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Abstract In the present work we introduce a novel

graded-material design based on phase-�eld and topol-

ogy optimization. The main novelty of this work comes

from the introduction of an additional phase-�eld vari-

able in the classical single-material phase-�eld topology

optimization algorithm. This new variable is used to

grade the material properties in a continuous fashion.

Two di�erent numerical examples are discussed, in both

of them, we perform sensitivity studies to asses the ef-

fects of di�erent model parameters onto the resulting

structure. From the presented results we can observe

that the proposed algorithm adds additional freedom

in the design, exploiting the higher �exibility coming

from additive manufacturing technology.
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1 Introduction

Structural topology optimization (TO) [1] is a numeri-

cal method which aims, by means of a density function,

at optimally distributing a limited amount of mate-

rial within a volume, representing the initial geometry

of a body undergoing speci�c loads and displacement

boundary conditions.

Structural TO was originally introduced as a discrete

formulation where areas of dense material and voids are

alternated without any transition region [2]. This �rst

approach, also known as the 0-1 topology optimization

problem, leads to many di�culties from both an ana-

lytical and a numerical point of view [3].

A possible alternative approach is based on homog-

enization methods, where the macroscopic material

properties are obtained from microscopic porous ma-

terial characteristics [4, 5]. Such a strategy leads to op-

timized structures with large grey-scale regions of per-

forated, porous material, which are in general undesired

due to their elevated manufacturing complexity, in par-

ticular when classical manufacturing processes, such as

milling or molding are adopted. To obtain a clear black

and white design, Solid Isotropic Material Penalization

(SIMP) method has been introduced in [6]. The SIMP

method consists of penalizing the density region, di�er-

ent from the void or bulk material, by choosing a suit-

able interpolation scheme for material properties at the

macroscopic scale [7, 8]. This approach has been suc-

cessfully employed in many engineering applications be-

side of structural problems, e.g. �uid analysis [9], �uid-

and acoustic-structure interaction [10, 11], heat con-

duction [12], multi-physics [13], and composite struc-

tures [14].
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An alternative to the SIMP method is a TO based

on the phase-�eld method, for the �rst time intro-

duced by Bourdin and Chambolle [15]. Successively, this

method has been employed by Burger and Stainko [16]

for stress constrained problems and by

Takezawa et al. [17] in the shape and topology opti-

mization context for minimum compliance and eigen-

frequency maximization problems. More recently, Pen-

zler et al. [18] have solved nonlinear elastic problems by

means of the phase-�eld approach, while Dedè et al. [19]

have been the �rst to apply this method in the context

of isogeometric analysis. Similarly to the SIMP method,

phase-�eld based TO penalizes an approximation of the

interface perimeter, such that, by choosing a very small

positive penalty term, one can obtain a sharp interface

region separating solid materials and voids [20].

Inspired by the aforementioned works on phase-�eld

and TO, we aim here at developing an optimization

procedure to obtain structures which exploit the pos-

sibility of additive manufacturing (AM) technology to

distribute material through a body locally varying the

material density, leading to the so called functionally

graded materials (FGM). Numerical models to simulate

manufacturing processes of FGM products have been

proposed and validated in [21�25] for di�erent AM tech-

nologies and materials. All these contributions show

how the manufacturing process plays a crucial role in

the resulting mechanical properties of FGM structures.

Since including the in�uence of the process parameters

within topology optimization schemes is an extremely

challenging task (cf. [26] for a �rst attempt in this direc-

tion) we prefer to neglect the in�uence of AM process

on the optimized structure. The presented results have

to be thus considered only as an initial starting point

towards the �nal design of optimized FGM structures.

Topology optimization routines to obtain FGM design

have been recently investigated by many researchers

(see, e.g. [27�29]). Nevertheless, at the best knowledge

of the authors a phase-�eld approach has not been em-

ployed to obtain optimized graded-material structures

yet. The phase-�eld method proposed in this contribu-

tion allows deriving a rigorous mathematical analysis

of the problem for FGM structures and to obtain a

clear separation between areas of material and voids.

Moreover, this work aims at investigating by means of

2D examples the sensitivity of the proposed phase-�eld

method to various numerical and physical parameters.

On one hand, the choice of considering only plane stress,

two-dimensional structures may limit the validity of the

presented results while, on the other hand, it allows us

to gain a clear insight into the sensitivity of the method

w.r.t. the considered parameters with a negligible com-

putational e�ort.

Even if our approach can potentially include a multi-

material case, in this work we consider only a graded-

material design, i.e., where a single material is gradually

distributed through the body. The result of such an op-

timization routine is a structure with graded sti�ness

values, i.e., a material with sti�ness continuously vary-

ing within the body, alternating regions of soft mate-

rial with other regions of sti�er material. The approach

proposed in the present paper reintroduces the typical

grey-scale regions of early topology optimization meth-

ods but within a controlled and numerically stable for-

mulation. This choice is justi�ed by the fact that mod-

ern AM technologies allow grading the density of a body

in an almost continuous fashion, varying the amount of

distributed material point-by-point during the printing

process.

The outline of the work at hand is organized as fol-

lows. In Sec. 2 we recall the formulation for a single-

material phase-�eld based TO. Sec. 3 introduces the

novel phase-�eld approach for graded material struc-

tures. Then, Sec. 4 discusses two-dimensional numeri-

cal examples, carrying out sensitivity studies for di�er-

ent choices of numerical and physical parameters and

presenting also a possible solution to obtain a manu-

factured product from the numerical results. Finally,

in Sec. 5 , we draw our conclusions on the present

work.

2 Single-material phase-�eld topology

optimization

In this section we recall the classical formulation for a

phase-�eld TO of a single-material homogeneous struc-

ture, closely following [30].

2.1 State equations

We consider a domain Ω ⊂ Rd where material is dis-

tributed by means of a scalar phase-�eld variable φ, rep-

resenting a material density fraction, hence φ ∈ [0, 1]

with φ ≡ 0 corresponding to voids (i.e., no material)

and φ ≡ 1 to bulk material. Adopting a linear elastic

model, the state equations are as follows:

−div (σ) = 0 in Ω (1)

u = 0 on ΓD (2)

σ · n = g on ΓN (3)

with σ = σ(φ) = C(φ) : ε(u), C = C(φ) the fourth-

order linear material tensor, u the displacement �eld

vector, ε(u) the symmetric strain de�ned as ε = ∇Su =
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∇u +∇uT

)
/2, g the external load on the boundary

ΓN ⊂ ∂Ω, n the unit normal vector, and ΓD ⊂ ∂Ω,

| ΓD |6= 0, the portion of the boundary where homoge-

neous Dirichlet boundary conditions are applied.

Assuming the material tensor C to depend on φ, the

solution of problem Eq.s (1) to (3) depends on the dis-

tribution of the scalar �eld φ (i.e., u = u(φ)). We treat

the void as a very soft material, adopting the following

expression for C:

C(φ) = Cbulkφp + Cvoid(1− φ)p

where Cbulk is the positive de�nite material tensor of

the bulk, dense material, Cvoid is the positive de�nite

material tensor of an idealized very soft material (rep-

resenting the voids), and p can be any positive value;

for simplicity, we assume Cvoid = γ2Cbulk, with γ � 1,

while, following [7], we set p = 3.

The weak form of the linear elastic problem Eq.s (1)

to (3) can be written as:∫
Ω

σ(φ) : ε(v)dΩ =

∫
ΓN

g · vdΓ. (4)

with v ∈ H1
D(Ω) a virtual displacement �eld. Referring

to [30] we can prove that for any given g ∈ L2(ΓN )

and φ ∈ L∞(Ω), there exists a unique u ∈ H1
D(Ω)

ful�lling Eq. (4) , with H1
D(Ω) := {v ∈ H1(Ω) : v =

0 on ΓD}.

2.2 Single-material topology optimization as a

minimization problem

The goal of our TO process is to properly minimize the

compliance of a given structure, by optimally distribut-

ing a limited amount of material.

To properly minimize the compliance, we introduce an

objective functional J (φ,u(φ)) de�ned as:

J (φ,u(φ)) =∫
ΓN

g · u(φ)dΓ + κ

∫
Ω

[
γ

2
‖ ∇φ ‖2 +

1

γ
ψ0(φ)

]
dΩ

(5)

where the �rst integral represents a measure of the

global system compliance, de�ned as the inverse of the

sti�ness, while, assuming κ > 0 and a double-well po-

tential function ψ0(φ) = (φ−φ2)2 , the second integral

is an approximation of the perimeter of the interfaces

between regions with φ = 0 and φ = 1. In Eq. (5) γ

corresponds to the thickness of the di�use interface, i.e.,

the region where 0 < φ < 1, the term γ/2 | ∇φ |2 pe-

nalizes jumps between φ = 0 and φ = 1, while ψ0(φ)/γ

represents the double-well potential function penalizing

phases with φ di�erent from 0 and 1. We remark that

following [30] we choose the same scaling parameter γ

to penalize the sharp interface region and to de�ne the

void soft material; this choice is justi�ed by the assump-

tion that when one of the two values goes to zero also

the other one has to vanish.

The minimization of the functional in Eq. (5) is im-

posed under the assumption of distributing a limited

constant quantity of material inside the domain, hence,

we introduce the constraint:∫
Ω

φdΩ = m | Ω |

with 0 < m ≤ 1 representing a target domain volume

fraction. Clearly, the displacement �eld u(φ) solving the

TO problem should also be the solution of the linear

elastic problem of Eq. (4) .

In conclusion, the minimization problem we aim to

solve is the following.

Problem (P):

min
φ

J (φ,u(φ))

such that the following constraints are satis�ed:∫
Ω

σ(φ) : ε(v)dΩ =

∫
ΓN

g · vdΓ. (6)

M(φ) =

∫
Ω

φdΩ −m | Ω |= 0, (7)

with φ ∈ H1(Ω) satisfying the constraint:

0 ≤ φ ≤ 1 a.e. in Ω. (8)

Following the argument by [30], we can prove that the

minimum constrained problem (P) has at least one so-

lution (cf. [30, Thm. 4.1]). In particular, to solve prob-

lem (P) we introduce the Lagrangian functional L, de-
�ned as:

L(φ,u, λ,p) = J (φ,u) + λM(φ) + S(φ,u,p), (9)

where λ is the Lagrange multiplier introduced to impose

the volume constrain of Eq. (7) and the operator S is

de�ned as:

S(φ,u,p) =

∫
Ω

σ(φ) : ε(p)dΩ −
∫
ΓN

g · pdΓ,

which we introduce together with the adjoint variable

p. The solution of problem (P) is equivalent to the mini-

mization of Eq. (9) subjected to constraint in Eq. (8) ;

this last problem can be seen as an optimal control
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problem, with solutions (φ̄, ū, λ̄, p̄) that have to satisfy

the �rst order optimality conditions de�ned by:

DuL
(
φ̄, ū, λ̄, p̄

)
= 0,

DpL
(
φ̄, ū, λ̄, p̄

)
= 0,

DλL
(
φ̄, ū, λ̄, p̄

)
= 0,

DφL
(
φ̄, ū, λ̄, p̄

) (
φ− φ̄

)
≥ 0 ∀φ ∈ Φad,

where Φad is the set of admissible controls de�ned as

follows:

Φad := {φ ∈ H1
D(Ω) : 0 ≤ φ ≤ 1 a.e. in Ω}.

We also note that for the problem under investiga-

tion DpL = DuL, hence the so-called adjoint equation

(holding true for every v ∈ H1
D(Ω)):∫

Ω

C(φ)ε(p̄) : ε(v)dΩ =

∫
ΓN

g · vdΓ,

is identical to the weak form of the linear elastic prob-

lem Eq. (4) , which implies that p̄ = ū . We refer to [30]

for the complex analysis of optimality conditions.

To obtain a more compact formulation, we de�ne here

the energy density of the system and its derivative w.r.t.

the scalar �eld φ as:

E(φ,u) = σ(φ) : ε(u),

and

∂E(φ,u)

∂φ
=
∂σ(φ)

∂φ
: ε(u),

where

∂σ(φ)

∂φ
=
∂C(φ)

∂φ
: ε(u).

To discretize our continuous problem we employ a

gradient �ow dynamics, namely Allen-Cahn gradient

�ow [31], a steepest descent pseudo-time stepping

method with a time-step increment τ . Thus the optimal

control problem (P) can be now rewritten as follows:

DuL v = 0, (10)

DλL vλ =Mvλ = 0, (11)

γ

τ

∫
Ω

(φn+1 − φn)vφdx = −DφL vφ, (12)

where

DφL =
∂J
∂φ

+ λ
∂M
∂φ

+
∂S
∂φ

,

with vλ ∈ R and vφ ∈ Φad.

The problem de�ned in Eq.s (10) to (12) can be written

in the following weak extended formulation:

∫
Ω

σ(φ) : ε(v)dΩ =

∫
ΓN

g · vdΓ, (13)∫
Ω

vλ(φn+1 −m)dΩ = 0, (14)

γ

τ

∫
Ω

(φn+1 − φn)vφdΩ + κγ

∫
Ω

∇φn+1 · ∇vφdΩ

+ λ

∫
Ω

vφdΩ −
∫
Ω

vφ
∂E(φn,un)

∂φ
dΩ

+
κ

γ

∫
Ω

∂ψ0(φn)

∂φ
vφdΩ = 0. (15)

2.3 Single-material �nite element formulation

We derive here a �nite element approximation of the

phase-�eld TO problem de�ned in Eq.s (13) to (15).

To this end we discretize the physical domain Ω using

two di�erent meshes Qu, Qφ corresponding to the �eld

variables u and φ and their variations v and vφ. The

Lagrange multiplier λ used to constrain the volume is

applied using a constant scalar value on Ω. On each

mesh, we interpolate the nodal values of the �eld vari-

ables and their variations by means of piecewise linear

basis functions, such that:

u ≈ Nuũ, v ≈ Nuṽ,

φ ≈ Nφφ̃, vφ ≈ Nφṽφ,

Introducing the proposed discretization in Eq.s (13)

to (15) the discrete version of the optimal control prob-

lem becomes:

1

τ


0 0 Mφλ

0 Mφφ 0

0 Mλφ 0



ũ

φ̃

λ̃

+


Kuu 0 0

0 Kφφ 0

0 0 0



ũ

φ̃

λ̃


=

 f

qφ + qs + qψ

qλ


(16)
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with the matrix and vector terms de�ned as follows:

Kuu =

∫
Ω

∇Nu
TC∇NudΩ,

Mφφ = γ

∫
Ω

NT
φNφdΩ,

Kφφ = κγ

∫
Ω

∇NT
φ∇NφdΩ,

Mλφ = τ

∫
Ω

NφdΩ =
(
Mφλ

)T
,

f =

∫
ΓN

Nu
TgdΓ,

qφ =
γ

τ

∫
Ω

(
NT
φNφ

)
φ̃ndΩ = Mφφφ̃n,

qλ =

∫
Ω

mdΩ,

qs =

∫
Ω

NT
φ

∂E(φ̃n, ũn)

∂φ
dΩ,

qψ = −κ
γ

∫
Ω

NT
φ

∂ψ0(φ̃n)

∂φ
dΩ.

The discrete linear system in Eq. (16) can be solved

using a staggered approach, i.e. solving �rst the state

equation system:

Kuuũ = f , (17)

and then the discretized optimization problem:

1

τ

[
Mφφ + τKφφ Mφλ

Mλφ 0

][
φ̃

λ̃

]
=

[
qφ + qs + qψ

qλ

]
.

(18)

Following this approach Alg. 1 solves the problem

in two separate steps: �rst it solves the state equa-

tion system Eq. (17) to get the solution vector ũn+1

(line 3), secondly, the linear system of Eq. (18) is

solved to obtain the phase-�eld vector φ̃∗
n+1 and the

Lagrange multiplier vector λ̃n+1 (line 4). Finally, the

vector φ̃∗
n+1 is projected within the interval [0, 1] to

obtain the phase-�eld solution vector φ̃n+1 ful�lling the

constraints (line 5). We use the increment ∆φ based on

the L2-norm and de�ned as:

∆φ =

∥∥∥φ̃n+1 − φ̃n
∥∥∥
L2∥∥∥φ̃n∥∥∥

L2

, (19)

as a criterion to assert the convergence of the algorithm,

which is otherwise stopped when user de�ned maximum

number of iterations maxiter is reached.

Algorithm 1: Single-material optimization al-

gorithm

input : Qu, Qφ,φ̃0.
output: Optimal topology

1 φ̃n ← φ̃0

2 while ∆φ ≥ tol and n ≤ maxiter do
3 ũn+1 ←solve(17)

4 (λ̃n+1, φ̃
∗
n+1)←solve(18)

5 φ̃n+1 ←rescale

(
φ̃

∗
n+1

)
to [0, 1]

6 update(∆φ)

7 φ̃n ← φ̃n+1

8 end

3 Graded-material phase-�eld topology

optimization

In the following section, we extend the previously pre-

sented formulation of TO to the case of a graded ma-

terial de�nition. We refer to this approach as graded-

material phase-�eld topology optimization. The math-

ematical analysis of the corresponding optimization

problem will be the subject of a forthcoming paper [32].

3.1 State equation

We now consider the case of an inhomogeneous material

distribution; in particular, we assume that the material

elastic fourth-order tensor C can vary linearly through

a material grading scalar variable χ ∈ [0, φ], with φ ∈
[0, 1], such that:

C(χ) = Cbulkχ+
1

β
Cbulk(φ− χ),

with 0 < β ≤ 1 a so-called softening factor, used to

de�ne the soft material tensor as a fraction of the bulk,

fully dense material tensor Cbulk. In such a way, the

sti�ness of the body can continuously vary from a full

dense material (χ = φ) to a softer one (χ = 0). There-

fore, the de�nition of the fourth-order material tensor

C(φ, χ), previously de�ned in Sec. 2 , can now be mod-

i�ed as:

C(φ, χ) = C(χ)φp + γ2φC(χ)(1− φ)p, (20)

where 0 < γφ � 1 and again we choose a penalty pa-

rameter p = 3.

We would like to remark here that FGM structures

are intrinsically heterogeneous but, as recently demon-

strated by Cheng et al. [33], an asymptotic homoge-

nization method can be e�ectively employed. In this
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work, we assume a simple linearly interpolated homog-

enized material tensor but a more complex homogeniza-

tion could be directly introduced within the proposed

numerical scheme.

The de�nition of the material tensor in Eq. (20)

leads to an optimized structure where, as in the single-

material case, the perimeter of the body is de�ned by

the sharp interface of the phase-�eld variable φ, while

the sti�ness of the material continuously varies within

the structure, following the distribution of the material

grading variable χ. Hence, the graded-material weak

form of the linear elastic problem of Eq. (4) reads:∫
Ω

σ(φ, χ) : ε(v)dΩ =

∫
ΓN

g · vdΓ (21)

with the virtual displacement v ∈ H1
D(Ω) and where

σ(φ, χ) = C(φ, χ) : ε(u).

3.2 Graded-material topology optimization as a

minimization problem

We want now to de�ne an objective functional which

optimizes a structure with an inhomogeneous material

distribution. This new graded-material objective func-

tional JM (φ, χ,u(φ, χ)) can be de�ned as:

JM (φ, χ,u(φ, χ)) =

∫
ΓN

g · u(φ, χ)dΓ+

κφ

∫
Ω

[
γφ
2
| ∇φ |2 +

1

γφ
ψ0(φ)

]
dΩ + κχ

∫
Ω

γχ
2
| ∇χ |2 dΩ,

with κφ, κχ > 0 and γχ > 0, and where the �rst

two integrals are the same of the objective func-

tional in Eq. (5) , while the additional integral

term γχ/2 (| ∇χ |)2 is introduced to penalize the gra-

dient of the scalar �eld χ.

Following the same approach described for the single-

material case, the global graded-material minimization

problem can be now written as follows:

min
φ,χ

JM (φ, χ,u(φ, χ)),

such that:∫
Ω

σ(φ, χ) : ε(v)dΩ =

∫
ΓN

g · vdΓ,

M(φ) =

∫
Ω

φdΩ −m | Ω |= 0,

where φ, χ ∈ H1(Ω), under the constraint

0 ≤ φ ≤ 1 a.e. in Ω,

and the additional constraint on χ:

0 ≤ χ ≤ φ a.e. in Ω.

We can now de�ne the graded-material Lagrangian LM
as:

LM = JM + λM+ SM ,

explicitly written as:

LM (φ, χ,u, λ,p) = JM (φ, χ,u) + λM(φ) + SM (φ, χ,u,p),

where, the operator SM for the graded-material formu-

lation is calculated as:

SM (φ, χ,u,p) =

∫
Ω

σ(φ, χ) : ε(p)dΩ −
∫
ΓN

g · pdΓ.

Analogously to the previously introduced set of admissi-

ble controls Φad for the phase-�eld variable φ, we de�ne

now the set of admissible controls Ξad for the grading

variable χ as:

Ξad := {χ ∈ H1(Ω) : 0 ≤ χ ≤ φ a.e. in Ω}.

Clearly, also in the graded-material case, we want that

the optimal control solutions φ̄ and χ̄ have to satisfy

the �rst order necessary optimality conditions, which

can be derived as:

DφLM (φ̄, χ̄, ū, λ̄, p̄)
(
φ− φ̄

)
≥ 0 ∀φ ∈ Φad

and

DχLM
(
φ̄, χ̄, ū, λ̄, p̄

)
(χ− χ̄) ≥ 0 ∀χ ∈ Ξad,

where ū and p̄ are solutions of the graded-material

state equation Eq. (21) and of the corresponding ad-

joint problem, respectively. As in the previous case, the

displacement �eld u is self-adjoint and hence we have

p̄ = ū. For a complete analysis of necessary �rst or-

der optimality conditions we refer to the forthcoming

paper [32].

Analogously to the single-material case, we can de�ne

the energy density of the system and its derivatives

w.r.t. both the scalar �eld φ and the material grading

variable χ as:

EM (φ, χ,u) = σ(φ, χ) : ε(u),

∂EM (φ, χ,u)

∂φ
=
∂σ(φ, χ)

∂φ
: ε(u) =[

3C(χ)φ2 + 3γ2φC(χ)(1− φ)2
]
ε(u) : ε(u)

and

∂EM (φ, χ,u)

∂χ
=
∂σ(φ, χ)

∂χ
: ε(u) =[(

Cbulk −
1

β
Cbulk

)(
φ3 + γ2φ(1− φ)3

)]
ε(u) : ε(u).



Graded-material Design based on Phase-�eld and Topology Optimization 7

The optimal control problem can be solved as in the

single-material case by means of the Allen-Cahn gradi-

ent �ow, leading to the following set of equations:

γφ
τ

∫
Ω

(φn+1 − φn)vφdΩ + κφγφ

∫
Ω

∇φ · ∇vφdΩ+∫
Ω

vφλdΩ −
∫
Ω

vφ
∂EM (φn, χn,un)

∂φ
dΩ+

κφ
γφ

∫
Ω

∂ψ0(φn)

∂φ
vφdΩ = 0, (22)

γχ
τ

∫
Ω

(χn+1 − χn)vχdΩ + κχγχ

∫
Ω

∇χ · ∇vχdΩ−∫
Ω

vχ
∂EM (φn, χn,un)

∂χ
dΩ = 0, (23)

to be solved under the volume constraint∫
Ω

vλ(φ−m)dΩ = 0. (24)

In order to estimate the total amount of material in the

structure, we de�ne a material fraction index mχ as:

mχ =
1

| Ω |

∫
Ω

χdΩ,

which can be considered as a measure of the global

amount of material used to print the structure. The

equivalent material fraction index for the single-

material case mφ is equal to the volume fraction m,

such that:

mφ = m =
1

| Ω |

∫
Ω

φdΩ.

3.3 Graded-material �nite element formulation

We aim now at obtaining a discrete formulation for

the graded-material phase-�eld topology optimization

problem. To this end, the displacement �eld u, the

phase-�eld variable φ, the Lagrange multiplier λ and

their corresponding variations are approximated using

the same discretization already de�ned in Subsec. 2.3 .

Additionally, we need to discretize the material grad-

ing variable χ on the domain Ω; such a discretization is

obtained introducing an additional mesh Qχ, such that

the material grading variable χ and its variation vχ can

be written as:

χ ≈ Nχχ̃ and vχ ≈ Nvχ ṽχ,

where Nχ and Nvχ are the piecewise linear shape func-

tions which interpolate the nodal degrees of freedoms

χ̃ and ṽχ, respectively.

The discrete form of Eq.s (22) to (24) can thus be writ-

ten in a compact notation as:

1

τ


0 0 0 0

0 Mφφ 0 Mφλ

0 0 Mχχ 0

0 Mλφ 0 0



ũ

φ̃

χ̃

λ̃

+


Kuu 0 0 0

0 Kφφ 0 0

0 0 Kχχ 0

0 0 0 0



ũ

φ̃

χ̃

λ̃



=


f

qφ + qs′ + qψ

qχ + qt

qλ

 , (25)

where the newly de�ned matrix and vector terms are:

Mχχ = γχ

∫
Ω

NT
χNχdΩ,

Kχχ = κχγχ

∫
Ω

∇NT
χ∇NχdΩ,

qχ =
γχ
τ

∫
Ω

NT
χNχχ̃ndΩ,

qs′ =

∫
Ω

NT
φ

∂EM (φ̃n, χ̃n, ũn)

∂φ
dΩ,

qt =

∫
Ω

NT
φ

∂EM (φ̃n, χ̃n, ũn)

∂χ
dΩ.

Alg. 2 describes the iterative procedure to obtain the

graded-material optimized structure discussed so far.

The adopted solution scheme is very similar to Alg. 1

but in this case, we have to solve at each iteration the

graded-material linear system de�ned in Eq. (25) to

obtain the phase-�eld solution vector φ̃n+1 and the

grading scalar variable vector χ̃n+1. As in the single

material case, the system can be solved following a stag-

gered scheme, since Eq. (25) can be split into two

separate systems as follows:

Kuuũ = f , (26)

and

1

τ


Mφφ + τKφφ 0 Mφλ

0 Mχχ + τKχχ 0

Mλφ 0 0



φ̃

χ̃

λ̃

 =


qφ + qs

′
+ qψ

qχ + qt

qλ

 .
(27)

Finally, we use the relative increment of χ in the L2-

norm, de�ned as:

∆χ =

∥∥χ̃n+1 − χ̃n
∥∥
L2

‖χ̃n‖L2

. (28)

as an additional criteria to check the convergence

of Alg. 2 .
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Algorithm 2: Graded-material optimization

algorithm
input : Qu, Qφ, Qχ,φ0, χ0

output: Optimal topology
1 φn ← φ0

2 χn ← χ0

3 while (∆φ ≥ tol or ∆χ ≥ tol) and n ≤ maxiter do
4 ũn+1 ← solve(26)

5 (φ̃
∗
n+1, χ̃

∗
n+1, λ̃n+1)← solve(27)

6 φ̃n+1 ← rescale

(
φ̃

∗
n+1

)
to [0, 1]

7 χ̃n+1 ← rescale
(
χ̃∗
n+1

)
to [0, φ]

8 update(∆φ and ∆χ)
9 φn ← φn+1

10 χn ← χn+1

11 end

4 Numerical Examples

In this section two numerical examples are presented: in

the �rst one, we consider a cantilever beam structure

while in the second one we study a simply-supported

beam structure. For each example, we decided to run

two sensitivity studies w.r.t. a numerical and a physi-

cal problem parameter to asses the robustness of Alg. 2

to these changes. In the cantilever beam example, we

discuss two sensitivity studies. Firstly, we vary the val-

ues of the graded-material interface parameter γχ (i.e.,

the parameter which represents the thickness of the

material grading variable interface) and, secondly, we

change the slenderness of the structure. In the simply-

supported beam example, again we perform two stud-

ies. In the �rst one, we use di�erent values for the soft-

ening factor β while in the second one we increase the

load acting on the structure. Finally, in Subsec. 4.3

we present a possible solution to obtain an AM prod-

uct from our numerical results.

4.1 Cantilever beam

We consider the cantilever beam problem depicted

in Fig. 1 , with dimensions a = 2mm and b = 1mm

and a traction force g = (0,−600)N/mm applied at the

right-end of the lower edge of the structure, while the

left edge is �xed. We assume the initial material being a

dense isotropic material, i.e., Cbulk = (λ+2µ)1⊗1+2µI,

where the Lame's parameters λ and µ can be expressed

in terms of the Young modulus E and the Poisson co-

e�cient ν as follows:

λ =
Eν

(1 + ν)(1− 2ν)
, (29)

x

y

ΓD Ω

a

b
ΓN

g

Fig. 1: Cantilever beam: Initial con�guration and prob-

lem domain.

and

µ =
E

2(1 + ν)
. (30)

The softening factor β is chosen equal to 4, i.e., the

soft material tensor is four times softer than Cbulk. We

choose a dense material having E = 12.5GPa and ν =

0.25. We discretize the domain Ω using a mesh with

128 × 64 quadrilateral elements and we set m = 0.45,

κχ = κφ = 4, γφ = 0.02, a time step increment ∆τ =

1.0× 10−6, φ0 = 0.5 as initial solution, and a tolerance

equal to 0.01.

4.1.1 Sensitivity study of the graded-material interface

parameters γχ

In this �rst sensitivity study, we investigate the di�er-

ent topologies obtained by varying γχ between 0.001

and 0.1, as reported in Fig. 2 . The results show that

the optimal multi-material distribution is very di�erent

from the single-material optimized topology depicted

in Fig. 3 , for values of γχ smaller than γφ. In fact, in

this case, the voids present in the single-material struc-

ture are replaced by areas of soft material. Contrary, if

γχ is chosen to be bigger than γφ the solution presents

void regions similarly to the single-material case. Fi-

nally, we observe that, as expected, when the thick-

ness of the di�use interface is too small compared to

the element size, the solution does not converge any-

more ( Fig. 2a ). Table 1 reports the values of the

compliance and of the material fraction index mχ for

di�erent values of γχ. From the values in Table 1 , we

can see that employing a softer material will increase

the compliance of the body, leading at the same time to

lighter structures compared to the homogeneous mate-

rial case.
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(a) γχ = 0.001 (b) γχ = 0.005

(c) γχ = 0.010 (d) γχ = 0.020

(e) γχ = 0.050 (f) γχ = 0.100

Fig. 2: Cantilever beam: Sensitivity study of the multi-

material interface parameters γχ. If γχ ≤ γφ = 0.02

di�erent values of the graded-material interface param-

eters do not a�ect too much the �nal solution, which

presents a wide region of soft material �lling the voids

which, instead, characterize the single-material solution

(see Fig. 3 ); whereas, for γχ ≥ γφ, the �nal solution

of the graded-material case tends to a single-material

con�guration with multiple holes in the structure. Fi-

nally, if we choose γχ too small with respect to our

element size, the solution does not converge anymore

as in Fig. 2a .

4.1.2 Sensitivity study of the slenderness of the

structure

On the cantilever beam, we perform a second sensitiv-

ity study varying the slenderness ratio s = a/b (i.e.,

the ratio between the length and the height of the can-

tilever beam), for a �xed value of the graded-material

interface parameter (γχ = 0.02). Fig. 4 shows the �nal

Fig. 3: Cantilever beam: Sensitivity study of the graded-

material interface parameters γχ. Single-material opti-

mized structure.

Table 1: Cantilever beam: Sensitivity study of the

graded-material interface parameters γχ. Compliance

and material index values for di�erent choices of γχ.

γχ compliance mχ convergence

0.001 105.3 0.380 NO
0.005 122.9 0.265 YES
0.01 133.0 0.245 YES
0.02 141.9 0.230 YES
0.05 154.0 0.225 YES
0.1 165.4 0.201 YES

full dense material 52.3 mφ = 0.45 YES

topologies for three di�erent slenderness ratios, where

all the resulting structures are characterized by internal

regions of softer material and external support of sti�er

material.

4.2 Simply-supported beam

In this second example, we choose Acrylonitrile Buta-

diene Styrene (ABS), which is a common thermoplas-

tic polymer widely used in 3D printing applications, as

material to obtain an optimized simply-supported beam

structure. The problem is symmetric and thus we decide

to solve only half of the domain as depicted in Fig. 5 ,

where h = 50mm an L/2 = 100mm, with a distributed

external load g equal to (0,−50)N/mm applied on the

top edge of the structure. The Young modulus and

the Poisson coe�cient of ABS plastic are 2.3GPa and

0.35, respectively. We set m = 0.4, κφ = κχ = 1 and

γφ = γχ = 0.01, while we choose a pseudo-time step

∆τ = 1.0× 10−6 and an initial solution φ0 = 0.5.

4.2.1 Sensitivity study of the softening factor β

Fig. 6 presents the results of a sensitivity analysis per-

formed varying the softening factor β from 1 to 4. The

resulting optimized structures show that, introducing
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(a) s = 1 (b) s = 2

(c) s = 4

Fig. 4: Cantilever beam: Sensitivity study of the slan-

derness of the structure s. Varying the slanderness ratio

s = a/b we obtain optimized structures characterized

by an outer frame of sti� material �lled with regions of

soft materials.

Table 2: Simply-supported beam: Sensitivity study of

the softening factor β. Compliance and material index

values for di�erent choices of β.

β compliance mχ convergence

1 20.5 0.40 YES
2 37.3 0.32 YES
3 46.4 0.24 YES
4 58.6 0.18 YES

grey-scale regions in the structure, the optimal design

is modi�ed, replacing the typical voids of SIMP ap-

proach with areas of soft material. Again we observe

in Table 2 that introducing a soft material within the

algorithm leads to structure with a smaller material in-

dex but higher compliance. The values of the softening

factor strongly in�uences the �nal results and give us

the possibility to obtain intermediate structure such as

the one in Fig. 6b . Moreover, we can notice that for

high values of β the results are very similar to each other

(see Fig. 6c and Fig. 6d ), thus the higher values of

this parameter would depend only on the technological

boundaries of the AM process.

x

y κD

◦◦
◦◦
◦◦

Ω

L/2

h

g

κN

Fig. 5: Simply-supported beam: Initial con�guration

and problem domain.

(a) β = 1 (b) β = 2

(c) β = 3 (d) β = 4

Fig. 6: Simply-supported beam: Sensitivity study of the

softening factor β. Increasing the values of the softening

factor, i.e., employing a softer material, the optimized

structure does not present anymore the typical holes

resulting from a single-material optimization 6a. Voids

are now replaced by a region of soft material.

4.2.2 Sensitivity study of the distributed load

On the simply-supported beam, we conduct a second

sensitivity study �xing β = 3 and increasing the dis-

tributed load g by a factor of 2 and 3, respectively. The

resulting structures are reported in Fig. 7 . As we ex-
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pected employing a heavier load reduces the areas of

soft material, increasing at the same time the number

of columnar structures in the �nal topology. We want

to remark here that the structure of Fig. 7b did not

converge even after 1000 iterations. Since the mesh is

not modi�ed, this behavior is due to the choice of the

sti�er material, which is in this case too soft for such a

heavy load.

(a) g × 2 (b) g × 3

Fig. 7: Simply-supported beam: Sensitivity study of the

distributed load g. Increasing the load on the upper

edge of the structure we observe an increment in the

region occupied by full dense material and the presence

of holes and columnar structures.

4.3 From numerics to AM products

In order to demonstrate that the numerical results pre-

sented so far can be actually realized in practice, we

decided to print a sample of the optimized structure

depicted in Fig. 6d . To obtain this result we used the

Fused Deposition Modeling (FDM) 3D printer present

in our PROTOtyping LABoratory (PROTOLAB) at

the University of Pavia. This sample is made in ABS

plastic material and realized extruding by an o�set of

5mm the structure of Fig. 6d . The values of χ are then

mapped onto a manufacturing grid where the dimension

of each cell depends on technological constraints given

by the machine. Finally, by means of a simple boolean

operation, we subtract a quadratic region proportional

to the average value of χ in each cell. Once the cor-

responding CAD model is completed we can directly

print it, obtaining the structure of Fig. 8 . Since, the

assumption of linear elasticity is not valid for a soft

material such as plastic (metal alloys would be a more

appropriate choice in this case) we leave the experi-

mental validation of the proposed numerical algorithm

to future research.

Fig. 8: Simply-supported beam with a distributed load

of Fig. 6d printed using FDM 3D printer.

5 Conclusions

In the present work, we have introduced a novel phase-

�eld topology optimization algorithm based on a graded

material de�nition.

The numerical results show that the additional control

parameter χ, introduced in our phase-�eld formulation,

allows increasing the number of possible optimal de-

signs delivered by the topology optimization process.

In particular, we have introduced the possibility to con-

trol the distribution of the material density within our

structure in a continuous fashion. Such a feature can

be in many cases highly desirable, in particular if we

consider additive manufacturing applications.

Moreover the algorithm allows to easily control the

number of regions with graded material distribution,

delivering results which can be in between a fully black-

and-white approach and a purely graded-material dis-

tribution.

In the near future we aim at investigating mechanical

properties of 3D printed structures designed using the

graded-material phase-�eld topology optimization algo-

rithm.
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