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Abstract 

High-resolution crystal plasticity-finite element method (CPFEM) simulations are 

performed to provide new reference values of the Taylor factor M and the isotropic 

yield surface exponent a  for high stacking fault energy face-centred-cubic (FCC) 

polycrystalline metals with random orientations. The visco-plastic Taylor factor with 

strain rate sensitivity M  is introduced and linearly extrapolated to its zero strain rate 

sensitivity limit to give the new reference value of M. The linear extrapolation 

technique is also employed to define the new reference value of a . The obtained new 

reference values are 2.7 and 6.9, for M and a , respectively, which are much smaller 

than the reference values currently used for FCC materials based on full constraint (FC) 

Taylor model calculations, i.e. 3.07 for M and 8 for a. Other state-of-the-art Taylor-

type models, e.g. ALamel, ALamel with the type III relaxation (ALamel-T3) and the 

visco-plastic self-consistent (VPSC) models, can also give values for M and a much 

smaller than the FC-Taylor calculations. The performance of the CPFEM and these 

state-of-art Taylor-type models in terms of resolving deformation and stress fields 

within the aggregate can only be assessed in a statistical manner since all are statistical 

aggregate models. Selected statistical distributions are analysed for all models, by 

means of local deviations of the velocity gradient tensor, of the plastic deformation-rate 

tensor and of the stress tensor etc., for uniaxial tensile deformation. The ALamel models 

are found to provide similar statistics as CPFEM, whereas the VPSC model results are 
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qualitatively different. The intra-grain analysis for CPFEM demonstrates that the intra-

grain interactions are as much important as the local interactions at the grain 

boundaries.  

 

Keywords: CP-FEM; Advanced Taylor-type models; Taylor factor; Yield function 

exponent; Statistical analysis 

1 Introduction 

The basic simplifying assumption of the full constraint (FC) Taylor model (Taylor, 

1938) is that each single grain in an aggregate crystalline is subject to the same 

deformation as the entire grain aggregate. The FC-Taylor model cannot account for the 

shape of grains and their mutual interactions. However, the grain interactions are 

important for reliable predictions of the texture evolution. To incorporate the effect of 

grain interactions, and release the full constraints imposed by the FC-Taylor theory, 

advanced Lamel-type models (Mánik and Holmedal, 2013; Van Houtte et al., 2005) 

and visco-plastic self-consistent model (VPSC) (Lebensohn and Tomé, 1993, 1994; 

Molinari et al., 1987) were proposed. The ALamel-type models consider the local 

interactions at grain boundaries, while the VPSC model considers the long-range grain 

and matrix interactions. Neither of these models are full-field models (Zhang et al., 

2015); but they demonstrated better performance compared to the FC-Taylor model in 

terms of texture evolution and plastic anisotropy predictions (Mánik and Holmedal, 

2013; Zhang et al., 2015). Another approach to account for the grain interactions uses 

the crystal plasticity model with the finite element method (CPFEM) as pioneered by 

Peirce et al. (1982), for a recent overview, see Roters et al. (2010). The CPFEM 

approach is a full-field model which resolves the grain shapes in details and accounts 

properly for grain interactions when a sufficiently fine mesh resolution is applied. Both 

strain compatibility and stress equilibrium are fulfilled at grain boundaries, at least in a 

weak form (Roters et al., 2010). The importance of grain interactions in a detailed 

CPFEM calculations is reported by Kanjarla et al. (2010). It is mentioned that more 

advanced n-site VPSC models have been formulated to account for local grain 

interactions, as first suggested by Canova et al. (1992). This type of model is a 

compromise between the computer-effective Taylor models and the detailed CPFEM. 

These models come in many versions involving a variety of complex approximations, 
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e.g. dependency on the mesh and the number of neighbour grains accounted for. Hence, 

their accuracy as compared to CPFEM can vary between the 1-site VPSC model and a 

full CPFEM. 

The Taylor factor M and the yield surface exponent a  for polycrystalline materials are 

the most important parameters connecting continuum plasticity theories to crystal 

plasticity (CP) theories. The Taylor factor M relates the equivalent flow stress   to 

the critical resolved shear stress 
c  of slip systems: 

cM =  (Bishop and Hill, 1951b). 

As explained in Kocks (1958) it is used in microstructurally based models to estimate 

strength contribution from dislocations, e.g. Hughes and Hansen (2018), from elements 

in solid solution, e.g. Vilamosa et al. (2016) and from precipitates, e.g. Holmedal 

(2015). The equivalent stress in a continuum plasticity formulation is calculated from 

the yield surface, and is equivalent to the stress of a tensile test in a reference direction. 

As introduced by Taylor (1956), the Taylor factor is defined for a uniaxial tensile test 

and for a rate-independent 
c  that is equal for all slip systems. To overcome the Taylor 

ambiguity, rate-dependent visco-plastic solutions of the slip activity (Peirce et al., 1983) 

have been widely employed. Even though the strain rate sensitivity at room temperature 

is weak, the rate-dependent models are commonly used because they provide stable and 

unambiguous numerical implementations.  

According to the Taylor model, the equivalent strain rate 𝜀̇ is related to the algebraic 

sum of the resolved shear strains rate by / M = , where 




 = . As a result, the 

strain hardening slope d d   is proportional to 
2M , and therefore sensitive to the 

assumed value of M  (Mecking et al., 1996). The Taylor factor cannot be directly 

measured from experiments, but it can be calculated or estimated using crystal plasticity 

models. For high stacking-fault energy face-centred cubic (FCC) polycrystalline metals 

with random orientations, the reference value 3.07M =  was obtained for uniaxial 

tensile deformation by the full constraint (FC) Taylor model, also referred to as the 

Taylor-Bishop-Hill model (Bunge, 1970; Kocks, 1970; Taylor, 1938; Taylor and 

Dehlinger, 1956). This value has been accepted as a reference value in the literature for 

analysing or establishing strain-hardening laws for FCC metals with a random, weak 

texture, or even for an unspecified texture e.g. Blum and Zeng (2009), Kocks and 

Mecking (2003) and Zhao and Holmedal (2013). Most models include parameters that 
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can be re-tuned to match a lower value of the Taylor factor. However, recent multiscale 

models are “parameter free”, e.g. the model for solute strengthening by Leyson et al. 

(2010), or the model for precipitate strengthening by Holmedal (2015). 

In classical plasticity theory, plastic deformation is assumed to take place when the 

stress tensor satisfies a certain condition defined by the yield criterion or yield function. 

Various yield functions were developed for polycrystalline materials in which, the 

exponent a  is regarded as a material coefficient related to the crystal structure. As an 

example, a high-exponent isotropic yield function was proposed by Hershey (1954) and 

later used by Hosford (1972) for cubic crystal metals: 

 ( ) ( )
1

1

1 2 2 3 3 12
a

a
a a a

Yf       
−

= − + − + − −σ ,  (1) 

where σ  is the Cauchy stress tensor, 1 , 2  and 3  are the corresponding major 

stresses and Y  is the yield stress. Based on Taylor-Bishop-Hill calculations, Barlat 

(1987) estimated the exponent a  to be 5.81 with pencil glide for body-centred-cubic 

(BCC) and 8.95 for {111} 110   slip in FCC metals. Many anisotropic yield functions 

have been proposed based on the formulation of the Hershey isotropic yield functions, 

and can be found in the review of Banabic (2010). Barlat et al. (1991) and Karafillis 

and Boyce (1993) proposed advanced yield functions using linear transformations of 

the stress tensors. These yield functions describe the complex plastic anisotropic 

behaviour of aluminium alloys with a surprisingly low number of calibrated parameters 

(Aretz and Barlat, 2013; Banabic et al., 2005; Barlat et al., 2005). The exponent a  in 

these anisotropic yield functions are commonly rounded to its closest even integer 

value, i.e. a=6 for BCC metals and a=8 for FCC metals. The value of the exponent a  

influences the shape of yield surfaces both for the Hershey isotropic and its related 

anisotropic yield functions. The shape of yield surfaces has a major influence on the 

plastic behaviour and formability of metals (Barlat, 1987; Barlat and Richmond, 1987). 

This makes the exponent a  a fundamental parameter for the continuum plasticity when 

applying Hershey-type isotopic or linear transformation based anisotropic yield 

functions. Accurate references values are vital. 

The value of the exponent a depends on the texture when a calibration is made for a 

considered section of the yield surface. A strong and narrow cube texture gives a very 



5 
 

high exponent, whereas a 15 degree spread of the cube texture is known to give a 

rounded yield surface for the section with normal stress in the rolling direction versus 

the transverse direction (Wu et al., 2004). In the linear stress transformation based 

anisotropic yield surfaces this can partly be accounted for in this section, whereas the 

overall behaviour of the yield surface in the other portions of the stress space 

corresponds to the exponent for the case of random orientations as a first order estimate. 

Hence, relevant experiments to determine an overall recommended value of a for linear 

transformation based yield surfaces should be on alloys with a weak texture or random 

orientations. An example of an earlier work, reporting a quadratic initial yield surface 

is by Shiratori and Ikegami (1968) for the case of alpha Brass. However, most recent 

works assume a=8 based on the Taylor model prediction. Dunand et al. (2012) found a 

good agreement with a=8 and the Yld2000 yield function for the case of extruded 

aluminium AA6260-T6 sheets. However, contributions to anisotropy is expected both 

from texture and the precipitates (Han et al., 2004). Kuwabara et al. (2005) and 

Kuwabara (2007) reported good agreement for an AlMg alloy (AA5154-H112) with 

the same yield function. However, in a recent work on another annealed, weakly 

textured AA5754-O alloy, the calibration of the Yld2000 yield surface with an exponent 

equal to 8 underestimated the plane strain portion of the yield surface. This  could be 

caused by a too high value of exponent a (Iadicola et al., 2008). For O-temper AlMg2.5 

and AlMg5.5 alloys, Kuwabara et al. (2006) reported a better fit to the Hersey yield 

function with a=6 than with a=8, based on tensile tests results, assumingly with a weak 

texture. Most recent works are strongly biased or simply assumes that the exponent 

equals 8 as predicted by the Taylor model for FCC. It is therefore important to validate 

this assumption experimentally and by more advanced crystal plasticity calculations.  

It was reported by Zhang et al. (2015) that the Taylor factor M of uniaxial deformations 

and the yield surface exponent a  for FCC polycrystalline metals with random 

orientations, as predicted by ALamel-type models and by one specific homogenization 

variant of the VPSC model, were considerably smaller than the values predicted by the 

FC-Taylor model. These models are based on the same Schmid assumption (Schmid 

and Boas, 1935) as the CPFEM, but with severe simplifying assumptions that strongly 

reduce the computational costs. The Taylor factor was estimated to be M=2.7 from 

viscoplastic CPFEM simulations by Tadano et al. (2012) using a small rate sensitivity 

of m=0.002. They compared the results to FC-Taylor model predictions and found that 



6 
 

in CPFEM each grain had a wide distribution of strains. They concluded that the effect 

of the grain shape is small when the number of grains is sufficiently large, and that at 

least 200 grains are required to represent the behaviour of FCC polycrystalline metals. 

The ALamel-type models and the VPSC model provide surprisingly good results, 

compared to CPFEM, and to experiments. However, no systematic study has been 

performed on how much their solutions differ from CPFEM calculations.  

Rate-independent CPFEM implementations exist, e.g. Yoshida and Kuroda (2012). As 

discussed by Mánik and Holmedal (2014), one of the ambiguity solutions corresponds 

to the limit of vanishing strain rate sensitivity of the yield surface model. One way to 

approximate this natural limit case is to apply a regularized yield surface for the crystal, 

as in Zecevic and Knezevic (2018). However, too high exponents of the regularized 

crystal yield surface cause numerical instabilities. A way to still approximate the rate-

independent limit would be to extrapolate such solutions towards an infinite exponent. 

Instead, in this work, a rate-dependent CPFEM modelling framework is employed to 

determine Taylor factor M and yield surface exponent a. When comparing the CPFEM 

solutions to the rate-independent FC-Taylor models, the CPFEM solutions are carefully 

extrapolated to their rate-independent limit. Furthermore, the influence of the mesh 

resolution is accounted for. The rate-dependent crystal plasticity framework and its 

numerical integration method are briefly outlined in Section 2. An adequate 

extrapolation procedure of the Taylor factor towards the strain rate independent limit 

for visco-plastic models is developed and explained in Section 3. The simulations of 

uniaxial tensile and different in-plane loading are performed by CPFEM with various 

mesh resolutions in order to estimate the reference values of Taylor factor M  and the 

isotropic yield function exponent a  (Section 4). The validity of the advanced Taylor 

models is assessed in Section 5 through analyses of their statistical predictions as 

compared to CPFEM. Results are further discussed in Section 6 before the conclusions 

in Section 7. 

2 CPFEM modelling framework 

The model formulation is limited to small elastic strains and isochoric plasticity. The 

corotational stress approach is applied. This section outlines the main constitutive 

relations describing CPFEM modelling framework which is described in more details 

in Zhang et al. (2014b).  
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The velocity gradient tensor L is additively decomposed into symmetric and skew-

symmetric parts: 

 = +L D W , (2) 

where D  is the symmetric deformation rate tensor and W  is the skew-symmetric spin 

rate tensor. The tensors D  and W  are further decomposed into lattice and plastic 

parts: 

 
e p=D D + D , (3) 

 
* p=W W + W , (4) 

where 
e

D  is the elastic deformation rate and 
p

D  is the plastic deformation rate due to 

crystallographic slip. The spin tensors 
*

W  and 
p

W  represent the lattice and plastic 

spins, respectively. The plastic deformation rate and spin tensors depend on the slip 

rates for the active slip systems, and are respectively defined as 

 
1

 with      ( )
2

P       



= =  + D P P m n n m ,  (5) 

 
1

    with      ( )
2

P       



= =  − W Ω Ω m n n m  , (6) 

where 
  is the shear rate of slip system  , 


m  is the unit vector defining slip 

direction and 


n  is the unit slip plane normal vector, for the slip system  . The vectors 


m  and 


n  are not affected by crystallographic slip but will be rotated by the lattice 

spin 
*

W  as: 

 
* *,   =  = m W m n W n . (7) 

A hypo-elastic relation is used here and the rate of the Cauchy stress tensor σ  is defined 

as  

 
* *J= +  − σ σ W σ σ W ,  (8) 

where the Jaumann stress rate tensor 
J

σ is computed as  

 ( )ˆ :J T e T  =    
 

σ C D    . (9) 
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In Eq. (9), Ĉ  is the fourth-order elasticity tensor which is constant in the co-rotational 

lattice frame, whereas   is the rotation tensor from the initial crystal frame to the 

current co-rotational frame: 

 
*= W  .  (10) 

In the case of rate-dependent crystal-plasticity approach, all slip systems are active and 

the slip activity of each slip system 
  in Eqs. (5) and (6) is determined by a power-

law-type equation: 

 

1

0 0

sgn( )
m 

 


 
= . (11) 

The parameter 0  which scales the slip resistance, is given a constant value in this work. 

The parameter 0  is a reference shearing rate which scales the shear strain rate on each 

slip system, m  is the instantaneous strain rate sensitivity and 
  is the resolved shear 

stress which is linked to the current stress-state by: 

 :  = σ P   (12) 

It should be mentioned here that an adaptive sub-stepping integration scheme with the 

modified Euler method (Zhang et al., 2014b) was used. This integration scheme is 

extremely robust and efficient, for which the instantaneous strain rate sensitivity m can 

set to a value as low as 
510−  to explore the very nearly rate-independent stress-strain 

response. A rate-dependent Taylor model has also been implemented as a stand-alone 

code. 

3 Taylor factor by rate-dependent models   

3.1 Visco-plastic Taylor factor 

For the rate-independent Taylor type crystal plasticity models, the Taylor factor can be 

defined as the ratio between the flow stress out of uniaxial tensile tests and the critical 

resolved shear stress c  



9 
 

 
c

M



= . (13) 

However, this definition is not meaningful for rate-dependent models, where the 

resolved shear stress depends on the resolved shear strain rate. Even when the strain 

rate sensitivity is low, the resolved shear stresses of the active slip systems are slightly 

different, depending on their corresponding slip rates. In other words, the uniaxial yield 

stress   is influenced by 
0 , 

0 and m  for a prescribed global deformation rate D (see 

Eq. (11)). In the limit of vanishing strain rate sensitivity, i.e. when 0m → , the rate-

dependent formulation degenerates smoothly into a solution of the rate-independent 

model, but with one particular solution of the Taylor ambiguity (Mánik and Holmedal, 

2014). Note that all ambiguity solutions have the same Taylor factor. The estimation of 

the rate-independent limit in Eq. (13) requires m  to be very small, which introduces 

numerical stability and convergence problems making computations very challenging.    

It is noted from a dimensional analysis, see Appendix A, that the parameters 
0 , m  and 

0  do not enter the problem formulation independently, but can without loss of 

generality be grouped together. The strain rate 11D , which corresponds to the equivalent 

strain rate of a uniaxial tensile test, is applied as an external scale of the problem. As a 

result of this dimensional analysis, a visco-plastic Taylor factor for strain rate 

sensitivity, M , is introduced in this work and defined as: 

 011

0 11

m

M
D





 
=  

 
 . (14) 

It follows from this analysis that the strain rate dependency of the visco-plastic Taylor 

factor M  is only related to the chosen value of m . 

 

3.2 Extrapolation of the visco-plastic Taylor factor towards m=0 

As m  is approaching its zero-limit, the visco-plastic Taylor factor with strain rate 

sensitivity ( M ) will approach the value of Taylor factor M  by the rate-independent 

calculations, i.e. 
0

lim ( )
m

M m M
→

= . The value of ( )M m  can be determined for a specific 
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texture and tensile direction. Instead of trying to calculate ( )M m  for extremely small 

values of m, it will be linearly extrapolated towards the limit m=0.  

 ( )M m M A m= +   (15) 

Here A  is a constant and M  is the Taylor factor in the limit 0m → . Both A  and M  

are functions of the crystallographic texture, the tensile test direction and the 

homogenization method. The values of parameters M and A can be calibrated according 

to Eq. (15) with at least two different data points calculated on the ( )M m  curve.  

3.3 Validation of the proposed extrapolation towards M 

In order to validate the use of Eq.(15) for extrapolation of ( )M m  towards M , a 

detailed investigation including very small values of m  was made. The rate-dependent 

Taylor model was applied instead of CPFEM for this section, to reduce the 

computational effort. 

A total of 1000 grains with random orientations were simulated under uniaxial tensile 

deformations. Isotropic elasticity was assumed where the values of elasticity constants 

are referred to Zhang et al. (2014b). The values for 0 , 0  and the tensile test strain rate 

( 11D = ) were arbitrarily chosen. According to the dimensional analysis (see Appendix 

A) any combination of 0 , 0  and tensile strain rate will result in the same ( )M m . The 

simulations were stopped at a true strain of 1%. The average of the flow stress for true 

strains between 0.04 and 0.07 was taken as the flow stress   of the material. During 

this strain range the texture evolution can be ignored. The calculations were made with 

different values of m (
510−
, 

410−
, 

310−
, 

35 10− , 
210−
 and 

25 10− ).  

Figure 1 plots the data points of ( )M m  for all simulated cases. The relationship 

( ) 3.067 1.58M m m= −   was found to fit the data in Figure 1. It is clearly seen that 

3.067M =  is obtained, which is the same as from classical rate-independent FC-Taylor 

calculations.  
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Figure 1. Data points of M  calculated by rate-dependent FC-Taylor code, for random 

orientations without work hardening. The solid black line represents the linear extrapolation 

function by Eq. (15).  

 

Due to the existence of the visco-plastic potential, iso-values of 
pW = D :σ  defines a 

shape-invariant flow surfaces that expands with increasing W . In the rate insensitive 

limit, where 0m → , all these surfaces degenerates into the rate-independent yield 

surface (when normalized). Hence a normalized flow surface for an arbitrary iso-value 

W converges towards the normalized rate-independent yield surface for sufficiently 

small values of m . 

4 CPFEM simulations 

A cube of volume 
31 1 1mm   composed of 1000 grains was considered as a 

representative volume element (RVE) of the material in the CPFEM. The number of 

grains in this RVE is supposed to be sufficient to compute the effective stress states in 

materials having random orientations (Lequeu et al., 1987; Saai et al., 2013; Tadano et 

al., 2012). These same crystallographic orientations (random orientations) were used 

for the grain in this section and in the previous section (section 3.3). In order to 

investigate the influence of grain discretization on the values of M and a, the RVE was 

discretized in different ways, see Figure 2. First, the RVE was discretised into 1000 
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equi-cube elements representing the grains (Figure 2a). The grain orientations were 

randomly assigned to the RVE elements. One-integration-point per element and eight 

integration points per element were applied to this RVE. The first option (one-

integration point) was applied for the sake of comparison to the Taylor models. The 

RVEs shown in Figure 2 (b) to (f) were then generated using the Voronoi tessellation 

(Quey et al., 2011) and discretized with eight-node-cubic elements and with increasing 

resolution from Figure 2 (b) to (f). Elements with eight integration points (Gauss points) 

were applied in these RVE. Periodic boundary conditions (Saai et al, 2013) were 

applied to all RVE in order to ensure periodicity in displacements and minimize 

constraint effects. It was checked that the texture, accounting for the grain size 

variation, remained close to that of random orientations, with a maximum intensity of 

about 2 times random in the orientation distribution functions corresponding to each 

mesh in Figure 2. Taylor factors were calculated with the FC-Taylor model for all cases 

and varied very little between 3.067 and 3.069. 

4.1 Taylor factor by CPFEM simulations  

Uniaxial tensile loads (Saai et al, 2013) were applied to the RVEs presented in Figure 

2. In the FE simulations, the displacement speed was increased gradually from zero to 

0.005 mm/s for RVEs during the first second and was then kept constant until the 

simulation ended at an engineering strain of 1%. Hence, the stable loading rate was 

p 3 1

11 5 10  sD − −=  . The reference shear rate 0  was arbitrarily set to 
3 110  s− −

; the critical 

resolved shear stress 0  was given a value of 10 MPa, similar as in the stand-alone code 

simulations in Section 3.3. Three different values of the strain rate sensitivity m = 

0.001, 0.005 and 0.01, were used for all RVEs. 

In a similar way as for the Taylor model, the flow stress for the Taylor factor 

calculations was determined as the average of the flow stresses between true strains of 

0.04 and 0.07. The data points of ( )M m  were determined and are shown in Figure 3. 

Eq. (15) was calibrated from these data points. The corresponding extrapolated Taylor 

factor M is listed in Table 1. The total number of integration points indicated in Figure 

3 and Table 1 is given by multiplying the number of elements in the RVE and the 

number of integration points per element, e.g. ‘1000E8IP’. 
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Figure 3 shows that the stable flow stress and the corresponding ( )M m  are sensitive 

to the mesh resolution and grain discretization. The 1000 element RVE with one 

integration point gives the highest Taylor factors, and correspondingly the highest 

extrapolated Taylor factor 3.02M =  in Table 1. When 8 integration points per element 

were used, for the RVE with one element per grain (1000E×8IP), the value of ( )M m  

significantly decreased. The flow stress and the value of ( )M m  decreased when 

applying higher mesh resolution RVEs. The function ( )M m  increases with decreasing 

m for all RVEs. 

Table 1 shows that the Taylor factor M  drops from 3.02 with the RVE with only one 

element and one integration point per grain to 2.68 with the finest mesh. The two finest 

meshes provide quite similar results, indicating that they both can be applied to define 

the new reference value of the Taylor factor as M= 2.7. 

 

Figure 2. FEM meshes of the RVEs with (a) 1000 elements, (b) 8000 elements, (c) 27000 

elements, (d) 64000 elements, (e) 216000 elements and (f) 512000 elements 
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Figure 3. Data points and linear extrapolation functions for ( )M m  simulated by CPFEM (E 

– element; IP - integration points per element). 

 

Table 1 The calibrated values for the extrapolated Taylor factor M  from calculations by 

CPFEM with different numbers of elements and integration points. 

 1000E 1IP  1000E 8IP  8000E 8IP  27000E 8IP  64000E 8IP  216000E 8IP  512000E 8IP  

M  3.02 2.87 2.79 2.75 2.72 2.70 2.68 

 

 

4.2 Isotropic yield-function exponent by CPFEM 

The exponent a  of the yield function influence the curvature of the yield locus. Due to 

experimentally challenges in determining a precise estimation of the exponent a , it is 

seldom properly resolved by mechanical tests. Instead, stress states provided by CP 

calculations are used to calibrate this parameter of the yield function (Grytten et al., 

2008; Saai et al., 2013; Zhang et al., 2014a; Zhang et al., 2015). The exponent a  of the 

isotropic yield function in Eq. (1) has been already calibrated by the FC-Taylor model 

and ALamel-type models (Zhang et al., 2015), which are rate-independent crystal 

plasticity models. In this section, the isotropic yield function exponent will be calibrated 

using CPFEM calculations. The influences of both the mesh resolution and the strain 

rate sensitivity m  on the calibration will be considered. Particularly, the exponent 

corresponding to the CPFEM with 0m →  will be extrapolated.    
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Methods for generating stress points at yielding by CPFEM have been proposed in the 

literature (Saai et al., 2013), where periodic boundary conditions are applied. The 

principle idea is to varies the displacement velocities applied on the master nodes of the 

RVE and determine the corresponding flow stress. The flow stress in the CPFEM 

calculation is determined at a prescribed plastic work per unit volume. The volume 

averaged Cauchy stress tensor of all integration points is considered as the stress state 

at yielding. By systematically varying the prescribed velocities at different master 

nodes, a finite number of various stress states at yielding can be obtained and used for 

the calibration of the yield function. Details of this stress-point generating method are 

referred to the literature (Saai et al., 2013; Zhang et al., 2014a). It should be noted that 

even though the rate-independent yield surface does not really exist for rate dependent 

models (Van Houtte and Van Bael, 2004), the surface at yielding calibrated by the 

above method is the equi-plastic potential surface, which degenerates into a unique 

shape at the zero strain rate sensitivity limit. In this limit this equi-plastic potential 

surface acts as a yield surface with similar shape. 

Since random orientations associated with isotropic material is considered here, the 

discretized 11 22 −  yield locus section is calculated by CPFEM and assumed 

sufficient to calibrate the exponent a . Due to the increased computation time of 

CPFEM, only two RVEs with 1000 and 64000 elements (Figure 2. a and d), both with 

eight integration point per element, were employed in the CPFEM simulations to 

investigate the effect of the FE mesh resolution. To investigate the effect of the strain 

rate sensitivity m , the values of m =0.01 and m=0.005 were evaluated. A total of 119 

strain paths were simulated for each RVE with each value of m . The strain-paths were 

distributed almost uniformly in the 11 22 −  space. The stress states at the discretized 

yield loci were determined at the same plastic power per unit volume, 0.1 MPa, which 

corresponded to a true strain of about 0.4% in a uniaxial tensile test simulated by 

CPFEM. The yield surface exponent was then calibrated for each of these four series 

of 119 stress points at yielding. The calibration procedure is described in Zhang et al. 

(2014a). The calibration results are listed in Table 2, while the calibration quality can 

be assessed from Figure 4 , where a good agreement is found between the calibrated 

Hersey yield locus and the discrete stress points calculated with  64000 elements in the 

RVE and 0.01m = . 



16 
 

Table 2 shows that the isotropic yield function exponent a  depend both on the mesh 

resolution and on m . The calibration based on the FE simulations with 1000E  8IP

RVE is around 7.7, which is considerably smaller than the values calibrated using the 

classical rate-independent FC-Taylor model (Zhang et al., 2015). When increasing the 

mesh resolution to 64000E  8IP , the exponent a  further decreased to below 7.0, 

which indicates a rounder yield surface. Applying RVEs with higher resolutions to 

generate the same number of stress-points will be extremely computational-time costly, 

and hence only five discrete stress points have been calculated using the finest RVE, 

i.e. with 512000E  8IP , by CPFEM with 0.01m = . These five stress points are also 

included in Figure 4 , and almost perfectly match the calibrated yield locus from the 

64000 element RVE. Hence, it is expected that the exponent a  will change little when 

the mesh resolution is 64000E  8IP  or higher. 

With smaller values of m  higher values of the exponent a  were obtained. However, 

the yield surface exponent a slightly changes when m  is decreased from 0.01 to 0.005. 

The dependence of the exponent a on the rate-sensitivity m for random orientations 

using a rate-dependent crystal plasticity has been reported in Mánik and Holmedal 

(2014), for the case of a Taylor-type iso-strain assumption. Examining the results there, 

a linear relationship between a and m can be observed for small values of m, i.e. when 

m is smaller than 0.1. Therefore, the exponent a for the rate-independent response, i.e. 

0m = , can be linearly extrapolated from the results for 0.01m =  and for 0.005m = . 

The extrapolated values are included in Table 2. The value 6.9 is then obtained as the 

new reference values for the exponent of the Hershey yield function for FCC metals 

with random orientations, based on the CPFEM calculations.  

Table 2 Calibrated and estimated values for the exponent of the isotropic yield function with 

different numbers of integration points and m. The value of a at m=0 is linearly extrapolated. 

 1000E 8IP    64000E 8IP  

m 0.01 0.005 0  0.01 0.005 0 

a 7.65 7.76 7.86  6.62 6.76 6.90 
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Figure 4 Yield locus calibrated using the stress states computed by CPFEM with the RVE of 

64000 elements and 0.01m= . A limited number of stress states by CPFEM was plotted to 

enable a visual comparison. The stress states calculated by CPFEM with the RVE of 512000 

and 0.01m=  are plotted on the top of the figure by square blue marker.    

5 Quantitative analysis of crystal plasticity solutions  

It is well known that relaxed constraint models give smaller Taylor factors, where the 

Sachs model (Sachs, 1928) provides the lower bound solution. Table 3 represents the 

value of Taylor factor M under uniaxial tensile test and the exponent a determined by 

different crystal plasticity models for FCC material with random orientations. The 

results by FC-Taylor and ALamel-type models are cited from a previous work (Zhang 

et al., 2015). The stress points for estimating the exponent a for the Sachs model were 

calculated as the average of the grains, when the stress was taken as the minimum 

required to activate any slip system. Note that the exponent from the Sachs model is 

very close to the Von Mises yield surface, which is obtained with a=2 or 4. The VPSC 

(Tomé and Lebensohn, 2009) results were extrapolated to 0m →  using the methods 

presented in sections 3 and 4, and further detailed for VPSC computations in Appendix 

B. 
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Table 3 Taylor factor M for a uniaxial tensile test and estimated exponents a of the Hershey 

isotropic yield function, based on CP simulations for random orientations FCC metals. The 

VPSC results were extrapolated to m=0. 

CP models M a 

FC-Taylor 3.067 8.5  

ALamel 2.826 6.6  

ALamel-T3 2.732 6.5  

VPSC 2.80 6.9  

CPFEM 2.684 6.9 

Sachs 2.24 4.5 

 

From the results in Table 1 compared to Table 2 and Table 3, it can be concluded that 

the advanced Taylor models with relaxed constraints and CPFEM with different mesh 

resolutions give smaller value of M than the FC-Taylor reference values. The VPSC 

and the ALamel-type models are based on quite different simplifications of the CPFEM 

model, but provide similar values of M and a as CPFEM with the finest mesh. It is of 

interest to look closer at their predictions. Hence, this chapter is attributed to 

quantitative analysis of the statistical deviations of L , p
D  and σ  from the solutions by 

a reference model. In practice, the FC-Taylor solution has well defined corner solutions 

and equal velocity gradients in all grains and hence will serve as the reference solution 

for the comparisons.  

5.1 Measures used for the analysis     

When applying CPFEM or relaxed-constraint CP models, the local deformation at each 

considered integration point or grain may deviate from what is prescribed by the 

velocity gradient tensor RVE
L  of the global RVE. This local deviations of L and p

D  

can be quantified in  similar way as the Schmitt angle for abrupt strain path changes 

(Schmitt et al., 1994). In this work, an angle pD
  is calculated from the normalized 

inner product between p
D  at the local grain (or integration point) and ,RVEp

D  at the 

RVE, as a measure of the deviation of p
D  at each grain (or integration point) from the 

global deformation of the RVE, i.e.  

 ( )
, RVE

, RVE

:
cos p

p p

p pD
 =



D D

D D
.   (16) 
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A corresponding angle L  is similarly defined for the deviation between the local 

velocity gradient at the grain (or integration point) L and at the RVE RVE
L . 

 ( )
RVE

RVE

:
cos L =



L L

L L
.   (17) 

According to the Bishop-Hill analysis (Bishop, 1953; Bishop and Hill, 1951a, b), the 

particular stress tensor that accommodates an imposed strain mode, can be found by 

selecting from the 28 (56 with negatives) permissible FCC poly slip stress corners, the 

one that maximizes the external work. The CPFEM and the relaxed constraints CP 

models prescribe a mixed condition for the stress tensor and velocity gradient 

components; hence the local stress σ  does not have to be a corner solution. The closest 

stress corner obtained by using the Bishop-Hill theory and imposing the local plastic 

velocity gradient p
L , is employed as a reference corner stress tensor termed BHσ . It is 

of interest to measure how far the local stress is from its closest corner solution. In this 

work, this is measured by the angle  :  

 ( ) BH

BH

' : '
cos

' '
 =



σ σ

σ σ
 .  (18) 

 

Another reference stress corner is the one corresponding to the RVE deformation as 

prescribed by ,RVEp
L , i.e. defining the angle 

RVE

  between the local stress σ  and the 

FC-Taylor solution 
RVE

BHσ .  

 ( )
 RVE

RVE BH

 RVE

BH

' : '
cos

' '
 =



σ σ

σ σ
.   (19) 

All the randomly chosen grain orientations have each their corner solution 
RVE

BHσ .  

5.2 Results for the polycrystalline under uniaxial tensile test 

For the uniaxial tensile test, the prescribe velocity gradient tensor RVE
L  has components 

11

RVE RVE RVE

22 332 2L L L= =  with 
RVE 0 for ijL i j=  . The uniaxial test simulations with 

CPFEM, as described in section 4.1 with m = 0.01, were performed for the RVEs 
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illustrated in Figure 2. The angles L , pD
 ,   and 

RVE

  were calculated for all 

integration points at an engineering strain of 0.5%. The uniaxial tensile test calculations 

with the ALamel-type model and the VPSC model (its numerical implementation by 

Tomé and Lebensohn (2009), m = 0.02 and neff = 10 intermediate linearization scheme, 

no grain co-rotation, no work hardening) were performed on a RVE with random 

orientations consisting of 5832 orientations. The angles L , pD
 ,   and 

RVE

  were 

determined for each grain orientation.  

Figure 5 illustrates the distribution of L  and pD
  obtained by the different RVEs and 

models described above using a bin step size of 2°.  It is clearly shown that with 

increasing mesh resolution for the CPFEM, both L  and pD
  curves are shifted towards 

higher angles, i.e. deviating more from the RVE deformation as prescribed by the 

velocity gradient. The ALamel and ALamel-T3 models show broad peaks in Figure 5 , 

quite similar to the CPFEM results with the finest mesh. Interestingly, the VPSC has 

almost same distributions with respect to  L  and pD
 . The distributions of L  and pD

  

reveal two major peaks for each; and the most dominant one occurs around 30°. 

Contrary to the VPSC model, CPFEM and the ALamel models show a distinct peak 

shift of about 10° between the L  and pD
  distributions.   

 

(a) 

( )L 
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(b) 

Figure 5 Distribution of L  (a) and pD
 (b) in terms of number fraction using a bin step size of 

2° for the uniaxial tensile deformation. Solid lines are for CPFEM, for which the peaks move 

from left to right with increasing mesh resolution. 

 

The distributions of   and RVE

  are shown in Figure 6 (a) and (b), respectively. only 

the coarsest mesh (1000E  1IP ), the fine mesh with 64000E  8IP  and the finest 

mesh ( 512000E  8IP ) are included in Figure 6. The distributions obtained by 

CPFEM are almost similar for all RVEs. In Figure 6 (a), the CPFEM solution has a 

significant peak at small values of  , revealing that many local solutions are corner 

solutions, but with a broad weaker peak up to about 25º. The ALamel and ALamel-T3 

models have very similar distributions that are qualitatively in agreement with the 

CPFEM distributions, but with a weaker corner peak and a stronger broad peak. The 

VPSC model is lacking the corner peak, but it has significantly stronger maximum 

intensities of the broad peak in the range 14° to 20°.  

The distribution of RVE

  is shown in Figure 6 (b), and illustrates the deviations of stress 

states from the FC-Taylor corner solution. In the case of CPFEM, the mesh size clearly 

affects the distribution of RVE

  . Compared to CPFEM solutions with the coarsest mesh, 

the number fraction for 
RVE 2  is smaller for CPFEM with 512000E, and a broad 

spread is seen around 45º.  Note that in the case of the most refined mesh, the CPFEM 

corner solution peak is considerably higher for the   distribution than for the RVE

  

( )pD
 
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distribution. Furthermore, it has a second peak around 45º, i.e. close to another 

neighbour corner solution compared to the FC-Taylor solution 
RVE

BHσ .  

In the case of ALamel and ALamel-T3, the RVE

  and   distributions in Figure 6 are 

qualitatively similar to those obtained with CPFEM, but contains fewer solutions at 

small angles close to the corner solutions and a stronger broad distribution up to 45º. 

The ALamel model is the only one amongst the considered Taylor type of models that 

has a RVE

  peak at 45º, i.e. other corners than the FC-Taylor model. This is similar to 

the high resolution CPFEM distribution, but with lower magnitude. In the case of VPSC 

model, the distributions in Figure 6 are qualitatively different from the CPFEM 

solutions, since the corner solutions are almost absent for the VPSC model, and it has 

a peak at about 14º, both for   and for RVE

 . 
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(b) 

Figure 6 Distribution of (a)   and (b) 
RVE

  in terms of number fraction using a bin step size 

of 2°. 
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(a) 

 

(b) 

 

(c) 
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Figure 7 The Taylor factor M versus the averages values of: (a) cos( )L  , (b) cos( )pD
 and 

(c) cos( ) . The value of m = 0.01 is applied for CPFEM and m = 0.02 is applied for VPSC.  

 

The Taylor factor M (extrapolated value to m=0 in the case of CPFEM and VPSC) are 

plotted in Figure 7 (a), (b) and (c) versus the average values of cos( )L , cos( )pD
  and 

cos( ) , respectively, taken over all integration points and elements (grains). Except 

for the VPSC, all CP models in Figure 7 (a) fall on an approximately linear relationship 

between M and cos( )L . Figure 7 (b) shows that all models, including the VPSC model, 

falls on a linear relationship between M and cos( )pD
 . The relationship between M  

and cos( )  in Figure 7 (c) is more complex. With increasing mesh resolutions, the 

CPFEM solutions result in a decreased Taylor factor, but without decreasing cos( )  

as much as the relaxed models, i.e. it contains many solutions closer to corner solutions. 

On the other hand, the VPSC model has the smallest cos( ) .  

5.3 Intra-granular variations under uniaxial tensile test 

Unlike in the Taylor-type models, an orientation spread develops within each grain in 

CPFEM with a fine-meshed RVE. The spread of the stress and velocity gradient tensors 

within each grain, are analysed. The deviation angle between the average stress of the 

grain gσ  and the stress σ  in a considered integration point, can be calculated as: 

 ( )
' : '

cos
' '

gg

g

 =


σ σ

σ σ
 .  (20) 

In a similar way, the deviation angle between the average velocity gradient of the grain 

gL  and the velocity gradient L  of one of its integration points can be calculated as: 

 ( )
:

cos
gg

L

g

 =


L L

L L
.   (21) 

The average angles 
g

  and 
g

L   calculated for all grains in the RVE and with m=0.01 

are plotted in Figure 8. As expected, the intra-granular spreads of σ  and L  increase 

with increasing mesh resolution.     
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Figure 8 The averages 
g

  and g

L  of all average deviations in each grain g

  and g

L  for 

CPFEM simulations with different mesh resolutions, m=0.01. 

6 Discussion and assessment of crystal plasticity models 

Since the Taylor-type models are statistical aggregate models, only statistical features 

can be compared to the detailed CPFEM solutions. The ALamel, ALamel-T3 and VPSC 

models predict Taylor factors and yield surface exponents not too far from the CPFEM 

prediction with the finest mesh. Therefore, these two parameters are not sufficient to 

assess these aggregate models as simplified solutions of the CPFEM. More nuanced 

differences can be studied by quantifying statistically the amount of strain-constraint 

relaxations. In this work, strain deviations of the local L  and 
p

D  tensors with respect 

to the global ones are studied. Furthermore, stress deviations of the local stress tensors 

from their closest corner solution and from the FC-Taylor corner solution for the RVE 

are investigated. 

In the case of rate-independent crystal plasticity models, a slip system is activated only 

when the resolved shear stress reaches the critical stress. The slip systems contribute to 

the yield surface by hyperplanes in the five-dimensional deviatoric stress space. These 

hyperplanes intersect and constitute the single crystal yield surface, which is a 

polyhedron in the five-dimensional space (Bishop and Hill, 1951a). Each facet of the 

five-dimensional polyhedron is bounded by corners and hyper-edges between them. 
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The yield locus of an FCC single crystal consists of 56 corners, which are of two kinds: 

32 of them are intersections of 8 hyperplanes while 6 hyperplanes intersect in the 

remaining 24 corners, i.e. corner solutions may activate either up to 6 or up to 8 slip 

systems simultaneously. There are also solutions which could activate less than 5 slip 

systems, as shown in (Kocks, 1960), at lower-dimensional intersections or on facets of 

the single crystal yield surface, see also Mánik and Holmedal (2014). In the FC-Taylor 

model, almost all solutions are one of the 56 corner solutions. Since 
p

D  is prescribed 

in this model, the chance is very small that its orientation is exactly normal to some of 

the aforementioned hyperplanes or hyperedges, i.e. a non-corner solution. On the 

contrary, relaxing the constraints of the velocity gradient tensor leads to imposing 

constraints on the stress. Under such conditions, the stress state will more seldom be 

identified in a corner. It follows that, in the FC-Taylor model, L  and 
p

D  are equal as 

for the RVE, and that  L  and pD
  remain zero for all its grains. The shift of the peaks 

in the L  and pD
  distributions with increasing mesh resolutions of the RVE in CPFEM 

(see Figure 5 ) reflects a higher amount of local deviations from the RVE deformation 

mode. The curves for the ALamel and ALamel-T3 models roughly have the same shape 

as for the CPFEM, indicating that statistically they give similar amounts of strain 

relaxations.  

Unlike the ALamel models, the VPSC model shows quite different distributions of L  

and pD
  compared to the CPFEM, featuring double peaks. Furthermore, all CP models 

fall approximately onto a linear relationship between M and cos( )pD
  in Figure 7 (b), 

whereas the VPSC model does not when M instead is plotted against cos( )L  in Figure 

7 (a). This difference also reflects that statistically the VPSC contains a different 

distribution of the W  tensors compared to the other models.  

As demonstrated by Van Houtte et al. (2005) and Zhang et al. (2015), full strain 

compatibility and partial stress equilibrium can be fulfilled at common grain boundaries 

in ALamel-type models, while both strain compatibility and stress equilibrium can be 

fully fulfilled only in CPFEM, at least in a weak form sense. The similarity in the way 

ALamel-type models and CPFEM are dealing with local grain interactions may explain 

the similarity of their local deformation deviations, i.e. similar distributions of L  and 
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pD
 . However, long range interactions between the two ALamel clusters and the rest 

of the grain aggregate are not accounted for. The VPSC model considers only long-

range interactions between the grain and the surrounding homogeneous equivalent 

medium. The local inter- and intra- grain interactions are ignored in this type of model.  

For the uniaxial tensile deformation mode, =L D , and the skew part of the velocity 

gradient 0=W . Hence, the shift as predicted by the high-resolution CPFEM towards 

smaller angles for the pD
  peak in Figure 5 (a) as compared to the L  peak in Figure 5  

(b) is due to local variations of W , which will influence the predictions of the texture 

evolution. It is interesting to note that the CPFEM, ALamel and ALamel-T3 models 

agree on a shift of about 10°, while the VPSC model hardly predict any shift. For the 

tensile deformation mode, it can be showed analytically that  

 
( )

( ) ( ) ( ) ( )
2 2 22

RLX RLX RLX

1 2 3

cos
1

cos / 2 / 2 / 2p

p

L

p
D



   

= 

+ + +

D

D

   (22) 

where RLX

r (r=1, 2, 3) is the relaxation shear rates defined in the ALamel (Van Houtte 

et al., 2005) and ALamel-T3 models (Mánik and Holmedal, 2013). This means that the 

shift in the ALamel models is caused by the grain interaction of the two grains in the 

considered cluster. It is reasonable to assume that the shift in CPFEM is also mainly 

due to the local interactions between neighbouring grains. Such interactions are 

modelled by the ALamel and ALamel-T3, while the VPSC model considers long 

interactions with the average of the grains contained by the RVE, and hence fails to 

predict this shift. 

Some of the VPSC deviations from CPFEM could also been due to the fact that the 1-

site inclusion formalism used in VPSC solves independently the equilibrium equation 

for each inclusion embedded in the effective medium. This does not account for spatial 

stress gradients inside grains and across grain boundaries and leads to errors in fulfilling 

the virtual work principle (Turner et al., 1999). Additional simulations using the second 

order update (Liu and Castaneda, 2004) were performed. These calculations are more 

time consuming and less numerically stable with decreased strain rate sensitivity.  They 

showed very similar results related to the distributions of pD
  and L  as with the 1-site 

inclusion formalism; hence these solutions were not included in Figure 5. 
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Local corner solutions, say for 2   (see Figure 6), are observed for all investigated 

models. These are solutions that locally maximize the plastic work. The CPFEM model 

contains many corner solutions, both with coarse and fine mesh. About 50% of the 

stress solutions are corner solutions. In the case of the coarse mesh, almost all of the 

corners are the FC-Taylor corners for the corresponding RVE. This holds for only about 

half of the local corners with the fine mesh, where the corresponding peak around 45° 

in Figure 6 (b) denotes neighbor corner solutions as compared to the FC-Taylor corner 

solutions for the corresponding RVE. Note, that the three smallest angles between two 

Bishop-Hill stress corners are 40.9°, 45° or 52.2°.  

The ALamel and ALamel-T3 models have a qualitatively similar distribution of   as 

the CPFEM in Figure 6 (a). However, only about 25% of ALamel solutions and 10% 

of ALamel-T3 solutions are local corner solutions, and most of these corners are equal 

to the FC-Taylor corners for the corresponding RVE. The relaxation of the strain 

constraints in these models creates too many non-corner solutions as compared to 

CPFEM, in particularly the ALamel-T3. 

The VPSC has almost none corner solutions. A distribution with greater fractions of 

corner solutions could be obtained by changing the interaction parameter neff, so that 

the model becomes closer to the FC-Taylor model. However, the texture predictions, 

the Taylor factor and the yield surface exponent in this case would become more similar 

to the FC-Taylor model and little would be gained as compared to CPFEM. 

The corners in the 5-dimensional stress space are very sharp. Hence, corner solutions 

will result in considerable higher stress components. The decaying Taylor factor with 

increased strain rate sensitivity for the FC-Taylor model (Mánik and Holmedal, 2014) 

occurs because the yield surface corners becomes more rounded. Similarly, the 

ALamel-type and VPSC models give smaller Taylor factors (Table 3) due to their 

accounts of interactions, either locally or long-range type, respectively. This enables a 

high amount of non-corner solutions, which gives smaller stress components. The 

Taylor factor by the ALamel-T3 is slightly smaller than the one by the ALamel model, 

because of the additional relaxation assumed in ALamel-T3. All the above-mentioned 

results are consistent with the commonly accepted qualitative understanding of the 

influence of relaxation on Tylor Factor. Taylor factor is smaller than the upper bound 
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FC-Taylor solution when the strain-constraints are relaxed. The stronger the relaxation, 

the smaller is the Taylor factor (Delannay, 2001).  

The high resolution CPFEM solution, however, still contains a high number of corner 

solutions.  Still, the corresponding Taylor factor is equally small as for the advanced 

Taylor models. The good resolution of the RVE in the CPFEM provides better abilities 

to resolve the inter- and intra- grain interactions (Zhao et al., 2007; Zhao et al., 2008), 

to maintain the local stress equilibrium and thereby to relax the strain-constraints as 

compared to the Taylor model. Many of the solutions will still be corner solutions, but 

about half of these belong to different corners than the FC-Taylor model. This disperses 

the solutions so that the RVE homogenization of the stress results in smaller stress 

components and contributes to a smaller Taylor factor as shown in Table 1. The 

relationship between M and cos( )  in Figure 7 (c) illustrates that in the case of Taylor-

type models, the Taylor factor decreases with increased amount of strain relaxations. In 

the case of CPFEM, Taylor factor decreases with refined mesh resolution at higher 

values of cos( ) , due to large amount of corner solutions. A key issue to further 

improve the advanced Taylor models is to allow the type of local interactions that can 

give a higher number of non-FC-Taylor corner solutions. The ALamel model can do 

this to some extent, as seen from the 45° peak in Figure 6. 

Figure 8 demonstrates that the average in-grain spread of deformation and stress 

increases with the grain discretization in the CPFEM's RVE. With the increasing RVE 

resolution, the number of integration points positioned at grain boundaries decreases as 

compared to the total number of integration points in the grain. Interestingly, the 

decrease of the Taylor factor and of the yield surface exponent associated to CPFEM 

highlight that the intra-grain interactions are as much important as the local interactions 

at the grain boundaries. The local grain pair interactions were accounted for in the 

ALamel-type models and can be interpreted both in terms of grain boundary 

interactions and more general influence of a neighbour grain. Accounting for these local 

interactions provides statistical distributions of stress and strain rate tensors that are 

much closer to CPFEM than the VPSC model, which considers long-range interactions 

between the grain and the surrounding homogeneous equivalent medium.  
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7 Conclusions 

CPFEM calculations with refined grains resolution were performed to provide precise 

estimation of the Taylor factor and the yield surface exponent for the reference case of 

random orientations, in the limit of rate-independent plasticity. It is concluded that the 

new reference values of Taylor factor and yield surface exponent equal respectively 2.7 

and 6.9. This is in agreement with recent estimates by state-of-the-art relaxed-

constraints variants of the Taylor model.  

The local deformation at each grain in CPFEM or relaxed-constraint CP models deviate 

from what is prescribed by the velocity gradient tensor of the global RVE. These local 

deviations were quantified in this work using L  and pD
 . The stress deviations of the 

local stress tensors from their closest corner solution and from the FC-Taylor corner 

solution were also studied. The statistical distributions of these parameters were used 

to assess ALamel-type models and VPSC model compared to CPFEM solutions. The 

ALamel models predicts similar statistical distributions of stress corner deviations as 

the CPFEM, whereas the VPSC model predicts far too few corner solutions. For the 

specific case of a tensile test, a characteristic peak shift between the L  and pD
  

distributions is analytically explained based on the grain interactions by the ALamel-

type models and also predicted by the CPFEM simulations. The VPSC model does not 

account for short range interactions and hence fails to predict this shift. Even though 

the ALamel models and the VPSC model all predict almost the same yield surface 

exponent and Taylor factor as the CPFEM, the VPSC model does not match the 

statistical distributions from the CPFEM simulations. The consideration of short range 

grain interactions in the ALamel model seems to be more important than accounting 

for long-range interactions and the surrounding homogeneous equivalent medium 

assumption in the VPSC model. The intra-grain analysis for CPFEM demonstrates that 

the intra-grain interactions are as much important as the local interactions at the grain 

boundaries.  
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Appendix A  Derivation of the Taylor factor M for strain rate sensitive metals 

The rate-dependent formulation described in Section 2 will be made dimensionless for 

the case of a uniaxial tensile deformation along the 1-direction and random orientations. 

It is assumed constant 11D  component of the strain rate tensor D  and constant value 

of initial (reference) resolved shear stress for all slip systems 0 0
 = . Dimensionless 

variables are obtained by scaling, and are represented by a tilde above the original 

symbol.  

The dimensionless time t  is defined as  

 11t t D=    (23) 

Hence, the kinematic variables can be scaled by the reciprocal of 11D , for example 

 

11

11

11
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/

/

D

D

D
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=

=

D D

W W

  (24) 

The dimensionless stress σ  is defined as 

 0

0 11

1
m
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



  
 =   
   

σ σ  . (25) 

Hence, the dimensionless revolved shear stress 
  turns to be   

 0

0 11

1
:

m

D

  
 



  
 =  = 
   

σ P  . (26) 

By combining Eqs. (11) and (26), one gets 

 

1

11/ sgn( )mD      = =  . (27) 
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As seen from Eq. (25) the dimensionless stress component 11 becomes equal to the 

Taylor factor M in the limit when m goes to zero. Hence for any strain rate sensitivity 

m, it can be regarded as the rate-dependent Taylor factor, 11M = , listed in Eq. (14) 

 

Appendix B Extrapolations of VPSC results to its rate-independent limit 

The Taylor factor was calculated using the uniaxial tensile test performed by the VPSC 

code by Tomé and Lebensohn (2009). A total of 1241 strain rate directions which were 

nearly evenly distributed, were applied to generate the corresponding stress points at 

yielding. These stress points were then applied to calibrate the Hershey isotropic yield 

function exponent.  

A selection of 5832 random orientations were input into the VPSC. The intermediate 

linearization scheme with neff = 10 was applied, see Tomé (1999). No grain co-rotation 

or work hardening were considered here. The uniaxial tensile test was performed with 

four different values of m in the VPSC model, which were 0.02, 0.05, 1/12 and 0.1, 

respectively, while only the first three values were applied when calibrating the yield 

surface exponent. Eq. (15) was adopted to fit Taylor factor for the VPSC results for the 

uniaxial tensile tests, and a linear extrapolation was performed for the exponent. The 

results are presented in Figure. B- 1 where both the calculated results and the fitted 

curves are shown. In the rate-independent limit with the VPSC model, the Taylor factor 

M and the exponent a were then 2.80 and 6.91, respectively.  
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(a) 

 

(b) 

Figure. B- 1 a) Extrapolation of the Taylor factor M, and b) of the Hershey isotropic yield 

function exponent a to the rate-independent limits of m=0 for the VSPC calculations. 
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