1 we obtain 3(b − 1) − 2 log b < 0 and summing over k we obtain (3.5). The

proof of (3.6) is similar. For each k ∈
{

1, · · ·,
[
(log2N)1/8

]}
and for any b > 1 we get

1∑
l∈N

f(l)2

∑
n∈Mk

f(n)2 ≤ b−αk exp

(
(b− 1)

∑
p∈Pk

f(p)2
)
. (3.8)

Using the right-hand side inequality of (3.3) we have∑
p∈Pk

f(p)2 ≤
(

(logN)2−2σ

k2(log3N)2−2σ

)
(2 + o(1)).

This implies in (3.8) that

1∑
l∈N

f(l)2

∑
n∈Lk

f(n)2 ≤ exp

((
2(b− 1)− 3 log b+ o(1)

) (logN)2−2σ

k2(log3N)2−2σ

)
.

Finally, choosing b close to 1 we obtain 2(b− 1)− 3 log b < 0 and summing over k we obtain (3.6). �

3.1. Construction of the resonator. Let 0 ≤ β < 1 be a fixed number and consider the positive real

number κ = (1− β)/2. Note that κ+ β < 1. Let σ be a positive real number and T sufficiently large such

that
1

2
≤ σ ≤ 1

2
+

1

log log T
.

Then we write N = [Tκ]. Note that σ and N satisfy the relation (3.1). Now, let J be the set of integers j

such that [(
1 + T−1

)j
,
(
1 + T−1

)j+1
)⋂

M 6= ∅,

and we define mj to be the minimum of
[
(1 + T−1)j , (1 + T−1)j+1

)
∩M for j in J . Consider the set

M′ := {mj : j ∈ J }

and finally we define

r(mj) :=

( ∑
n∈M,(1+T−1)j−1≤n≤(1+T−1)j+2

f(n)2

) 1
2

,

for every mj ∈M′. This defines our Dirichlet polynomial

R(t) =
∑
m∈M′

r(m)m−it.
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Proposition 11. We have the following properties:

(i) |M′| ≤ |M| ≤ N .

(ii)
∑
m∈M′

r(m)2 ≤ 4
∑
l∈M

f(l)2.

(iii) |R(t)|2 ≤ R(0)2 � Tκ
∑
l∈M

f(l)2.

Proof. (i) and (ii) follow by the definition of M, M′ and Lemma 8. The left-hand side inequality of (iii) is

obvious. The right-hand side inequality of (iii) follows by (i), (ii) and the Cauchy-Schwarz inequality. �

3.2. Estimates with the resonator. The proofs of the following results are similar to the case σ = 1
2 .

According to the notation in [7] we write Φ(t) = e−t
2/2. Then Φ̂(t) =

√
2πΦ(2πt).

Lemma 12. We have ∫ ∞
−∞
|R(t)|2 Φ

(
t

T

)
dt� T

∑
l∈M

f(l)2.

Proof. The proof is similar to [7, Lemma 5] and we omit the details. �

Lemma 13. There exists a positive constant c > 0 such that if

G(t) :=

∞∑
m=2

Λ(m) am
mσ+it logm

is absolutely convergent and am ≥ 0 for every m ≥ 2, then∫ ∞
−∞

G(t)|R(t)|2 Φ

(
t

T

)
dt ≥ c T (log T )1−σ(log3 T )σ

(log2 T )σ

(
min
p∈P

ap

)∑
l∈M

f(l)2.

Proof. The proof follows the same outline of [7, Lemma 7], replacing [7, Lemma 4] by Lemma 10. We omit

the details. �

4. Proof of Theorem 2

Assume the Riemann hypothesis. We consider the parameters defined in subsection 3.1.

4.1. The case n ≡ 1 mod 2. We consider the entire function

Kn(z) = (−1)
n−1
2 log2 T Φ(2π log2 T z)

which has Fourier transform

K̂n(ξ) =
(−1)

n−1
2

√
2π

Φ

(
ξ

log2 T

)
� 1. (4.1)

Firstly we need to estimate the following integral∫ ∞
−∞

(∫ ∞
−∞

Sn(σ, t+ u)Kn(u)du

)
|R(t)|2Φ

(
t

T

)
dt. (4.2)

This follows by the same computations as in [7, Section 5]. We will divide (4.2) into 3 integrals.

1. First integral: Using (2.1), (2.5) and Fubini’s theorem we get∫ Tβ

−Tβ

∫ ∞
−∞
|Sn(σ, t+ u)Kn(u)|dudt

12



=

∫ Tβ

−Tβ

∫
|u|≤Tβ

|Sn(σ, t+ u)Kn(u)|dudt+

∫ Tβ

−Tβ

∫
|u|>Tβ

|Sn(σ, t+ u)Kn(u)|dudt

�n

∫ Tβ

−Tβ

∫ 2Tβ

−2Tβ
|Sn(σ, u)Kn(u− t)|dudt+

∫ Tβ

−Tβ

∫
|u|>Tβ

log(2|u|+ 2)|Kn(u)|dudt

�n

∫ 2Tβ

−2Tβ
|Sn(σ, u)|du+ T β �n T

β log T.

Hence, by Proposition 11 we obtain∫ Tβ

−Tβ

(∫ ∞
−∞
|Sn(σ, t+ u)Kn(u)|du

)
|R(t)|2Φ

(
t

T

)
dt�n T

β log T R(0)2 �n T
β+κ log T

∑
l∈M

f(l)2. (4.3)

2. Second integral: Using the fast decay of Φ(t), (2.1) and Proposition 11, it follows that∫
|t|>T log T

(∫ ∞
−∞
|Sn(σ, t+ u)Kn(u)|du

)
|R(t)|2Φ

(
t

T

)
dt

� Tκe−
(log T )2

4

(∫
|t|>T log T

∫ ∞
−∞
|Sn(σ, t+ u)Kn(u)|duΦ

(
t

2T

)
dt

) ∑
l∈M

f(l)2

= o(1)
∑
l∈M

f(l)2.

(4.4)

3. Third integral:∫
Tβ≤|t|≤T log T

(∫ ∞
−∞

Sn(σ, t+ u)Kn(u)du

)
|R(t)|2Φ

(
t

T

)
dt

=

∫
Tβ≤|t|≤T log T

(∫
Tβ

2 ≤|t+u|≤2T log T

Sn(σ, t+ u)Kn(u)du

)
|R(t)|2Φ

(
t

T

)
dt

+

∫
Tβ≤|t|≤T log T

(∫
{|u+t|<Tβ

2 }∪{|u+t|>2T log T}
Sn(σ, t+ u)Kn(u)du

)
|R(t)|2Φ

(
t

T

)
dt.

(4.5)

Now using (2.1) and Lemma 12, the last integral can be bounded by∫
Tβ≤|t|≤T log T

∫
{|u+t|<Tβ

2 }∪{|u+t|>2T log T}
|Sn(σ, t+ u)Kn(u)|du |R(t)|2Φ

(
t

T

)
dt

�
∫
Tβ≤|t|≤T log T

∫
{|u|<Tβ

2 }∪{|u|>2T log T}
|Sn(σ, u)Kn(u− t)|du |R(t)|2Φ

(
t

T

)
dt

≤
∫
Tβ≤|t|≤T log T

∫
{|u|<Tβ

2 }∪{|u|>2T log T}

∣∣∣Sn(σ, u)Kn

(u
2

)∣∣∣du |R(t)|2Φ

(
t

T

)
dt

�n

∫
Tβ≤|t|≤T log T

|R(t)|2Φ

(
t

T

)
dt� T

∑
l∈M

f(l)2.

(4.6)

Inserting (4.6) in (4.5) we obtain that∫
Tβ≤|t|≤T log T

(∫ ∞
−∞

Sn(σ, t+ u)Kn(u)du

)
|R(t)|2Φ

(
t

T

)
dt

=

∫
Tβ≤|t|≤T log T

(∫
Tβ

2 ≤|t+u|≤2T log T

Sn(σ, t+ u)Kn(u)du

)
|R(t)|2Φ

(
t

T

)
dt+On(T )

∑
l∈M

f(l)2.

(4.7)
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Therefore, combining (4.3), (4.4) and (4.7) we have that the integral in (4.2) can be written as∫ ∞
−∞

(∫ ∞
−∞

Sn(σ, t+ u)Kn(u)du

)
|R(t)|2Φ

(
t

T

)
dt+On(T )

∑
l∈M

f(l)2

=

∫
Tβ≤|t|≤T log T

(∫
Tβ

2 ≤|t+u|≤2T log T

Sn(σ, t+ u)Kn(u)du

)
|R(t)|2Φ

(
t

T

)
dt.

(4.8)

Now we consider two subcases:

4.1.1. The subcase n≡ 1 mod 4. . In this case note that Kn(u) ≥ 0 for all u ∈ R. Then by Lemma 12 and

the fact that Sn(σ, t) is an even function we obtain in (4.8)∫ ∞
−∞

(∫ ∞
−∞

Sn(σ, t+ u)Kn(u)du

)
|R(t)|2Φ

(
t

T

)
dt+On(T )

∑
l∈M

f(l)2

≤ b T

(
max

Tβ

2 ≤t≤2T log T

Sn(σ, t)

)∑
l∈M

f(l)2,

(4.9)

for some constant b > 0. We define

Gn(t) =

∞∑
m=2

Λ(m)

πmσ+it(logm)n+1
K̂n

(
logm

2π

)
. (4.10)

By Proposition 7 and (4.1) observe that∫ ∞
−∞

Sn(σ, t+ u)Kn(u)du = ReGn(t) +On
(
V 1

2
(t) + 1

)
,

for t 6= 0. Therefore, the integral on the left-hand side of (4.9) takes the form∫ ∞
−∞

(∫ ∞
−∞

Sn(σ, t+ u)Kn(u)du

)
|R(t)|2Φ

(
t

T

)
dt

= Re

∫ ∞
−∞

Gn(t)|R(t)|2Φ

(
t

T

)
dt+On

(∫ ∞
−∞

(
V 1

2
(t) + 1

)
|R(t)|2Φ

(
t

T

)
dt

)
.

(4.11)

Using Proposition 11, Lemma 12 and the definition of V 1
2
(t) we get∫ ∞

−∞

(
V 1

2
(t) + 1

)
|R(t)|2Φ

(
t

T

)
dt� T

∑
l∈M

f(l)2. (4.12)

Therefore using (4.11) and (4.12) we have

b T

(
max

Tβ

2 ≤t≤2T log T

Sn(σ, t)

)∑
l∈M

f(l)2 ≥ Re

∫ ∞
−∞

Gn(t)|R(t)|2Φ

(
t

T

)
dt+On(T )

∑
l∈M

f(l)2. (4.13)

Now using Lemma 13 (note that K̂n(t) is a positive real function) with

am = K̂n

(
logm

2π

)
1

π(logm)n
,

for all m ≥ 2 we obtain that

Re

∫ ∞
−∞

Gn(t)|R(t)|2Φ

(
t

T

)
dt ≥ c T (log T )1−σ(log3 T )σ

(log2 T )σ

(
min
p∈P

K̂n

(
log p

2π

)
1

(log p)n

)∑
l∈M

f(l)2, (4.14)
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for some constant c > 0. Note that (3.2) and (4.1) imply

min
e logN log2N<p≤exp

(
(log2N)1/8

)
logN log2N

K̂n

(
log p

2π

)
1

(log p)n
� 1

(log2 T )n
.

Inserting this in (4.14), we obtain in (4.13) that (after simplification)

max
Tβ

2 ≤t≤2T log T

Sn(σ, t) ≥ cn
(log T )1−σ(log3 T )σ

(log2 T )σ+n
+On(1),

for some constant cn > 0. After a trivial adjustment, changing T to T/2 log T and making β slightly smaller,

we obtain the restriction T β ≤ t ≤ T .

4.1.2. The subcase n≡ 3 mod 4. In this case note that Kn(u) ≤ 0 for all u ∈ R. Similar to (4.9), using the

fact that Sn(t) is an even function we find that∫ ∞
−∞

(∫ ∞
−∞

Sn(σ, t+ u)Kn(u)du

)
|R(t)|2Φ

(
t

T

)
dt+On(T )

∑
l∈M

f(l)2

≤ b T

(
max

Tβ

2 ≤t≤2T log T

|Sn(σ, t)|

)∑
l∈M

f(l)2,

(4.15)

for some constant b > 0. Using the function Gn defined in (4.10), by Proposition 7 and (4.1) we get∫ ∞
−∞

Sn(σ, t+ u)Kn(u)du = −ReGn(t) +On
(
V 1

2
(t) + 1

)
.

A similar analysis as in the previous case shows that, by Lemma 13 (note that −K̂n(t) is a positive real

function)

Re

∫ ∞
−∞
−Gn(t)|R(t)|2Φ

(
t

T

)
dt ≥ c T (log T )1−σ(log3 T )σ

(log2 T )σ

(
min
p∈P
−K̂n

(
log p

2π

)
1

(log p)n

)∑
l∈M

f(l)2, (4.16)

for some constant c > 0. By (3.2) and (4.1) we have

min
e logN log2N<p≤exp

(
(log2N)1/8

)
logN log2N

−K̂n

(
log p

2π

)
1

(log p)n
� 1

(log2 T )n
.

Inserting this in (4.16) we obtain in (4.15) that (after simplification)

max
Tβ

2 ≤t≤2T log T

|Sn(σ, t)| ≥ cn
(log T )1−σ(log3 T )σ

(log2 T )σ+n
+On(1),

for some constant cn > 0. After the same trivial adjustment of T and β as in the preceding case we obtain

the desired result.

4.2. The case n ≡ 0 mod 2. We consider the entire function

Kn(z) = (−1)
n
2 +1(log2 T )2 zΦ(2π log2 T z)

which has Fourier transform

K̂n(ξ) =
(−1)

n
2 i

(2π)
3
2 (log2 T )

ξΦ

(
ξ

log2 T

)
� 1. (4.17)
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The analysis in this case is similar to the case n ≡ 3 mod 4. Using the fact that Sn(t) is an odd function

we obtain that (4.15) holds. Using the function Gn defined in (4.10), by Proposition 7 and (4.17) note that∫ ∞
−∞

Sn(σ, t+ u)Kn(u)du = (−1)
n
2 ImGn(t) +On

(
V 1

2
(t) + 1

)
.

This implies that in (4.15) we obtain

b T

(
max

Tβ

2 ≤t≤2T log T

∣∣Sn(σ, t)
∣∣) ∑

l∈M

f(l)2 ≥ Re

∫ ∞
−∞

(−1)
n
2 +1 iGn(t)|R(t)|2Φ

(
t

T

)
dt+On(T )

∑
l∈M

f(l)2,

for some constant b > 0. Now, using Lemma 13 (note that i(−1)
n
2 +1K̂n(t) is a positive real function for

t ≥ 0) it follows that

T

(
max

Tβ

2 ≤t≤2T log T

∣∣Sn(σ, t)
∣∣) ∑

l∈M

f(l)2

≥ c T (log T )1−σ(log3 T )σ

(log2 T )σ

(
min
p∈P

Im

{
(−1)

n
2 K̂n

(
log p

2π

)
1

(log p)n

})∑
l∈M

f(l)2,

(4.18)

for some constant c > 0. By (3.2) and (4.17) we have

min
e logN log2N<p≤exp

(
(log2N)1/8

)
logN log2N

Im

{
(−1)

n
2 K̂n

(
log p

2π

)
1

(log p)n

}
� 1

(log2 T )n
.

Inserting this in (4.18) and doing the same procedure as in the previous cases we obtain the desired result.
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IMPA - Instituto Nacional de Matemática Pura e Aplicada - Estrada Dona Castorina, 110, Rio de Janeiro, RJ,

Brazil 22460-320

Email address: achirre@impa.br

17

https://arxiv.org/pdf/1807.08554.pdf

	1. Introduction
	1.1. Background
	1.2. Behavior on the critical line
	1.3. Behavior in the critical strip
	1.4. Strategy outline

	2. Some results for Sn(,t)
	2.1. Bounds for Sn(,t)
	2.2. Convolution formula

	3. The Resonator
	3.1. Construction of the resonator
	3.2. Estimates with the resonator

	4. Proof of Theorem 2
	4.1. The case n1 12mumod2
	4.2. The case n0 12mumod2

	Acknowledgements
	References

