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Abstract 

Transients of a typical grid synchronizing VSC are closely 

associated with the over-current and over-voltage in circuits. 

Previous analysis in evaluating such transient phenomenon 

usually ignore the nonlinear control effects of the VSCs (e.g. 

phase-locked-loop, PLL). Although this assumption allows a 

simpler analysis of the transient process, it may overlook 

potential stability issues on which the nonlinear controls may 

a great impact and the consequence of which is easily 

confused with the passive circuit transients. Therefore, this 

work aims to achieve a good understanding of the nonlinear 

control dynamics of the VSC and their impacts on the 

stability provoked by the grid voltage sags. To better reveal 

the mechanisms, the power control loop (PCL) and the PLL- 

dominant dynamics are analysed separately with 

corresponding reduced-order nonlinear models. From which 

the grid synchronizing stability of the VSC is revealed, and a 

quantitative study of stability margin is presented through the 

calculation and evaluation of the critical clearing time (CCT). 

Based on this, CCT under various PLL bandwidths are 

evaluated, the results of which could facilitate the parameter 

design of PLL from a stability viewpoint. All the analyses are 

verified by time-domain simulations in PSCAD/EMTDC. 

1 Introduction 

Voltage source converters (VSCs) are widely adopted in 

integrating renewable energy power generations (e.g. wind 

and solar power) with AC grid [1], as well as in 

interconnecting two asynchronous grids via the high-voltage-

dc (HVDC) technology [2]. 

Despite its fast and flexible power control capability, recent 

experience shows that VSCs are susceptible to oscillate 

against a weak AC grid, e.g. a case of wind farm case in [3] 

and photovoltaic plant in [4], where the nonlinear dynamics 

of the phase-locked-loop (PLL) have drawn great attention. 

To explain and analyze these oscillation behaviors, efforts 

have been made (e.g. [5] and [6]), however in a small signal 

sense due to the consideration that most of the oscillations 

occurred are caused by a moderate change of system 

configurations. This allows linear-based methods to identify 

and predict the forward behavior around a steady state 

operating point. In this regard, many methods are applicable, 

and among which the impedance-based method becomes 

popular since the impedance can be either analytically 

modelled or practically measured. 

Impedance models of a typical three-phase VSC can be in 

different formats according to the linearization methods 

employed. Typically, linearizing in sequence domain [7] 

results in a sequence impedance (e.g. [8] and [9]), whereas 

linearizing in dq domain [10] yields a dq impedance (e.g. 

[11] and [12]). Recently, other modeling methods, e.g. a 

phasor-based [13], a modified sequence domain based [14], a 

single-input and single-output based [15] and a complex 

transfer function based [16] methods are available, in which 

the properties of converters can be explained more 

intuitively, e.g. the mirror coupling effects [14] originated 

from the dq asymmetry of impedance matrices [17]. Despite 

different modeling techniques, all these models are capable of 

identifying oscillatory behaviors in a grid-tied VSC system 

by applying Nyquist-based stability analysis [18]. A useful 

finding is that PLL is of great importance for VSC small 

signal stability, particularly under a weak AC grid condition 

(e.g. [11] and [19]). Moreover, behaviors of PLL can be 

physically interpreted as a current-controlled-voltage-source 

(CCVS) in an equivalent RLC circuit of VSC-grid system 

[20], where the CCVS can exhibit negative damping to the 

equivalent RLC circuit if conditions in are met. 

However, above discussions are conducted in the linear 

domain which can only predict the dynamics around a steady-

state operating point, if the oscillation diverges, the 

subsequent behavior can no longer be predicted accurately, 

e.g. a limit cycle. In [21], a large signal impedance model is 

proposed to study the sustained oscillations, where the PWM 

saturation is properly modeled compared to the typical 

impedance model, e.g. [11]. In [22] and [23], a state space 

nonlinear model of VSC is proposed, where the bifurcation 

phenomenon is observed. However, these analyses focus on 

the memoryless nonlinearities (e.g. saturation), where the 

dynamical nonlinearities (e.g. PLL) are not discussed.  
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One step further, a phasor-based analysis of a wind farm with 

grid voltage dips are studied in [24] and [25], where the wind 

farm model is simplified to a current source. Requirements 

on the limitation of active current injection, in the presence of 

grid voltage dips are emphasized. This work provides an 

important implication that the current injection of VSC may 

lead to angle stability from a steady-state point of view. [26] 

moves further in this regard, where the same conclusion is 

drawn from the positive feedback effects of the PLL. 

Although [24]-[26] lack of a dynamical analysis, they are 

helpful and illuminated in reconsidering the origin of the 

VSC’s transients and its potential stability impact.  

To bridge this gap, this paper aims to achieve a fundamental 

understanding of the nonlinear behavior of a typical VSC and 

its potential consequences on stability, all the transients are 

provoked by the grid voltage sags. This paper is organized as 

follows, in section 2, the nonlinear behavior of the power 

control loop (PCL) is analyzed firstly, where the PLL is 

assumed steady. Then, the PLL- dominant nonlinear behavior 

is explored in section 3, where the grid synchronizing 

stability (GSS) is identified and the mechanism of which is 

revealed. Based on the developed mechanism, stability 

margin of GSS is quantitatively evaluated through the 

calculation of the critical clearing time (CCT). Section 4 

draws the main conclusion. 

2. Analysis of the PCL dominant nonlinear 

dynamics 

2.1 Description of the study system 

Fig. 1 illustrates a typical grid-tied VSC, which is composed 

of a current control loop (CCL), a PCL and a PLL (Hc, Hs, 

Hpll are their PI controllers respectively). Usually, the VSC is 

connected to the bulk grid via two step-up transformers (T1 

and T2) to boost voltage to the transmission level, hence the 

“equivalent grid” seen from the VSC (i.e. at the point of 

connection, PoC) is relatively weak, even though the 

impedance of the Thevenin grid (i.e. impedance seen from 

the point of common coupling, PCC) is small. This weak grid 

condition can lead to oscillation if the dynamics of the PLL 

and CCL are not decoupled in terms of time-scale, this small-

signal-stability issue has been extensively studied in the 

literature as discussed before, e.g., in [20]. This work, 

therefore, assumes a properly designed CCL, which means 

CCL is much faster than PLL and PCL. Therefore, the CCL 

is assumed in a quasi-steady state if dynamics in the time 

scale of the PLL or PCL are analysed. 

2.2 Modelling of the PCL dominant dynamics 

Model reduction is necessary to allow an analytical study of 

nonlinear behaviours of a complex system. This section aims 

to analyse the PCL dominant dynamics, hence PLL is 

assumed steady temporarily. Based on this assumption, the 

voltage equation from the PoC (
pll
gU ) to the Thevenin grid 

voltage ( pll
sU ) can be written as: 

pll pll pll
g pll c sj L = +U I U   (1) 

where, the output currents ( pll
cI ) of VSC are assumed steady 

due to their fast dynamics, i.e. pll ref
c cI I . All the vectors are 

projected to the PLL reference frame (denoted by superscript 

‘pll’). Since the PLL is assumed steady in this case, pll s =  

is imposed. In PLL fame, the Thevenin grid voltage can be 

represented as: pll
s s 0 s 0cos j sinU U = −U , where 0  is the 

steady angle difference between Ug and Us. L  is the lumped 

system inductance seen from PoC, it can be quantified by the 

short circuit ratio (SCR), i.e. in per unit format =1/SCRL . 

The output power of VSC in complex format is: 

( ) ( )

( ) ( )

* *2
pll pll pll pll pll
pcc c pll c s c

s 0 cd s 0 cq

2 2
s cd cq s 0 cq s 0 cd

j j

cos sin

cos sin

P Q L

P U I U I

Q L I I U I U I



 

  





+ = = + →

 =  − 


= + − +

U I I U I

 (2) 

It can be observed from (2) that the active power P is a linear 

combination of the dq currents, whereas the reactive power Q 

is not. Next, the dynamical equation of PCL can be further 

derived from the control blocks in Fig. 1 as: 

( )

( )

( )

( )

*d
i

q *
i

*
cd d p

*
cq q p

dx
k P P

dt

dx
k Q Q

dt

I x k P P

I x k Q Q


= −



 = −



= + −

 = − − −


   (3) 

Table 1 Main parameters 

Symbol Name Value 

 
Sn rating/base 2 MW 

Un nominal/base voltage 690 V 

Vdc dc voltage 1200 V 

fsw switching frequency 2.4 kHz 

fs fundamental frequency 50 Hz 

Lf filter inductance 7.6x10-5 H 

LT Leakage inductance of T1,2 0.1 p.u. 
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Fig. 1 Schematic of a typical grid connected VSC system 
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In which, d q,x x are the output states of PI integrators, while 

kp and ki are PI parameters of Hs. Consequently, (2) and (3) 

consist of the model of PCL-dominant dynamics. 

2.3 Nonlinear behaviour analysis 

Due to the developed PCL model is of second-order, phase 

portraits can, therefore, be adopted to study nonlinear its 

behaviours. In Fig.2, current phase portraits with varying PQ 

controller (Hs) parameters are plotted.  

 
a 

 
b 

 
c 

Fig.2 (a) Phase portraits with varying kp, P = 0.5 pu, Q = 0 pu, 

SCR = 4 (solid line kp = 0.1, dotted line kp = 0.2); (b) Phase 

portraits with varying ki , P = 0.5 pu, Q = 0 pu, SCR = 4  

(solid line ki = 20, dotted line ki = 40); (c) Time domain 

simulations, kp = 0.1, ki = 20 (black lines: Id/P, red lines 

denote Iq/Q)  

From Fig.2 (a) one could observe that the states (Icd , Icq) can 

be either attracted by the stable manifolds or driven away by 

the unstable manifolds, depending on their initial values. In 

other words, the equilibrium (0.5, 0) in this case has a limited 

region of attraction, consequently, any initial states that are 

close enough to the equilibrium can be attracted, otherwise a 

divergent of states can occur. On the other side, comparing 

the dotted line and solid line we can identify that, increasing 

the proportional gain of PQ controller (Hs) has a negative 

impacts on stability (i.e. region of attraction becomes 

smaller), whereas the integral gain has negligible effects on 

the phase portraits as depicted in Fig.2 (b).  

To validate the analysis, time domain simulations are 

presented in Fig.2 (c), where the transient responses of 

currents (Idq) and active/reactive power (P/Q) under a 

symmetrical grid fault are measured. In accordance with the 

model assumption, PLL frequency is locked to 1.0 p.u. after 

VSC is synchronized (i.e. at 1.8s). As shown in Fig.2 (c), if 

the currents are limited to a relatively small value (left 

columns), the system can converge to the original equilibrium 

(i.e. (Id, Iq) = (0.5, 0)) after grid fault is cleared, this case is 

consistent with the analysis in Fig.2 (a) with initial states 

within the region of attraction. 

However, if the currents are limited to a relatively large value 

(right column in Fig.2 (c)), the system cannot converge to its 

original equilibrium but to another “steady” point. It should 

be noted that this “steady” point is not an equilibrium 

because the reactive power does not converge to its set-point, 

which is Q = 0. Hence, a condition: d q0, 0x x=   can be 

obtained from (3). Further based on (2) we can notice that, it 

has three unknowns (i.e. Q, Id, Iq) but only with two 

independent equations, thus the solution is not unique, and 

the “steady” point shown in Fig.2 (c) (right column) is 

essentially one of them. Apparently, this steady point is not 

an equilibrium since the condition d q0, 0x x= =  is not 

satisfied. 

Another finding should be addressed is that, although the 

theoretical analysis can be unstable, this may be unachievable 

due to the current limits in practice should be small for 

protection purpose (e.g. typical values are Imax = 1.1), 

therefore, all the initial states of currents can be constrained 

in the region of attraction (red arcs in Fig.2 (a) and (b)), 

which means the nonlinear dynamics of the PCL could be 

absolute stable under such practical constraints. 

3. Analysis of the PLL dominant nonlinear 

dynamics 

Previous section analysed the PCL dominant nonlinear 

behaviours, where the PLL is assumed steady. In this section, 

for better revealing the GSS, the nonlinear behaviour of PLL-

dominant dynamics will be analysed in detail, likewise, a 

slow regulation of the PCL is assumed, thus the current 

reference of the CCL is assumed constant. 



4 
 

3.1 Modelling of PLL dominant dynamics 

Based on the above assumption, in the time-scale of PLL 

dynamics, pll ref
c cI I  is imposed, i.e. a fast CCL and ref

cI  

remains steady due to the assumption of a slow PCL.  

Then, the input of PLL is the q axis voltage at PoC, i.e. 

 pll pll
gq gImu = u  from (1). In combination with PLL control 

blocks in Fig. 1, the following equations can be obtained: 

pll pll pll pll pll
p gq i gq

pll

pll

d
k u k u

dt

d

dt







=  +



 = 


  (4) 

In which, pll ref
gq pll cd s pllsinu L I U = − , pll pll s  = − . pll

pk  

and pll
ik  are the PI parameters of Hpll. In the later analysis, 

PLL bandwidth ( pll ) is frequently used instead of PI 

parameters, in which 
pll
p pll s2 / Uk =  and 

pll 2
i pll s2 / Uk =  

are adopted [20]. 

Converting (4) into per unit format, yields: 

( ) ( )

pll

pll pll pll m e

pll

b pll

pll
p ref

pll pll s pll b cdpll
i

pll ref
b p cd

pll pll
i

ref
m s cd e s pll

cos

, sin

d
T D T T

dt

d

dt

k
D U L I

k

k L I
T

k

T L I T U





 

  



 








= −  + −




= 



= −



−
 =


 = =


    (5) 

where b  is the base value of the angular frequency. pllT  is a 

constant, whereas pllD  is pll  dependent. For a small value of 

pll , ( )pll pllD   is positive; otherwise, it can be negative. mT  

is constant input, eT  is the nonlinear state feedback to the 

frequency dynamics. 

Consequently, the nonlinear model of PLL-dominant 

dynamics is developed in (5). One may observe that this 

model resembles the motion equation of a synchronous 

generator (SG), which means the well-known SG-based 

transient angle analysis methods are applicable, e.g. the equal 

area principle (EAP). Due to this similarity,  the variable 

notation of an SG is adopted to the definition of the variables 

of the PLL dynamics, e.g. mT , eT , though  mT  and eT are 

essentially voltages in physics.  

3.2 Nonlinear Behaviour analysis  

Similar to the analysis of the PCL dominant dynamics, the 

PLL dominant dynamics is characterized as a second-order 

nonlinear system as well, e.g., (5), rendering a graphical 

analysis of dynamical behaviours through the phase portrait, 

where ( )pll pll,  are the two state variables. 

  
a 

  
b 

 
 C 

Fig. 3 (a) Dpll approximated by a constant at pll0 ; (b) Dpll 

varies with angle pll ; (c) Time domain simulations; PLL 

bandwidth is 20 Hz, i.e. pll
p 20k = , 

pll
i 800k = , SCR = 4, 

ref
cd 1I =  pu; in (c), a symmetrical grid fault is applied at PCC 

with a duration of 500ms 

First, in Fig. 3 (a), the phase portraits of (5) with varying 

initial states ( )pll0 pll0,   are plotted, where the damping 

term is approximated by a positive constant ( )pll pll0D   (i.e. 

evaluated at pll0 ). One could observe that for small initial 
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states, the state trajectory can converge to the original point 

after several cycles’ motion. However, if the initial states are 

far away from this point, they can converge as well, but to 

another equilibrium that separated by 2 . This is an intrinsic 

property of the nonlinear system (5) that, there is an 

equilibrium set (i.e. pll0 2k + , 1, 2...k =   ) that is locally 

stable, and states can always converge to the equilibrium set 

due to ( )pll pll0D  . 

Further, as emphasized before, the damping term pllD  is a 

nonlinear function of pll , which means it can be negative if 

pll  is large (e.g. pll

3
2 , 2 , 0, 1...

2 2
k k k

 
  

 
 + + =  
 

). 

Therefore, a detailed phase portrait including the effects of 

( )pll pllD   is plotted in Fig. 3 (b). Clearly, the system can be 

unstable (see the dotted and red line) if the initial states 

( )pll pll,   are large. This feature cannot be captured by 

Fig. 3 (a) since the approximated constant ( )pll pll0D  is 

positive.  

A time domain simulation is conducted and presented in Fig. 

3 (c), where the PLL frequency and the magnitude of PCC 

voltage are measured. In order to have a large deviation of 

initial states, a symmetrical grid fault is applied at PCC with 

a duration of 500ms, it can be clearly identified that the PLL 

lost synchronization after the grid fault is cleared, and it 

exhibits a similar manner as the phase portrait in Fig. 3 (b).  

3.3 Mechanism analysis of the GSS 

As mentioned before, the EAP for the transient stability 

analysis of an SG [27] can be applied to the analysis of PLL 

dominant dynamics due to the resemblance.  

According to (5), characteristics of 
ref

m s cdT L I =  and 

e s pllsinT U =  can be illustrated by curves in Fig. 4 (a). It 

can be observed that a grid fault can change the characteristic 

of eT  abruptly, whereas mT  remains constant (i.e. 

0 0
m mT T+ −= ) due to the current is assumed steady. The 

magnitude differences between 0
eT +  and 0

mT +  can result in 

the acceleration of system states: ( )pll pll,  . Then, after a 

short period, the grid fault is cleared (e.g. at point C), where 

characteristic curve of 
0

eT +
 changes back to its pre-fault 

value (
0

eT −
), so that pll  starts decelerating due to 

0
eT −

 is 

greater than 
0

mT −
. However, pll  will remain increasing until 

pll  becomes zero again.  

The EAP claims that if ( )B
II pll pll pll I II0, :S S S    =  = , 

then the system is referred to as first swing stable. It should 

be noted that, although the nonlinear system (5) can converge 

to an equilibrium set (e.g. in Fig. 3 (a)) as discussed before, 

only the principal one i.e., pll pll pll00, =   =  is of interests 

or physical significance. Because the transition from one 

equilibrium to another can exhibit large transients in currents 

or voltages, which are not allowed due to the limited stress of 

physical components. For an SG, this also indicates a “pole 

slip” operation, which is detrimental and not allowed.  

A B

IS

IIS
D

eT

A

pll
B

pll
pllc

pll

C

0 0

m mT T− +=

0

eT −

0

eT +

 
a 

 
b 

Fig. 4 (a) EAP-based mechanism analysis (Superscript “0-” 

and “0+” denote pre-fault and post-fault; point A is pre-fault 

equilibrium, point C is fault clearing point); (b) Time domain 

simulations (conditions are the same as Fig. 3 (c), except that 

fault duration is reduced to 100ms). 

From the EAP it is obtained that, if the fault clearing angle 
C
pll  is small (i.e. fault is cleared fast), then there is more 

margin for the deceleration area that stability can be assured. 

To illustrate this character, a time domain simulation is 

shown in Fig. 4 (b), where the fault is cleared faster 

compared to the one in Fig. 3 (c). Clearly, the frequency of 

PLL is stable under such a condition, indicating that a small 
C
pll  is helpful for stability.  

Based on the above analysis, it is seen that the fault clearing 

angle can be a metric of the GSS margin. Specificlly, the 

critical condition that ensuring a first swing stable system is 

of most interest, i.e. there exists a critical angle that EAP is 

met, i.e. ( )CCA max max B
pll I II pll pll pll: 0,S S    =  = = . This angle 

is referred to as Critical Clearing Angle (CCA), its 

calculation will be shown subsequently. 



6 
 

3.4 Analysis of the GSS margin  

The CCA can be calculated by numerical method if the 

analytical model of 0+
eT , 0

eT −  and mT  are known, in which 

0
eT −  and mT  can be obtained from (5), whereas 0+

eT  is fault  

dependent.  

To calculate the post-fault 0+
eT , circuit analysis of the grid 

fault is necessary. In accordance with PLL modelling, the 

equivalent circuit of Fig.1 can be drawn in Fig. 5 (a), where 

TZ  is the lumped line impedance seen from PoC, SZ  is the 

source impedance seen from PCC, fZ  is the short circuit 

impedance applied at PCC. 

pll

cI

pll

sU

TZ
SZ

fZFault

branch

PCCPoC SZ

fZ
0-

pccU

PCC

0+

pccU

pll

c SI Z

pll

sU

 
a                                                  b 

Fig. 5 (a) Equivalent circuit of Fig. 1; (b) Post-fault circuit 

A Thevenin equivalent circuit seen from the fault branch can 

be further developed in Fig. 5 (b), in which the post-fault 

PCC voltage can be calculated as:
0+ 0-
pcc f pcc= U k U , where 

0- pll pll
pcc s c s= +U U I Z  and ( ) fj

f f f s f/ k e


= + =k Z Z Z . 

Therefore, the post-fault characteristic of 0+
eT  is obtained: 

  ( )0+ 0+ 0-
e pcc f pcc pll fIm sinT k U  = = −U          (6) 

where, pll pll pcc=  −  is redefined, meanwhile 0-
eT  in (5) is 

modified to 
0- 0-

e pcc pllsinT U = , and mT  is modified to 

ref ref ref
m s T cd T cq s T cdT L I R I L I   = +  .  

From (6) it is observed that, in geometry, 0+
eT  is essentially a 

curve deformation of 0-
eT , consequently 0+

eT can be easily 

drawn in Fig. 4 (a) by shifting and compressing curve
0-

eT . As 

the grid impedance sZ  is mostly inductive, and if fZ  is 

inductive as well, there exhibits no phase shift according to 

the expression of fk  (i.e. f 0 = ). Otherwise, for a resistive 

short circuit branch, the phase shift can be f , 0
2




 
 − 
 

. 

Usually, effects of f  is negligible since the acceleration and 

deceleration areas (SI and SII) are primarily determined by the 

magnitude of 
0+

eT , particularly under severe grid sags. 

Based on the models of 
0+

eT , 
0

eT −
 and mT , the CCA can be 

calculated numerically from the nonlinear algebraic equation: 

( ) ( )
CCA B
pll pll

A CCA
pll pll

max
I II

0 0
m e pll m e pll

S S

T T d T T d
 

 
 + −

= →

− = − − 
  (7) 

If resubstituting the numerical results of CCA into the 

dynamical equation of pll  in (5), the corresponding Critical 

Clearing Time (CCT) can be estimated as: 

 
( )CCA A

pll pll pll

CCT

0 I b2

T
t

k S

 



−
=   (8) 

where 0k  is a coefficient that used to estimate the integral of 

CCT

b pll
0

t
dt   by ( )C

0 b pll CCTk t   , in this work 0 2 / 3k =  

is adopted. The CCT is a more intuitive metric since the time 

can be more easily measured than the CCA. 

 
a 

 
b 

Fig. 6 (a) CCT with varying PLL bandwidth (SCR = 4, 

T 0.2L =  pu, 
ref

cd 1I =  pu, f 0 = ); (b) Time domain 

simulations (a symmetrical grid fault is applied at 2s, the 

maximum angle denotes 
B A
pll pll 3  = −  rad, 

A
pll 0.253 = rad, a frequency limiter for PLL is at 1.1 pu) 

To illustrate the feasibility of CCT in evaluating stability 

margin, a numerical evaluation of the CCT with varying PLL 

bandwidth is conducted and the results are plotted in Fig. 6 

(a). It is seen that by increasing the PLL bandwidth, the 

CCTs are reducing, which means stability margin is 

deteriorated. On the other hand, the magnitudes of 
0

eT +
(i.e. 
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voltage dips at PCC) can also affect CCT to some extends, 

but its effects can be limited if PLL bandwidth is large.  

To further address the validity of the numerical analysis, a 

time domain simulation is conducted in Fig. 6 (b). In which, a 

20 Hz PLL bandwidth is selected, where we can find from 

Fig. 6 (a) that the CCT = 180ms, which means the system is 

stable if the fault is cleared at a duration less than this CCT 

value. Therefore, a100ms (<CCT) and a 300ms (>CCT) fault 

clearing time are compared in simulations. It is shown in Fig. 

6 (b) that, for the case of 100ms fault duration, the system is 

stable after fault is cleared (solid black lines). However, for a 

300ms fault duration, the system is unstable after grid fault is 

cleared (dotted red lines), proving the numerical stability 

analysis is correct.  

Furthermore, from the current waveform (Fig. 6 (b)) one may 

further observe that the current assumption made in PLL 

time-scale is feasible due to it can remain steady despite the 

varying of PLL frequency in the fault period. And, from the 

angle waveform, it is further observed that the angle for the 

unstable case exceeds the maximum allowed angle (i.e.
B
pllδ  in 

Fig. 4 (a)) in the fault period, resembling the first swing 

unstable of an SG. 

4 Conclusion 

Recent endeavors have shown than VSC controls may 

actively involve in transients caused by large grid 

disturbances, e.g. voltage sags, in which the nonlinear 

dynamics may be provoked and the effects of which should 

not be overlooked. To achieve a fundamental understanding 

of the VSC’s nonlinear behaviours and their stability impacts, 

this paper analysed the nonlinear behaviours of the PCL and 

the PLL separately, the principle enabling this separated 

study is the well-known multi-time scale property of a 

dynamical system.  

Based on this methodology, the nonlinear dynamics of PCL 

is first analysed, although the PCL could theoretically lead to 

instability, it turns out that if the practical constraints are 

considered (e.g. limitation of currents above the nominal 

value), the PCL can be regarded as stable from a practical 

point of view. Therefore, the focuses are put on the PLL 

dominant dynamics.  

In this regard, as revealed in this work, the PLL exhibits a 

similar nonlinear behaviour as the SG’s swing dynamics, 

which may lead to grid-synchronizing stability issue under 

certain conditions (e.g. a large grid fault with a fast PLL). 

One major difference from the analysis of an SG is that the 

PLL dynamics may exhibit negative damping if the angle 

deviation is large.  If limit the stability to a first swing cycle, 

a small angle deviation assumption can be imposed, and this 

allows a quantitative study of the stability margin through the 

calculation of the CCT. In this regard, a detailed derivation 

and calculation of CCT are presented, and evaluation of CCT 

with varying PLL bandwidths is conducted to show how the 

PLL parameters affect grid synchronizing stability.  

This numerical calculation of CCT can also be employed for 

studying the stability impacts of other parameters, e.g. the 

phase jump of grid voltage. 
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