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Chapter 1

Offshore turbines with bottom-fixed or floating
substructures

Dr. Denis Matha1 Dr. Frank Lemmer2 and
Prof. Dr. Michael Muskulus3

1.1 Introduction

1.1.1 Offshore Substructures
Wind turbines are applied offshore since 1991, when the first offshore wind farm in
Vindeby, Denmark was commissioned. According to GEWEC, beginning of 2018
about 18,814 MW of offshore wind capacity has been installed, with the majority
comissioned in the UK (6.8GW), Germany (5.4GW) and China (2.8GW). Recent
auctions in Europe with subsidy-free winning bids mean that offshore wind can be
produced economically at market-price, making offshore wind one of the most eco-
nomic sources of renewable energy and it is expected that the capacity will grow to
100-120 GW by 2030.
Offshore wind turbine substructures can be generally categorized into two different
types of foundations:

• Bottom-Fixed Substructures
The majority of fixed substructures are monopile and jacket substructures, which
are steel structures fixed to the seabed by driven piles or suction buckets. Fur-
thermore, gravity-based substructures made from concrete and steel tripod or
tripile/multipile foundations have been built. While the depth ranges of both,
monopiles and jackets is continuously extended due to novel monopile manu-
facturing techniques enabling pile diameters well above 10 m, and jackets in
O&G applications having already been applied in water depths beyond 300m,
there is a common understanding that beyond a depth of 50-80m, fixed struc-
tures will become less economic than floating foundations.

• Floating Substructures
Floaters are typically applicable in water depths beyond 40m. They are catego-
rized in terms of how they achieve hydrostatic stability in pitch and roll. Shallow
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drafted (typical draft < 10 m) barge or ring-pontoon shaped structures are sta-
bilized by the waterplane area; deep-drafted spar foundations (typical draft of
> 70 m) achieve hydrostatic restoring in pitch and roll through their low center
of gravity (achieved by heavy ballast at bottom of spar) relative to the center
of buoyancy; tension leg platforms (TLP) are stabilized by the tendon system,
i.e. the TLP hull has sufficient excess buoyancy to keep the tendons under ten-
sion in all conditions avoiding any slack line events. Column-stabilized semi-
submersible designs (often three- or four-column designs with the wind turbine
placed centrally or on one column) are stabilized by a hybrid combination of
both waterplane area and ballast. Alternative configurations also are proposed,
however they can all be categorized into the above.

1.1.2 General introduction into modelling of substructures in
offshore wind

The uniqueness of this book is that the modeling and simulation challenge in each
area is described with a holistic eye toward the integrated, multi-disciplinary nature
of optimal wind plant design. As computational resources continue to expand, it is
no longer essential to subdivide into highly granular modeling elements. Analysts
can avoid inherent errors and inaccuracies that result from putting too much physics
outside the individual model boundaries. Other texts, like [1], [2] or [3] are avail-
able that describe hydrodynamics in more detail, but this chapter is meant to provide
guidance and insight into a systems perspective by clarifying interfaces between sub-
systems. The section describes the inputs, outputs and boundary conditions for the
substructure modeling area so that its integration into the overall system of the wind
turbine and wind farm becomes clearer.
It is the opinion of the authors that progress in modeling and simulation for design
will not only depend on ever-increasing accuracy within single disciplines and in-
creasing computational performance enabling more detailed and higher discretized
numerical analyses, but also depends on the multi-disciplinary understanding and
broader modeling scope. Furthermore it shall always be considered, that in prac-
tise uncertainty in results is not only related to the accuracy of numerical models,
but also to the model inputs (e.g. extrapolated extreme metocean conditions, which
inherently are uncertain as they are based on past events) and the actual as-built sys-
tem uncertainties (which are unknown during the design phase). This is the reason
for application of safety factors in every technical design process, which are highly
unlikely to be reduced even if simulation accuracy becomes highly accurate in cer-
tain fields. This section introduces relevant modelling interfaces, hydrodynamic load
models, coupling schemes and discusses practical aspects. The next sections provide
more detail on modelling aspects covering the description of ocean waves and asso-
ciated wave models (1.2) and an explanation of the wave-structure interaction and
hydrodynamic load models, as well as mooring system models (1.3). The chapter is
concluded by a brief summary of the modelling limitations and an outlook (1.4).
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1.1.3 Interfaces
For the offshore substructure, the physical boundary conditions are represented by
the following interfaces:

• Interface to the wind turbine tower:
Typically for an offshore wind turbine this is the flange connection of the tran-
sition piece to the tubular steel tower. At this interface the loads from the wind
turbine are introduced into the substructure. Wind turbine loads are discussed
in a different chapter in this book in more detail.

• Air-Substructure interface:
Above seawater level, the substructure is influenced by aerodynamic wind loads,
i.e. the surface pressure differences caused by turbulent wind. Due to the low
elevation above sea level resulting in low wind speed (wind speed increases
typically with a power or logarithmic law over height), typically these loads are
relatively small compared to the rotor thrust loads and the wind loads on the
tower. Aerodynamic aspects are presented in a different chapter in this book in
more detail.

• Water-Substructure interface:
The loads acting from the water surrounding the substructure, in simple terms,
are a result of the surface pressure and viscous shear forces generated by waves
and currents interacting with the substructure (cf. Navier Stokes equation).
From a macroscopic viewpoint, the metocean conditions, i.e. the incident waves
and currents, are usually driven by wind and tidal effects, and possibly also
by seismic events. The ocean wave spectrum is dominated by wind generated
waves accounting for more than half of the energy carried by all waves at the
surface, surpassing the contribution of tides, tsunamis, coastal surges, and other
factors. There are two types of wind generated waves at the ocean surface, wind
seas and swell waves. As waves propagate away from their generation area,
or when their phase speed overcomes the local wind speed, the result is called
swell. These waves can travel long distances across the globe. Wind seas are
generated locally and are strongly coupled to the local wind field; swells are
generated remotely and are not directly coupled to the local wind field. Cur-
rents consist of wind and tidal contributions.
The presence and relative motion of the substructure itself also influences the
pressure in the surrounding fluid (radiation and diffraction). The resulting hy-
drostatic and hydrodynamic loads are described in more detail in the following
sections.

• Soil-Substructure interface
At the piles or anchors, the contact of the substructure with the surrounding soil
is a key interface particularly for the design of fixed structures, as it is the final
interface into which the loads from wind and waves acting on the wind turbine
are transferred to (some energy is dissipated into the fluid as well, particularly
for floaters). In the context of soil-pile/anchor or soil-mooring line interaction,
geotechnical considerations are highly relevant. The resistance from the soil to
vertical and lateral forces is dependent on the stratification, material and density
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of the soil layers, as well as the cyclic loads exerted onto the soil from the wind
turbine. Geotechnical aspects are presented in a different chapter in this book in
more detail.

Designing offshore fixed or floating substructures for wind turbines requires mod-
elling of all relevant external loads at the above interfaces, i.e. compared to onshore
wind turbines additional loads from wind, waves and currents need to be represented.
Furthermore, the interaction of the piles, anchors or mooring lines with the sour-
rounding water, soil and seabed must be considered. Additional challenges and con-
siderations for the design and optimization of support structures for fixed-bottom
turbines and floaters have been discussed in the literature [4, 5].

1.1.4 Modelling of hydrodynamic loads
This chapter focuses on the numerical modelling of hydrodynamic loads on the sub-
structure and mooring system. Figure 1.1 presents schematically how the design-
relevant loads on the substructure from the external environmental conditions are
typically modelled. In principle, the inputs and outputs to the force/loading models
are:

• System parameters
– Mass
– Geometry (i.e. wetted surface geometry, water depth/bathymetry)
– Material properties (i.e. stiffness, damping)

• Environmental conditions
– Wave conditions, usually described by a one- or two-peaked wave spectrum

(parameterized by peak spectral periods and shape parameters, scaled by a
significant wave height) and information about its directionality

– Current conditions, usually represented by a separate wind generated com-
ponent, conditioned on the wind speed, and a tidal generated component
varying with the rise and fall of the tide, both with a current profile over
water depth and directionality information.

– Water level changes from tides and storm surges
• Simulation outputs

– Pressures/sectional forces/moments on and stresses within the substructure
– Elastic deformations and rigid body motions of the substructure or moorings

On the left-hand side of the figure, the input for the metocean wave and current
conditions is provided by a spectrum. The spectrum is parametrized for the specific
site conditions by defining the free surface boundary conditions in terms of signifi-
cant wave height and peak spectral period. Under consideration of the water depth,
a wave model is applied to describe the seaway, i.e. enabling the derivation of fluid
kinematics and pressures. The wave models used are usually potential flow theory
based linear or higher order models, with the higher order models being more rele-
vant for extreme wave events and shallow water locations due to their ability to better
describe nonlinear steep waves common in such conditions.
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With the knowledge of the substructure’s wetted surface geometry and the wave
model’s outputs, the hydrodynamic force models can be applied to compute the
forces on the substructure and moorings. The force models can generally be cat-
egorized into semi-empirical models such as Morison equation (using wave kine-
matics as an input, empirically considering viscous effects by drag coefficients), po-
tential flow models (accounting for hydrostatics, radiation and diffraction forces,
but without consideration of viscous effects) or Navier-Stokes based models such as
Reynolds-averaged Computational Fluid Dynamics (CFD) approaches, typically us-
ing one- or two-equation turbulence models. The linear force models can be applied
in both frequency and time domain, while the higher order force models can only be
solved in the time-domain, involving the integration of every term of the governing
differential equations over a time step.
Most widely used modeling techniques for fixed and floating bodies can be catego-
rized into those assuming a “transparent” substructure, and those modeling the effect
the substructure has on the wave field. The undisturbed wave kinematics over depth
can be calculated through potential flow approaches giving analytical formulations.
When it comes to the second approach, representing the impact of the substructure
on the wave field, the Boundary Element Method (BEM) is applied in computer pro-
grams that solve for either the pressure on a fixed body in the domain (diffraction
problem), or for the pressure on a moving body in response to its own motion (radi-
ation problem).
The outputs from these force models are pressures, respectively forces acting on the
substructure and mooring line elements. The structural dynamics of the substruc-
ture are usually modelled by approaches based on rigid body (still often applied
for floaters) mechanics, beam-based truss representations, or finite shell or volume
element models. Often these different levels of structural models are also applied
in global-local cascading modelling schemes, where initially loads on the global
model are calculated (e.g. a rigid or beam based model), and the local details are de-
signed in a sequential step using the global loads applied onto a local finite element
(FE) model. The structural model responds to the forces by determining structural
stresses, elastic deflections and rigid body motions, which is fed-back into the hydro-
dynamic load model in terms of positions and velocities. The positions and velocities
at structural interface nodes are also transferred to the soil and wind turbine models
(addressed in other chapters).

1.1.5 Coupling Schemes
As evident from the introduction, various models for the different load contribu-
tions, as well as the structural representation of the substructure exist. The coupling
of these different force and structural models, i.e. how loads and motions are ex-
changed between different models and domains, is a numerically challenging prob-
lem: In general the applied coupling schemes are classified in terms of physical
single and multi-field problems, also generically called partitions. A second classi-
fication is in terms of the spatial dimensions of the coupling. For substructure prob-
lems, the coupling is always a surface problem where the two fields only interact
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Figure 1.1 Hydrodynamic Modeling of the Offshore Wind Turbine System.

on their common surface, such as the wetted hull surface. In contrast, volume prob-
lems with overlapping fields as in case of porous materials or electrical problems are
usually not present, if neglecting soil processes (with its two main manifestations,
liquefaction and erosion) as commonly done. The third classification is regarding
time integration methods used. Here implicit and explicit algorithms are used. Im-
plicit algorithms (e.g. backward Euler integration) require information of the current
state and the state in the next timestep (necessitating iteration), whereas explicit algo-
rithms (e.g. forward Euler, Runge-Kutta schemes) require only data from the states
of the current timestep to advance the solution.
In substructure modelling, two approaches are most relevant: (1) monolithic and (2)
partitioned schemes.
The monolithic (or simultaneous) treatment combines all physical and computational
fields into one system. Outcome is one specialized system of PDEs discretized over
the whole domain which is solved with one integrator. All interactions are accurately
modelled and the stability of the system is high. Problems of this approach are that
different characteristic properties such as different time and spatial-scales (meteo-
rological large scale turbulence vs. airfoil boundary layer flow) cannot be treated in
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an optimized manner leading to greater complexity and typically smaller required
timestep sizes and higher resolution domain discretizations, ultimately leading to
higher resulting computational time. Also dedicated monolithic programs for each
specific problem must be developed where a small change in FOWT design could
require a new code development. For integrated FOWT (and general WT) simula-
tion no pure monolithic approach has been developed until now except for simple
reduced models for control design purposes neglecting many important physical ef-
fects; but recent developments allow for that option. In the past years, CFD models
have been applied by a number of researchers (see e.g. [6]) modelling both the air
and water in a monolithic CFD model (however, not accounting for the wind driving
the waves), with the resulting loads being applied to a beam or FE based structural
model.
Partitioned treatment is characterized by modelling the separate fields computation-
ally independently using separate integrators with their own time steps. The inter-
action of the fields is ensured by communicating coupling quantities. Continuity,
stability and accuracy must be ensured through careful implementation and formu-
lation. The advantage of this treatment is the possibility of great customization and
optimization of the independent modelling in each field facilitating also modular-
ity and flexibility in the modules used in each field. It also becomes possible to
separately model different structural components such as turbine rotor and support
structure [7]. Existing methods and software can be easily reused and also industry-
confidentiality-friendly black-box solutions are possible. These advantages led to
offshore wind turbine designers using partitioned methods to simulate the system.
This treatment is typically applied for the hydrodynamic coupling of the below pre-
sented load models with the structural models.

1.1.6 Practical modelling challenges
While in principle a range of simplified and advanced modelling methodologies ex-
ist to simulate offshore wind turbines, there are a number of practical limitations
and constraints, which need to be considered in commercial projects. These can be
summarized into limited availability of data due to missing site data and restrictions
related to data exchange and confidentiality, the split of commercial projects into
different design phases with tight time restrictions, and the commercial availability
of computational resources and suitable software.

Currently, the design of Floating Offshore Wind Turbines (FOWTs) builds on
the existing and established methodologies for onshore wind turbines on the one side
and on the procedures for offshore structures on the other side. An overview of the
current design process for fixed-bottom offshore turbines in comparison to floating
turbines is provided in the paper [8] and the related project report [9]. In that pa-
per an example is given where the fixed-bottom substructure and the turbine were
designed based only on a limited exchange of system parameters between the two
designers.
Consequently, no integrated design is performed but only load calculations with ap-
proximate or simplified models, delivered by the supplier. What does this imply?
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On the one side it means that the structural dimensioning of offshore wind turbines
follows proven and certified procedures and the systems satisfy risk and safety reg-
ulations. On the other side however, the confidentiality policy impedes full-system
optimizations. Especially for the new technology of FOWTs it is important to save
costs at early stages of the design process as a large portion of upcoming lifecycle
costs is committed already at the beginning of the design process, see [10, p. 44].
The technological and market state for FOWT reported in [10] names the challenges
due to intellectual property and the need for collaborative research, and highlights on
the other side the large potential for cost reduction related to the platform size [10,
p. 143]. Despite the problems related to proprietary data it is the task of research
to address the potential of an integrated design methodology and the potential for
cost reduction towards a sustainable offshore wind technology. However, not only
confidentiality is an issue, but also practical availability of site specific data such as
metocean and soil reports is often limited, particularly in the early design stages.
Also, the wind turbine is often not selected at early design stages, requiring generic
assumptions. Therefore, often the database is simply not present to feed highly de-
tailed models with sufficient data to obtain more accurate results.
The project time constraints result in further challenges: In [9] the first out of three
design stages includes mainly so-called spreadsheet calculations, but no simulation
studies of the entire FOWT system — often also related to the above mentioned
limited availability of site data or information on the wind turbine. After this stage,
however, many decisions are taken and the design is being frozen. Therefore, design
tools of “medium-fidelity” are important to enable designers to run comprehensive
sensitivity and optimization studies already during the conceptual design phase es-
tablishing the basis for the decision-making in the subsequent phase.
While often solutions for advanced and highly accurate methods exist, availability
of computational resources and software is also limiting their application in practise.
This is why e.g. CFD in offshore wind applications is only applied in an industrial
context to very specific problems, such as wave run-up analyses on secondary struc-
tures such as boat landings. A more extensive application of CFD to a wider range of
load cases is limited by the high computational demands as well as the challenges in
robust and reliable a-priori tuning of the CFD model parameters without availability
of measurements (particularly turbulence models are very sensitive to grid quality,
discretization or surface roughness and other parameters that can significantly influ-
ence the results).

1.2 Ocean wave modelling

The aim of numerical wave models is to determine the sea surface elevation and
water particle velocities that are needed to estimate wave forces. Wave modelling
can take place on different length scales, ranging from global circulation models
(typically coupled with an atmospheric model) to local models used for detailed
wave condition modelling at one specific site of interest, e.g., a single turbine. In
between lie regional models that resolve local wave conditions in an area of interest,
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e.g., containing a planned wind farm. The level of detail typically increases with
decreasing scale due to computational limitations at larger scales.

A first distinction can be made between depth-averaged and depth-resolving
models. Whereas depth-resolving models simulate the full 3D water volume, depth-
averaged models do not resolve vertical water transport and focus on the vertically
integrated wave energy or sea surface profile only. This makes this class of models
unsuitable for global ocean modelling where vertical currents play an important role.

The main application of depth-averaged models is to resolve large-scale wave
motion in deep waters and to provide far-field information as input for more detailed
wave models. The most common approach for large-scale wave modelling are spec-
tral models such as WAM [11] or WaveWatch III [12]. These models simulate the
energy transfer between wave frequency components due to nonlinear wave-wave
interaction, white capping and reflection on coastlines or groups of islands, and the
generation of waves by wind. The SWAN model [13] also includes current-wave
interaction, dissipation due to bottom friction on sandy bottoms in the continental
shelf, and wave breaking processes in the coastal near-zone, and is therefore suited
for coastal applications [14]. However, as no phase information is retained, these
models cannot resolve phase-dependent wave diffraction, so the detailed wave pat-
tern around structures in the coastal zone cannot be correctly determined.

More details can be resolved with wave models based on the mild-slope equa-
tions [15] that can more accurately account for (mildly) varying sea bottom profiles,
but these are restricted to linear waves. Therefore, these models can only determine
wave conditions at a nearshore location where wave nonlinearity is not too strong.

In cases where nonlinear, steep waves or very shallow seas need to be consid-
ered, the Boussinesq model and its various extensions is a phase-resolving depth-
averaged model that offers high spatial resolution. Waves in deep seas can be accu-
rately described by linear wave theory. Waves in extremely shallow waters can be
described by shallow water equations. The Boussinesq equations cover the middle
ground, from intermediate water depths to shallow waters and can include terms to
represent wave breaking. Therefore these models have been included in commercial
coastal engineering software (e.g. MIKE21 by Danish Hydraulic Institute (DHI))
and are currently an active area of research regarding their application to wind farm
design and siting.

Depth-resolving models solve the 3D Navier Stokes equations and have two ap-
plication areas. For global circulation modelling the solution procedure is highly
simplified and quasi-three-dimensional hydrostatic pressure models are used (e.g.
Princeton Ocean Model [16]). The other application area is detailed modelling of
complex wave problems, such as flow around non-trival structures (e.g. a gravity-
base wind turbine), flow-structure-interaction with a floating wind turbine, the deter-
mination of wave slamming events, or the simulation of critical offshore operations
(e.g. wind turbine installation). Used with a suitable turbulence model, these mod-
els are what is commonly meant by the “CFD approach” to water wave modelling.
Without a turbulence model, the models are known as potential flow models. This
latter class of models is able to simulate highly nonlinear waves in both deep and
shallow waters, but is not able to simulate breaking waves or the interaction with
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small bodies or structural details, during which viscous effects play a major role. It
is these last two classes of models which are mainly of interest in this chapter.

In practice, ocean waves can be separated into linear surface waves with a si-
nusoidal profile and steeper waves with a profile of relatively larger troughs and
comparably shorter crests. Different wave theories exist to model the kinematics
of such waves. Usually potential flow theory is employed with different orders of
non-linearity of the free surface, see [17, p. 75] for a visualization of the different
regimes. Linear waves can be modeled in a straightforward manner with potential
flow theory. If no obstacles in the domain are considered, the wave kinematics can
be solved for explicitly, see e.g. [3, p. 5-12]. The remainder of this section focuses
on the left column of Figure 1.1, the free surface modeling and the determination
of wave kinematics for a single wind turbine, while fluid-structure interaction is the
subject of Section 1.3.

1.2.1 Statistical descriptions
A wave spectrum is a convenient way to describe the wave conditions at a site (in
not too shallow waters), and is a typical output of large scale wave modelling, as
discussed above, or from on-site measurements with a wave buoy. This reflects the
empirical fact that the wave elevation process is approximately a Gaussian random
process, at least for not too steep waves [18], fully characterized by its autocorrela-
tion function.

The spectrum is the Fourier transform of the autocorrelation function, and can be
understood as a frequency decomposition of the variance of the underlying stochas-
tic process. Given a spectrum, it is possible to construct synthetic time series with
the same spectral properties. The standard approach is to sum up a large number of
discrete frequency components with random phases and amplitudes chosen propor-
tional to the (square root of the) spectral power density at those frequencies [19].

1.2.2 Potential flow models
The basic equations of fluid flow for an incompressible fluid are the Navier Stokes
equations, given in terms of the fluid velocity vector u, as

∇ ·u = 0 (1.1)
∂u
∂ t

+u ·∇u =− 1
ρ

∇p+g+ν∇
2u. (1.2)

The first equation is the continuity equation. The second equation is the momentum
equation. Its left hand side is the total derivative of the fluid (the sum of the local
and the convective acceleration), the right hand side sums up the forces acting on
the fluid particles. These consist of pressure forces, body forces due to gravity, and
viscous forces. Here ρ denotes the density of the fluid, p is the pressure, and ν is the
kinematic viscosity.

Strictly speaking, sea water is a viscous fluid, and the motion of the fluid in the
sea is subject to internal viscous dissipation and viscous effects at the sea surface
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and seabed (and other boundaries, such as immersed structures). Viscous effects
are typically limited to a thin boundary layer, however, so the motion of the main
body of water is often irrotational. It can therefore be described by a scalar velocity
potential ϕ , which is a considerable mathematical simplification, as the water particle
velocities u are then given by the gradient

u =−∇ϕ. (1.3)

The continuity equation can then be written

∇ ·u = ∇(−∇ϕ) =−∇
2
ϕ = 0, (1.4)

which is the Laplace equation for the velocity potential. Fluid flow that occurs as a
solution to this equation is called potential flow. Since the Laplace equation can be
solved more efficiently than the full Navier Stokes equations, this is the traditionally
most common way to resolve the wave kinematics for engineering applications.

The relationship between fluid pressure and velocity potential is given by the
Bernoulli equation. Its general form reads

−∂ϕ

∂ t
+

1
2

∇u ·∇u+
p
ρ
+gz =C(t), (1.5)

where C(t) is an integration constant depending on boundary conditions.

1.2.3 Linear wave theory
The Laplace equation (1.4) is linear and can be solved analytically in certain cases.
The most useful case occurs when the boundary conditions are linearized, which
leads to linear wave theory, also called Airy or small-amplitude wave theory. As-
suming that the velocity potential is periodic both in time (with period T ) and space
(with wavelength L), the solution is

ϕ =−H
2

g
ω

coshk(h+ z)
coshkh

sin(kx−ωt), (1.6)

for constant water depth h (see e.g. [20] for a detailed derivation). Here H = 2a is the
wave height (twice the wave amplitude a), ω = 2π/T is the wave angular frequency,
and k = 2π/L is the wave number. The vertical coordinate z is zero at the mean sea
level and negative inside the water column. This leads to a free surface displacement

η =
H
2

cos(kx−ωt), (1.7)

and water particle velocites and accelerations can be readily calculated as well. Note
that the approximation is based on the assumption that both the wave steepness ka
and the relative wave amplitude a/h are small. Simplification of the hyperbolic
depth-dependence in (1.6) is possible for short waves (kh� 1), the so-called deep
water limit, or for long waves (kh � 1), the so-called shallow water limit. The
resulting formulas are not repeated here, but can be found in any standard monograph
on hydrodynamics (e.g. [21]).

When predicting wave forces from linear theory, one complication is that the
formulas for water particle velocity predict unrealistic values above the mean sea
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level. The empirical correction by Wheeler [22] addresses this by stretching the
potential to an effective height zd/(η +d), so that

ϕ =−H
2

g
ω

coshk
(

h+ z d
η+d

)
coshkh

sin(kx−ωt), (1.8)

where η is the instantaneous sea surface elevation.

1.2.4 Frequency domain representation
Linear wave theory allows for the use of frequency domain calculations, which is at-
tractive due to their high efficiency. Especially when calculating the entire system in
the frequency large improvements in terms of computational speed can be achieved,
see [23] and [24].

Linear waves travel with the phase speed vp, which is a function of the wave fre-
quency. The dispersion relation ω2 = gk tanhkh established the connection between
the behavior in time and the spatial dimension of linear waves. For deep waters with
a depth-to-wavelength ratio h/λ > 1/2 it can be simplified to ω2 = gk, leading to
the phase speed

vp =
1
2

√
g
k
=

1
2

√
gλ

2π
(1.9)

where k denotes the wavenumber, see [2, Chapter 6.2].
The incident wave time series at different locations along the wave direction x

can be represented as function of the wavenumber k with the factor eikx in the
frequency-domain.

The wave kinematics over depth z can now be calculated from the amplitude
spectrum of the wave height Aζ (ω). This results from the square root of the power
spectrum Sζ ζ (ω) with a scaling, dependent on the discretization. The kinematics,
with the water particle velocity and acceleration in both horizontal and vertical direc-
tion, are necessary for the calculation of the wave forces through Morison’s equation.
In the frequency-domain the velocity calculation results in

vx(ω,x,z) = ωAζ (ω,x)ekz (1.10)

vz(ω,x,z) = iωAζ (ω,x)ekz, (1.11)

where Aζ (ω,x) denotes the instantaneous wave elevation amplitude spectrum. Con-
sequently, the horizontal velocity is in phase with the instantaneous free-surface ele-
vation ζx, while the vertical velocity is 90 degrees ahead of the free-surface elevation.
The water particle acceleration can be written as

ax(ω,x,z) = ω
2Aζ (ω,x)ekz (1.12)

az(ω,x,z) =−ω
2Aζ (ω,x)ekz. (1.13)

If obstacles are present in the computational domain, e.g. fixed or floating bod-
ies, the dimensions of the body determine the characteristics of the wave-induced
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forcing. Potential flow can model effects from diffraction (of the waves around the
floating body) as well as the forces from radiated waves acting back on the body.
Viscous loads, on the other side, are entirely neglected by potential flow theory. This
is the strength of the empirical Morison equation, addressed later in this section.

1.2.5 Nonlinear wave theories
A straightforward extension of the small amplitude wave theory is to solve the po-
tential flow equation while keeping higher order terms in the boundary conditions.
This perturbative approach results in the so-called Stokes wave theory of order n,
when terms up to n-th order are retained. For example, the second-order sea surface
displacement is (assuming that the mean sea level is zero),

η =
H
2

cos(kx−ωt)+
H2k
16

coshkh
sinh3 kh

(2+ cosh2kh)cos2(kx−ωt). (1.14)

The validity of the different Stokes wave theories is mainly governed by require-
ments on the convergence of the perturbation expansion. A typical criterion is that
the wave should have a single crest, which leads to restrictions on the maximum
wave height for which Stokes theory remains valid.

The Stokes approach becomes quite involved for higher orders, and in practice
orders above fifth are seldom used. An alternative that is computationally more ad-
vantageous is stream function wave theory [25]. Using the stream function, the water
wave problem automatically satisfies the kinematic free surface boundary condition.
It is assumed that the stream function has the form

Ψ(x,z) =Cz+
N

∑
n=1

Xn sinh(nk(h+ z))cosnkx. (1.15)

The coefficients Xn of the n-th order stream function need to be determined by an
iterative procedure that is easily implemented on a computer. However, a stream
function only exists for two-dimensional problems, in general, so the method is only
applicable to model long-crested (planar) waves.

Finally, we briefly mention cnoidal wave theory, which is a shallow water wave
theory with periodic waves. The sea surface displacement is developed in terms of
Jacobian elliptic integrals cn(u). Although well suited to shallow water, it seems
that stream function theory can provide an even better fit to the sea surface, if a
sufficiently high order is used.

1.2.6 Computational fluid dynamics approaches
In cases where detailed wave-structure interaction needs to be resolved, numerical
methods based on solving the underlying PDEs are typically employed. As this is a
highly specialized area, we only mention the main approaches and refer the reader
to the dedicated literature (e.g. [26]).

A distinction can be made between mesh-based and mesh-less methods. Mesh-
based methods discretize the spatial domain into a number of connected elements
or cells. The finite difference method (FDM) is the most straightforward and ap-
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proximates the derivatives of the underlying PDE at the nodes of the mesh by a
finite difference scheme. The finite volume method (FVM) can be seen as the in-
tegral formulation of the FDM over a small control volume around each node and
has a similar formulation. Popular high-order schemes for solving the convection
equation in these approaches are the Crank-Nicolson implicit method using a sparse
matrix solver, and the Lax-Wendroff explicit method. Numerical oscillations are
suppressed by numerical damping using the first order upwind scheme or an alterna-
tive. The finite element method (FEM) is similar, but approximates the solution to
the PDE instead of the equations themselves.

The main computational challenge with the Navier Stokes equations is the de-
termination of the pressure. As the pressure depends on the velocity field, it is nec-
essary to solve the Poission equation ∇2 p =− f (u), which involves the solution of a
large sparse matrix equation. Various methods have been developed to increase the
efficiency of the pressure determination, e.g. the SIMPLE and PISO algorithms.

Another computational challenge is the tracking of the free surface. Two popular
approaches are the VOF method [27] that tracks the density in each cell, and the more
recent level set method [28] that tracks the evolution of a level set function ψ which
is zero on the interface boundary.

A turbulence model is needed to represent viscous processes. For engineer-
ing purposes, the Reynolds stress model is typically used, resulting in Reynolds-
averaged Navier Stokes (RANS) equations. Various ways exist to model the Reynolds
stresses, the most commonly used are simple one- or two-equation models such as
the Spalart and Allmaras model [29] or the k− ε model. More recently, large eddy
simulation (LES) has been used that applies a spatial filter to the Navier Stokes equa-
tions and uses a subgrid scale model to resolve the effect of turbulence below the
modelled scale, e.g. based on the eddy viscosity concept.

Commercial software that implements the above methods (typically the FVM or
the FEM) is readily available in general-purpose multi-physics simulation packages
such as ANSYS/FLUENT or STAR-CD. Direct numerical solution (DNS) of the
NSE without application of turbulence models implies that the whole range of spa-
tial and temporal scales of the turbulence must be resolved, requiring an extremely
refined computational mesh. Therefore, the computational cost of DNS is very high,
even at low Reynolds numbers and typically DNS is only applied for fundamental
research problems such as turbulent boundary layer problems using supercomputers.

For solving the Laplace equation in potential flow problems, the BEM is popular.
It is based on reducing the volume integration into a surface integration, reducing the
dimension of the problem by one. The traditional software implementing the BEM
for water wave problems has been WAMIT, but more recent alternatives include
ANSYS AQUA and the open-source code NEMOH.

An example of a mesh-less method is smoothed particle hydrodynamics (SPH),
that approximates the solution of the PDE by a number of Lagrangian particles [30].

1.2.7 Breaking waves
Wave breaking is the process by which high waves become unstable and collapse. It
is an important process by which waves transform excess energy into turbulence and
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occurs naturally in deep and intermediate water, when the critical wave height Hb =
1
7 L tanhkh is exceeded. In shallow water, the criterion is based on the ratio of wave
height to local water depth, e.g. in the classical Hb = 0.78h criterion [31]. Breaking
waves in shallow water occur in different types that have different implications for
the design of structures. The surf similarity parameter

ξb =
tanβ√
Hb/L0

(1.16)

determines the breaker type [32], where β is the seabed slope and L0 is the wave
length in deep water. For ξb < 0.4 spilling breakers occur that are similar to regular
waves at breaking limit, for 0.4 ≤ ξb < 2.0 plunging breakers occur, and for ξb >
2.0 surging breakers occur. Plunging breakers are the most problematic for wind
turbines, as the overturning wave crest can lead to impulsive forces at impact that are
more than one magnitude higher than typical wave forces from non-breaking waves.

Breaking waves and their loads have been studied for monopile foundations [33]
and recently also for jackets [34, 35], but due to the instable, random nature of the
breaking process (that involves air entrainment in the breaker front), there exists
considerable uncertainty regarding the loads during wave breaking events.

1.2.8 Extreme waves
For engineering purposes it is important to understand the extreme wave conditions
that can occur at a given site. The problem is often split into two tasks. First, an
extreme seastate is determined that corresponds to a given return level, e.g. a “50-
year” seastate with an annual exceedance probability of 1/50. Then the highest
wave in such storm conditions is determined, typically assuming a storm duration of
3 hours.

Let us consider the second problem first. The highest wave in a given time
interval can be estimated statistically (see e.g. [36]), but simulation of such a wave
with an appropriate theory (e.g. Stokes 5-th order) results in a regular wave that
does not accurately predict the wind turbine response. An alternative is to simulate
irregular waves and the turbine response during the full time interval of the storm,
but this is computationally expensive. The state of the art is to generate the most
probable extreme wave by aligning the wave frequency components (with zero phase
difference) and suitably modifying the amplitudes. This embeds the desired extreme
wave in a realistic irregular wave field that is convenient for response simulations.
The approach is known as the NewWave theory4 [37].

Returning to the first problem, this is typically addressed by fitting an extreme
value distribution to the available data (e.g. wave height timeseries) and extrapolating
to the desired return level [38]. However, the seastate is in general not described by
a single parameter, and one has to find a multivariate extreme value. These are not
uniquely defined but rather result in a contour line (e.g. of the spectral parameters Tp
versus Hs of suitably extreme seastates). The classical way to deal with this is to fit
a parametric distribution to the data with specified statistical dependence, for which

4A similar approach can be used for efficiently simulating extreme wind events.
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extreme quantiles can be obtained analytically. However, it is possible to estimate the
dependence between seastate parameters directly from data using so-called copulas
[39].

It should be remarked here that the actual design problem is often not determin-
ing the extreme environmental conditions, but rather determining the environmental
conditions with the most extreme response (due to dynamic amplification these are
typically not the same). This is a difficult problem, and only approximate solutions
are known. The state of the art in determining an extreme seastate for a defined
structural failure probability is the environmental contour method [40], an extension
of the Inverse First Order Reliability Method (IFORM).

1.2.9 Taifuns and hurricanes
Extreme storms such as taifuns and hurricanes result in special environmental con-
ditions that are not well characterized by standard approaches and for which special
considerations should be made. For example, the wave field is more asymmetric; this
effect can be modelled with a JONSWAP sea state spectrum by modifying the fetch
parameter [41]. Of course also the wind loads need to be modified appropriately,
for which some guidance exists [42]. An alternative is the use of climate simulation
models to derive approximate environmental conditions during storm passage [43].

1.2.10 Directional spreading
In real sea conditions only multi-directional (short-crested) waves are found. The
waves typically occur with a preferred direction, and the variability of the wave
direction can be described with a statistical spreading distribution,

D(θ ; f ) =
S( f ,θ)

S( f )
(1.17)

where S( f ,θ) is the full two-dimensional wave spectrum evaluated at frequency f
and direction θ . The dependence on frequency is often neglected, and a number of
models have been proposed for describing the observed wave directionality [44].

Probably the most widely used one is the cos2s θ model,

D(θ) =
Γ(s+1)

Γ(s+ 1
2 )2
√

π
cos2s

(
θ

2

)
. (1.18)

The parameter s is related to the directional width

σ
2
θ =

∫
π

−π

(
2sin

(
θ

2

))2

D(θ)dθ (1.19)

by σθ =
√

2
s+1 .

This directionality of waves was often neglected in the past, e.g. due to limi-
tations of software and computational resources, and ocean waves are still mostly
being modelled as long-crested (planar) waves for engineering purposes as of today.
However, the two-dimensional nature of the directional spreading of waves around
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the mean direction can lead to significant differences in wave loads, which is relevant
for offshore wind turbines [45].

1.2.11 Currents
The presence of an ambient current U (e.g. due to tides or a storm surge) can change
the amplitude, frequency and direction of waves. Current-wave interaction transfers
energy between waves and currents, which needs to be accounted for in large-scale
wave models. Two important additional effects are the shifting of frequencies and
current-induced refraction. The former is similar to the familiar Doppler shift, so in
a fixed frame of reference the absolute frequency is ω = σ + kU , compared to the
relative frequency σ (the frequency measured in the frame moving with the current)
of the wave.

A second, higher-order effect is that a non-uniform ambient current induces a
change in the wave direction. This is similar to the effect that a change in water depth
has on the wave direction.

Finally, it is noteworthy that the water particles in a linear wave move not on
closed orbits, i.e., a net transport of mass occurs. This so called Stokes drift is
only one of the possible mechanisms by which waves induce currents. However, in
engineering practice these later effects are typically not relevant.

Currents complicate the evaluation of wave loads. For fixed structures the tradi-
tional approach is to simply superpose the current velocities on the wave velocities
and then use the Morison approach (see next Section), but experiments indicate that
this is only an approximation of the actual wave loading.

1.3 Wave structure interaction

In Section 1.1 the concept of slender structures, not altering the surrounding wave
field was introduced, as opposed to larger ones, yielding diffraction effects. For those
larger ones, or structures with multiple bodies (i.e. column-stabilized FOWTs), the
Boundary Element Method (BEM) solves the potential flow problem, introduced for
linear waves in Section 1.2.2, including the body boundary conditions. The bound-
aries are discretized in the form of panels, and the correct boundary conditions are
modelled with sources, sinks and dipoles, see [46, p. 102]. Analytic solutions exist
for cylindrical shapes, but also for non-cylindrical shapes through conformal map-
ping techniques (so-called Lewis forms), see [17]. This method is usually used for
floating structures, see Section 1.3.3. Slender structures can be modeled with semi-
empirical Morison’s equation, see Section 1.3.4, using the wave kinematics of Sec-
tion 1.2.2

The regimes, in which the two assumptions hold are shown in Figure 1.2, using a
nondimensional description of the characteristics of the wave forcing on a body. On
the abscissa is the diffraction parameter ka, the product of the wavenumber k and the
body radius a = D/2, which can be expressed with the wavelength λ as ka = πD/λ .
The vertical axis is the Keulegan-Carpenter number, which can be expressed in two
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ways, with the fluid velocity amplitude v̂ and the wave period T or with the fluid
excursion amplitude x̂, see [3, p. 12-16]

KC =
v̂T
D

= 2π
x̂
D
. (1.20)

The wave breaking limit H/λ = 1/7 for deepwater waves is shown in Figure 1.2. It
is independent of the body dimensions, see [3, p. 13-4]. Inertial loads (acceleration-
dependent) are dominant for small KC number, whereas drag becomes more impor-
tant for larger KC. In a given sea state a FOWT spar will therefore be more drag-
dominated than a deepwater offshore structure of larger diameter. The latter will
also be more likely to cause significant diffraction as ka increases with the diame-
ter. This means that in this case a potential flow-solution or an additional diffraction
correction model is necessary for Morison’s equation (which neglects diffraction).
In general, the diffraction effect is important for ka > 0.5, see [47, p. 174]. Both,
potential flow theory for floating bodies in waves, as well as Morison’s equation will
be introduced in the following, together with an extension of the wave force models
for the time-domain.
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Figure 1.2 Wave-induced force component domains. Taken from [24], originally
from S.K. Chakrabarti.

1.3.1 Hydrostatics
For FOWTs, the hydrostatic properties represent the most fundamental constraint for
the structural design of floating offshore substructures. It determines the hydrostatic
buoyancy (basicially the ability to support the wind turbine mass without sinking),
the stability and the restoring characteristics of the floater under static design loads.
For example hydrostatics determine the static pitch inclination of the floater under
maximum rotor thrust, which often is an important initial design driver. During
the design process, the hydrostatic properties can be obtained using simple analytic
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approximations. These are often called spreadsheet calculations and require inputs
such as the center of gravity and the hull shape characteristics. The hull shape deter-
mines the submerged volume, the center of buoyancy (center of submerged volume)
and the horizontal cross-sectional area (waterplane area). The restoring stiffness in
vertical (heave) direction is given according to [17] by

C33 = ρwgAwp (1.21)

with the waterplane area Awp in the xy-plane, the water density ρw and the gravity
constant g. The hydrostatic restoring stiffness C55 in pitch-direction is clearly im-
portant due to the necessary reaction to the aerodynamic thrust force at hub height.
It can be calculated with the second moment of the waterplane area

I22,wp =
∫∫
Awp

x2dxdy (1.22)

and remains with the submerged volume O and the structural mass m as

C55 = ρwgI22,wp +ρwgOzcb−mgzcm. (1.23)

The distance of the center of buoyancy zcb and the center of gravity zcm from Still
Water Level (SWL), here positive in downward direction, is the main contributor to
the restoring for spar-type platforms since the waterplane area is very small. For
symmetric, free floating bodies C44 = C55 holds and all other entries of the hydro-
static stiffness matrix CCC ∈ R(6×6) are zero.
For floating substructures, the hydrostatic intact and damage stability needs to be
assessed. Stability in this context refers to a measure of resistance to either cap-
sizing or heeling. The analysis is typically performed by applying special software
packages which, based on the discretized hull surface geometry, compute righting
arm (GZ) curves for various loading and flooded conditions. For the analysis, the
heeling moments by wind and other forces must be computed, and the righting lever
must be compared to the heeling lever. The hydrostatic restoring forces and mo-
ment are traditionally computed using a linear hydrostatic approach, assuming the
submerged structure is a rigid body (structural flexibility and deformations are ig-
nored). The computation assumes that the hydrostatic restoring force and moment
are due to infinitesimal changes of translational and rotational displacements. The
change in hydrostatic forces and moments is represented using a stiffness matrix
conventionally calculated at the initial static equilibrium position. In reality, hydro-
static restoring forces and moments are nonlinear (if measured relative to a fixed
reference frame), for floating wind substructures particularly in roll and pitch. The
hydrostatic nonlinearity can increase motion response amplitude and lead to cap-
sizing. The influence of nonlinearity is most important for large displacements and
couplings among heave, roll, and pitch — such large displacements are common for
floating wind turbines. Moreover, external aerodynamic and hydrodynamic loads on
the substructure and wind turbine are functions of the response and are directly influ-
enced by the relative velocity and acceleration between these loads and the system
components on which they act. Methods exist to analytically calculate the non-
linear hydrostatic restoring accurately for common geometrical shapes, and iterative
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numerical methods can be applied for complex geometries to obtain the nonlinear
restoring. Structural flexibility can also be accounted for by e.g. taking into account
one or more deflection eigenmodes.

1.3.2 Fixed structures
The main boundary conditions for the hydrodynamic analysis are given by the wind,
wave (including directionality and joint probabilities) and soil characteristics. Fol-
lowing the metocean and geotechnical analyses and considering the particular failure
and operating modes of the wind turbine as well as symmetry aspects of the substruc-
ture, the load case table (LCT) setup is defined. The LCT outlines the conditions for
every single load simulation to be run to determine the ultimate and fatigue loads
for the design load cases defined in the selected standard. Typically the designs are
performed according to standards such as IEC61400-3 or DNV-OS-J101, requiring
natural frequency analysis (NFA), extreme event / ultimate limit state analysis (ULS),
fatigue limit state analysis (FLS), serviceability limit state analysis (SLS), acciden-
tial limit state analysis (ALS) and, in case the structure contains slender members
(jackets or semi-submersible floaters), vortex shedding analysis (VSA).
In terms of numerical methodologies and software, for the substructure design, as
primary loads (external loads from aero- and hydrodynamics) and response (struc-
tural responses, load effects) analysis tools, flexible finite element beam-based or
flexible multibody methods are used to perform static or dynamic (incl. spectral)
analysis of spatial frames, truss structures and piping systems subjected to vari-
ous kinds of loads (gravity, acceleration, transport, temperature, pressure, buoyancy,
wave, current and wind). Finite shell element or volume element based approaches
are typically used for analyses of details such as influences of welded attachments on
the primary structure, complex plated structures such as the flange between the pile
and the transition piece and to investigate pile buckling particularly near mudline and
increased ovalization of the pile. The accurate representation of soil structure inter-
action is important for fixed-bottom structures, where typically a subgrade modulus
method with non-linear and depth dependent load-deformation (p-y) characteristics
of the soil springs is utilized. If sufficient information on soil properties and sophis-
ticated constitutive models are available, more advanced FE based methods are also
applicable, which reveal more physically realistic failure modes.
The modelling of fixed offshore wind substructures in terms of hydrodynamics re-
lies mostly on approaches based on the Morison equation. While the assumption
of hydrodynamically transparent structures is often not valid anymore for large di-
ameter monopiles (> 10m), the Morison equation is still applicable if the empirical
parameters are calibrated accordingly. Potential flow based radiation/diffraction the-
ory is usually not applied for fixed structures. One reason for this is because these
approaches cannot be used with higher order wave models, necessary to represent
non-linear steep waves common in shallow water depths where fixed structures are
located. Methods which are applied for larger diameter fixed structures are therefore
based on the MacCamy and Fuchs approach that establishes an analytical closed
form solution to the linear wave diffraction problem for free surface piercing cylin-
drical vertical structures. The theory originally was derived for Airy waves, but has
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been extended also to second order waves.
While sophisticated load simulation tools exist for both offshore structures and wind
turbines, the model choice depends often not only on the technological capabilities
but on the availability of detailed model data. Due to the commercial project real-
ity regarding confidentiality and distribution of responsibilities and associated risk, a
number of alternative approaches are applied. These methods need to account for the
practical limitations in industry, regardless of today’s tool capabilities for perform-
ing coupled integrated loads analysis. This is considered a key difference to FOWT
design, where, at least for the final detailed design, only a fully integrated simula-
tion approach is considered to be viable to accurately determine the loads. Load
calculation approaches common for fixed-bottom design can be distinguished in:

• Superimposed method, characterized by isolated aerodynamic (no waves) and
hydrodynamic load simulation (no wind5) with simplified boundary conditions

• Sequentially integrated method, represented by iterative load simulations using
compatible tools

• Holistic integrated approach using fully coupled models

1.3.3 Floating structures: Linear theory
The linear, first-order coefficients of the floating rigid body equation of motion can
be solved with hydrodynamic panel codes with 3D surface meshes as boundary con-
ditions. Usually the decoupled problems of radiation (or maneuvering) and diffrac-
tion (or seakeeping) are considered, see [2, Section 6.19]: The radiation prob-
lem is solved for still water with the floating body boundary oscillating at various
frequencies. Its linear solution is the frequency-dependent radiation damping ma-
trix BBB(ω) ∈R(6×6) and the frequency-dependent added mass matrix AAA(ω) ∈R(6×6).
The diffraction problem is solved for a fixed floating body with waves of different
frequencies (and directions) as boundary condition. The linear solution of the diffrac-
tion problem is the frequency-dependent wave excitation force coefficient XXX(ω) ∈
R(6×1), which gives, multiplied with the wave height amplitude spectrum Aζ , the

first-order force spectrum AAA(1)
F . All coefficients are lumped quantities, calculated

with respect to the selected reference point. In the frequency-domain the equation of
motion can be set up assuming a linear superposition of the radiation and diffraction
problem, resulting in

−ω
2 [MMM+AAA(ω)]ξξξ + jωBBB(ω)ξξξ +CCCξξξ = XXX(ω)Aζ (ω) = AAA(1)

F (1.24)

with the complex vector of differential generalized coordinates of the unconstrained
body in all three directions and orientations ξξξ ∈ R(6×1) as

ξξξ =
[

xp, yp, zp, αp, βp, γp
]T

, (1.25)

see also [2]. With Eq. (1.24) the Response Amplitude Operator (RAO) (AAAξ/Aζ )
can be calculated, the transfer function from the wave height ζ0 to the rigid-body
generalized coordinates ξξξ .
5The effect of the interaction between rotor motion and wind field known as aerodynamic damping is then
typically modelled with a linear viscous damper at tower top.
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The two potential flow solutions of the coefficients of the left and the right-hand
side of Eq. (1.24) are specifically useful: The matrices AAA(ω) and BBB(ω) represent the
system properties, whereas XXX(ω) represents the excitation force coefficient of the
wave force spectrum AAA(1)

F , on the right-hand side of the Equation of Motion (EQM).

1.3.3.1 Frequency-to-time-domain transformation
For time-domain simulations of freely floating bodies Cummins [48] derived a valid
frequency-to-time-domain conversion of the EQM (1.24). The linear stationary de-
scription in the frequency-domain needs to be extended to account for the transient
motion of the floating body (which can arise from wind-induced motion, transmitted
through nonlinear force models, including the controller). In terms of hydrodynam-
ics such a transient motion yields pressure forces due to radiated waves by a motion
impulse of the hull. The frequency-domain dynamics of the bulk of fluid particles
surrounding the hull are given by

KKK( jω) = BBB(ω)+ jω [AAA(ω)−AAA∞] . (1.26)

The “retardation” function KKK( jω) is composed of a real part, the damping coeffi-
cient, and an imaginary part, which is the added-mass coefficient. The time-domain
fluid impulse response function KKK(t) can be obtained according to Ogilvie [49], by
transforming either the real part or the imaginary part of Eq. (1.26) to the time-
domain as

KKK(t) =
2
π

∫
∞

0
BBB(ω)cos(ωt)dω =− 2

π

∫
∞

0
ω [AAA(ω)−AAA∞]sin(ωt)dω. (1.27)

Consequently, the retardation function KKK( jω) can be computed from the panel code
results yielding the impulse response function KKK(t) after a suitable Fourier transfor-
mation.

The integral radiation pressure forces can now be written in the time-domain
with an acceleration-dependent term with the constant coefficient AAA∞ and the convo-
lution of the impulse response function KKK(t) with the body velocity ξ̇ξξ according to
Cummins, [48], as

FFFrad(t) =−AAA∞ξ̈ξξ −
∫ t

0
KKK(t− τ)ξ̇ξξ dτ. (1.28)

This is commonly implemented in state-of-the-art floating wind simulation tools
such as FAST, see [50], and others. The resulting Cummins’ equation

(MMM+AAA∞)ξ̈ξξ +
∫ t

0
KKK(t− τ)ξ̇ξξ (τ)dτ +CCCξξξ = FFFwave(t). (1.29)

is the time-domain equation of motion of a rigid floating body. The calculation of
the exciting forces FFFwave(t) in Eq. (1.29) in the time-domain is usually done with
an Inverse Discrete Fourier Transform (IDFT). An alternative approach is presented
in the next section. The convolution integral of Eq. (1.29) brings some computational
burden since a time history of platform velocities has to be stored and an integration
over a number of past timesteps is necessary. The number of timesteps necessary has
to be determined according to the hull shape.
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1.3.3.2 Parametric models
Various approaches exist to develop unified state-space models that approximate (1.29).
The objective of this is to obtain linearized hydrodynamic models, which can be
more readily transformed into the time-domain. The term “parametric” here means
a Linear Time-Invariant (LTI) model with a nonzero number of states (in the case of
a state-space model), or poles (in the case of a linear transfer function). Using meth-
ods of system identification, a new LTI model is established that represents the best
fit to the original model from the panel code, and which depends only on a few pa-
rameters/coefficients. A toolbox for identifying the state-space model for the forces
of radiated waves from body motion has been developed in [51]. Based on this, a
functionality has been added to the wind turbine simulator FAST, see [52].

An even simpler approach to avoid the convolution integral (1.29) is to approx-
imate the frequency-dependent added mass AAA(ω) through its value at representative
frequencies. This “constant matrix” approach, reported in [53], was assessed for
FOWTs in [24] with promising results.

Next to the radiation problem, also the wave force excitation coefficient XXX(ω)
can be approximated by a linear state-space model, as proposed by [54] and applied
to FOWTs in [55]. The input to the parametric wave excitation model is simply
the wave height as “measurable sensor” instead of the hydrodynamic forces, which
are the simulation inputs in other models. These “disturbance models” are essential
for vessel stabilization and disturbance rejection such as Dynamic Positioning (DP)
control of offshore support vessels. For FOWTs, with complex excitations from
wind and waves, such disturbance rejection methods are very promising, see [56]
for model predictive control and [57] for feedforward control using look-ahead wind
measurements.

1.3.3.3 Second-order slow-drift forces
The first-order force transfer function XXX(ω) of Eq. (1.24) is a linear description of
the wave forces as response to the wave spectrum. If a panel code representing
the second-order potential, from the nonlinear component of Eq. (1.5), is used and
integrated up to the free surface additional terms are added to the force-RAO, XXX(ω),
Eq. (1.24) see [46]. The purely quadratic terms of the wave height ζ are usually
neglected in this quadratic correction to the linear BEM. But additionally to these,
forces at the sum and difference of two wave frequencies result. These are products
of first-order terms of the two wave frequencies. Various BEM solvers can compute
the Quadratic Transfer Function (QTF), giving the wave forces from two linear wave
components. The low-frequency force (at the difference frequency) may result in
large amplitudes of motion of the floating body and consequently large loads on
the mooring system. The sum and difference-frequency is equal to the so-called
beat frequency of the two waves, a phenomenon which exists also in acoustics. The
difference-frequency is the one of the bounded long waves, which result from the
envelope of a wave group, see [3].

The second-order potential can be solved with pressure integration at the floating
body, called the nearfield solution. Computationally more efficient is the calculation
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of the farfield solution (based on the momentum equation). However, in this case the
forces are only available in two directions.

The slowly-varying drift force can be calculated based on the QTF, denoted
by TTT (ω,ω), which results from nonlinear panel codes. The force spectral density
matrix in the frequency-domain was given by Pinkster, see [58] as

SSS(2)FF(µ) = 8
∫

∞

0
TTT (ω,ω +µ)Sζ ζ (ω)Sζ ζ (ω +µ)TTT (ω,ω +µ)∗T dω, (1.30)

where µ is the difference-frequency of the bichromatic wave, µ = ωi−ω j and (·)∗T
denotes the complex conjugate transpose. To simplify Eq. (1.30) Newman proposed
in [59] to calculate the force spectrum SSS(2)FF with the diagonal TTT (ωi,ωi), only, instead
of the full QTF. This is reasonable because the QTF does usually not vary much
with the difference-frequency, see [46, p. 157]. The force spectrum with Newman’s
approximation results as

SSS(2)FF(µ) = 8
∫

∞

0
TTT (δ ,δ )Sζ ζ (ω)Sζ ζ (ω +µ)TTT (δ ,δ )∗ dω. (1.31)

with δ = ω + µ/2. In the time-domain, the forces result according to [59] from a
double IDFT as

FFF(2)
wave(t) = ∑

i
∑

j
Aζ (ωi)Aζ (ω j)

∗TTT (ωi,ωi)cos
[
(ωi−ω j)t +ϕζ ,i−ϕζ , j

]
. (1.32)

Newman explains in [59] that the double summation over ωi and ω j of Eq. (1.32)
can be written as the square of a single sum of suitably chosen frequencies of the
arguments. In this case the time series result (formulation as in [60]) as

FFF(2)
wave(t) = θθθ

2
∣∣∣
T (ωi,ωi)>0

− θθθ
2
∣∣∣
T (ωi,ωi)<0

with

θθθ = ∑
i
|Aζ (ωi)|

√
2|TTT (ωi,ωi)|cos(ωit +ϕζ ,i),

(1.33)

where |Aζ (ωi)| is the wave amplitude magnitude at ωi, calculated from the Power
Spectral Density (PSD) numerically and ϕζ ,i is the corresponding phase angle. Note
that the phase convention is here such that ϕ = 0 on the positive real axis. Although
this formulation is computationally very efficient, it has the drawback that it contains
unphysical high frequencies, which need to be filtered. An improved formulation
was proposed by [61] with the product of two sums as

FFF(2)
wave(t) = Re

([
∑

i
|Aζ (ωi)|sgn(TTT (ωi,ωi))

√
TTT (ωi,ωi)exp(i(ωit−ϕζ ,i))

]
·[

∑
j
|Aζ (ω j)|

√
TTT (ω j,ω j)exp(i(−ω jt +ϕζ ,i))

])
. (1.34)

In Figure 1.3 the different formulations for the slowly varying drift force (Eq. (1.31)–
(1.34)) are compared. Comparing the wave spectrum Sζ ζ (ω) on top with the drift
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force spectra SSS(2)FF(ω) it can be seen that the drift forces introduce energy below the
wave frequencies. The mean drift coefficients, calculated with the nearfield solu-
tion (direct pressure integration) are shown in surge-direction in the second plot.
Below are the force spectra and the corresponding time series. The direct frequency-
domain calculation, Eq. (1.31), gives the largest response magnitude. The second
largest response magnitude results from the double sum approach, Eq. (1.32). Com-
paring the original Newman formulation, Eq. (1.33) with the improved formulation
by Standing, Eq. (1.34), the response magnitude is the same at the (low) difference-
frequency, only at frequencies above the wave spectrum the original Newman for-
mulation shows another peak. These are the unphysical frequencies, which need to
be filtered.
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Figure 1.3 Wave spectrum (top), mean drift coefficients T11(ω,ω), surge
slow-drift force spectrum S(2)FF,11(ω) and time series F(2)

11 (t) with
frequency-domain calculation (Eq. (1.31)), double IDFT (Eq. (1.32)),
original Newman approximation (Eq. (1.33)) and Standing et al.’s
formulation (Eq. (1.34)), from [24].

The formulation, implemented in the widely used HydroDyn model, see [50]
and [60] of FAST [62] is the one according to Standing et al., Eq. (1.34). For
the linearized frequency-domain model the spectral densities SSS(2)FF(ω) are computed
through a Discrete Fourier Transform (DFT) of the force time series of Eq. (1.34) in
order to ensure equal difference-frequency excitation for both models.
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1.3.4 Morison’s equation
In recent simulation studies for FOWTs, Morison’s equation has always been con-
sidered as an alternative option to the panel code method with Cummins’ equation
(as described in more detail later). Originally, Morison’s equation was developed to
model the ocean wave forces on slender piles fixed at the seabed, see [63]. It models
the horizontal force ∆ fff in the normal directions k of the body surface on a discrete
“strip” i, which is a cylindrical section with diameter D and length ∆l. The input
to the force model are the undisturbed fluid accelerations aik and the velocities vik.
Here, the Morison forces in the two horizontal directions are defined always in the
inertial frame as

∆Fik

∆l
= kMaik + kD vik|vik| (1.35)

with

kD =
1
2

ρCDD and kM =CMρπ
D2

4
. (1.36)

The inertia coefficient CM results from the added mass coefficient CA as CM = 1+CA,
giving the Froude-Krylov wave forces, represented by FFFwave in Eq. (1.29), as well
as the added-mass forces. It can be shown that Morison’s equation equals the panel
code results for low frequencies with CA = 1, see [47]. As with the coefficient for
the drag CD, contributing to the velocity-dependent force, also the added-mass coef-
ficient has to be determined from experiments, high-fidelity CFD calculations or, for
simple geometries from the literature, e.g. [64].

For floating platforms Morison’s formulation was extended using the relative
motion of the water particles vw,ik with respect to the floating body velocity vb,ik and
their derivatives v̇w,ik and v̇b,ik such that Eq. (1.35) uses the coefficients

vik = vw,ik− vb,ik and aik = v̇w,ik− v̇b,ik. (1.37)

Here, the coefficient kM can also be split to obtain one coefficient for the fluid ac-
celeration v̇w,i and another one for the body acceleration v̇b,i, where the first models
the Froude-Krylov and the latter the radiation added mass, c.f. Eq. (1.29), see [65].
The fluid kinematics are usually calculated assuming “hydrodynamically transpar-
ent” structures, meaning that the body does not alter the fluid motion and diffraction
effects are negligible, as in the case of spar-type platforms (ka < 0.5). With Mori-
son’s equation the added mass force (first part of Eq. (1.35)) is independent of the
frequency. This simplification is valid for structures with little radiation forces, as
is usually the case for slender structures. Using linear wave theory the velocity vw,ik
and acceleration v̇w,ik can be calculated assuming a sinusoidal boundary condition at
the free surface, see [3].

In summary, Morison’s equation offers several practical advantages: Firstly,
the pre-computation of the hydrodynamic coefficients AAA(ω), BBB(ω) and XXX(ω) of
Eq. (1.29) with a panel code can be avoided. Secondly, the distributed forces over
the body surface can be obtained in a straightforward manner, as opposed to the
panel code coefficients, which represent the integral forces over the wetted surface.
This has the advantage that a continuum mechanics approach can be selected in or-
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der to calculate the deformation and the structural stresses of the floating platform.
This is only possible with Cummins’ equation through a post-processing. The third
advantage is a simple representation of the quadratic drag force with coefficients
available in the literature for simple shapes. The Morison drag coefficients are usu-
ally defined such that they cover effects from flow separation and vortex shedding,
which cannot be calculated with potential flow theory and is therefore not part of
the radiation damping matrix BBB(ω). This is due to the fact that linear potential flow
does not include any dissipation model. A result of this assumption is d’Alembert’s
paradox stating that the wave particle velocity does not yield a force on a floating
body. With potential flow the only force in the wave propagation direction is the
acceleration-dependent Froude-Krylov force. Consequently, the viscous drag intro-
duces the dissipative forces neglected by potential flow.

A common approach for modeling first-order wave forces on FOWT platforms is
to combine the advantages of Cummins’ equation with Morison’s equation: 3D panel
codes are flexible with respect to the hull shape geometry as no restriction on, e.g.,
the column diameter-to-wavelength ratio D/λ exists, as discussed with Figure 1.2.
It is therefore straightforward to model e.g. barges or semi-submersibles with Cum-
mins’ equation. Morison’s equation, on the other hand, includes the quadratic drag
model. Therefore, the drag force component of Eq. (1.35) is often added to Cum-
mins’ equation (1.29), see e.g. [66]. As a consequence, third-order excitations be-
come present in the time series of the response due to the velocity component, see
last term of Eq. (1.35). For semi-submersibles a Morison drag term to model the ver-
tical drag force from the horizontal plates (heave plates, damping plates) at the lower
ends of the vertical columns needs to be added to complete the force calculation.

The transfer functions for the Froude-Krylov part are shown in Figure 1.4 , with-
out the velocity-dependent part, in order to compare them to the panel code results.
The added mass coefficients were chosen such that the integral added mass from the
panel code equals the added mass from Morison’s equation. It can be seen that there
is a fairly good agreement for low frequencies. In the introduction a limit of ka = 0.5
was given, above which diffraction becomes important, see Figure 1.2. The diffrac-
tion limit is here 0.997 Hz for ka = 0.5. Beyond this frequency the agreement is
poor, especially in surge-direction. The wiggles result from the dependence of the
kinematics on the longitudinal position and represent the interference of the wave
length with the floater members, see Section 1.2.4.

1.3.5 Identification from model tests
Several methods to identify both Morison coefficients, added mass and viscous drag,
are proposed in [3, p. 12-9] and [2]. Many of these methods, however, are aimed
at reducing the computational effort, as full system simulations were not affordable
in the past. Recently, methods have been proposed to tune the drag coefficients by
running nonlinear simulations in order to identify the best fit of the response. The
added mass is usually obtained from BEM models and not identified from model
tests.

The question of how to upscale the viscous drag to prototype scale is still subject
of current research. Here, CFD methods can be a solution to obtain the viscous
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Figure 1.4 Morison excitation transfer functions GGGFmor(ω) for Froude-Krylov
component only (blue) compared to panel code transfer
functions XXX(ω) (orange), from [24].

drag coefficients for the different members of the hull in both steady flow and in
oscillatory flow conditions. Drag calculation with combined structural and wave
motion to obtain the wave drift damping might be necessary for certain FOWT types.

For floating wind substructures, model tests of the coupled system are often
performed to not only calibrate viscous coefficients, but also to serve as a proof of
concept and to validate coupled analysis results. Here challenges exist regarding the
scaling of aerodynamic and hydrodynamic forces, which are governed by different
dimensionless numbers. The Froude and Reynolds number in practise (in theory, the
fluid density may be changed) cannot be scaled simultaneously. Therefore a number
of approaches have been developed to overcome this problem. The two most widely
used methods are either the Froude-scaling of the aerodynamic rotor thrust curve by
changing the rotor geometry of the scaled physical wind turbine model in the wind-
wave tank, or using software-in-the-loop approaches to compute the scaled thrust
force from the rotor in realtime. Both approaches have their specific limitations and
advantages, see [67] for a description and comparison of currently used methods.

1.3.6 Hydro-elasticity
Coupled FOWT models do usually assume that the floating platform is rigid. For
the calculation of the structural stresses, however, it is necessary to account for the
structural elasticity. So far, this is mostly done through de-coupled Finite Element
(FE)-models. Recently, approaches have been presented to model the structural elas-
ticity in coupled models. In this case, Cummins equation, Eq. (1.29) cannot use the
integrated coefficients for the entire floater, but the distributed ones. Such an exten-
sion has been presented in [68] and [69], taking also the hydro-elastic interactions
into account.
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1.3.7 Wave overtopping and green water
A green water event occurs when an incoming wave exceeds the freeboard and wa-
ter then runs on deck structures. This introduces additional loads and affects the
dynamics and stability of the structure, which is especially relevant for floaters.

As important as it is, such events are typically analyzed with fully featured CFD
simulations, as there is little guidance for evaluating green water events in a sim-
plified way. Some recommendations have been given by Buchner [70], including
possible mitigation measures (e.g. sloping decks). However, the main conclusion is
that increasing the freeboard should be the preferred option.

1.3.8 Mooring System Interaction
Mooring system models combine structural mechanics for the representation of the
mooring line itself with hydrodynamics for the computation of the external fluid
forces and contact mechanics for the forces from line-seabed interaction. In general
the marine environment continually disturbs each part of the mooring line by pertur-
bation from surface waves, surface and subsurface currents, subsurface turbulence,
and internal waves. The line responds to these disturbances with drift motions and
translational and rotational oscillations along with structural deformations. In addi-
tion gravitational forces from the weight of the line in water are constantly forcing
the line to assume a catenary shape. For lines with parts resting on the seabed, the
line-seabed interaction in terms of friction forces on the line and damping must be
considered as well, a problem where a wide variety of models exist. The resulting
motion of the line in turn gives rise to motion of the platform, i.e. both systems are in
general coupled, except for special built-in fairlead design features aiming to decou-
ple the systems. Numerical mooring system models can generally be divided into
two main categories: quasi-static and dynamic modelling approaches. For each of
the two categories, different modelling methods exist as well as different implemen-
tations in integrated aero-servo-hydro-elastic models.

1.3.8.1 Quasi-static Models
Quasi-static models are characterized by the fact that at each instance in time the
mooring system is in equilibrium, i.e. the model is time-invariant and for each dis-
placement of the floater a unique restoring force can be computed, regardless of
the history of the previous motions. This implies that no transient dynamic effects
are considered, such as acceleration-dependent forces from inertia, viscous hydrody-
namic drag forces, forces arising from bending, torsion and internal damping. The
quasi-static models can be categorized into three main approaches:

• Linearized stiffness
The representation of the complete mooring system by a linear 6x6 stiffness
matrix is the most simple approach to model a mooring system. It is only valid
for small displacements around the reference (mean) displacement for which the
linear stiffness matrix has been derived. Typical application of this approach is
in early concept studies, or when a linear model is required.
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• Look-up table
A nonlinear force-displacement relationship can be derived from either quasi-
static or dynamic models (averaged) and then stored as a discretized 3D-lookup-
table, where the restoring force is tabulated for each position of the floater in
3D-space. Using interpolation, the restoring force at any arbitrary position of
the floater can be derived for each individual mooring line. The approach is
able to capture the averaged non-linear restoring characteristics, but is also time-
invariant.

• Analytical solution
Models based on analytical solutions of the implicit nonlinear catenary equa-
tions are the most common quasi-static modelling methodology.

As the analytical solution is the most common quasi-static solution, and also the un-
derlying equations provide some insight into the parameters influencing the restoring
force, a brief summary of the solution for a quasi-static line is provided, based on
[71]. Further descriptions for floating wind mooring system models are found in
[72]. Given a set of line properties, the line geometry can be expressed as a function
of the forces exerted at the end of the line:

x(s) =
H
ω

ln

Va +ωs
H

+

√
1+
(

Va +ωs
H

)2


− ln

Va

H
+

√
1+
(

Va

H

)2
+

Hs
EA

z(s)

=
H
ω

√1+
(

Va +ωs
H

)2

−
√

1+
(

Va

H

)2
+ 1

EA

(
Vas+

ωs2

2

)
(1.38)

where:

ω = gA(ρcable−ρ) (1.39)

and x and z are coordinate axes in the local (element) frame. The following substitu-
tion can be made for Va in the above equations:

Ha = H (1.40)

Va =V −ωL (1.41)

which demonstrates that the decrease in the vertical anchor force component is pro-
portional to the mass of the suspended line.

The equation (1.38) for x(s) and z(s) describes the catenary profile, provided
all entries on the right side of the equations are known. In numerical tools, the
horizontal and vertical force terms H and V are calculated, as the known quantities



“output”
2018/8/2
page 31

Running head recto chapter title 31

typically are the fairlead position variables l and h. The forces H and V can be
computed by numerically solving the following two implicit equations:

l =
H
ω

ln

V
H

+

√
1+
(

V
H

)2
−

ln

V −ωL
H

+

√
1+
(

V −ωL
H

)2
+ HL

EA

(1.42)

h =
H
ω

√1+
(

V
H

)2

−
√

1+
(

V −ωL
H

)2
+ 1

EA

(
V L− ωL2

2

)
(1.43)

The solution for the line in contact with a bottom boundary is found by continuing
x(s) and z(s) beyond the seabed touch–down point s = LB. Integration constants are
added to ensure continuity of boundary conditions between equations.

x(s) =



s if 0≤ s≤ x0

s+ CBω

2EA

[
s2−2x0s+ x0λ

]
if x0 < s≤ LB

LB +
H
ω

ln

[
ω(s−LB)

H +

√
1+
(

ω(s−LB)
H

)2
]
+ Hs

EA + CBω

2EA

[
x0λ −L2

B
]

if LB < s≤ L

(1.44)

where λ is:

λ =


LB− H

CBω
if x0 > 0

0 otherwise
(1.45)

Between the range 0 ≤ s ≤ LB, the vertical height is zero since the line is rest-
ing on the seabed and forces can only occur parallel to the horizontal plane. This
produces:

z(s) =


0 if 0≤ s≤ LB

H
ω

[√
1+
(

ω(s−LB)
H

)2
−1

]
+ ω(s−LB)

2

2EA if LB < s≤ L
(1.46)

The equations above establish the mooring line profile as a function of s. Ideally,
a closed–form solution for l and h is sought to permit simultaneous solution for H
and V . This is obtained by substituting s = L, resulting in:

l = LB +

(
H
ω

)
ln

V
H

+

√
1+
(

V
H

)2
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EA
+

CBω
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(1.47)
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H
ω

√1+
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V
H
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+ V 2

2EAω
(1.48)
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The tension in the line is a function of s along the line:

Te (s) =


max(H +CBω (s−LB) ,0) if 0≤ s≤ LB√

H2 +[ω (s−LB)]
2 if LB < s≤ L

(1.49)

Multi-segmented lines can also be modelled in a quasi-static manner by an ex-
tension of the singleline theory, where several singlelines define a multisegmented
mooring line, see [71]. Here the challenge exists that a singleline solution is given in
a two-dimensional domain, and a complete multisegmented line should be modeled
as a system in a three-dimensional coordinate frame. This is achieved by coordi-
nate transformations of the single line quantities to extend the theory to a three-
dimensional representation. The unknowns for each line are solved in the local 2D
frame and static equilibrium is ensured by solving for line properties that result in
zero sum forces on the nodes in the 3D frame. This process requires two distinct
systems of equations to be simultaneously solved to achieve the static cable config-
uration. The first set of equations are the force balance equations in three directions
for each node, and the second set are the two catenary equations. More details are
provided by Masciola. This problem requires an iterative solution process and con-
vergence may depend on the numerical parameters of the chosen iterative solver.

1.3.8.2 Dynamic Models
The quasi-static methods described above do not account for mooring line dynamic
effects, such as line inertia, the drag of the line through fluid, vortex shedding, struc-
tural damping effects, as well as contact and friction with the seabed. The dynamic
effects are most important for an accurate prediction of the loads within the moor-
ing line itself, as well as at the anchor and top connector. The loss of accuracy for
loads in the wind turbine by applying a quasi-static mooring model in favour of a
dynamic model is usually minor, because the global restoring forces from the moor-
ing system are well predicted also by quasi-static models. Also the mooring system
configuration influences the relevance of dynamic models. For example for systems
where the total mass of the lines in the water column is small and the floater mo-
tions are limited, even though the drag force of the lines through the fluid still might
be significant, dynamics can likely be neglected. When dynamic effects are impor-
tant, a number of simulation approaches have been proposed for dynamic, non-linear
mooring system models. The structural mechanical representations used by dynamic
models are:

• Lumped mass
Usually lumped mass models apply an equivalent lumped mass approach, where
the line is discretized into point masses connected by spring-damper elements.

• Rigid or flexible finite segment
In a finite segment approach (also lumped parameter), the line is discretized into
several rigid or flexible bodies connected by massless spring-damper elements.

• Finite element approaches
Finite element approaches discretize the line usually into beams or volume ele-
ments connected via massless 6-DOF joints.
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• Assumed modes
This approach uses methods using either monomials or shape functions from
modal analysis to represent the line dynamics. The approach is rarely applied in
offshore wind applications.

The hydrodynamic forces on the mooring line are typically represented by Morison-
based approaches, described in another section in this chapter. Morison equation is
well applicable as the mooring line can be considered as hydrodynamically transpar-
ent.

Even with dynamic mooring line models it is difficult to capture vortex induced
vibrations (VIV). This effect is caused by steady currents or by the velocities asso-
ciated with long-period waves and the resulting vortices shed behind the cylindrical
line due to the viscous deceleration of the flow in the boundary layer. The effect
refers to the dynamic loading that occurs as a result of fluctuations in pressure due
to the motion of vortices being shed asymmetrically in the wake of a body. VIV in
principle can excite the mooring line or tendon into vibrations, causing additional
fatigue damage. Mooring systems can be analysed for VIV by advanced CFD meth-
ods or scaled wave tank tests. However, for typical mooring system configurations in
floating wind, VIV are no issue and such advanced CFD or wave tank test methods
are usually only applied for ultradeep Oil and Gas mooring systems.

To model the interaction of the line and the seabed, a contact model is required.
Seabed interaction can be separated into two scenarios: tangential friction between
seabed and line, if the line is resting on the seabed and pulled in tangential direction;
and lifting and grounding interactions, which is a transient effect and occurs in the
proximity of the touch down point (TDP) region, when the line settles on the seabed.
In mooring system modes representing the whole mooring system, both scenarios are
usually treated with the simplified numerical methods. The most simple approach
is to apply a unilateral spring-damper contact force in normal direction (global z-
direction) to the seafloor. This represents the elastic properties of the seabed, so that
a line segment establishing contact with the seabed behaves realistically, and e.g.
does not bounce off or dig in too much. The resulting normal force is output for
usage in the lateral friction computation. This approach of representing the soil as a
bed of linear springs is also used in the O&G industry to model the line-seabed in-
teraction. For the derivation of the linear spring stiffness and damping, geotechnics
offers various approaches with varying complexity, such as the subgrade reaction
method, representing the most simple approach in geotechnics, or methods using the
capacity bearing curve for a strip footing in drained soil to derive the soil stiffness
as a secant stiffness to a nominal embedment. To represent the friction force in tan-
gential direction along the seabed surface acting on line segments in contact with the
seabed, a Coulombic non-linear friction force is applied using the normal force.

The computational speed of the dynamic mooring system models is sensitive re-
garding both physical model parameters and numerical solver properties. Segmented
mooring line models represent serial kinematic chains, which because of the inherent
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relationship of each segment to another (i.e. the anchor segment by induction carries
all other segments) may lead to ill-conditioned mass or inertia matrices of the system
and ultimately a long simulation time. Despite its relative simplicity in the equations,
the contact modelling often has a significant contribution to the computational time.
This negative effect is particularly imminent, if a line segment is frequently in and
out of contact with the seabed so that a friction force on the line bodies is either ap-
plied or not applied; i.e. the right hand side of the equations of motion is frequently
changing abruptly.

More information on dynamic mooring line models for floating wind applica-
tions can be found in [73].

1.3.8.3 Other mooring line modelling aspects
Apart from the above mentioned quasi-static or dynamic mooring models, further
challenges exist:

• For steel chain mooring lines, individual chain links and their interaction, in-
cluding effects such as out-of-plane bending or wear and tear, as well as pitting
and other local effects influencing fatigue lifetime, are not included in today’s
models.

• For synthetic mooring lines, the non-linear stiffness, thermal and structural ef-
fects of the individual fibres and strands interaction, and material degradation
are not considered in mooring design codes.

• Marine growth and corrosion are only represented by simplified approaches,
such as increases of diameter and drag coefficients.

• Line and anchor soil interaction is usually considered by simplified models, at
least for global analyses.

• Effects like erosion around the line, sinking, suction, lay angle of the line, or
other effects affecting the contact model properties are neglected. Soil hystere-
sis, while generally possible to be represented with the selected model, is also
neglected.

1.3.9 Representation of viscous Effects
Ideally, simulations models should be able to compute viscous (drag) forces on struc-
tures from first principles. However, due to the complicated flow patterns that oc-
cur under periodic motions, when turbulent flow features interact with themselves,
such effects are challenging to represent accurately in models. Whereas this has
been somewhat solved for slender-elements with the Morison approach, the issue is
of particular relevance for the design of motion suppressing devices such as heave
plates, commonly used with FOWTs. Typically model tests are needed to determine
accurate damping coefficients, but some success has been achieved recently with
both RANS and LES simulation approaches [74, 75].
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1.3.10 Vortex induced vibrations
When a fluid moves around a structure, both drag and lift forces are induced. The
drag force has been considered previously (Section 1.3.4). The lift force depends on
the flow characteristics and the type of structure. For a structure in steady flow (e.g.
due to a current), vortices are being shed from the boundary layer with a character-
istic frequency given in terms of the Strouhal number S,

f =
SU
D

, (1.50)

and with periodically varying lift coefficient. For a cylinder, S ≈ 0.2. Severe vibra-
tions can occur when the shedding frequency is similar to the (first) eigenfrequency
of the structure. More information on this and related flow-induced vibration phe-
nomeno can be found in the monography by Blevins [76].

In waves, the lift forces reverse every half cycle, and it is the KC number that
determines whether vortex shedding occurs. For a cylindrical structure, vortex shed-
ding occurs for KC > 3. For KC > 5 the vortices are being shed asymmetrically, and
the cylinder experiences a periodically varying lift force. This force has frequencies
corresponding to the wave frequency and its multiples. There does not currently ex-
ist an analytical model of the lift force under such conditions, but a model based on
some simplifying assumptions is available (see e.g. [77]) that predicts forces of the
form

f (t) ∝ ACLU2 sin2
ωt cos(α(1− cosωt)+ψ) . (1.51)

Here ω is the wave frequency, and α = KC ·S modifies the force variations.
Vortex induced vibrations (VIV) could be important for mooring chains and

cables, as well as for jacket members. Due to the complex geometry at jacket joints,
evaluation of the risk and loading from VIV has to be performed with CFD.

1.3.11 Ringing
Ringing of offshore structures is the phenomenon that steep, nonlinear waves can
introduce additional higher-order harmonic loads that are not described by the Mori-
son formula. For cylindrical structures these loads are related to a secondary load
cycle that appears for steep waves shortly after the main load peak [78], and can be
reproduced experimentally. Rainey derived second-order accurate corrections to the
Morison approach that predict an additional “oblique slamming” load component at
three times the wave frequency,

F =−1
8

πρgk2D2a3 cos3ωt, (1.52)

in terms of wave amplitude a, structure diameter D and wavenumber k.
The well-known FNV theory performs an analysis of the third order wave po-

tential resulting in load components at two and three times the wave frequency [1],

F = πρgkD2a2 cos2ωt−πρgk2D2a3 cos3ωt. (1.53)

However, the FNV theory is inaccurate for moderately large diameters and does
not predict the secondary load cycle. Nevertheless, it is able to successfully pre-
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dict higher-order resonant response in offshore structures. Such higher-order nonlin-
ear loads occur at frequency ranges that are relevant for offshore wind turbines on
monopiles and their fatigue analysis.

Also for floaters these loads play an important role. Especially the TLP is sus-
ceptible here due to its low eigenperiod [79]. For an accurate response analysis,
Bachynski & Moan recommend using the second-order QTF together with third-
order FNV loading, while considering only sum-frequency wave components [80].

1.3.12 Wave-soil interaction / Erosion
Geotechnical issues are more generally discussed in a separate chapter, but we men-
tion here two important issues that are specific to offshore foundations.

In areas with erodible seabeds (e.g. consisting of sand), the seabed is a dynamic
environment that continuously changes due to the effect of waves and currents. This
can lead to complex sand wave patterns moving in time [81]. Additionally, the pres-
ence of a structure changes the flow around it, which leads to loss of material around
it. This so-called scour can lead to loss of foundation stiffness and stability, and
needs to be assessed during the design of offshore wind turbines, or mitigated us-
ing available scour protection technology [82, 83]. The largest scour development
typically occurs during periods with very large waves, such as storm events, and the
process can be simulated with the CFD approach.

As wind turbine foundations are subject to cyclic loads from waves and the ro-
tor, the cyclic behavior of soils supporting the turbines is important. Cycling loading
generates excess pore pressures and contributes to the development of shear strains
in the soil, thereby leading to loss of stiffness and, in the extreme case, to a “lique-
faction” of soils. Assessing the stiffness degradation is challenging and ultimately
limited due to uncertainties about actual soil properties [84]. The effect can be mod-
elled with finite element soil simulations for individual cycles, but a major computa-
tional challenge is to predict the long-term stiffness degradation for a large number
of cycles.

1.3.13 Ice-structure interaction
Sea ice can be an important loading condition in some areas. The assessment of
sea ice conditions is complicated by the fact that ice-structure interaction is not a
one-way coupling: the ice gets compacted and eventually fails when the wind tur-
bine moves into the ice (or vice versa). Ice failure by crushing results in loss of ice
load, which results in acceleration of the turbine, possibly triggering another crush-
ing event. This mechanism has been found to result in coupled vibrations at the
natural frequency of the turbine for a large range of ice velocities in the so-called
frequency-locking regime, resulting in considerable fatigue damage.

However, due to the complexity of the ice behavior, there currently does not
exist an accurate ice-structure interaction model, and only highly simplified ice load
models are in use. For example, ISO19906 recommends the use of a sawtooth ice
load forcing function that is periodic with the natural period of the structure [85].
Some progress has been made recently with a stochastic piecewise-smooth model
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that is able to reproduce the three main ice-structure interaction regimes [86], by
modeling non-simultaneous ice failures (as suggested by e.g. Ashby [87]). The in-
sight from this model has resulted in a spreadsheet procedure for preliminary ice risk
analysis [88]. Apart from this, the main alternative seems to perform expensive CFD
calculations of ice-structure interaction, but this has not been fully explored yet.

1.4 Limitations and current developments

Many of the described modeling approaches in this chapter involve assumptions,
which limit the validity of the models. Here, the increasing computational power
can help to realize computationally more demanding models of higher fidelity. Es-
pecially, cases with large nonlinear sea states and motion responses cannot be cov-
ered by today’s engineering models. A simulation of stochastic load cases for fatigue
assessment in the time-domain with high-fidelity models such as CFD, however, is
today not yet realizable. On the other side, a multidisciplinary design optimization
will require a good trade-off of the computational cost of integrated models.

Related to scaled experiments is the challenge for accurate identification of hy-
drodynamic viscous drag coefficients. While already procedures exist to calibrate
these coefficients at model scale, a common procedure for the upscaling of the drag
coefficients to the real scale is yet to be agreed on.

With more and more available large-scale prototypes, instrumentation techniques,
monitoring tools and methods for failure prediction and structural health monitoring
will need to be developed. Such monitoring may also enable statistical and data
science based approaches towards design.

For a reduction of uncertainty in the design process, a reliable prediction of ex-
treme loads and probabilistic design models will be of importance. In this context,
uncertainties in input data are a key limitation for the accuracy of numercial results,
regardless of the model’s inherent accuracy. Here mainly uncertainties in metocean
conditions and soil data are relevant, see e.g. [89], as well as uncertainty in extrapo-
lation methods for extreme events ([90]). Furthermore, differences of the numerical
model to the as-built structure are also an important aspect. To address such un-
certainties research in model updating and digital twin solutions for offshore wind
applications is increasing, see e.g. [91].

Looking further ahead, models encompassing multiple disciplines and large
temporal and spatial length scales (such as a fluid structure CFD-FEM models si-
multaneously resolving the lengthscales of the substructure hull, boundary layer,
and the mesoscale regional climate), are likely to remain both practically impossible
and impractical for the foreseeable future. This is due to the extensive computational
requirements needed for such models, but also due to them not being necessary to
obtain sufficiently accurate design load predictions. Often the couplings and interac-
tions between different scales and disciplines are sufficiently small such that a decou-
pling of models is perfectly acceptable, depending on the quantities the designer is
interested in. For example the influence of an offshore substructure on the mesoscale
wave climate of a region can be neglected when defining the metocean conditions,
as well as (to a lesser extent) the influence of hydroelasticity of a essentially rigid
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large concrete floating structure is likely to not influence the hydrodynamic forces
on the structure itself to any relevant extent. Here reasonable scientific and engineer-
ing judgement is key in order to determine the level of model fidelity required for a
specific purpose. This is why the different discussed models in this chapter, ranging
from simple semi-empirical methods, over medium-complexity potential flow meth-
ods to most complex CFD models, all have their different areas for application and
benefit from incremental improvements within their respective boundary conditions.
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