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Prediction of Absorption Spectrum 
Shifts in Dyes Adsorbed on Titania
Vishwesh Venkatraman   *, Amsalu Efrem Yemene & John de Mello

Dye adsorption on metal-oxide films often results in small to substantial absorption shifts relative to 
the solution phase, with undesirable consequences for the performance of dye-sensitized solar cells 
and optical sensors. While density functional theory is frequently used to model such behaviour, it is too 
time-consuming for rapid assessment. In this paper, we explore the use of supervised machine learning 
to predict whether dye adsorption on titania is likely to induce a change in its absorption characteristics. 
The physicochemical features of each dye were encoded as a numeric vector whose elements are the 
counts of molecular fragments and topological indices. Various classification models were subsequently 
trained to predict the type of absorption shift i.e. blue, red or unchanged (|Δλ| ≤ 10 nm). The models 
were able to predict the nature of the shift with a good likelihood (~80%) of success when applied to 
unseen data.

The light-harvesting properties of dye-sensitized metal oxides find a number of applications in photonic 
devices and chemical probes. They constitute a significant area of current research, and are key components of 
many devices including dye-sensitized solar cells1, photo-electrochemical water splitters2 and optical filters3–5. 
General requirements of the constituent dyes include broad absorption spectra (preferably extending into the 
near-infrared portion of the solar spectrum) accompanied by large extinction coefficients1. To meet these objec-
tives, numerous organic6 and metal-based7 dyes have been designed8, employing varying donors (D), π-bridges, 
and acceptors (A) including but not limited to the following configurations: D-π-A, D-A-π-A9 and D-D-π-A10. 
Each dye is further chemisorbed onto a semiconducting metal oxide photoanode (usually TiO2

11), to provide a 
mesoporous metal-oxide dye interface at which efficient separation of photo-generated electron-hole pairs can 
occur. The nature of the donors, acceptor/anchoring groups and the strength of the dye-semiconductor coupling, 
all have a significant impact on the photostability and photochemical behaviour.

Broad absorption spectra are desirable for light harvesting. However, it is often seen (particularly for 
metal-free dyes) that the UV-vis absorption peaks of the dyes adsorbed on TiO2 photoelectrodes are substantially 
shifted, compared to those in solution. While for some dyes, there is little or no change (for some a broadening of 
the peak is seen), peaks in other cases can be shifted by 100 nm or more12,13 in either direction, greatly complicat-
ing the design and selection of candidate dyes. Reasons attributed to such phenomena include the deprotonation 
of the carboxylic/cyanoacrylic anchoring group, π-stacking interactions, complexation with metal ions and dye 
aggregation9,14–19. On adsorption, deprotonation can result in a carboxylate-TiO2 unit that is a weaker electron 
acceptor than the native carboxylic acid20,21. Furthermore, during the sensitization process, significant dye aggre-
gation can occur22. While J-aggregates lead to a red-shift, formation of H-aggregates causes a blue-shift, leading 
to a damping of the absorption efficiency. The aggregation behaviour is however very dye-specific. Complexation 
with metal ions such as aluminium, iron, tin, titanium and chromium are also seen to induce red-shifts particu-
larly for anthocyanin dyes23–25 owing to the suspected formation of a quinoidal structure14. In the case of catechol 
anchoring groups26, absorption shifts have been attributed to the increased dipole moment of the Ti-ligand com-
plex via an induced charge transfer dipole under excitation27. Solvatochromism also has a significant impact on 
the relative spectral shifts. For instance, it has been shown that in polar solvents, the electron-withdrawing power 
of the carboxylic acid decreases as a result of a partial deprotonation in the excited state28. The use of different 
sensitization solvents is also seen to affect the adsorption characteristics of dyes29,30.

So far, understanding the origin of these spectral changes and their possible effects, has largely been based 
on comparative studies of the dye in solution and in its adsorbed state. Selecting a dye purely on the basis of 
its solution-phase properties has until now been a unreliable task. Theoretical investigations have focused on 
analysing the aggregation behaviour31–35 and impact of the anchoring groups29, using density functional theory 
(DFT) and ab initio methods36. Calculations of excited-state properties using time-dependent DFT (TD-DFT) 
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methods35,37,38 are generally seen to agree well with the experimental measurements39,40. However, such tasks 
require considerable time and are therefore, not suitable for rapid screening tasks involving a large number of 
molecules. An additional challenge is to identify the dye-oxide binding mode which will change depending on the 
structure of the dye and the binding groups. For example, the —COOH group can form monodentate ester-like, 
bidentate chelate or bidentate bridging linkages41,42. In the absence of any prior knowledge, multiple combinations 
must be tested, thereby adding to the computational effort.

Machine learning (ML) approaches capable of identifying embedded correlations between structure (repre-
sented appropriately) and property have been successfully used in materials science and computational chem-
istry43–47. We therefore ask the question: based only on the knowledge of a dye molecule's chemical structure 
and its absorption spectrum in a given solvent, can we use data-driven ML techniques to predict the type of 
absorption shift? To this purpose, the UV-Vis absorption peaks in solution and on a metal oxide were extracted 
from literature for ~2000 dyes. The change in the maximum absorption wavelength from solution-phase to 
metal-oxide-supported was used to categorise the dyes as blue-shifted, red-shifted or unchanged. Supervised 
machine learning models were then trained to distinguish between the classes using descriptors such as molec-
ular fragment counts and topological indices that are easily calculated from the dye structure. Our results show 
that using cheaply derived structure descriptors, the classification models can achieve 80% success in predicting 
the type of absorption shift.

Methods
Data curation.  Absorption data in solution and on TiO2 for ~2000 metal-free dyes were extracted from 
around 500 literature articles. Other metal oxides such as ZnO, NiO and SnO2 were not considered as the availa-
ble data was too limited. For some dyes, the reported absorption peaks (from different studies) in the same solvent 
were found to be significantly different and were therefore omitted. We further considered only those cases for 
which values were recorded in pure solvents and without any additives such as chenodeoxycholic acid. In the end, 
a total of 1961 observations corresponding to 1861 unique dyes were obtained. For these compounds, the differ-
ence in the absorption maxima (λ) i.e. λ λ λΔ = −max

soln
max
TiO2 ranged between −220 to +190 nm (see Fig. F1 in the 

Supplementary Material-II). The structures spanned various donor classes such as triphenylamines, phenothi-
azines, carbazoles, coumarins etc. with varying numbers and types of anchoring groups — catechol, hydrox-
ylpyridium48, cyanoacrylic, pyrimidine (see Fig. 1). In the assembled data, the dyes were divided into ten separate 
groups based on the solvent (see Table 1). The molecular structures (SMILES format), absorption properties and 
associated references are provided in Table S1 in the Supplementary Material-I.

Nature of the shift.  The nature of the spectral shift was determined (see Fig. 2) by thresholding the differ-
ence between the solution phase and solid-state maxima ( λ λ λΔ = −max

soln
max
TiO2) with respect to the following 

criteria:
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where B, R, and N indicate a blue shift, red shift and little or no change respectively. Instead of using a strict cut-off 
of 0, deviations of 10 nm or less were designated N. Figure 3 provides a solvent-wise distribution of the experi-
mentally derived categories. For a majority of the cases associated with weakly polar solvents such as DCM, THF 
and CHCl3, a blue-shifted absorption is seen, while red-shifted behaviour becomes more prominent as polarity 
increases. This may be attributed to a more efficient solvation of the dyes in the polar solvents49.

The categories can be further grouped into NR (no change + red shift) or BN (blue-shift + no change). In 
the context of machine learning, a balanced distribution of the instances across the classes (50% to class A and 
50% to class B) is preferred. Owing to the presence of higher number of instances for a given category, classifi-
cation learners run the risk of predicting everything as one or the other class50. To this end, we analysed three 
different schemes (I) the first where three different groups B, N and R are established, (II) the second merges the 
red-shifted dyes with those indicating little or no change — B/NR and lastly, (III) merging the blue-shifted and no 
change — BN/R. When considering three independent groups — B,N,R, the class distributions (2:1:1) are slightly 
skewed towards the blue. For the second case (B:NR), a near 1:1 ratio is seen for most solvents is seen, with the 
exception of DMF for which a majority of the cases belong to the NR category. The converse holds true for the 
third case (NB:R), where the distribution of the categories is found to be significantly skewed (2.5:1) in favour of 
NB for a majority of the solvents. Consequently, in this paper, we focus mainly on the B:NR cases where the data 
is well balanced and more likely to yield a more effective classification.

Molecular descriptors.  For a statistical structure-property relationship to be established, the molecules 
need to be represented in a way that captures their physicochemical characteristics. In cheminformatics, these 
representations are typically referred to as molecular descriptors51 i.e. a vector of numbers that captures the 
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chemical information in a computer-interpretable form. Machine learning approaches use these vectors to infer 
a predictive model from the training data. Here, we have employed the following schemes to encode each dye:

Atom-bond sequences.  The first set of descriptors are extracted by enumerating all the shortest paths (successive 
connected atom-bond sequences) between each pair of atoms52. The descriptor calculation was carried out using 
the ISIDA Fragmentor2017 software53. The minimum and maximum length of the atom-bond sequences were 
set to 3 and 6 respectively.

Figure 1.  Prominent donors and anchoring groups present in the dyes included in the data set.
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Topological indices.  The second set of descriptors includes constitutional indices (number of hetero atoms and 
aromatic rings, hydrogen bond acceptors and donors) as well as topological indices (derived from chemical graph 
representations) that take into account the connectivity along with atom and bond labels. Popular descriptors 
include the electrotopological state54 (EState) indices that encode the topology and electronic environment of 
molecular fragments. Other variables include MOE-type descriptors55 that are based on an approximate accessi-
ble van der Waals surface area calculation for each atom, along with some other atomic property. Here, we have 
included properties such as logP (octanol/water), molar refractivity, and partial charge within a binned range 
(corresponding to a subdivision of the molecular surface area). The descriptors were computed using the open 
source cheminformatics toolkit RDKit56. For a preset bin size (k), the calculated descriptors include SlogP–VSAk 
(capture hydrophobic and hydrophilic effects), SMR–VSAk (polarizability) and PEOE–VSAk (capture electrostatic 
interactions). The descriptors were computed using the open source cheminformatics toolkit RDKit56.

The descriptors were selected to capture relevant features of the dye's chemical structure and without resorting 
to DFT or other computationally intensive calculations. Each structure was therefore described by a vector of 
length 2060 (solvent polarity was added as an additional descriptor) with computations taking less than 3 minutes 
to calculate all descriptors for the entire data set.

Machine learning.  In order to identify machine learning models capable of discriminating between the 
different types of shifts (B/N/R), six popular classification schemes were explored: linear discriminant analysis57 
(LDA), k-nearest neighbours (k-NN), kernel-based support vector machines58 (SVM), and tree-based models 
such as classification and regression trees59 (CART), random forests60 (RF) and gradient boosting machines61 
(GBM). Linear discriminant analysis works by identifying a linear combination of the variables (projection onto 
a smaller subspace) that best separates the classes. The k-NN algorithm classifies an object based on a majority 
vote of its k nearest neighbours that are identified by calculating the Euclidean distance from the point of interest 
(the class of which is to be determined) to all the points in training set. Support vector machines perform classifi-
cation by finding the hyperplane that maximizes the margin between the classes58. For a two-dimensional space, 
the hyperplane is a line that divides a plane into two parts such that each class lies on either side. The vectors that 

Solvent NObs

Range 
(nm) P′

Distribution

B:NR B:N:R NB:R

Chloroform (CHCl3) 258 −94–134 4.1 141:117 141:67:50 208:50

Dichloromethane (DCM) 753 −219–190 3.1 429:324 429:188:136 617:136

Tetrahydrofuran (THF) 493 −116–140 4 205:288 205:117:171 322:171

Ethanol (EtOH) 174 −207–102 5.2 47:127 47:51:76 98:76

Methanol (MeOH) 39 −21–122 5.1 15:24 15:12:12 27:12

Acetonitrile (MeCN) 55 −109–108 5.8 22:33 22:7:26 29:26

Toluene 36 −22–64 2.4 16:20 16:11:9 27:9

1,4-dioxane 19 −71–33 4.8 3:16 3:3:13 6:13

Dimethylformamide (DMF) 114 −92–115 6.4 20:94 20:35:59 55:59

Dimethylsulfoxide (DMSO) 20 −38–62 7.2 11:9 11:3:6 14:6

Overall 1915 −219–190 — 909:1052 909:494:558 1403:558

Table 1.  Number of data points (NObs) grouped according to the solvent in which the spectra were measured. 
The third column shows range of the shift (in nm) calculated as λ λ−max

soln
max
TiO2. The relative polarities (P′) for the 

solvents are taken from Snyder104. The last column shows the distribution of the categories formed by 
combining dyes that show no/little change (N), red-shift (R) or blue-shift (B) after adsorption on TiO2.

Figure 2.  Nature of the spectral shift based on the positions of the absorption peaks corresponding to the 
solution phase (λmax

soln) and solid-state maxima (λmax
TiO2). The difference between the two values: 

λ λ λΔ = −max
soln

max
TiO2 is used to determine whether there is a blue shift, red shift or no change upon adsorption.
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define this hyperplane are the support vectors. The tree-based models output a series of if-then-else statements 
where the features are systematically checked to determine a final result. While the CART approach produces a 
single tree, both random forests and GBM are ensemble approaches where the outcome is the combination of the 
the decisions from multiple models. The difference lies in the way the trees are built: RF builds deep independent 
trees, while GBM creates successive models with each tree improving on the previous i.e. they seek to improve the 
result based on the current estimate.

Statistical modelling.  Analysis of the data started with the removal of descriptor columns with little or no 
variation and those containing missing values (due to an inability to calculate one or more descriptors). The data 
was then split randomly into independent calibration (75%) and test (25%) sets. The presence of highly corre-
lated variables (multicollinearity) can affect predictive performance. Following previous studies62,63, a pair-wise 
squared correlation cut-off of 0.90 was applied to the training set, whereby only one (arbitrarily determined) 
among the correlated pair of variables was retained. This reduced the number of variables from 2000 to around 
200. In order to select the best model parameters (e.g. number of trees for RF, depth of the tree, number of neigh-
bours to be considered (k-NN)), a five-fold cross-validation was employed, followed by randomization tests to 
reduce the risk of overfitting. A grid search was carried out to identify the optimal parameter combinations for 
the ML models used. The modelling was carried out using R64. Owing to the class imbalance in the data, models 
trained using performance metrics such as the accuracy are biased towards the more frequent class (sensitive to 
class skews), and may suffer from a lack of generalizability. We have therefore assessed classification performance 
using the balanced accuracy65,66 which is defined as the average accuracy obtained on all classes:

∑=BACC
m

k
n

1
(1)i

m
i

i

where ki is the number of correct predictions in class i, m is the number of classes and ni is the number of examples 
in class i. Other metrics such as the average accuracy (the average per-class effectiveness of a classifier), sensitivity 
(the true positive rate - TPR) and specificity (the true negative rate - TNR) are also reported for comparison67.
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Figure 3.  Distribution of the absorption shifts with respect to the solvents. The letter “B” indicates a blue shift, 
while “N” and “R” correspond to no change (|Δλ| ≤ 10) or a red shift respectively. The solvents are sorted in 
increasing order of polarity from left to right. Polarity values are listed in Table 1. Additional plots are provided 
in the Supplementary Material-II.
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where, for an individual class Ci − tpi, fpi, tni and fni are the true positive, false positive, true negative and false 
negative counts respectively.

Results and Discussion
Manual analysis of the data.  In order to ascertain if there were any noticeable patterns associated with the 
absorption shifts, the experimental data was analysed with respect to the class of the dye, the conjugated spacers 
used, and the number and types of anchoring groups. Figure 4A,B summarize the data in terms of the dye class 
and type of anchoring groups, respectively. For simplicity, we have ignored the solvent medium allowing for a 
broader analysis. Examination of Fig. 4A, shows that dyes based on imidazole12,68 exclusively show red shifts, 
while those based on pyranylidene69 exclusively show blue shifts. All other dye classes exhibit both blue and red 
shifts.

Analysis of the anchoring groups (Fig. 4B) suggests that, those containing catechol, pyridine, and barbituric 
acid are largely red-shifted. The particularly large red shifts in the catechol group are attributable to their abil-
ity to strongly adsorb on to the TiO2 surface70 as well as the increased dipole moment of the surface-bound 
metal-ligand complex26,27. For some of the other groups such as isophorone71, malononitrile72, thiazolidine73 and 
benzoic acid74, a majority of the cases are blue-shifted. The impact of multiple anchoring groups75 was also studied 
(see Fig. F2 in the Supplementary Material-II). The number of dyes containing multiple anchoring groups was low 
(~170). Nonetheless, for the cases studied, there was no significant correlation between the number of anchor-
ing groups and the size or direction of the spectral shift. While for some cases, little or no change was observed, 
others showed moderate to large shifts in either direction76–80. Wu et al.77 observed the maximum absorption 
peak of three triphenylamine dyes in acetonitrile/tert-butanol (1:1, V/V) showed a red-shift with an increasing 
anchoring group number. Compared to the spectra in solution, the peaks did not show any change on the TiO2 
film, which was attributed to the cancelling effect of J-type aggregation and deprotonation. For squarylium dyes 
in particular, Connell et al.81, have shown that the position of dye anchoring points can influence hydrophobicity 
and contact angle of dyes adsorbed to TiO2 surfaces, which in turn can affect the absorption properties. In order 

Figure 4.  Box plots showing the distribution of the absorption shifts (irrespective of the solvent) based on the 
(A) class of the dyes and (B) the anchoring groups used. (A) The “misc” category includes various dyes based 
on pyrazoline, naphthoquinone, N,N-dialkylaniline105, julolidine106, bithiazole107, cyclohexadiene108 etc. (B) 
The “misc” category includes dyes with anchoring groups that include thiazolidine73, aldehyde, hydantoin109, 
isophorone71, phosphonic acid and pyrimidine110. Numbers on the right are the counts of cases found in each 
category.
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examine the impact of mixed solvents, a total of 146 dyes in 12 different solvent mixtures were analysed. The 
absorption behaviour for dyes in mixed solvents is shown in Fig. F3 in the Supplementary Material-II. With the 
exception of solvent mixtures — methanol(MeOH)/chloroform(CHCl3), tert-butanol/acetonitrile(MeCN), eth-
anol(EtOH)-dichloromethane(DCM) and tetrahydrofuran(THF)-DCM, others had fewer than 10 instances. The 
dyes using tert-butanol/MeCN and MeOH/CHCl3 as solvents exhibited a greater tendency to blue-shift. For dyes 
in EtOH-DCM all three categories were equally represented while, for those in THF-DCM, a higher tendency to 
blue-shift was observed.

Several π-conjugated systems such as furan, thiophene and fused aromatic rings have been incorporated into 
the D-π-A architecture as π-linkers82. These units not only affect the light absorption regions of the DSSCs, but 
also influence the electron injection into the TiO2 surface. For the dyes investigated in this study, a majority 
of the structures contained thiophene83 and its derivatives (such as thienothiophene84, indacenodithiophene85, 
dithienopyrrole86) as the π-bridge. Figure F4 in Supplementary Material-II provides a box-plot of the absorption 
shifts for the various π-linkers (over 40 categories identified) used in the dyes. The conjugated spacers based 
on vinylene, ethynylene, furan, thiazole, thiophene and other fused aromatic segments (indole87, fluorene88, 
benzothiadiazole89) showed similar peak shifts in both directions. Other groups such as diphenylquinoxaline90, 
1-chlorobuta-1,3-diene91, dithienobenzotriazole92 and dithienobenzofurazan93 found in a limited number of 
cases were largely associated with red-shifted peaks. On the other hand, those containing linkers based on fused 
thiophene derivatives such as dithienopyrrolobenzotriazole94, cyclopentadithiophene95, thienothienopyrrole96, 
silolodithiophene97 were blue shifted by more than 50 nm compare to the solution.

In conclusion, while for some choices of the dye class, anchoring groups and π-spacers we can identify clear 
patterns, in most cases there is no obvious pattern that can be discerned to predict the nature of the shift. In order 
to consider more formally, the effect of the structure on the adsorption behaviour, we employ machine learning 
the problem of predicting the type of the spectral shift and infer which features influence a set of observations.

Classification performance.  Table 2 summarizes the performance of the ML models across the calibration 
and test sets. In most cases, values for the two sets closely match one other, suggesting that the models generalize 
well. A comparative evaluation shows that both RF and SVM outperform other models on all classification tasks. 
The best performance is seen for the case B:NR, where the RF model achieves a cross-validated BACC = 0.76 
during training and a slightly higher value of 0.80 on the test set containing 484 data points. On the same data set 
however, the LDA model performs only marginally better than random and achieves only a 50% accuracy on the 
other sets. Other models (k-NN, RF, SVM, GBM) are relatively more successful in separating classes by non-linear 
boundaries. Although the other binary classification problem NB:R has a moderate class imbalance ( .~2 5:1), RF 
classification accuracies are only slightly lower with BACC of 0.72 on the calibration and 0.73 on the test set.

In the case of the multiclass B:N:R problem, a BACC = 0.71 for the calibration data is obtained. Corresponding 
values for the test set are somewhat higher at 0.76. To better understand the classification performance, the ML 
predictions for the test set was examined on a class-wise basis. Values of the per class balanced accuracy (BACC), 
sensitivity (TPR) and specificity (TNR) are shown as bar plots in Fig. 5. For the blue-shifted (B) cases, all models 
show a high sensitivity, albeit with a fairly high rate of false alarms (decreased specificity). Given that there are 
twice as many cases of blue-shifted dyes, the classifier favours the majority class. A common practice to address 
the class imbalance problem is to balance them artificially where, for instance, cases from the minority class are 
replicated or alternatively by ignoring cases from the majority class. However, for the data sets in this study, no 
visible improvement in performance was observed when such schemes were used.

Descriptor analysis.  Compared to the CART scheme which uses a single tree, the tree-based ensemble 
models such as RF and GB are somewhat “black box” in nature given that they use multiple trees to arrive at a 
given outcome. We have therefore attempted to interpret the models by way of variable importance plots (shown 
in Fig. 6) that provide a qualitative understanding of the contribution that each input variable makes to the 
model98,99. We focus on the RF models that show the best performance. To this end, we examined the 10 most 
significant variables in the RF model trained for each task. The variable contributions are scaled to have a maxi-
mum value of 100 and those with higher values are expected to have a high predictive power. Given that the data 
contains various solvents, the relative polarity (P′) is a major contributor. To assess the impact of a single descrip-
tor, we calculated the accuracy of the classifier obtained by setting a threshold (typically the mean) on the value 
of the variable98. For the test set, the constitutional descriptor “FractionCSP3” (fraction of sp3-hybridized carbon 
atoms) yielded a single variable classifier with an accuracy of 54% and 58% for the entire data. The BalabanJ 
descriptor is indicative of a large degree of branching of the molecule. This agrees with the experimental data 

Method

B:N:R NB:R B:NR

TRAIN TEST TRAIN TEST TRAIN TEST

GBM 0.68 0.71 0.73 0.72 0.73 0.72

RF 0.71 0.76 0.76 0.80 0.76 0.80

CART 0.61 0.61 0.65 0.65 0.65 0.65

k-NN 0.65 0.70 0.71 0.66 0.71 0.66

LDA 0.52 0.53 0.60 0.59 0.60 0.59

SVM 0.71 0.73 0.77 0.79 0.77 0.79

Table 2.  Balanced accuracies obtained by the ML models for the calibration and test data.
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which shows that the large size of branched dyes can lead to a poor dye loading on the TiO2 surface28,100. The 
E-state descriptors (MinEStateIndex, MaxEStateIndex, MinAbsEStateIndex, MaxAbsEStateIndex) for each atom 
in a given molecule reflect the steric and electronic effects of the surrounding atoms.

External validation.  In order to test the performance of the ML models on unseen data, we examined 
the absorption behaviour for 3 dyes quercetin, 2,5-dihydroxytetraphthalic acid and carminic acid (purchased 
from Sigma-Aldrich) in ethanol and THF (see Fig. 7). Experimental details are provided in the Supplementary 
Material. While two of the dyes (T01, T02) show negligible change on adsorption, carminic acid (T03) shows 
a very small blue shift. However, based on the selected criteria (|Δλ| ≤ 10) they are categorized as NR. The RF 
predictions for the dyes are listed in Table 3, which shows that all instances are correctly classified. We also 
investigated electronic absorption spectra of the isolated dye as well as those adsorbed on titania using a (TiO2)9 
cluster101. The Gaussian 09102 calculations were carried out using the B3LYP functional and the 6-31G(d,p) basis 

Figure 5.  Bar plots showing the multiclass prediction performance on the test data. For each model, the per-
class balanced accuracy, sensitivity and specificity are compared.

Figure 6.  Variable importance plots for the RF model computed for each task: B/NR, B/N/R and NB/R. Only 
the top 10 most important variables are shown for each task. The bars show the contribution of the matching 
feature to the prediction. A missing bar for a given variable indicates that the said variable was ranked lower.
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set for the C, H, O and N atoms and the effective core potential LANL2DZ basis set for the Ti atoms. Solvent 
effects were considered using the using the conductor-like polarizable continuum model103 (CPCM) along with 
the CAM-B3LYP functional. Computation times varied between 6–10 hours per structure. Although TD-DFT 
was not able to accurately predict the absorption peaks, its performance with respect to identifying the nature of 
the shift is comparable with that of the ML approach, albeit at a much higher computational cost.

The predictive performance of the RF model was also tested on an additional unseen data set. A second round 
of literature search was undertaken that yielded an additional set of 60 data points corresponding to 34 diverse 
dyes that included triphenylamine, indoline, bodipy, julolidine, and pyrenoimidazole based donors. Solvents in 
this list included dichloromethane (14 cases), THF (19), acetonitrile (6), toluene (9), DMF (6) and methanol (6). 
Table 4 summarizes the performance of the RF model on the second test set. The evaluation metrics are similar to 
those seen for the initial test set and reinforce the initial assessment of generalizability of the models.

Overall, the ML models, trained using only “two-dimensional” information consisting of atom types and 
connectivity, are capable of identifying dyes that have a propensity to blue- or red-shift on adsorption. A similar 
theoretical assessment using TD-DFT approaches requires the calculations to be carried out on both the isolated 
dye molecule isolated and adsorbed on TiO2 clusters32. While the descriptor calculations are completed in less 
than a second, evaluations using DFT/TD-DFT approaches took more than 6–8 hours per structure. On the 
other hand, despite not being provided with the details about contributing factors such as the adsorption mode 
and strength of dye-cluster coupling, the ML models are able to deduce the nature of the absorption shift with 
reasonable accuracy (~70–80%).

In this work, we have outlined a data-driven approach that we believe could serve as a useful tool to exclude 
dyes adsorbed on TiO2 that are likely to exhibit undesirable photosensitization behaviour. We have shown that the 
approach can indicate the exact nature of the spectral shift in 70–80% of the dyes inspected. The predictive mod-
els afford a higher reliability than any experienced human expert. In addition, the advantages in terms of speed 
and versatility will certainly outweigh any possible gains that may be achieved with the more time-consuming 
DFT-based approaches. The models can be easily integrated into material screening frameworks that allow for the 
rapid computational assessment of candidate structures.

Figure 7.  Structures of 3 dyes quercetin, 2,5-dihydroxytetraphthalic acid and carminic acid (purchased from 
Sigma-Aldrich).

Dye Solvent λsoln
max λ TiO2

max Shift ML DFT

T01
Ethanol 373 376 NR NR NR

THF 370 376 NR NR NR

T02
Ethanol 372 370 NR NR NR

THF 376 370 NR NR NR

T03
Ethanol 495 487 NR NR NR

THF 497 487 NR NR NR

Table 3.  Comparison of the experimental and machine learning (RF) predictions for dyes (T01: quercetin, 
T02: 2,5-dihydroxytetraphthalic acid and T03: carminic acid shown in Fig. 7) in different solvents. The UV-VIS 
absorption spectra for the dyes in ethanol and THF and on TiO2 are shown in Figs F5–F7 in the Supplementary 
Material-II.

Category BACC ACC Sensitivity Specificity

B:NR 0.81 0.83 0.77 0.85

NB:R 0.81 0.75 0.94 0.67

B:N:R 0.71 0.73 0.56 0.86

Table 4.  Classification performance for the RF model on a second independent test set.
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Data availability
The data used in the article were manually extracted from literature. The molecular structures (in SMILES 
format), values of the spectral shift and corresponding references have been made available in the Supplementary 
Information. Scripts used in the calculation of the molecular descriptors are available upon request.
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