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Association studies of up to 1.2 million individuals yield new 
insights into the genetic etiology of tobacco and alcohol use

A full list of authors and affiliations appears at the end of the article.
# These authors contributed equally to this work.

Abstract

Tobacco and alcohol use are leading causes of mortality that influence risk for many complex 

diseases and disorders1. They are heritable2,3 and etiologically related4,5 behaviors that have been 

resistant to gene discovery efforts6–11. In sample sizes up to 1.2 million individuals, we discovered 

566 genetic variants in 406 loci associated with multiple stages of tobacco use (initiation, 

cessation, and heaviness) as well as alcohol use, with 150 loci evidencing pleiotropic association. 

Smoking phenotypes were positively genetically correlated with many health conditions, whereas 

alcohol use was negatively correlated with these conditions, such that increased genetic risk for 

alcohol use is associated with lower disease risk. We report evidence for the involvement of many 

systems in tobacco and alcohol use, including genes involved in nicotinic, dopaminergic, and 

glutamatergic neurotransmission. The results provide a solid starting point to evaluate the effects 

of these loci in model organisms and more precise substance use measures.

An analysis overview is provided in Supplementary Figure 1; all independent associated 

variants are in Supplementary Tables 1–5; and Quantile-Quantile (QQ), Manhattan, and 

LocusZoom plots are shown in Supplementary Figures 2–12. Smoking initiation phenotypes 

included age of initiation of regular smoking (AgeSmk; N=341,427; 10 associated variants) 

and a binary phenotype indicating whether an individual had ever smoked regularly 

(SmkInit, N=1,232,091; 378 associated variants). Heaviness of smoking was measured with 

cigarettes per day (CigDay; N=337,334; 55 associated variants). Smoking cessation 

(SmkCes, N=547,219; 24 associated variants) was a binary variable contrasting current 

versus former smokers. Available measures of alcohol use were simpler, with drinks per 

week (DrnkWk; N=941,280; 99 associated variants) widely available and similarly 

measured across studies. See the Supplementary Note and Supplementary Tables 6–7 for 

phenotype definition details.

85 Regional Centre for Child and Youth Mental Health and Child Welfare, Department of Mental Health, Faculty of Medicine and 
Health Sciences, NTNU – Norwegian University of Science and Technology.
86 Faculty of Nursing and Health Sciences, Nord University, Levanger, Norway.
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The four smoking phenotypes were genetically correlated with one another (Figure 1; 

Supplementary Table 8). DrnkWk was not highly genetically correlated with the smoking 

phenotypes (rg~.10) except for SmkInit (rg~.34, p=6.7e−63), suggesting that sequence 

variation affecting alcohol use and those affecting initiation of smoking overlap 

substantially. The phenotypes were highly genetically correlated across constituent studies 

(Supplementary Table 9), suggesting minor impact of phenotypic heterogeneity in the 

present results, even across Western Europe and the United States. Smoking phenotypes 

were genetically correlated in expected directions with many behavioral, psychiatric, and 

medical phenotypes (Figure 1, Supplementary Table 10). Genetic variation associated with 

increased alcohol use was associated with greater levels of risky behavior (rg=.20, 

p=1.8×10−7) and cannabis use (rg=.36, p=6.2×10−10), but with less risk of disease, for 

almost all diseases (Figure 1, Supplementary Table 10).

Using a novel method to evaluate multivariate genetic correlation at the locus (versus global) 

level, we observed 150 loci that affected multiple substance use phenotypes (Supplementary 

Table 11), summarized in Figure 2. Patterns of pleiotropy across phenotypes were highly 

diverse, with only three loci significantly associated with all five phenotypes. These three 

loci included associations implicating Phosphodiesterase 4B (PDE4B) and Cullin 3 (CUL3). 

PDE4B regulates the cAMP second messenger availability and thereby affects signal 

transduction, and is down-regulated by chronic nicotine administration in rats12. CUL3 has 

wide-ranging effects, including on ubiquination and protein degradation, and de novo 

mutations in CUL3 are associated with rare diseases affecting response to the 

mineralocorticoid aldosterone13, which itself is affected by smoking14 and associated with 

alcohol use15. In addition to testing for pleiotropy, we also used MTAG16 to leverage the 

observed genetic correlations to increase power for locus discovery. Using this method, we 

discovered 1,193 independent, genome-wide significantly associated common variants 

(MAF > 1%; 173 for AgeSmk, 89 CigDay, 83 SmkCes, 692 SmkInit, and 156 DrnkWk) 

listed in Supplementary Table 12 and described further in the supplement.

Phenotypic variation accounted for by our initial 566 conditionally independent genome-

wide significant variants from the initial GWAS ranged from 0.1% (SmkCes) to 2.3% 

(SmkInit; see Figure 3). SNP heritability calculated using LD Score Regression17 ranged 

from 4.2% for DrnkWk to 8.0% for CigDay (Figure 3; Supplementary Table 13), consistent 

with estimates using individual-level data18, SNP heritabilities calculated from the largest 

individual contributing studies (Supplementary Table 13), and prior work19. The results 

suggest that these phenotypes are highly polygenic and the majority of the heritability is 

accounted for by variants below standard GWAS thresholds.

To further investigate the polygenicity, polygenic risk scores (Supplementary Table 14) were 

computed on the Add Health20 and Health and Retirement Study21 datasets, which are 

representative of their birth cohorts in the United States, and represent exposures to different 

tobacco policy environments. Add Health participants were born, on average, in 1979; 

average birth year in the Health and Retirement Study was 1938. Despite these generational 

differences, the polygenic score performed similarly in both samples. It accounted for 

approximately 1%, 4%, 1%, 4%, and 2.5% of variance in AgeSmk, CigDay, SmkCes, 

SmkInit, and DrnkWk, respectively, about half of the estimated SNP heritability of these 
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traits (Figure 3). More concretely, in Add Health and the Health and Retirement study, 

respectively, a one SD increase in the CigDay risk score resulted in two and three additional 

daily cigarettes; a one SD increase on the SmkInit risk score resulted in a 12% and 10% 

increased risk of regularly smoking; and a one SD increase on the DrnkWk risk score 

reflected one additional drink per week in both datasets.

Cell/tissue enrichment22 was observed across all five phenotypes within core histone marks 

from multiple central nervous system (CNS) tissues (Supplementary Figures 13–15, 

Supplementary Tables 15–16). Enrichment was observed in tissues from cortical and sub-

cortical regions in the CNS. Structure and function of these regions have been robustly 

associated with individual differences in frequencies, magnitudes, and clinical characteristics 

of alcohol use, and substance use/misuse generally, in human imaging research. Our results 

include significant enrichment across phenotypes and histone marks in the hippocampus23, 

inferior temporal pathways24, dorsolateral and medial prefrontal cortex25, caudate, and 

striatum26. Consistent with gene and pathway findings described below, alcohol and nicotine 

use affect dopaminergic and glutamatergic neurotransmission among these brain regions, 

compromising reward-based learning and facilitating drug seeking behavior26. Enrichment 

within other cell/tissue groups and specific cell/tissue types included immune and liver cells 

but were less consistent across analytical approaches.

We manually reviewed all genes implicated by the GWAS or gene-based tests (see 

Supplementary Tables 1–5 for the full catalogue of implicated genes; Supplementary Tables 

17–21 for gene and gene-set test results). We replicated known associations between 

multiple variants in nicotine metabolism gene CYP2A6 with CigDay (p=4.0×10−99) and 

SmkCes (p=1.6×10−48). We replicated an association signal in alcohol metabolism gene 

ADH1B associated with DrnkWk, identifying in that locus 11 conditionally independently 

associated variants (lowest p<2.2×10−303).

All drugs of abuse activate the mesolimbic dopamine system reward pathway27, and 

dopamine-related genes have long been popular candidate genes. We found that variants 

near the widely studied dopamine receptor D2 (DRD2)28 were associated across phenotypes, 

including CigDay, SmkCes, and DrnkWk (p=6.5×10−12, 1.1×10−10, and 4.9×10−11, 

respectively) but not with AgeSmk or SmkInit, suggesting that these variants are less 

relevant in early stages of nicotine use. Other specific dopamine-related genes only showed 

associations with smoking phenotypes, including multiple associations between CigDay and 

SmkCes with dopamine beta-hydroxylase (DBH, p=9.8×10−24 and 1.2×10−35, 

respectively)9, an enzyme necessary to convert dopamine to norepinephrine. SmkInit was 

associated with variation near protein phosphatase 1 regulatory subunit 1B (PPP1R1B, 

p=3.9×10−8), a signal transduction gene that affects synaptic plasticity and reward-based 

learning in the striatum29,30 and contributes to the behavioral effects of nicotine in mice31. 

In pathway analyses, dopamine gene sets were enriched only in SmkInit, where the 

exemplar pathway ‘reactome dopamine neurotransmitter release cycle’ pathway was 

enriched (p=9.2×10−5; Figure 4; Supplementary Table 18).

Neuronal acetylcholine nicotinic receptors are the initial site of nicotine action in the brain 

and have long been implicated in nicotine use and dependence32. With the exception of 
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CHRNA7, all CNS-expressed nicotinic receptor genes were significantly associated with 

one or more smoking phenotypes, many reported here for the first time. Enrichment was also 

noted for nicotinic receptor-related pathways and genes in smoking phenotypes 

(Supplementary Tables 17–21). There was no evidence of association between nicotinic 

receptor genes or pathways with DrnkWk, despite the use of nicotinic receptor partial 

agonists (e.g., varenicline) in the treatment of alcohol dependence33.

Associations with SmkInit highlighted structures and functions related to long-term 

potentiation and reward-related learning and memory, systems that affect reward processing 

and addiction28,34,35. Glutamate is an important neurotransmitter mediating these processes, 

and exemplar pathways related to glutamate were significantly enriched in SmkInit (e.g., 

‘extracellular-glutamate-gated ion channel’, p=9.9×10−7; ‘post-NMDA receptor activation 

events’, p=5.5×10−5; and ‘DLG4 PPI subnetwork’, p=4.5×10−12; Supplementary Table 18). 

DLG4 affects NMDA receptors and potassium channel clusters, and plays a central role in 

glutamatergic models of reward-related learning35. Individual associated genes related to 

these pathways included glutamate ionotropic receptor NMDA type subunit 2 (GRIN2A, 

p=3.4×10−11) and homer scaffolding protein 2 (HOMER2, p=3.1×10−14), which affects 

addictive behavior in mice35,36 and regulates glutamate metabotropic receptor 1 (GRM1). 

Pathways enriched in SmkInit also included sodium, potassium, and calcium voltage-gated 

channels (Figure 4, Supplementary Table 18), essential to neuronal excitability and 

signaling.

Alcohol is known to affect glutamatergic signaling pathways37, and over half of the enriched 

pathways for DrnkWk clustered within the exemplar ‘glutamate ionotropic receptor kainate 

type subunit 2 (GRIK2) PPI subnetwork’ (Figure 4, Supplementary Table 18). Not all 

DrnkWk-enriched pathways involved the brain, however, as glucose and carbohydrate 

processing pathways were associated with DrnkWk but no smoking phenotype, perhaps 

suggesting that alcohol consumption is influenced by individual differences in one’s ability 

to process calorie-rich alcoholic beverages. Finally, we discovered variation in and around 

gene rich regions including corticotropin releasing hormone receptor 1 (CRHR1; 

p=1.6×10−17) and urocortin (UCN; p=8.1×10−45), associated with DrnkWk but not smoking. 

UCN encodes an endogenous ligand for CRHR1 and CRHR238. CRH affects hormones 

involved in the stress response, including cortisol, and has been associated with the stress 

response and relapse to drug taking in animals39,40.

Specific mechanisms by which implicated genes influence substance use in humans are 

largely unknown, even for those genes reported above involving systems such as 

neurotransmission, reward-related learning and memory, and the stress response. To 

prioritize genes for functional experimentation, we tabulated conditionally independent 

genome-wide significant nonsynonymous variants (Table 1). In the 406 GWAS loci, 4% of 

sentinel variants were nonsynonymous, representing a significant enrichment (p=2.5×10−10; 

0.4% of variants with MAF>0.1% in the imputation panel41 were nonsynonymous). Several 

genes in Table 1 have been previously associated with substance use/addiction (see 

Supplementary Table 22 for a list of previous associations), and two variants have been 

functionally validated (rs1229984 and rs16969968)42,43. The others have not, but in some 

cases their genes interact with established molecular targets of addiction and may 
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themselves be suitable targets for further investigation. For example, rs1024323 in G 

protein-coupled receptor (GPCR) kinase 4 (GRK4) was associated with CigDay 

(p=8.7×10−9) and lies within a locus associated with AgeSmk. GRK4 is involved in the 

regulation of GPCRs including metabotropic glutamate receptor 1 (GRM1)44, GABAB 

receptors45, and dopamine receptor D1 (DRD1) and D3 (DRD3) in the kidneys and 

cerebellum, and is involved in essential hypertension46. GRK4 is also expressed in the 

midbrain and forebrain46,47, but no research has evaluated its impact on substance use 

behavior. To take one more example, the nonsynonymous variant in SLC39A8 affects zinc 

and manganese transport, is highly pleiotropic for complex phenotypes, and may impair 

inflammation, glutamatergic neurotransmission, and regulation of various metals in the 

body48.

Ultimately, substance use is embedded in a complex web of causal relations49 (e.g., Figure 

1), and caution must be exercised in drawing strong causal conclusions. However, the 

present findings represent a major step forward in understanding the etiology of these 

complex, disease-relevant behaviors. In particular, statistical and interpretive power were 

both enabled by simultaneously studying multiple related substance use behaviors 

representing different stages of use and substances. More precise measurements, including 

evaluating age and environment as moderators for these dynamic phenotypes50, functional 

research, and complementary gene mapping approaches (e.g., sequencing) will aid in the 

discovery of mechanisms by which implicated genes may affect substance use and related 

disease risk.

METHODS

This article is accompanied by a Supplementary Note with further details, as well as the Life 

Sciences Reporting Summary.

Generation of summary statistics.

Participants in all studies were genotyped on genome-wide arrays. The majority of studies 

imputed their genotypes to the Haplotype Reference Consortium41 using the University of 

Michigan Imputation Server (see URLs)51. Several studies did not impute using the 

imputation server, due to data sharing restrictions, computational, and/or resource limitations 

(described in the Supplementary Note). All studies used either Minimac351 or IMPUTE252 

for imputation.

GWAS summary statistics were generated in each study sample using RVTESTS53 

according to a standard analysis plan. Studies composed primarily of classically related 

individuals (e.g., family studies) first regressed out covariates including genetic principal 

components under a linear model, inverse-normalized the residuals (except for 23andMe), 

and tested for an additive effect of each variant under a linear mixed model with a genetic 

kinship matrix. Family studies followed this analysis for all phenotypes, even binary 

phenotypes such as smoking initiation and cessation. Studies of entirely classically unrelated 

individuals followed the same analysis for quasi-continuous phenotypes (AgeSmk, CigDay, 

DrnkWk), but estimated additive genetic effects under a logistic model for binary 

phenotypes (SmkInit and SmkCes).
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Quality control checks were applied to ensure quality of both the phenotypes and genotypes. 

For each phenotype and covariate, distribution statistics including the minimum, maximum, 

quartiles, median, mean, and standard deviation were examined. We ensured that these 

statistics were within expected limits given the phenotype definitions and any scale 

transformations per the analysis plan. We also evaluated simple relationships among 

phenotypes. When discrepancies were noted we contacted the original study for clarification 

or re-analysis, or the data were removed from further analysis. Phenotypic statistics are 

presented in Supplementary Tables 6 and 7.

Extensive genetic quality control and filtering was performed on the contributed summary 

statistics from each cohort. We removed imputed variants with imputation quality less than 

0.3 (the estimated squared correlation between the imputed dosage and true dosage). We 

compared the per-study allele labels and allele frequencies with those of the imputation 

reference panels, and removed or reconciled mismatches. For quantitative traits, we plotted 

the variance of the score statistics against the sample size, and tested whether the trait 

residuals in each study were properly normalized and whether the trait analyzed between 

studies was measured and analyzed using the same unit.

Meta-Analysis.

Meta-analysis was performed centrally using the software package rareGWAMA (see 

URLs). All statistical tests in the meta-analysis or secondary analyses of the meta-analytic 

results (e.g., polygenic risk scoring, functional enrichment, MTAG, Genomic SEM, etc.) 

were two-sided. Given that rarer variants and/or behavioral phenotypes may show between-

study heterogeneity in allele frequencies, imputation qualities, or genetic architecture, we 

extended existing methods and developed a novel fixed effects approach that accounts for 

between-study heterogeneity. Specifically, the methods aggregated weighted Z-score 

statistics, i.e. ZMET A =
∑k wkZk

∑k wk
2 1/2 , where Zk is the Z-score statistic in study k. The weight wk 

is defined by wk = Nkpk 1 − pk Rk
2, where pk is the variant allele frequency, Rk

2 is the 

imputation quality, and Nk is the sample size for study k. Under the null and with the present 

sample sizes, ZMETA is normally distributed. The weights are proportional to the sample 

genotype variance. When the trait is uniformly measured and the allele frequency is similar, 

the method is approximately equivalent to meta-analysis of sample-size-weighted Z-scores. 

Yet, the method accounts for between-study heterogeneity in imputation accuracy and allele 

frequencies. The use of a fixed effects model, the most common approach in GWAS meta-

analysis of single ancestry groups, appeared acceptable given the apparent lack of 

substantial meta-analytic effect heterogeneity (see Cochrane’s Q and I2 statistics in 

Supplementary Tables 1–5).

Population stratification and cryptic relatedness were addressed during the generation of 

summary statistics by each local study through the use of kinship-based linear mixed 

models54 and genetic principal components55. Residual stratification was further corrected 

at the meta-analytic level with study-specific genomic controls56 (calculated separately for 
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variants with MAF ≥ 1% and .1%≤MAF<1%; Supplementary Table 23) applied to each 

study’s results prior to meta-analysis.

A locus was defined as a 1MB region surrounding the “sentinel” variant (the variant in the 

locus with the lowest p-value). When any two such loci overlapped or abutted, they were 

collapsed into a single locus. Variants within each locus were subjected to conditional 

analysis using a novel partial correlation-based score statistic using cohort-level summary 

statistics57 implemented in a sequential forward selection framework. The method requires 

marginal association statistics and approximated covariance matrices among them, and 

performs favorably compared to existing methods57 (Supplementary Table 24). Covariances 

among effects were based upon the linkage disequilibrium information estimated from a 

subset of the Haplotype Reference Consortium41.

We applied multiple post-meta-analysis variant filters to ensure robustness of reported 

findings. To reduce artifacts arising from a small number of studies, we excluded any variant 

that was present in only two or fewer studies. For each variant in the meta-analysis, we 

calculated the effective sample size Ne f f = ∑k Nkrk
2, where Nk is the sample size in study k 

and rk
2 is the imputation quality. We removed variants with effective sample sizes < 10% of 

the total sample size to ensure only well-imputed variants with a modicum of power were 

included. We also excluded all variants with minor allele frequency less than 0.001, the 

lower bound of moderate imputation accuracy with the currently best available imputation 

reference panel41. Variants with MAF > 1% are expected to be imputed with high accuracy. 

Results from the application of post-meta-analysis filters are displayed in Supplementary 

Table 25.

After applying variant filters and obtaining our final meta-analytic results, we calculated 

genomic controls and maximum/median per-variant sample sizes. Sample sizes ranged from 

337,334 for cigarettes per day to 1,232,091 for smoking initiation. QQ plots, LD intercept 

tests, and genomic control values indicate that Type I error rates were well controlled, for 

common and low-frequency variants (Supplementary Figure 2, Supplementary Table 26). 

All conditionally independent variants were plotted in LocusZoom and included in 

Supplementary Figures 1–12. All plots were visually inspected, suspicious loci were 

identified (see Supplementary Table 27) and removed from further consideration. To ensure 

LD information was available between sentinel variants and others in the locus, we used 

surrogate variants for eight loci (Supplementary Table 28).

We estimated the extent of pleiotropy for each genome-wide associated locus from our 

GWAS using an Empirical Bayes approach (i.e. whether a given locus is simultaneously 

associated with multiple phenotypes). Using summary association statistics from a given 

locus as input, the method estimated the 5×5 genetic correlation of the locus and the 

posterior probability of association for all possible phenotype configurations, while 

accounting for genome-wide genetic correlations and trait residual correlations. In cases 

where loci associated with different phenotypes overlapped, the locus was expanded in size. 

Statistical details are available in the Supplementary Note, Section 3.3.
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We applied MTAG16 to variants with MAF>1% from the final meta-analysis results for each 

phenotype, using the other four phenotypes to increase power for locus discovery. Genomic 

controls and LD Intercept tests of the MTAG results were well controlled (Supplementary 

Table 29), and Manhattan and QQ plots well-behaved (Supplementary Figures 16 and 17). 

GCTA-COJO58 was used to identify conditionally independent variants (listed in 

Supplementary Table 12). All loci were plotted with LocusZoom, visually inspected, with 

suspicious loci identified (e.g., those without LD support; see Supplementary Table 30) 

removed from further consideration. Additional details, including testing of MTAG model 

assumptions, are provided in the Supplementary Note. Finally, we also applied Genomic 

SEM59 to our five phenotypes to formally model and factor their correlation structure. See 

Supplementary Figure 18, Supplementary Table 31, and the Supplementary Note for further 

details.

Genome-wide significant threshold.

The primary focus was to test variants with MAF≥1%, as these will be imputed with high 

confidence. The statistical significance threshold applied to meta-analysis of all variants 

with MAF≥1% was 5×10−8, consistent with widespread convention in GWAS of European 

individuals. Since our imputation procedure is expected to provide some marginal level of 

accuracy down to MAF of 0.1%, we also conducted an exploratory association test for low 

frequency variants with 0.1%<MAF<1%, to which we applied a statistical significance 

threshold of p<5×10−9. Only two such low-frequency variants surpassed the conventional 

common variant threshold of p<5×10−8. Of these two, one low-frequency variant, associated 

with SmkInit, survived the more stringent multiple testing correction (rs181508347, 

intergenic, MAF=.0096, p=5×10−10), and is included in our count of discovered loci and 

included in Supplementary Table 4. The more stringent threshold applies a correction for 

~10 million tests, which is approximately the number of conditionally independent variants 

tested once the MAF lower bound was extended from 1% to 0.1%. We calculated this 

threshold using three existing methods60–62. These methods make use of the eigenvalues of 

the matrix of LD (measured in R2) between SNPs, calculated with a spectral decomposition. 

We estimated the number of independent tests using the genotype data from a subset of the 

Haplotype Reference Consortium panel41. We first calculated LD blocks across the genome 

using the algorithm implemented in PLINK version 1.963 with default settings, and then we 

lowered the MAF threshold to 0.1% to accommodate all low frequency variants. Next, we 

calculated the effective number of independent tests within each LD block and between LD 

blocks using the aforementioned three methods, which we aggregated to get the total number 

of independent tests. The three techniques estimated the number of independent variants at 

9.8–10.1 million independent tests, similar to other independent estimates64. A total of 278 

sentinel variants (including the one genome-wide significant low-frequency variant) had p < 

5×10−9, out of the original 406 with p < 5×10−8.

Heritability.

We used univariate and bivariate LD Score Regression17 to assess the heritability of each 

phenotype and to estimate a variety of genetic correlations. Analyses included (1) LD Score 

Regression intercept tests to evaluate the extent to which population stratification or cryptic 

relatedness may artificially inflate our summary statistics; (2) estimation of genetic 
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correlations across our five phenotypes; (3) estimation of genetic correlations computed 

within a phenotype but between the larger contributing studies, as an estimate of the extent 

to which phenotypes were measuring the same genetic risk in different studies; and (4) 

estimation of genetic correlation between the five phenotypes and a wide variety of other 

phenotypes related to smoking and alcohol behaviors, and for which GWAS have already 

been made publicly available.

Under standard assumptions, bivariate score regression produces unbiased estimates of 

genetic correlation, even in the presence of sample overlap65. Accordingly, to estimate the 

extent of genetic correlation between each of our phenotypes, and between our phenotypes 

and other phenotypes related to nicotine and alcohol use, we used standard procedures in LD 

Score Regression22. To be included in these analyses, variants were restricted to those 

present in HapMap3 with MAF>0.01. Standard errors were estimated with a block jackknife 

over all variants.

We estimated the proportion of variance explained by the set of all conditionally 

independently associated variants. The joint effects of variants in a locus were approximated 

by β JOINT = VMETA
−1 U MET A, where U MET A is the single variant score statistics and VMETA 

is the covariance matrix between them. The phenotypic variance explained by the 

independently associated variants in a locus is given by β joint

T
cov G β JOINT, where cov(G) 

is the genotype covariance estimated from the Haplotype Reference Consortium panel.

Polygenic scoring.

Polygenic risk scores (PRS) were computed using LDpred66, which accounts for linkage 

disequilibrium between variants. Since we do not know the variance-covariance matrix of 

the effects in the training sample (here, the GWAS results), we replace this matrix with a 

block diagonal matrix estimated using LD patterns from the prediction cohorts, after 

dropping cryptically-related individuals and ancestry outliers.

Smoking and alcohol use rates are influenced by secular trends and policy changes over the 

last half century. We therefore selected two independent prediction cohorts, the Health and 

Retirement Study (HRS)21 and the National Longitudinal Study of Adolescent to Adult 

Health (Add Health)20. The HRS is a nationally representative study of U.S. households that 

began in 1992; the mean birth year of respondents is 1938 (SD=9.3), and the mean age at the 

time of assessment is 57.6 (SD=8.9). Add Health is a nationally representative sample of 

U.S. adolescents enrolled in grades 7 through 12 during the 1994–1995 school year. The 

mean birth year of respondents was 1979 (SD=1.8), and the mean age at assessment (here, 

wave 4) was 29.0 (SD=1.8). In the HRS, ~57% of respondents reported ever smoking 

regularly, and these respondents smoked ~13 cigarettes per day. In Add Health, slightly 

fewer (~53%) of respondents reported ever smoking regularly, and these respondents 

smoked ~11 cigarettes per day on average (Supplementary Table 14). For each of our five 

phenotype scores, we used variants that overlapped with HapMap3 (~1.1 million) to 

construct the scores. Prediction accuracy was estimated using ordinary least squares 

regression of a given phenotype (AgeSmk, CigDay, SmkInit, SmkCes, or DrnkWk) on the 

Liu et al. Page 10

Nat Genet. Author manuscript; available in PMC 2019 July 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



polygenic score and covariates including age, sex, age × sex interaction, and the first ten 

genetic principle components.

Prediction accuracy comes from a two-step process where we first regress the phenotype on 

a standard set of covariates without including the PRS. Then, the PRS predictor is added and 

the difference in the coefficient of determination (R2) is calculated. For our quantitative 

phenotypes, AgeSmk, CigDay, and DrnkWk, the predictive power of the PRS is the change 

in the R2 in going from the regression without the PRS to the regression with the PRS. For 

our two binary phenotypes, SmkInit and SmkCes, we measure the incremental pseudo-R2 

from probit regressions. 95% confidence intervals around all R2 values are bootstrapped 

with 1000 repetitions each. The same polygenic scoring procedure was applied to the MTAG 

results (Supplementary Table 32).

Epigenomic enrichment.

To detect genome-wide functional and tissue-specific epigenomic enrichments, we 

performed enrichment analyses by heritability stratification using Linkage Disequilibrium 

Score Regression (LDSC v1.0.0), implemented in the LDSC software. Annotation-stratified 

LD scores were estimated using dichotomized/binary annotations, 1000 Genomes Project 

samples with European ancestry, and one million base-pair LD windows by default. LDSC 

then determines functional enrichment of the GWAS traits by partitioning heritability 

according to the variance explained by the LD-linked SNPs belonging to each functional 

category22. Statistical enrichment was defined as the ratio between the percentage of 

heritability explained by variants in each annotated category and the percentage of variants 

covered by that category. A resampling approach was used to estimate standard errors22.

Following standard procedure, we trained a baseline LDSC model using the 52 non-cell-type 

specific functional categories (plus one category that includes all SNPs) and used the 

observed z-scores of HapMap3 SNPs for each trait. We tested cell-group enrichments over 

10 pre-defined cell-group annotations22. The cell-group annotations are the result of 

aggregating 220 cell-type-specific annotations over 4 histone marks (H3K4me1, H3K4me3, 

H3K9ac, H3K27ac) and 100 well-defined cell types. To detect which specific epigenomes 

contribute to the group-level enrichment, we performed 220 tests over each individual 

annotation. Multiple testing was accounted for through Bonferroni correction within 

phenotype with 10 tests for the cell-group annotation enrichment analyses and 220 tests for 

the cell-specific enrichment analyses. As a complementary method to LDSC, we also 

applied a recently developed mixture model learning approach67, and report these results in 

Supplementary Figure 13.

Gene and Gene-Set Tests.

For each phenotype, we used SEQMINER68 and the UCSC genome browser annotations 

(refGene; retrieved December 15 2017) to annotate all conditionally independent genome-

wide significant variants. We identified all genes (all variants 5’ to 3’ UTR) harboring at 

least one variant within LD r2>0.3 with any conditionally independent variant. See 

Supplementary Tables 1–5.
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We conducted a manual review of all genes implicated within each locus, overlap with the 

GWAS catalogue (Supplementary Table 33), and all pathways identified by PASCAL and 

DEPICT (described below). We considered a gene to be implicated if it harbored variation in 

LD with a conditionally independent genome-wide significant variant, or if a gene was 

located within the locus and was significant by the PASCAL gene-based test. PASCAL69 

was used for gene based and pathway analysis to test genes and canonical pathways from 

MSigDb (Supplementary Tables 20–21). Default settings were used to test all variants within 

all genes. DEPICT70 was used to identify enrichment within tissues/cell types, and 

reconstituted gene sets (also known as “pathways”). For each phenotype, variants from the 

GWAS were clumped using 500 kb flanking regions with the LD cutoff r2 > 0.1 (based on 

1000 Genomes phase 1 release v3, the default in DEPICT). We used DEPICT to understand 

genetic signals beyond the genome-wide significant loci that surpass the conventional 

5×10−8, and so included all variants with p<5×10−5. DEPICT tissue enrichment results are 

displayed in Supplementary Figure 15, where enrichment relative to genes in random sets of 

loci is indicated by red shading. To cluster DEPICT reconstituted gene sets, we used affinity 

propagation clustering71 and calculated the correlation between each resulting “exemplary 

gene set” in Figure 4. Genes, gene sets, and tissue/cell enrichments were considered 

significant when their false discovery rate was below 0.05. All such significant DEPICT 

results are reported in Supplementary Tables 17–19. PASCAL and DEPICT were also 

applied in the same fashion to the MTAG summary statistics (Supplementary Tables 34–39).

Statistics.

The GWAS meta-analysis was conducted using chi-square statistics based upon an 

imputation-quality aware fixed effect meta-analysis approach. Two sided p-values were 

calculated. The MTAG and GenomicSEM analysis test statistics was conducted using the 

GWAS meta-analysis results, and two-sided p-values were similarly calculated from chi-

square distribution. The pleiotropic analysis was conducted based upon an empirical Bayes 

approach. The prior distribution for the effect sizes were assumed to follow a mixture 

distribution: with a point mass at 0 (representing the possibility the locus is not associated 

with the trait) and a normal distribution (representing the possibility that the locus is 

associated). The hyper-parameters were estimated by maximizing the marginal likelihood. 

The method properly accounts for the local genetic correlation and residual correlation 

between phenotypes. The posterior probability of association for each locus was estimated 

for each possible combination of 5 phenotypes, and the combination with the highest PPA 

was reported for each locus.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Editorial Summary:

Association studies of up to 1.2 million individuals identify 566 genetic variants in 406 

loci associated with tobacco use and addiction (initiation, cessation, and heaviness) as 

well as alcohol use, with 150 loci showing pleiotropic association.
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Figure 1. Genetic correlations between substance use phenotypes and phenotypes from other 
large genome-wide association studies.
Genetic correlations between each of the phenotypes are shown in the first 5 rows, with 

heritability estimates displayed down the diagonal. All genetic correlations and heritability 

estimates were calculated using LD Score Regression. Blue shading represents negative 

genetic correlations, and red shading represents positive correlations, with increasing color 

intensity reflecting increasing strength of a correlation. A single asterisk reflects significant 

genetic correlations at the p<.05 level. Double asterisks reflect significant genetic 

correlations at the Bonferroni-correction p<.000278 level (corrected for 180 independent 

tests). Note that SmkCes was oriented such that higher scores reflected current smoking, and 

for AgeSmk lower scores reflect earlier ages of initiation, both of which are typically 
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associated with negative outcomes. AgeSmk=Age of Initiation of Smoking; 

CigDay=Cigarettes per Day; SmkInit=Smoking Initiation; SmkCes=Smoking Cessation; 

DrnkWk=Drinks per Week.
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Figure 2. Pleiotropy.
Depicted here are results from the multivariate analysis of pleiotropy. For each locus, the 

method returns the best fitting solution of which phenotypes were associated with that locus. 

All loci with one or more associated phenotypes are shown here. For example, every locus 

associated with AgeSmk was found to be pleiotropic for other phenotypes (green, blue, red, 

purple, and fuchsia bars), and no locus showed association with only AgeSmk (no dark grey 

bar for AgeSmk). When sample sizes are unequal across phenotypes, the method also 

improves power for those phenotypes with smaller samples. The total number of loci 

associated with each trait (whether pleiotropic or not) from these analyses was 40 

(AgeSmk), 48 (SmkCes), 72 (CigDay), 111 (DrnkWk), and 278 (SmkInit). Full information 

is in Supplementary Table 11.
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Figure 3. Heritability and polygenic prediction.
The light gray bars reflect SNP heritability, estimated with LD Score Regression. The light 

blue and gold bars reflect the predictive power of polygenic risk scores in Add Health and 

the Health and Retirement Study (HRS), respectively. Despite the 41-year generational gap 

between participants from these two studies, and major tobacco-related policy changes 

during that time, the polygenic scores are similarly predictive in both samples. Error bars are 

95% confidence intervals estimated with 1000 bootstrapped repetitions. Dark gray bars 

represent the total phenotypic variance explained by only genome-wide significant SNPs. 

H2=heritability.

Liu et al. Page 24

Nat Genet. Author manuscript; available in PMC 2019 July 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. Correlations among exemplary DEPICT gene sets.
There were 68 clusters available for Smoking initiation and 10 for Drinks Per Week 

(CigDay, AgeSmk, and SmkCes did not have > 1 exemplary sets.) Blue shading represents 

positive correlations, and red shading represents negative correlations, with increasing color 

intensity reflecting increasing strength of a correlation. Cluster names are truncated for 

space, with a full list of all names in Supplementary Table 18. The number after each name 

is the number of gene sets in each cluster. The matrix naturally falls into three blue 

superclusters along the diagonal. The largest supercluster contains primarily gene sets 

related to neurotransmitter receptors, ion channels (sodium, potassium, calcium), learning/

memory, and other aspects of CNS function. The middle supercluster includes gene sets 

defined by regulation of transcription and translation, including RNA binding and 

transcription factor activity. The final supercluster is composed primarily of gene sets related 

to development of the nervous system.
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Table 1.
Nonsynonymous sentinel variants.

The sentinel variant in approximately 4% of loci was nonsynonymous. Shown here are all nonsynonymous 

sentinel variants, and all nonsynonymous variants in near-perfect LD with a sentinel variant. If the listed gene 

was also associated (through single variant or gene-based test) with another phenotype, that phenotype is listed 

in parentheses. Several genes have been implicated in previous studies of substance use/addiction, including 

CHRNA5, BDNF, GCKR, and ADH1B.

Phenotype Gene rsID Chr Position REF ALT AF Beta p N Q

CigDay (SmkCes) CHRNA5
rs16969968

a 15 78,882,925 G A .34 .075 1.2×10−278 330,721 .34

CigDay HIST1H2BE rs7766641 6 26,184,102 G A .27 −.014 2.9×10−10 335,553 .78

CigDay (AgeSmk) GRK4 rs1024323 4 3,006,043 C T .38 −.012 8.7×10−9 337,334 .17

SmkInit REV3L
rs462779

a 6 111,695,887 G A .81 −.019 4.5×10−29 1,232,091 .67

SmkInit (DrnkWk) BDNF rs6265 11 27,679,916 C T .20 −.016 2.8×10−19 1,232,091 .13

SmkInit RHOT2 rs1139897 16 720,986 G A .23 −.012 1.8×10−15 1,232,091 .61

SmkInit (DrnkWk) ZNF789
rs6962772

a 7 99,081,730 A G .15 −.015 2.1×10−14 1,232,091 .92

SmkInit BRWD1
rs4818005

a 21 40,574,305 A G .58 −.010 3.9×10−14 1,232,091 .75

SmkInit ENTPD6 rs6050446 20 25,195,509 A G .97 .035 8.8×10−13 1,225,969 .33

SmkInit RPS6KA4
rs17857342

a 11 64,138,905 T G .38 −.010 9.8×10−12 1,232,091 .16

SmkInit FAM163A rs147052174 1 179,783,167 G T .02 .037 2.3×10−10 1,232,091 .59

SmkInit PRRC2B rs34553878 9 134,907,263 A G .11 .016 1.2×10−9 1,232,091 .28

SmkInit ADAM15
rs45444697

a 1 155033918 C T .21 .010 5.3×10−9 1,232,091 .46

SmkInit MMS22L
rs9481410

a 6 97,677,118 G A .76 .010 1.1×10−8 1,232,091 .04

SmkInit QSER1 rs62618693 11 32,956,492 C T .04 −.020 2.1×10−8 1,232,091 1.00

DrnkWk ADH1B rs1229984 4 100,239,319 T C .96 .060 2.2×10−308 941,280 .05

DrnkWk GCKR rs1260326 2 27,730,940 T C .60 .008 8.1×10−45 941,280 .10

DrnkWk SLC39A8 rs13107325 4 103,188,709 C T .07 −.009 1.5×10−22 941,280 .33

DrnkWk SERPINA1 rs28929474 14 94,844,947 C T .02 −.012 1.3×10−11 941,280 .50

DrnkWk (SmkInit) ACTR1B rs11692465 2 98,275,354 G A .09 .008 2.5×10−11 937,516 .40

DrnkWk TNFSF12–13 rs3803800 17 7,462,969 A G .79 .004 1.5×10−10 941,280 .67

DrnkWk HGFAC rs3748034 4 3,446,091 G T .14 −.005 1.7×10−8 941,280 .65

Note: Phenotype abbreviations are defined in Figure 1. Chr=Chromosome; REF=reference allele; ALT=alternate allele; AF=allele frequency of 
ALT allele; Q=Cochrane’s Q statistic p-value.

a
These variants were not themselves sentinel, but were in near-perfect LD with a sentinel variant (R2 >.99, from the 1000 Genomes European 

population). The scale of Beta is on the unit of the standard deviation of the phenotype. For binary phenotypes the standard deviation was 
calculated from the weighted average prevalence across all studies included in the meta-analysis (available in Supplementary Table 7).
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