
E-assessment in programming courses: Towards a digital

ecosystem supporting diverse needs?

Aparna Chirumamilla1[0000-0001-6985-8476] and Guttorm Sindre2[0000-0001-5739-8265]

 Department of Computer Science, Norwegian University of Science and Technology,

Norway, {aparnav, guttors}@ntnu.no

Abstract. While a number of advantages have been discussed on e-learning/e-

assessment tools, little research has been reported on programming courses. To-

day, the different types of questions have been used in exams based on course

type, e.g., Text-based questions, mathematical questions, and programming ques-

tions. All these question types require supporting plug-ins for e-assessments. In

this study, we provide our practical experience on programming exams in Inspera

Assessment and Blackboard Learn, especially focusing on Parsons problems

(drag-and-drop questions) and code writing questions. Our findings indicate that

currently, tools have basic support for programming exams, and also there is a

low-level integration between the tools. However, the adaptability of any exam

system could depend on the interoperability between the platforms and external

plugins. Hence, more improvements can be made with the implementation of e-

assessments in digital ecosystems while it requires a lot of changes internally and

outside institutions. In the paper, we will explain how a digital ecosystem within

e-assessment could improve assessments and how it supports diverse needs of

programming exams.

Keywords: Digital ecosystem, e-Assessments. Programming exams, Parson

problems, Code writing,

1 Introduction

Many universities are transitioning from pen and paper exams to e-exams [1]. At the

same time, formative e-assessment is receiving increased attention [2]. With automated

self-tests where students can get immediate feedback, it is possible to have rapid feed-

back cycles scale to large and distributed classes without overloading the teaching staff.

However, e-assessment systems need to be well adapted to user needs, supporting ap-

propriate assessment tasks for the intended learning outcomes. The development of

good test items is often time-consuming, so universities could save effort and increase

quality if tests could be shared across countries and learning institutions [3]. Also, it

would be interesting to share data and metadata, e.g., about the performance of various

student groups, for benchmarking and adaptive testing.

A digital ecosystem is a business ecosystem based on an organizational network in

the context of digital technology [4-6]. Digital ecosystems are formed based on digital

2

objects (digital content, products, ideas, software, hardware, infrastructure) that are in-

terchanged and shared between independent actors [7]. The potential advantages of dig-

ital ecosystems in e-learning were outlined more than a decade ago [8, 9]. An e-learning

ecosystem is the learning community, together with the enterprise, united by a learning

management system (LMS) and it is formed by three categories of components: content

providers, consultants, and infrastructure [8]. For the e-assessment aspects of such an

ecosystem, sharing of content (e.g., tests and test items) and metadata (e.g., anonymized

student scores on test items, to assess difficulty) would be a key ingredient. In addition,

easy development and good availability of plug-ins to support various needs in e-as-

sessment would be essential. Traditional monolithic systems might have the ambition

that customers find all the features they require within the system. However, user needs

will be quite diverse, related to different disciplines and learning outcomes, pedagogical

approaches, assessment types, different devices to be used, students with special needs,

languages and cultures, and different national rules and regulations of assessments,

grading and collection of personal information. In addition, the system should be able

to evolve quickly to cater for new needs [10], e.g., new learning methods, test types,

technology.

Although monolithic systems may include many features, these will tend to be fea-

tures that a sufficient number of mainstream customers require, while more specialized

needs will not be supported. Moreover, they tend to become heavy and slow to respond

to changes. If an e-learning system has an open, well-documented API, this could allow

for plug-ins from other vendors, or from universities themselves, with niche expertise

to quickly develop functionality supporting specific needs. Our research questions for

this paper are: RQ1: To what extent does e-learning/e-assessment tools support e-as-

sessment tasks specifically needed in programming courses? RQ2: In what ways could

a digital ecosystem within e-assessment make for improved assessments?

In the case study performed we look in most detail at the tools used in the authors’

own university, which we had the opportunity to try out in detail, whereas other related

tools were only studied via documentation available on the internet. The rest of the

paper is structured as follows: Section 2 provides some background on question types

in programming and identifies two question types for which the support (or lack of

support) will be specifically investigated in the case study – namely Parsons problems

[11] and code writing questions [12]. Section 3 then looks at the support for these ques-

tion types in typical e-assessment/e-learning tools, with most detailed focus on the tools

used in the authors’ university, namely Blackboard Learn and Inspera Assessment. Sec-

tion 4 then discusses whether the progress towards digital ecosystems with open API’s

could help improve the support for more diverse needs in e-assessment. Finally, section

5 concludes the paper.

2 Question types for e-assessment in programming

Programming exams may contain many different types of questions [13]. The below

list provides some broad categories:

3

• Conceptual questions: These are questions that do not directly involve code, but fo-

cus on the recall and understanding of concepts, e.g., “What is a key difference be-

tween a list and a set?” (possibly a multiple choice question) or “Explain the concept

of polymorphism and its utility?” (possibly a free text question)

• Code tracing: The code is given, and the candidate’s task is to explain what the code

does. Within this category, questions may vary from those requiring only brief an-

swers, e.g., “What will be the output of this program?”, to more detailed ones, e.g.,

“Explain what this program does, line by line.”

• Code writing: It is explained what a program is supposed to do, and the candidate’s

task is to write the code.

• Code completion: It is explained what a program is supposed to do, and some code

is provided, but not fully complete. The candidate’s task is then to fill in or select

missing parts, or to rearrange code lines in the correct order.

• Error detection: It is explained what a program is supposed to do, and some faulty

code is provided. The candidate’s task is then to identify the mistakes, possibly also

to propose corrections.

As indicated by Sheard et al. [14], code writing appears to be the most used question

type in programming exams, followed by code tracing. Writing and tracing tasks can

be seen as opposites, i.e., write all the code vs. write no code (rather understand the

code which is given). Completion and error detection tasks as somewhere in between

those two extremes, requiring both understanding of the code already given, and ability

to write some extra code: the missing parts to be added to completion tasks, the correc-

tions to be proposed for error detection tasks.

A detailed analysis of all possible question types would be prohibitively time-con-

suming, so here we choose to focus on two specific question types, namely Parsons

problems [11] and code writing questions [12]. The reason for choosing these two types

is that they are quite specific for the discipline of programming, whereas other question

types could more easily be supported by generic question types found in most e-assess-

ment and e-learning systems. For instance, conceptual questions could be implemented

as free-text short answer tasks or multiple choice questions. The same applies to code

tracing questions, where the brief answer variety might typically be given as multiple

choice, fill-in-number or fill-in-text depending on the output, while the longer variety

could be a free-text answer or a sequence of fill-in fields showing the changes of vari-

able content during execution. Code completion tasks (other than Parsons problems)

could be implemented by e.g. multiple choice, fill-in, or pull-down menus for each

missing code fragment, and error detection could again be short answer, fill-in (for pro-

posed corrections) or multiple choice (selecting between real errors and distractors).

What are then the particularities of the two mentioned question types? Parsons prob-

lems [11] are coding problems where it is explained what some piece of code is sup-

posed to do, and the code lines are given, but in jumbled order. It is then the candidates’

task to rearrange them in the right order. This question type has attracted a lot of re-

search interest [15-18] because it reduces cognitive load for the students (e.g., recall of

syntax, avoiding typing mistakes), yet still tests their visual-spatial abilities, construc-

tive skills in solving a problem and constructing a solution from available building

4

blocks. Since building blocks are larger (entire code lines rather than character by char-

acter on the keyboard), each question can be solved faster, thus potentially achieving

better topical coverage in the exam set as a whole. Also, quick solution and automated

feedback make such problems interesting for digital learning resources with self-testing

features, for instance, the interactive e-book [19] makes extensive use of such problems

among its exercises. Questions in Parsons problems can be made easier by providing

hints [20] or more difficult by adding distractors [18], they can be one-dimensional

(most common) or two-dimensional [21], the latter relevant with programming lan-

guages where indents have semantic significance (e.g., Python).

A common way of implementing Parsons problems digitally would be as drag-and-

drop questions – a featured question type in many e-learning / e-exam applications.

Drag and drop questions may test students’ higher order thinking skills, i.e., algorithmic

problem-solving skills [22, 23]. The recent research has been progressed more towards

the visual programming language (VPL) that allows users to create programs using

drag-and-drop genre [24]. However, its use in e-exam applications will normally not

have been made with programming tasks in mind, rather tasks such as placing names

in the correct positions on a background picture (e.g., Latin names of body parts for an

anatomy exam, names on countries on a map for a primary school Geography exam).

Hence, standard tool support for drag-and-drop questions may not be ideal for Parsons

problems in programming.

Code writing tends to be a key element of programming exams, and most would

agree that doing these tasks with pen and paper is not particularly authentic. Switching

to a digital interface will make the task more similar to real work – but not necessarily

fully authentic, as there may be various ambition levels to the tool support. For instance,

students may be able to type the code in the test interface, but this could be in an editor

with specific support for code writing (more authentic) or in a generic text input win-

dow with few functional features (less authentic). Also, students might be able to com-

pile and run the code (more authentic), or not (less authentic). Sometimes, the more

authentic, the better – but not always. A problem with the ability to compile, run, and

test the code during an exam, for instance, is that students will then spend more time

on each programming task – due to the need to debug and rerun if something was not

working. More time on each task would give poorer coverage of the learning outcomes,

especially if tool usage was not among the specified learning outcomes for the course.

An ideal e-exam tool should therefore have a wide range of support for code writing

tasks, anything from writing in a fairly simple editor without the ability to run, to pro-

fessional tool support for code editing, testing and debugging.

3 Analysis of mainstream tool support

As shown in [25], there are many tools for e-assessment of programming, but many of

these are standalone applications or cloud tools not integrated with official university

information systems. This section looks at mainstream tool support for Parsons prob-

lems and code writing problems, with special focus on Blackboard Learn and Inspera

Assessment, which happen to be the mandatory tools in the authors’ university for

5

formative and summative e-assessment, respectively. The first subsection looks at

Blackboard Learn, the second at Inspera Assessment, and the third makes a quick re-

view of some other tools.

3.1 Blackboard Learn

Blackboard Learn is the current LMS for the authors’ university. It is used for commu-

nication between teaching staff and students during the semester, e.g., course info and

announcements, learning resources, exercises (if not graded), etc. It is not compulsory

to use it for everything, so teaching staff could use supplementary tools, in addition, for

instance, for students’ automated self-testing. However, it would be convenient both

for teachers and students if course tasks are seamlessly supported through Blackboard,

so that they avoid confusing and time-consuming switches between tools [26].

Support for Parsons problems in Blackboard turns out to be limited. Drag and drop

questions do not exist, so such questions would instead have to be approximated by

other question types. Obvious candidates might be ordering questions or jumbled sen-

tence questions. Ordering questions would show the code lines in a shuffled order, then

let the user assign ordinal numbers to each in input fields beside the code lines. This is

not entirely ideal for the purpose. For instance, code lines are not repositioned, so the

resulting code is not easily read. Reordering requires changing the ordinal numbers of

all code lines affected, whereas a modern drag and drop interface might solve this by

repositioning fewer lines. Jumbled sentence questions would give a series of input

fields, where each would yield a drop-down menu when clicked, with all the code lines

as alternatives. The student would then have to make a multiple choice selection for

each input field. This would appear somewhat better than the ordering question since

at least the code would be shown in the wanted order when selections had been made.

However, reordering would have the same issues as with the ordering questions, and if

the task contains many code lines, the drop-down menus will be long and clumsy.

Specific support for Code writing problems in Blackboard does not exist, beyond

generic essay and short answer question forms meant for natural language text, or using

file upload questions (e.g., student could write the code in a separate tool more fit for

programming, and then upload the file to Blackboard).

3.2 Inspera Assessment

When it comes to Parsons problems, Inspera Assessment does support drag and drop

questions. The resulting interface for the student while solving the task is therefore

more elegant than what can be achieved in Blackboard, though there are some issues

with the user interface. The task has to be made with separate drop areas for each code

line, rather than one big drop area where the order is given by relative positioning. This

means that the student still has to reposition several code lines in cases where a better

interface might have gotten away with just repositioning one line and having other lines

yield place. Especially, if trying to make two-dimensional Parsons problems, the snap-

ping feature may behave a little counter-intuitively, since it is not determined by the

position of the mouse pointer, rather the middle of the drag object (mouse pointer would

6

be more natural, or the left edge of the drag object). Parsons problems become very

time-consuming for the teacher to develop in Inspera, since all the drag areas must be

created manually one by one and filled with solution (and possibly distractor) code

lines, and then linked to the correct drop areas, also manually created one by one. Es-

pecially for two-dimensional Parsons problems, this takes quite a lot of time. An illus-

tration of a two-dimensional Parsons problem for Python, as implemented in Inspera,

is shown in Figure 1. For space reasons, the natural language explanation of what the

code was supposed to do is omitted, showing only the interactive part of the screen.

The candidate’s task would be to drag each code line into the correct position in the

grid (the function heading def deriv(poly): going upper left), both concerning verti-

cal order and horizontal indenting, as indents have semantic significance in Python. In

Inspera Assessment, the 28 drop areas must be created one by one, hand positioned in

the grid and adjusted for size, hence quite time-consuming for the question author.

.

Fig. 1. Two-dimensional Parson problem for Python.

For code writing tasks, Inspera has a dedicated question type called “Programming”.

Notably, the student is not able to compile and run the code during the exam, nor is

staff able to run it afterwards in connection with grading, so this type of task is manually

graded. However, it does support the following features:

• A monotype font suitable for code, and syntax highlighting for some much used

programming languages

• Other syntax related support, such as automatically giving an end parenthesis for

each start parenthesis, and automatically making indents where appropriate, for in-

stance in Python if the previous code line ended with a colon.

All in all, then, Inspera Assessment has better question type support both for Parsons

problems and code writing than what Blackboard has, but still with substantial limita-

tions. The user interaction for drag and drop questions is somewhat tedious for students,

especially if reordering, and for teacher authoring of questions it is even more tedious.

For code writing questions, both have the shortcoming that the code will not run and

must be manually graded, and Blackboard does not even have syntactic support. Hence,

both Blackboard and Inspera could clearly be made much more usable for handling

these question types if there were plugins specifically targeting them.

7

3.3 Other tools

Table 1 gives a summary of the possible support for Parsons problems and code writing

problems in various tools. In addition to Inspera and Blackboard, other tools worth

looking at are the e-exam tool WISEflow (a competitor to Inspera) and general LMS

tools Canvas and Moodle (competitors to Blackboard). The authors gathered infor-

mation about these tools from web-documentation since they do not have direct access

for these tools in their institution. Our findings show that Blackboard does not support

drag-and-drop functionality while all the other tools support this feature. However,

these tools only support the basic functionality of drag-and-drop into text and image,

which is not ideal for Parson problems. Code writing is supported in Inspera and Moo-

dle, moreover it seems Moodle has better support than Inspera. Both Moodle and In-

spera support code writing with syntactic support (e.g., indentation and code highlight-

ing). In addition, Moodle has an external plugin, Coderunner that allows students to run

their programs during exams and teachers to run programs in order to grade student’s

answers. Limitations of the functionalities in tools can be improved further by third-

party extensions and plugins with the adoption of digital ecosystems.

Table 1. Tool support summarized.

Tool Parsons

problems

Code writing Import/export

questions

Plugins

Blackboard Lacks

drag&drop

No specific support

(free text)

QTI, LTI LTI,

Google Apps

SafeAssign

Inspera Has

drag&drop,

but not ideal

Only syntactic support

for code [27]

QTI, LTI Atlassian Jira

Canvas Has-

drag&drop

but not ideal

No specific support

(free text)

QTI, LTI LTI, Facebook,

Google Drive,

Twitter, Tinychat

Google Docs,

Kaltura,

LinkedIn,

Canvasdocs

WISEflow Has-

drag&drop

but not ideal

No specific support

(free text)

QTI, Canvas,

Moodle XML,

Blackboard V6-9

Moodle Has-

drag&drop

but not ideal

Syntactic support,

Code runner support

QTI, LTI, GIFT

Moodle XML,

XHTML, LTI

SEB Quiz Ac-

cess, Coderunner

Rule, LTI,

Turnitin,

Plagiarism

8

4 Towards a digital ecosystem

Tools like those discussed in section 3 can import/export questions in the QTI (Question

and Test Interoperability) format [28]. So for authoring of drag-and-drop questions

(which was somewhat cumbersome in Inspera), a possible way to improve the support

would be to make a stand-alone authoring tool that could generate questions as QTI

files, then to be uploaded to Inspera, for instance as suggested by [29]. In Blackboard,

such an authoring tool would not be of much use, since the question type is not sup-

ported. Hence, Blackboard would need an integrated plugin supporting the question

type, and an integrated plugin would probably appear better for the user of Inspera, too,

especially for students solving the tasks, since the user interface could then be improved

with custom features for Parsons problems. A plugin might also be a possible solution

for better support of code writing questions in both tools (e.g., for the student, ability

to compile and test the code during the exam; for the teacher, support for automated

testing and grading of delivered code).

Currently, Inspera offers REST-based APIs to enable the third-party developers to

integrate the additional functionalities and a Custom Interaction API that allows cus-

tomers to build specialized question types. It supports stimuli elements with JavaScript

and mathematical tools such as Geogebra and Desmos. These specialized question

types can still be exchanged through QTI specification and the IMS Global Assessment

Custom Interactions specification.

As the digitization of the exams increased, the need for technology for exams is also

rapidly increasing. However, the usability of a digital exam system highly depends on

the simplicity of the system. Also, users are sometimes forced to use several systems,

not well integrated. For instance, in the authors’ own university Blackboard is actively

used as an LMS while Inspera is used as an assessment tool. The key requirements from

teachers in the computer science department at our university that are ecosystems re-

lated include:

• Teachers want to have some exercises using the Inspera UI rather than Blackboard's,

to give the students more accurate exam practice. Preferably, students should then

be able run Inspera via Blackboard, so that Blackboard could still automatically reg-

ister who has delivered the exercise.

• Concerning the import and export of contents, teachers may want to use last year's

exam questions as exercise questions the next year. However, while Inspera can ex-

port questions in QTI 2.1 format, Blackboard (at least the version in our university)

for some reason only seems to support the older QTI 1.2 standard.

In a well functioning software ecosystem, the platform system would have open APIs

for external third-parties to develop plug-ins on top of the platform. This type of solu-

tion has several advantages over monolithic exam systems. García-Holgado and Gar-

cía-Peñalvo [30] explained that technological ecosystems could be considered as a

framework to develop technological solutions where information and the human factor

are the centre of the system. One of the main advantages with such an ecosystem is the

flexibility it provides to institutions to integrate new software components within their

workflows to support emerging needs.

9

The key requirements from teachers could be fulfilled to some extent with the current

plug-in support by Inspera: (i) Integrate contents and external tools into LMS. Inspera

supports sharing of the contents through the IMS Learning Tools Interoperability™

(LTI) plugin. LTI is an interoperability specification which facilitates full integration

between Inspera and Blackboard. With LTI support, Inspera can be launched as a tool

from Blackboard, which allows students to take exams directly through Blackboard.

This feature is currently supported in Canvas, Blackboard, and Moodle [31]. (ii) Shar-

ing of the contents across e-learning platforms. Issues with import and export questions

can be reduced with more updates in the versions of interoperability specifications of

platforms and tools [32]. In [30], the authors addressed the problem of sharing questions

across departments in university in the e-learning context. They argued that although

the technological ecosystem provides tools to facilitate communication between depart-

ments, employees are not utilizing the tools.

Presently, Inspera only supports sharing questions among teachers in the same uni-

versity – for wider sharing, one must export and import. Of course, one deterrent against

easier sharing could be increased fear for question leakage, i.e., confidential exam ques-

tions being disclosed to candidates before the exam. However, it mostly seems to come

down to lacking features, and a natural tendency to prioritize the basic features first:

support for each autonomous teaching staff for making the exam in their course, rather

than to support a wider community of teachers within a discipline in making larger

question bases that can be shared and continuously quality assured and updated.

However, Inspera also has some frustrating shortcomings on the single course level.

In Norway, the law says that complaint graders shall not know the grades or viewpoints

of the original graders. However, in Inspera it was impossible to hide given scores on

the tasks. This meant that complaint graders could not do their grading in Inspera, but

instead had to receive pdf screenshots of student answers, and then had to score manu-

ally even tasks like multiple choice, that would have been auto-scored in Inspera – with

higher work-load and increased risk of error as a result. Fixing such issues will of course

have a higher priority for the next release than more ambitious ideas supporting disci-

plinary communities. In Norwegian universities, Inspera must also be integrated with

FS (Common Student System), a legacy system used for the administration of students

in universities. Both the LMS and the e-exam system will fetch information from FS

(e.g., which students are enrolled, registered for the exam, etc.) and send information

back to FS (e.g., grades). The legacy system is not directly seen by students or teachers,

but by administrative personnel – for instance it also contains the link between anony-

mous candidate numbers used during exams and the students’ identities.

The implementation of digital exam ecosystems involves a higher degree of com-

plexity due to the integration of different components that should evolve both individ-

ually and collectively. Although the REST APIs aids the developer, lack of the frame-

work and design patterns makes the integration with plug-ins more difficult. A frame-

work for technological ecosystems will consider all aspects related to integration, in-

teroperability, and the evolution of the components [33] thus forms the well-developed

open ecosystem. Several frameworks and methods were discussed in the literature. For

instance, A framework can be designed using architectural patterns using the Business

Process Model and Notation (BPMN) [30]. García et al. proposed a service-based

10

framework connecting Moodle LMS and Basic LTI (BLTI) [33]. Consequently, it could

ease commercial vendors and free software developers to make plugins supporting the

authoring, solving, and grading of various question types.

5 Conclusion

Several advantages have been discussed in literature about e-assessments, and today

many tools are available for course management and assessments. Although many e-

learning/ e-assessment tools are available, only a few support programming exams. In

the paper, we discussed our practical experience with programming questions in Black-

board Learn and Inspera Assessment tools, particularly focusing on Parsons problems

(i.e., drag- and–drop questions) and code writing questions. Our observations revealed

that currently Inspera, Moodle, Canvas, WISEflow supports drag-and-drop questions

but not ideal for programming using Parson problems. Also, there is a low-level inte-

gration between Inspera and Blackboard for programming exams. The improvements

can be made further with the transition of a monolithic digital exam system to digital

exam ecosystem by opening APIs though it requires a lot of changes internally and

outside institutions. However, open APIs alone cannot be able to improve e-assess-

ments, without the support of frameworks, and architectural designs that explain soft-

ware updates, security policies, access permissions etc. Though many papers discussed

ecosystem phenomenon in e-learning, its implementation on the digital exam is still in

infancy. This paper has initiated the concept of the ecosystem in the digital exams area

focusing on programming exams.

 The paper still has some limitations: It discussed only details of the tools used in

authors’ university, Inspera and Blackboard, since they have direct access to only these

tools. Currently, there are many tools available for digital assessment; the study of

every tool would require more time for research and cost (to buy licenses for tools).

Moreover, students and teachers are adapted to the tools they use, so it is more conven-

ient to receive their feedback. The findings from this study are based on the author's

practical experience. Hence, this study can be improved in the future by more quanti-

tative and qualitative research in academia and industries, especially on the perspective

of a digital ecosystem.

References

1. Fluck, A., An international review of eExam technologies and impact.

Computers & Education, 2018. 132: p. 1-15.

2. Spector, J.M., et al., Technology enhanced formative assessment for 21st

century learning. 2016.

3. Veiga, W., et al. A Software Ecosystem approach to e-Learning domain. in

Proceedings of the XII Brazilian Symposium on Information Systems on

Brazilian Symposium on Information Systems: Information Systems in the

Cloud Computing Era-Volume 1. 2016. Brazilian Computer Society.

11

4. Stanley, J. and G. Briscoe, The ABC of digital business ecosystems. arXiv

preprint arXiv:1005.1899, 2010.

5. Nachira, F., P. Dini, and A. Nicolai, A network of digital business ecosystems

for Europe: roots, processes and perspectives. European Commission,

Bruxelles, Introductory Paper, 2007. 106.

6. Jansen, S. and M.A. Cusumano, Defining software ecosystems: a survey of

software platforms and business network governance. Software ecosystems:

analyzing and managing business networks in the software industry, 2013. 13.

7. Kallinikos, J., Aleksi Aaltonen, and Attila Marton, The ambivalent ontology

of digital artifacts. Mis Quarterly, 2013. 37(2): p. 357-370.

8. Uden, L., I.T. Wangsa, and E. Damiani. The future of E-learning: E-learning

ecosystem. in Digital EcoSystems and Technologies Conference, 2007. DEST

'07. Inaugural IEEE-IES. 2007.

9. Oskar, P., Software ecosystems and e-learning: recent developments and

future prospects, in Proceedings of the International Conference on

Management of Emergent Digital EcoSystems %@ 978-1-60558-829-2. 2009,

ACM: France. p. 427-431.

10. Marti, R., M. Gisbert, and V. Larraz. Technological learning and educational

management ecosystems. Thirteen characteristics for efficient design. in

EdMedia+ Innovate Learning. 2018. Association for the Advancement of

Computing in Education (AACE).

11. Parsons, D. and P. Haden. Parson's programming puzzles: a fun and effective

learning tool for first programming courses. in Proceedings of the 8th

Australasian Conference on Computing Education-Volume 52. 2006.

Australian Computer Society, Inc.

12. Sheard, J., et al. Assessment of programming: pedagogical foundations of

exams. in Proceedings of the 18th ACM conference on Innovation and

technology in computer science education. 2013. ACM.

13. Simon, et al. Introductory programming: examining the exams. in

Proceedings of the Fourteenth Australasian Computing Education

Conference-Volume 123. 2012. Australian Computer Society, Inc.

14. Sheard, J., et al. Exploring programming assessment instruments: a

classification scheme for examination questions. in Proceedings of the seventh

international workshop on Computing education research. 2011. ACM.

15. Denny, P., A. Luxton-Reilly, and B. Simon. Evaluating a new exam question:

Parsons problems. in Proceedings of the fourth international workshop on

computing education research. 2008. ACM.

16. Helminen, J., et al. How do students solve parsons programming problems?:

an analysis of interaction traces. in Proceedings of the ninth annual

international conference on International computing education research.

2012. ACM.

17. Ericson, B.J., L.E. Margulieux, and J. Rick. Solving parsons problems versus

fixing and writing code. in Proceedings of the 17th Koli Calling International

Conference on Computing Education Research. 2017. ACM.

12

18. Harms, K.J., J. Chen, and C.L. Kelleher. Distractors in Parsons problems

decrease learning efficiency for young novice programmers. in Proceedings

of the 2016 ACM Conference on International Computing Education

Research. 2016. ACM.

19. Guzdial, M. and B. Ericson, CS Principles: Big Ideas in Programming. 2014:

RuneStone Academy.

20. Morrison, B.B., et al. Subgoals help students solve Parsons problems. in

Proceedings of the 47th ACM Technical Symposium on Computing Science

Education. 2016. ACM.

21. Ihantola, P. and V. Karavirta, Two-dimensional parson’s puzzles: The concept,

tools, and first observations. Journal of Information Technology Education,

2011. 10: p. 119-132.

22. Kalelioğlu, F., A new way of teaching programming skills to K-12 students:

Code.org. Computers in Human Behavior, 2015. 52: p. 200-210.

23. Lee, Y.Y., N. Chen, and R.E. Johnson, Drag-and-drop refactoring: intuitive

and efficient program transformation, in Proceedings of the 2013

International Conference on Software Engineering. 2013, IEEE Press: San

Francisco, CA, USA. p. 23-32.

24. Tsai, C.-Y., Improving students' understanding of basic programming

concepts through visual programming language: The role of self-efficacy.

Computers in Human Behavior, 2019. 95: p. 224-232.

25. Gupta, S. and A. Gupta. E-Assessment Tools for Programming Languages: A

Review. in Proceedings of the First International Conference on Information

Technology and Knowledge Management. 2018.

26. Forment, M.A., et al. Interoperability for LMS: The Missing Piece to Become

the Common Place for Elearning Innovation. 2009. Berlin, Heidelberg:

Springer Berlin Heidelberg.

27. Assessment, I. Programming - Knowledge Base - Inspera. Available from:

https://inspera.atlassian.net/wiki/spaces/KB/pages/57311556/Programming.

28. Global, I. Question and Test Interoperability (QTI): Overview. Available

from: https://www.imsglobal.org/question/qtiv2p2/imsqti_v2p2_oview.html.

29. Jørgensen, J. and S. Kvannli, Efficient generation of Parsons problems for

digital programming exams in Inspera, in Department of Computer Science.

2019, NTNU: Trondheim.

30. García-Holgado, A. and F.J. García-Peñalvo, Architectural pattern to improve

the definition and implementation of eLearning ecosystems. Science of

Computer Programming, 2016. 129: p. 20-34.

31. Inspera, A. Assessment technology standards. Available from:

http://www.inspera.com/standards.

32. Dagger, D., et al., Service-oriented e-learning platforms: From monolithic

systems to flexible services. IEEE Internet Computing, 2007. 11(3): p. 28-35.

33. García Peñalvo, F.J., et al., Opening learning management systems to personal

learning environments. Journal of universal computer science: J. UCS, 2011.

17(9): p. 1222-1240.

https://inspera.atlassian.net/wiki/spaces/KB/pages/57311556/Programming
https://inspera.atlassian.net/wiki/spaces/KB/pages/57311556/Programming
https://www.imsglobal.org/question/qtiv2p2/imsqti_v2p2_oview.html
https://www.imsglobal.org/question/qtiv2p2/imsqti_v2p2_oview.html
http://www.inspera.com/standards
http://www.inspera.com/standards

