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Abstract. We present a new online voting scheme with everlasting pri-

vacy and cast-as-intended verifiability. We follow the so called “audit-

and-cast” paradigm where the voter audits the ballot before casting it.

To mitigate the ability of this information to harm the voter’s privacy,

we provide measures for avoiding coercion by allowing any party to

create fake proofs for the content of any vote. We propose an efficient

implementation and formally verify its security properties.

1 Introduction

This work focuses on simultaneously achieving two properties, everlasting privacy

and cast-as-intended verification—along with end-to-end verifiability—in an ef-

ficient manner. Everlasting privacy is achieved because the public information

in the scheme is unconditionally hiding. Further, our scheme provides timely

and accountable cast-as-intended verification which the voter confirms before

the ballot is accepted; this results in a simple vote ceremony which is dispute

free. This prevents the issue found in many other schemes, where disgruntled

voters can cast aspersions which cannot be resolved. While we do not claim

that our scheme provides coercion resistance, we do provide to all parties the

ability to create fake proofs of all votes. This means interested parties can run

counter-coercion strategies on behalf of voters.

2 Related work

Electronic voting schemes have been the subject of much cryptographic study since

the 1980s [3,7,8,9,11,12,24]. During this extensive study of verifiable electronic

voting schemes many subtle issues have been detected. One such issue is receipt-

freeness [4] and another is cast-as-intended verifiability. Unfortunately the former

significantly complicates the latter. Prominent verifiable electronic voting schemes
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for remote voting like Helios [2] use Benaloh challenges [32] to achieve cast-

as-intended verification without generating receipts, but this mechanism—as

currently implemented—is (often) unusable [21]. Compounding the usability issues

with some cast-as-intended mechanisms are the further issues of accountability

and dispute management. We desire that electronic voting schemes provide strong

evidence of misconduct, but the definitions of cast-as-intended verification require

only that a voter can detect misconduct. While this issue is dealt with in some

papers [10,30], in many deployed examples and papers [19,29,31] the definitions

do not imply strong evidence. This lack of strong evidence means that if honest

voters make mistakes in verification, or disgruntled voters desire to cast aspersions

on the security of the election, there is no way to tell the difference between these

scenarios and an attack. To provide strong evidence the definition needs to be

strengthened to something closer to accountability [22].

Many voting protocols have been proposed with everlasting privacy and

others have configurations which achieve this property. Everlasting privacy was

proposed as an extension to the Helios scheme by Demirel et al. [14], extending

the Split-ballot voting scheme from Moran and Naor [25]. This kind of extension

reduces privacy attacks on the system (from an external adversary) to information

theoretic security rather than computational. Hence, no future breakthrough

in computation power, mathematics, or large scale quantum computers will

put the voters’ privacy at risk to the public. While there are schemes which

provide information theoretic maximal privacy1 these are impractical for most

real elections. Demirel et al’s scheme and many others, including our work here,

have at least one authority against which privacy holds only computationally.

Another set of schemes use some form of anonymous signature (ring, group,

linkable) and an anonymous channel [23] which achieves everlasting privacy

cleanly, but the existence of such a channel is problematic to realise [34].

Our work is similar to both Selene [29] and Guasch et al’s work on “How to

Challenge and Cast Your e-Vote” [17] in that we make use of a voter controlled

trapdoor which allows the voter to be given a proof about which they can then

equivocate to possible coercers. Our work provides stronger cast-as-intended

verifiability than either of the above by avoiding dispute issues in the cast-

as-intended mechanism. We achieve this by getting the voter to confirm that

they are happy with the cast-as-intended check before submitting. Selene has a

significantly different user experience where the voter checks that their vote was

included after the election is complete, whereas Guasch et al’s work has a similar

voter experience to ours. In addition, while there seems to be no insurmountable

barrier to updating either of the above schemes to have everlasting privacy, neither

scheme currently has this property.

1 That is, the adversary learns nothing more about the honest voters’ input than it

learned from the result and its own input.
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3 Building Blocks

3.1 Definitions

We begin by stating the standard definitions.

Definition 1. Encryption Scheme: An encryption scheme Πε consists of a triple

of efficient algorithms (Genε, Encε, Decε) such that:

Genε(1
n): Given the security parameter 1n, output a pair of public and secret

keys (pk, sk). The public key specifies a message space Mε.

Encε(pk,m): Given a public key and a message m, return ⊥ if m /∈ Mε, oth-

erwise output a ciphertext c. The explicit notation is Encε(pk,m; r) for the

randomness used in the encryption.

Decε(sk, c): Using the private key sk, output a decryption d of the ciphertext c.

We require an encryption system to be correct and at least preserve indistinguisha-

bility of messages under chosen plaintext attacks.

Definition 2. Trapdoor Commitment Scheme: A trapdoor commitment scheme

Πc is a tuple of efficient algorithms (Genc, GenTKc, Comc, V erifyc, Fakec) such

that:

Genc(1
n): Given the security parameter 1n, output a public commitment key ck

and a proof that ck was generated without a known trapdoor. The commitment

key specifies a message space Mc.

GenTKc(1
n): Given the security parameter 1n, output a public commitment key

ck and trapdoor key tk. The commitment key specifies a message space Mc.

Comc(ck,m): Given a commitment key and a message m, return ⊥ if m /∈Mc,

otherwise output a pair (c, d) made of a commitment and an opening. The

explicit notation is Encε(ck,m; r) for the randomness used in the commitment.

V erifyc(ck, c, d,m): Given a commitment key, commitment, opening and mes-

sage, return either 1 or 0 if these inputs are consistent or not.

Fakec(ck, tk, c, d,m,m
′): Given a commitment key, trapdoor key, commitment,

opening and messages m and m′ returns a new opening d′.

Clearly the commitment scheme should be correct and it should not be possible

to open the same commitment to two different messages without knowledge of

the trapdoor key. In addition, our scheme requires that the commitments be

statistically hiding.

Definition 3. Signature Scheme: A signature scheme Πs is a triple of efficient

algorithms (Gens, Signs, V erifys) such that :

Gens(1
n): Given a security parameter 1n, output a pair of public and secret keys

(pk, sk). The public key specifies a message space Ms.

3



Signs(sk,m): Given a secret key and a message m, return ⊥ if m /∈Ms, other-

wise output a signature s.

V erifys(pk,m, s): Return either 1 if the signature verifies for the public key or

0 if not.

A signature scheme should be correct and prevent even existential forgeries.

3.2 Specifics

We take as our primary building blocks the Pedersen commitment scheme [28] and

Paillier encryption [27]. These have been very commonly used in e-voting with

everlasting privacy, going back to Moran’s seminal work [25], and were also used

in [14] and [13]. In essence, one commits to the vote in a Pedersen commitment

and then encrypts the opening under Paillier encryption. The unconditionally

hiding Pedersen commitments can ensure the integrity of the election on the

public board without revealing any information about the vote. In addition, we

make use of verifiable mixnets and sigma protocols.

We note that Paillier has somewhat of a bad reputation in the e-voting com-

munity for complicating secure threshold key generation. While this was certainly

a significant concern when Paillier was first proposed, subsequent research has

changed the situation [26]; of particular note in addressing this concern is Hazay

et al’s [20] recent work. At present, the remaining reason not to prefer Pail-

lier encryption is computational costs which we would argue are insufficiently

problematic to justify the procedural issues incurred by most alternatives.

We note in passing that it is possible to adapt the very elegant PPATC

scheme of Cuvelier et al. [13] for use with our scheme as a replacement for Paillier

encryption and Pedersen commitment. The resulting scheme proceeds identically

to how we describe, but instead of Pedersen commitments, Abe et al’s [1] com-

mitment scheme is used—once with known trapdoors and once without. This

works because while PPATC is not additively homomorphic, an analogous sigma

protocol to the “Sigma protocol for consistent commitments”—which we will

define below—is available. We detail this sigma protocol in appendix A.

Paillier encryption consists of a triple of efficient algorithms (GenPa, EncPa,

DecPa) such that:

GenPa(1n): Choose two n-bit primes, p and q, and compute the public modulus

N := pq for the Paillier encryption. The corresponding secret key λ := λ(N)

is the number lcm(φ(p), φ(q)) = φ(N)/2. Output (N , λ).

EncPa(N,m): For m ∈ ZN choose r ∈R Z∗N and return = (N + 1)mrN mod N2.

DecPa(λ, c): For c ∈ ZN2 return ([cλ mod N2]− 1)/N)[λ−1 ∗ x mod N ] ∈ ZN .

Pedersen’s commitment scheme consists of a tuple of efficient algorithms (GenPe,

GenTKPE ComPe, V erifyPe, FakePe) such that:
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GenPe(1
n): Choose a group G of order o, 2n−1 < o < 2n, in which the discrete

log problem is hard. Select two generators g and h in a verifiably random

way such that no non-trivial information about the relationship between is

revealed, for instance as described in [16]; return ck := (G, o, g, h). We also

allow G to be given explicitly in which case the notation is GenPe(G).
GenTKPE(1n): Choose a group G of order o approximately equal to 1n in which

the discrete log problem is hard. Select a random generator g and random

element of Zo x and set h = gx; return ck := (G, o, g, h) and tk := x. We also

allow G to be given explicitly in which case the notation is GenPe(G).
ComPe(ck,m): Given a commitment key and message m ∈ Zo choose r ∈R Zo

and return (grhm, r).
V erifyPe(ck, c, d,m): Given a commitment key, commitment c, opening d and

message m return 1 if c = gdhm else 0.
FakePe(ck, tk, c, d,m,m

′): Recall that tk = x where h = gx, return (r′ :=

r + xm− xm′).

In our scheme we use Pedersen commitments in two separate places (with differ-

ent commitment keys). First, we use them to achieve everlasting privacy while

preserving integrity. In this use, the ability to implant a trapdoor is undesir-

able, so the setup should produce two generators which are verifiably drawn

uniformly and independently at random. They should be drawn in such a way

that no more information about the relationship between them is revealed than

can be easily computed given only the two elements. However, we also use the

Pedersen commitments to allow the voters to verify that their ballot is cast as

intended but later equivocate about the proof, in which case we make deliberate

use of the trapdoors. We emphasise that since these two different places

have two different sets of keys no contradiction occurs by having one

trapdoored and the other not.

We can exploit the homomorphic properties of the above primitives to create

efficient Zero Knowledge Proofs (ZKP) of correct encryption. Specifically given a

Pedersen commitment of the vote c, Paillier ciphertexts opening the commitment

c1 and c2, and an additional verification Pedersen commitment cv, we can prove

that the ciphertexts do encrypt an opening to the commitment and that the

additional verification commitment refers to the same vote. The sigma protocol

for correct encryption first appeared in [13].

Sigma protocol for correct encryption Given a ck, pk, (c, c1, c2) we show

that we know (v, r, r1, r2) such that c = ComPe(ck, v; r), c1 = EncPa(N, r; r1),

and c2 = EncPa(N, v; r2).
1. Prover chooses (v′, r′, r′1, r

′
2) at random and computes c′ = ComPe(ck, v

′; r′),

c′1 = EncPa(pk, r′; r′1), and c′2 = EncPa(pk, v′; r′2) and returns (c′, c′1, c
′
2).

2. Verifier sends a challenge e chosen at random in ZN .
3. Prover computes t1 := v′ + ev, t2 := r′ + er, t3 := r′1r

′
1
e
, and t4 := r′2r

′
2
e

and sends these to the verifier.
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4. The verifier accepts if c′ce = ComPe(ck, t1; t2) and c′1c
e
1 = EncPa(pk, t2; t3)

and c′2c
e
2 = EncPa(pk, t1; t4).

Sigma protocol for consistent commitments Given a ck, ckv, (c, cv) we show

that we know (v, r, rv) such that c = ComPe(ck, v; r), and cv = ComPe(ckv, v; rv).

1. Prover chooses (v′, r′, r′v) at random and computes c′ = ComPe(ck, v
′; r′),

and c′v = ComPe(ckv, v
′; r′v) and returns (c′, c′v).

2. Verifier sends a challenge e chosen at random in ZN .

3. Prover computes t1 := v′+ ev, t2 := r′+ er, and t3 := r′v + erv and sends

these to the verifier.

4. The verifier accepts if c′ce = ComPe(ck, t1; t2) and c′vc
e
v = ComPe(ckv, t1; t3).

We can make the sigma protocol for correct encryption non-interactive by

applying the Fiat-Shamir transform, and we will in future refer to CEProve and

CEVerify for the non-interactive prover and verifier functions respectively. We

do the same for the consistent commitment sigma protocol and refer to CCProve

and CCVerify.

The Sigma protocol for correct encryption above can be modified to prove

correct re-encryption of a tuple of a Pedersen commitment and two Paillier

ciphertexts. Given the sigma protocols for correct re-encryption we can apply

Wikström’s general result from [33] to construct a mixnet. An optimised variant of

Wikström’s mixnet for shuffling Pedersen and Paillier together recentely appeared

in [18].

We will refer to the mixnet for the Pedersen commitment and Paillier cipher-

texts together as Mix and its verification algorithm as MixVerify; similarly we

denote the mixnet for commitments alone as Mix’ and its verification algorithm

as MixVerify’. We denote MixSimulate and MixSimulate’ the simulators

for the mixnets which are obtained by reprogramming the random oracle.

It is a trivial equivalence for the authorities to check that the commitments are

shuffled according to the same permutation and updated by the same randomness

factors on both boards. We note that in this case, the structure of Wikström’s

proof also works for a significantly optimised variant of the mixnet from the

general result, as is also true in the case of ElGamal for instance; we omit the

details.

4 Cronus E-Voting Scheme

We now describe the scheme which uses two bulletin boards BB and sBB; the

first is a public board and the second can only be seen by the authorities. Since

BB is public information all algorithms are assumed to have access to all its

contents. For simplicity we describe it with a single key holder although threshold

key generation is available:
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Setup(1n) runs GenPa(1n) and receives (N,λ), chooses k such that kN + 1 is

prime, denoting the subgroup of order N in ZkN+1 as G and runs GenPe(G)

and receives (g, h), and sets the election public key pk = (N,G, g, h) and

sk = (λ). Then it generates the empty list of credentials ID and posts pk

and ID BB.

Register(1n, id) runs GenTKPe(G) and Gens(1
n) and sets pkid = (ck, pks)

and skid = (tk, sks), and posts (id, pkid) to BB unless id already appears on

the board in which case it aborts.

CreateVote(v, id) retrieves (pk = (N,G, g, h), pkid = (ck, pks)) from BB.

Then, it runs ComPe((g, h), v) and receives (c, r); it then chooses r1 and

r2 at random in Z∗N , then runs EncPa(N, r; r1) and EncPa(N, v; r2) and

receives c1 and c2. It then runs ComPe(ck, v) and receives (cv, rv). The vot-

ing device calls CEProve(c, c1, c2)(v, r, r1, r2) and CCProve(c, cv)(v, r, rv)

and receives πCE and πCC . The ballot b is then (c, c1, c2, cv, πCE , πCC). The

device also outputs (v, rv) which will be used to audit the ballot.

CastBallot(b, skid, id) runs Signskid(b) and receives ζ. The authenticated ballot

is then ba = (id, b, ζ).

ProcessBallot(ba) parses ba as (id, b, ζ) and b as (c, c1, c2, cv, πCE , πCC). It

checks that V erifys(pkid, b, ζ) = 1 and that CEVerify(c, c1, c2, πCE) = 1

and that CCVerify(c, cv, πCC) = 1. If tkid is not present BB then posts

(id, c, cv, πCC) to the public bulletin BB and (id, c1, c2, πCE) to the private

bulletin board sBB.

AuditVote(id, v, rv). On receiving (id, v, rv), the audit device accesses the

bulletin board to retrieve (c, cv, πCC). It checks that CEVerify(c, cv, πCC) =

1 and that V erifyPe(ckid, cv, v, rv) = 1. If these checks pass it returns 1,

otherwise 0.

ConfirmBallot(id, skid, (v, rv)) parses skid as (tk, sks) and retrieves pkid pars-

ing it as (ck, pks). It then checks that tk is valid for ck and that V erifyPe(ck, cv, v, rv) =

1, if so it chooses v′ at random from the set of valid votes and posts (tk, v′, r′v)

to the BB where r′v = FakePe(ck, tk, cv, rv, v, v
′), otherwise it returns 0.

Tally(sk, sBB)

Filter First the authorities filter out the ballots which were not confirmed.

Parallel shuffle They then take the set of commitments on the public board

and the set of commitments taken with the ciphertexts on the private

board. They then re-randomise and shuffle these sets using Mix’ and

Mix respectively, checking that the commitments on the two boards

match at each step. We denote by Φ1 and Φ2 the Non-Interactive Zero

Knowledge Proof (NIZKP) proofs of correct mixing for the public and

private board respectively. The output set of commitments along with

intermediary values and Φ1 are posted to the public board BB and the

output set of ciphertexts and Φ2 are posted to the secret board sBB.
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Decryption The authorities then jointly decrypt the set of ciphertexts of

the form (c′1, c
′
2) to recover (r′, v) which are then posted to the public

board.
VerifyTally(pk) to verify that a set of votes (v1, ..., vn) are the correct result, an

auditor retrieves the input commitments, output commitments, intermediary

values, openings and Φi for the public board. It then runs Mix’ and checks

that V erifyPe(ck, c
′, v, r′) = 1 for all commitments c′ and openings r′. If all

checks pass it returns 1, else 0.

4.1 Election Flow

The election protocol has the following participants: Election Authorities, Reg-

istrars, and Voters whom we assume have access to a Voting device and Audit

device.

Setup Phase Before an election, the set of election authorities set up the public

parameters as defined by Setup, which they publish to the public bulletin

board BB—and also define the voting options and the tally function. The

voters are registered by the registrars, using the Register function, and the

voters pkid are posted to the BB.
Vote Casting Phase During the vote casting stage, voters access their voting

devices and cast their ballots using CreateVote and CastBallot, and receive

v, rv. They then provide v, rv to the audit device which checks the ballot

using AuditBallot. If the ballot audit is successful, the voter then confirms

their ballot using Confirm Ballot. The voter should check that both their

voting device and audit device agree that the ballot has been confirmed.
Tallying Phase After voting is over, the authorities run Tally which runs the

mixnets and tallies the votes.
Audit Phase After the election, any party can check the signatures on the

submitted ballots to see that ballots were collected as cast and no ballots

from ineligible voters are present. They can also run VerifyTally to check

that the ballots were counted as collected.

The voter’s experience in the most straightforward instantiation of the scheme is

of authenticating and voting on one device, which then displays a QR code. The

voter then scans this with a second device which confirms that the encrypted

ballot encodes the voter’s choice. The voter then confirms their ballot.

5 Security Definitions and Analysis

In defining Ballot Privacy, we follow the Ballot PRIVacy (BPRIV) definitions of

Bernhard et al. [5] which we have slightly modified, while our cast-as-intended

definition is similar to Escala et al. [15,17]. We also briefly discuss why everlasting

privacy holds and why the encryption is Non-Malleable and indistinguishable

under a Chosen Plaintext Attack (NM-CPA).
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5.1 Ballot privacy

The intuition for the formal definition of privacy is that privacy should hold even

against insiders up to and including any subset of the authorities, less than the

threshold that can recover the key—that threshold can trivially break privacy by

decrypting the ciphertexts next to the voter id. Formally we define ballot privacy

by the adversary advantage in the following experiment. Note that in our privacy

definitions we prepend the bulletin board on which the algorithm is running to

its list of inputs when necessary for clarity.

Expbpriv,βB,V (λ)

(pk, sk)← Setup(1λ)

OvoteLR(id, v0, v1)

skid = Register(1n, id)

Let (b0, (v0, r0)) = CastBallot(VoteCreate(v0, id), skid, id) and

(b1, (v1, r1)) = CastBallot(VoteCreate(v1, id), skid, id)

If ProcessBallot(bβ) = 0 return 0.

If ConfirmBallot(id, skid, (vβ , rβ)) = 0 return 0.

Ocast(id, b, (v, r))
skid = Register(1n, id)

If ProcessBallot(b) = 0 return 0.

If ConfirmBallot(id, skid, (v, r)) = 0 return 0.

Oboard()

return (BBβ , sBBβ)

Otally() for β = 0

(r, φ)← Tally(BB0, sBB0, sk)

Otally() for β = 1

(r, φ)← Tally(BB0, sBB0, sk)

φ′ ← SimProof(BB1, r)

return(r, φ′)

Definition 4. BPRIV Consider a voting scheme V = (Setup,Register,CreateVote,

CastBallot,ProcessBallot,AuditVote,ConfirmBallot,Tally, VerifyTally)

for a set I of voter identities for a result function p. We say the scheme has ballot

privacy if there exists an algorithm SimProof such that no efficient adversary

can distinguish between games Expbpriv,0B,V (λ) and Expbpriv,1B,V (λ) defined by the

oracles above, that is for any efficient algorithm A

|Pr[Expbpriv,0B,V (λ) = 1]− Pr[Expbpriv,1B,V (λ)]|

is negligible in λ.

Due to similarities between between Helios and our scheme the proof of ballot

privacy is similar. However, there are significant differences; we have a public

and a confidential bulletin board and a two-stage ballot casting process. For the
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purpose of proving ballot privacy we assume casting and confirming a ballot is an

atomic process, since the adversary has less information to attack privacy when

his process aborts rather then completes this does not enable any attacks. We

define BB as the union of BB and sBB so that it contains entries of the form

(id, b = (c, c1, c2, cv)).

Recall the observation that since the visible bulletin board is built through the

OvoteLR(id, v0, v1) and Ocast(id, b, (v, r)) queries, our BPRIV reduction can as-

sociate, to any entry (idi, bi) in the visible bulletin board, a tuple (idi, b
0
i , b

1
i , v

0
i , v

1
i ).

[Game G−1] LetG−1 be the BRPIV game corresponding to Experiment Expbpriv,0B,VCronus .

The BPRIV adversary A sees the ballot box BB0 and an oracle Otally() faith-

fully answered.

[Game G0] Let G0 be the same as Game G−1 except the tallying proof φ′

is produced by MixSimulate and MixSimulate’ by reprogramming the Ran-

dom Oracle G. Due to the zero-knowledge property of the NIZKP proof associated

with the mixnet, the distinguishing probability is negligibly close between the

two games. From now on the proof is always simulated.

[Game G0,i] is obtained from Game G0,i−1 by taking two possible actions

depending on the contents of the tuple (idi, b
0
i , b

1
i , v

0
i , v

1
i ): if b0i = b1i do nothing,

else b0i 6= b1i replace the i-th entry (idi, b
0
i ) in BB0 with (idi, b

1
i ). By the NM-CPA

property of our construction, the distinguishing probability of the adversary is

negligibly close to G0,i−1.

[Game G1] Let G1 be Game G0,n . The view of the adversary in Game G1

corresponds to the view of the BPRIC adversary with β = 1. Cronus is thus

BPRIV private.

5.2 Cast-as-Intended Verifiability

The challenger C calls Setup(1λ) and provides (N,G, g, h) to the adversary. For

a list of voters ID and Bulletin boards BB, sBB, it provides the following oracles.

OregisterHonest(id)

A provides id /∈ ID. The challenger C calls Register(1λ, id) adding

(id, pkid) to ID.

OregisterCorrrupt(id, pkid)
A provides id /∈ ID. The challenger C adds (id, pkid) to ID.

Ocast(id, b)
C returns CastBallot(b, skid, id).

Oprocess(ba)
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C returns ProcessBallot(ba).

OconfirmHonest(id, v, rv)
If AuditVote(id, v, rv) returns 1 then return skid and run ConfirmBal-

lot(id, skid, (v, rv)).

OconfirmCorrupt(id, ba)

return skid.

Definition 5. Cast-as-Intended Verification: Consider a voting scheme V =

(Setup, Register,CreateVote,CastBallot,ProcessBallot,AuditVote, ConfirmBallot,

Tally,VerifyTally) for a set ID of voter identities and a result function p. We

say the scheme has cast-as-intended verifiability if there exists no efficient adver-

sary that can win the following game with greater than negligible probability.

The adversary wins if there exists a confirmed ballot (id, c, cv) ∈ BB and

(id, c1, c2) ∈ sBB such that the following conditions hold:

– id ∈ ID and id was not the input to OregisterCorrupt.
– DecPa(sk, c2) 6= v where v was the voting option submitted by the adversary

to OconfirmHonest.

Provided that Cronus is instantiated with a secure signature scheme (Gens, Signs,

V erifys), sound Pedersen commitment scheme (GenPe, GenTKPe, ComPe, V erifyPe, FakePe),

and sound NIZKP schemes (CEProve,CEVerify),(CCProve, CCVerify)—

and one of the devices is honest—no such efficient adversary exists.

First note that all entries on the board, confirmed or otherwise, were placed

there by the Oprocess oracle. This means that the adversary has shown that it

knows an opening v, r, r1, r2 such that c = ComPe(ck, v; r), c1 = EncPa(N, r; r1)

and c2 = EncPa(N, v; r2); and, that it knows an opening v′, r′, rv such that

c = ComPe(ck, v
′; r′) and cv = ComPe(ck, v

′; rv). By the binding property of the

Pedersen commitments v = v′ and r = r′.

Secondly, observe that all entries on the board not violating the first condition

were confirmed there through the OconfirmHonest oracle. This oracle checks

that the adversary can open the commitment cv to v before it confirms the

ballots. Since the Pedersen commitments are binding, this v must be the only

opening which the adversary knows; and, hence, the same v which it showed to be

equal to contents of the ciphertext c2 when the ballot was processed. Therefore,

by the soundness of CEProve and CCProve and the binding property of the

commitment scheme, the vote v submitted to OconfirmHonest is the vote which

c2 decrypts to.

We have just shown that the first device is unable to submit a different vote

without being detected, but what if the second device is corrupt? If both devices

are corrupt then the voter has no integrity guarantees. However, it is also clear

11



that if the audit device is corrupt but the voting device is honest the ballot is

sent correctly and the voting device will honestly tell the voter when their ballot

is confirmed. We note that if one device complains that the other has misbehaved,

diagnosing which device is actually malicious is non-trivial.

5.3 Strong Consistency and Strong Correctness

We define the following extraction and verification algorithms consistent with

Tally and ProcessBallot:

1. Extract((c, c1, c2, cv, πCE , πCC), sk) first verifies the proofs πCE and πCC and

if either fails returns ⊥. Otherwise decrypts c2 and return the result.

2. ValidInd(b) checks that the ballot is valid and the proofs are correct. That is,

given a ballot b = (c, c1, c2, cv, πCE , πCC) it checks that both πCE and πCC

verify.

Definition 6. Strong Consistency: A voting protocol has strong consistency if

the following hold:

– For all pk from Setup for any voter v, for any voter identity id and pkid for

Register(id), Extract(CreateVote(v,id)) = v.

– ProcessBallot(ba) = 1,AuditBallot(id, v, rv) = 1,ConfirmBallot(id, skid, (v, rv)) =

1 implies thatV alidInd(b) = 1.

– Where the adversary’s chance of winning the following game is negligible,

Setup phase The challenger runs Setup(1n) to generate pk and sk, which

it gives to A.

Bulletin Board A submits a bulletin board BB and sBB.

Counting phase The challenger runs Tally(sk) and obtains the set of out-

put votes r and tally proof φ1.

Output The adversary A wins if r 6= Extract(BB, sk), where Extract is

applied to each confirmed ballot on the bulletin board.

The first property follows trivially from the correctness of Paillier encryption.

The second property follows because ProcessBallot checks the same proofs as

ValidInd. The last property follows trivially because the definition of extract and

tally are the same up to mixing.

Definition 7. Strong Correctness: A voting protocol has strong correctness if

given pk = Setup(1n), for any efficient algorithm A, the following probability

Pr[(id, v,BB)← A(pk); Register(1n, id); CreateVote(v, id) = b, (v, rv);

CastBallot(b, skid, id) = ba : ProcessBallot(ba) = 0 ∨AuditVote(id, v, rv) = 0

∨ConfirmBallot(id, skid, (v, rv) = 0]

is negligible in λ, where id does not appear on BB.

12



By definition of ProcessBallot, AuditVote and ConfirmBallot the above

definition implies that the following events must occur except with negligible

probability. The signature produced by CastBallot must verify. The sigma

protocol transcripts produced by CreateVote must verify. The tkid must not

already appear on the bulletin board. The commitment cv must open to v, rv.

All of these events are implied by the correctness of the relevant primitives with

the exception of tkid not appearing on the bulletin board; for this, we require

that id does not already appear on the BB as produced by the adversary.

5.4 Everlasting Privacy

Everlasting privacy is fairly straightforward. The public bulletin board BB con-

tains the following information for each confirmed ballot at the end of the election

(id, pkid = (ck, pks), c, cv, πCC). The commitments c and cv are statistically hid-

ing and hence leak negligible information about the vote regardless of adversary’s

computational power. The proof πCC is honest verifier zero knowledge and also

leaks negligible information about the vote regardless of adversary computational

power. Since no non-negligible information is leaked about the vote based on the

public information, we conclude that the scheme has everlasting privacy.

5.5 Encryption

It is known that an Indistinguishable under Chosen Plaintext Attack (IND-CPA)

secure cryptosystem plus a Simulation Sound Extractable Proof of Knowledge

(SSE-PoK) is Non-Malleable under Chosen Plaintext Attack (NM-CPA) [6]. It

also known that applying the strong Fiat-Shamir transform to sigma protocols

yields an SSE-PoK. We therefore have that our construction is also NM-CPA

secure provided that Paillier-Encryption is IND-CPA secure. It is also necessary

to prevent simple duplication of ballots; this can be done by filtering duplicates

or including the voter id in the input to the hash function challenge generator in

the non-interactive version.

6 Practical Realisation

In practice the voter needs to have access to the keys in some way. One option

is that the voter has a trusted authentication device which handles the signing

and trapdoor for them; however, this reduces the practicality of the scheme.

Another option is to provide the voter with a confirmation code and distribute

the trapdoor among the set of tellers; the set of tellers would release the trapdoor

when the voter confirms. Interestingly, this realisation does not affect the integrity

of the scheme—unless the first device colludes with the tellers—but has a mild

impact on privacy.

13



7 Conclusion

We have presented a straightforward and effective scheme with cast-as-intended

verifiability, everlasting privacy, and universal verifiability. The scheme avoids

many of the issues hitherto present in similar schemes through careful use of

checks and zero-knowledge proofs. The construction as we present it relies on

Pedersen commitments and Paillier encryption; however, it is equally possible to

instantiate over elliptic curves of prime order with bilinear pairings.
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A Sigma protocol for consistent Abe commitments

We present a sigma protocol which shows that the prover can open two of Abe et

al’s [1] commitments to the same message. Recall that Abe et al’s commitments

are defined over an elliptic curve coupled with a bilinear pairing; we denote the

groups of the curve as G1,G2,GT . Given two generators for G1 denoted G0,

G1 and a generator for G2 denoted H, a commitment to a message m using

randomness r, r′ is a tuple (Hr1m,Gr0G
r1
1 ).

Sigma protocol for consistent commitments Given a G1,G2, G0, G1, H, (c1, c2),

(c′1, c
′
2) the prover shows that they know (r, r′, r1, r

′
1) such that c1/c

′
1 =

Hr/Hr′ , c2 = Gr0G
r1
1 , and c′2 = Gr

′

0 G
r′1
1 .

1. Prover chooses (s, s′, s1, s
′
1) at random and computes com1 = Hs/Hs′ ,

com2 = Gs0G
s1
1 , and com3 = Gs

′

0 G
s′1
1 and returns (com1, com2, com3).
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2. Verifier sends a challenge e chosen at random in ZN .

3. Prover computes t1 := s+er, t2 := s′+er′, t3 := s1+er1, and t4 := s′1+er′1
and sends these to the verifier.

4. The verifier accepts if com1(c1/c
′
1)e = Ht1/Ht2 and com2c

e
2 = Gt10 G

t3
1

and com3c
′e
2 = Gt20 G

t4
1 .

The proof is straightforward and we omit it due to lack of space.
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