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1 Introduction

As the search for new particles at collider experiments continues, the full structure of the

scalar sector remains an active subject of theoretical study. Beyond-the-Standard-Model

(BSM) theories assuming a richer Higgs sector are motivated by unanswered phenomeno-

logical questions in the Standard Model (SM) and also by cosmological observations sug-

gesting, amongst other things, the existence of an unknown dark matter particle. One par-

ticularly interesting BSM theory is the two Higgs doublet model (2HDM), which augments

the SM with an additional scalar doublet and predicts new bosons that could have observ-

able signatures at present particle accelerators [1–3]. In particular, perturbative studies of

the 2HDM at high temperatures suggest that it may be possible to explain the observed

matter/antimatter asymmetry by means of electroweak baryogenesis (EWBG) [4, 5].

EWBG is a mechanism for generating an excess of baryonic matter during the elec-

troweak phase transition (EWPT) via non-perturbative sphaleron processes near the bubble

walls that form during a first-order phase transition [6]. However, it is widely known from

lattice simulations performed in the 1990’s that the EWPT in the SM with a physical Higgs

mass of 125GeV is a crossover transition instead of first order, ruling out EWBG in the

minimal SM [7–10]. It has also been demonstrated that another necessary ingredient for

baryogenesis, CP violation, is too weak in the SM [11–13]. However, models with multiple

scalar doublets provide a mechanism for CP violation beyond that of the CKM matrix via

a mixing term between the doublet fields [4, 14], making the 2HDM a viable candidate

for the realization of EWBG. A thorough study of the nature of the EWPT in the 2HDM

could thus provide insight on both the phenomenology of the model and the cosmological

question of matter/antimatter asymmetry.

First-order phase transitions at the electroweak scale are also a source of gravitational

waves, peaked at a characteristic frequency given by the bubble radius, which would be

in the mHz range today [15, 16]. This is within the sensitivity region of LISA, so if the

phase transition were strong enough, its existence and properties could be probed through

the gravitational wave power spectrum it left behind [17]. Studies of gravitational waves

from the 2HDM have been carried out in the past in refs. [18–20]. With the results of this

paper, we will facilitate an improvement in the precision of these investigations.

Frequently, properties of the EWPT are studied in terms of a perturbative finite-T

effective potential [21–29]. This approach contains a serious disadvantage: it is well-known

that in perturbation theory the symmetric phase is associated with disastrous infrared

(IR) problems [30, 31]. Yet, in order to find the critical temperature in perturbation

theory — from the condition that the symmetric and broken minima are degenerate —

information about the value of the potential at the broken minimum, as well as the value

of the potential at the origin, is required. While the former quantity can be determined,

as at sufficiently large field values perturbation theory is applicable, the latter quantity

cannot be computed due to the non-perturbative nature of the symmetric phase. This

means that an accurate determination of the critical temperature of the phase transition

— as well as some other thermodynamic quantities — is beyond the scope of perturbation
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theory. The determination of these quantities in perturbation theory is always inaccurate

without information about the behavior of the potential near the origin. For this reason,

reliable determination of these quantities requires use of non-perturbative methods: in

practice, lattice Monte Carlo simulations. In the non-perturbative studies of the SM in

ref. [7], considerable deviations from perturbative computations of the effective potential

were found at small field values, and a more recent comparison in ref. [32] reports an

enhancement of ∼ 50% in the latent heat.

In this paper, we take a different approach from earlier perturbative studies, carrying

out a procedure known as finite-temperature dimensional reduction (DR), explained in

detail in ref. [33], to construct effective three-dimensional theories for the 2HDM. While

the construction of the effective theories is perturbative in nature, the DR procedure au-

tomatically implements the required resummations for IR-sensitive contributions [33–35].

Each of these theories can readily be studied non-perturbatively on the lattice in an IR-safe

manner. In particular, we describe a mapping to a SM-like effective theory for which a

non-perturbative study is straightforward by making use of the lattice results of ref. [7].

An application of this method is presented in a companion paper [36], where we present

the results of parameter-space scans. Technical details of the required calculations, as well

as generalized parameter mappings to the effective theories, are presented in the paper

at hand.

Despite the fact that DR and lattice methods in the context of the EWPT have been

successfully applied to the SM [33, 37] (for which the pressure has been computed using DR

in refs. [38, 39]) and the minimal supersymmetric standard model (MSSM) [40–44], these

methods are not widely used for BSM models with an extended scalar sector. Our hope is

that this detailed work will make the DR approach more transparent, as it is a valuable

alternative to the widely used, fully perturbative method. Technical details presented

in the appendices of this work have also recently been used in ref. [45], where DR has

was applied to the SM augmented with a real triplet, previously studied perturbatively in

ref. [46]. Similar techniques are currently being applied to the real-singlet extension of the

SM as well, while this model has already been analyzed — in limited regions of parameter

space — with the three-dimensional approach in ref. [47] (for perturbative analyses of the

EWPT in the singlet extension, see refs. [48, 49]). A compact and illuminating review of

the use of dimensional reduction has been presented in ref. [50]. In the 2HDM, previous

applications of DR can be found in refs. [51, 52]: we extend their results by fully including

contributions from the U(1) gauge field and keeping certain parameters complex, which

will allow our parameter mapping to be applied to the CP-violating 2HDM.

This paper is organized as follows. In section 2 we introduce the model in Euclidean

spacetime, while in section 3 we present the effective three-dimensional theories in a

schematic form, before collecting together the main results of this paper: the matching

relations between the full theory and the effective theories. The validity of our DR is also

discussed. In section 4 we summarize key aspects of our study and outline future prospects.

Some phenomenological implications of our study are discussed in the companion paper,

ref. [36]. In the interests of readability, many of the technical details of our derivation and

results are relegated to the appendices.
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2 Description of the model

We will work in a D = d+ 1 = 4− 2ǫ dimensional Euclidean spacetime.

2.1 Full theory in four dimensions

The Lagrangian of the full theory reads

L = Lgauge+Lghost+Lgauge fixing+Lfermion+Lscalar+LYukawa+δL +Lresummation, (2.1)

where the gauge field, ghost, fermion, scalar and Yukawa sector Lagrangians are defined

as follows:

Lgauge =
1

4
Ga

µνG
a
µν +

1

4
FµνFµν +

1

4
Hα

µνH
α
µν ,

Lghost = ∂µη
aDµη

a + ∂µξ∂µξ + ∂µζ
α
Dµζ

α,

Lfermion =
∑

A

(
ℓA /DℓA + eA /DeA + qA /DqA + uA /DuA + dA /DdA

)
,

Lscalar = (Dµφ1)
†(Dµφ1) + (Dµφ2)

†(Dµφ2)

+ ρ(Dµφ1)
†(Dµφ2) + ρ∗(Dµφ2)

†(Dµφ1) + V (φ1, φ2),

LYukawa = gY (q̄tφ̃2t+ t̄φ̃†
2qt). (2.2)

UV counterterms in the modified minimal subtraction (MS) scheme are contained in δL :

see appendix C.2.

In the gauge sector we have the SU(2)L, U(1)Y and SU(3)c gauge fields Aa
µ, Bµ, and

Cα
µ appearing inside the field strength tensors Ga

µν , Fµν and Hα
µν . The associated gauge

couplings are g, g′, and gs. The only ghost field of relevance for the phase transition is

the SU(2)L ghost ηa, as the SU(3) ghosts enter scalar correlation functions only at three-

loop level and are heavily suppressed. Left-handed doublet and right-handed singlet lepton

fields are denoted ℓA and eA, with A being the flavor index, while qA refers to left-handed

doublet quark fields. uA and dA are right-handed singlet up- and down-type quark fields,

respectively. The scalar sector consists of the doublet fields φi
1, φ

i
2 and the corresponding

charge-conjugated fields φ̃1 ≡ iσ2φ
∗
1, φ̃2 ≡ iσ2φ

∗
2, where σ2 is the second Pauli matrix.

Finally, following the convention common in the literature, in the Yukawa sector we couple

the top quark to φ2 only and neglect the other fermions.1 This is a good approximation

in Type I 2HDMs — meaning that all fermions couple to one doublet only — where the

other Yukawa couplings are small compared to other couplings in the theory. The relation

Q = I3 +
Y
2 between electric charge Q and isospin I3 defines the hypercharge of the fields

as follows: Yℓ = −1, Ye = −2, Yq =
1
3 , Yu = 4

3 , Yd = −2
3 , Yφ1

= 1, Yφ2
= 1.

1Models where individual fermions couple to both doublets are severely constrained due to resulting tree

level flavor-changing neutral currents that have not been observed in experiments [1].
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The scalar potential reads:

V (φ1, φ2) = µ2
11φ

†
1φ1 + µ2

22φ
†
2φ2 + µ2

12φ
†
1φ2 + µ2∗

12φ
†
2φ1

+λ1(φ
†
1φ1)

2 + λ2(φ
†
2φ2)

2 + λ3(φ
†
1φ1)(φ

†
2φ2) + λ4(φ

†
1φ2)(φ

†
2φ1)

+
λ5

2
(φ†

1φ2)
2 +

λ∗
5

2
(φ†

2φ1)
2 + λ6(φ

†
1φ1)(φ

†
1φ2) + λ∗

6(φ
†
1φ1)(φ

†
2φ1)

+λ7(φ
†
2φ2)(φ

†
2φ1) + λ∗

7(φ
†
2φ2)(φ

†
1φ2), (2.3)

where the parameters µ2
11,22, λ1,2,3,4 are real and µ2

12, λ5,6,7 are, in general, complex. Per-

turbative expansions of correlation functions, required for dimensional reduction, are or-

ganized in terms of the SU(2)L gauge coupling g. We assume a power counting scheme

where all mass parameters are heavy, i.e., they scale as µ2 ∼ g2T 2, and count powers of the

quartic couplings as λ ∼ g2. In reality, however, the scalar couplings may be much larger

in some regions of the parameter space. The gauge couplings g, g′, gs, as well as the top

quark Yukawa coupling gY , are assumed to scale as g. The purpose of this schematic power

counting is to facilitate the trunctuation of loop expansions, so that diagrams containing

different types of fields are treated equally at each loop order.

The Lagrangian can be simplified by imposing a Z2 symmetry. An exact Z2 symmetry

requires ρ = λ6 = λ7 = µ2
12 = 0, while a soft violation of the Z2 symmetry is achieved with

ρ = λ6 = λ7 = 0, but µ2
12 6= 0 (see discussions in [53, 54]). In ref. [55] it is described how a

treatment of a true hard violation of the Z2 symmetry is inconsistent without kinetic mixing

terms with complex coupling ρ. In spite of this, we perform the dimensional reduction

following refs. [51, 52] and set ρ = 0 without imposing the full Z2 symmetry; rather, we

keep λ6 and λ7 in our calculation for technical reasons elaborated in section 3.3. However,

when turning to numerical analysis, we restrict ourselves to the case of soft violation of the

Z2 symmetry.

Consistent construction of the effective theory requires thermal resummation in order

to remove problematic contributions originating from two-loop integrals with mixed Mat-

subara n 6= 0 and n = 0 modes [33, 56]. We implement this in Lresummation by adding and

subtracting one-loop thermal masses, denoted by Π̄, as well as a thermal mixing mass term

Π̄12, to zero modes of the scalar fields φ1, φ2. Schematically
(
m2 + Π̄

)
φ†(0,p)φ(0,p)− Π̄φ†(0,p)φ(0,p) = m2φ†(0,p)φ(0,p)− Π̄φ†(0,p)φ(0,p),

(2.4)

where the Euclidean four-momentum is defined as P = (ωn,p) with ωn = 2nπT , and we

use the notation m ≡
√
m2 + Π̄. Temporal components of the gauge fields are treated

similarly; their thermal masses are just the corresponding Debye masses. The terms with

minus signs, −Π̄, are treated as counterterm-like interactions; hence we refer them to as

thermal counterterms, despite being UV-finite. The thermal masses are listed explicitly

in appendix C.3. Terms with one-loop-resummed masses µ2 and +m2
D,+m′

D
2 contribute

to propagators. This procedure is done both for the doublets φ1, φ2 and the gauge field

temporal components Aa
0, B0. The temporal gluon field Cα

0 does not require resummation

at order O(g4).

– 5 –
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2.2 Relations to physical quantities

We relate the Lagrangian parameters of the 2HDM to physical parameters at tree level,

parameterizing the complex Higgs fields as

φ1 =

(
φ+
1

1√
2
(ρ1 + iη1)

)
, (2.5)

φ2 =

(
φ+
2

1√
2
(ρ2 + iη2)

)
. (2.6)

In this section — and for the numerical analysis of the companion paper [36] — we explicitly

discard the Z2 hard-breaking couplings λ6, λ7 from our scalar potential of eq. (2.3).

We shall assume a CP-conserving vacuum2 and choose the vacuum expectation values

(vevs) to be real,

〈φi〉 =
1√
2

(
0

vi

)
. (2.7)

They satisfy the extremum conditions

∂V

∂φi

∣∣∣∣
φi=〈φi〉

= 0,
∂V

∂φ†
i

∣∣∣∣
φi=〈φi〉

= 0, (2.8)

which lead to the following conditions for the mass parameters:

µ2
11 = −λ1v

2
1 −

1

2
v22λ345 −

v2Reµ
2
12

v1
, (2.9)

µ2
22 = −λ2v

2
2 −

1

2
v21λ345 −

v1Reµ
2
12

v2
, (2.10)

Imµ2
12 = −1

2
v1v2 Imλ5, (2.11)

where λ345 ≡ λ3+λ4+Reλ5. The vevs v1, v2 are constrained experimentally by the relation

v21 + v22 = v2 = (246GeV)2. The mixing of the two vevs is parameterized by the angle β,

and we use the shorthand notation tβ ≡ tanβ = v2/v1. Furthermore, we shall also restrict

our analysis to the region of parameter space where λ5, and thus µ2
12, are real, and we

choose to simplify the notation by denoting µ2 ≡ −Reµ2
12.

Physical states are obtained from the φ±
k , ρk and ηk by diagonalization and consist of

two CP-even scalars h,H0, a CP-odd pseudoscalar A0 and the charged Higgses H±. Three
of the eight degrees of freedom are absorbed into Nambu-Goldstone bosons. The mass

eigenstates are then related to φ±
k , ρk, ηk through

h = −sαρ1 + cαρ2, H0 = −cαρ1 − sαρ2, (2.12)

H± = −sβφ
±
1 + cβφ

±
2 , A0 = −sβη1 + cβη2. (2.13)

2See refs. [55, 57, 58] for discussions on CP-breaking vacua.
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Here, α is defined as the mixing angle between the CP-even scalars, and we have in-

troduced the shorthand notation sα, cα, sβ, cβ ≡ sinα, cosα, sinβ, cosβ. The quantity

cβ−α ≡ cos(β − α) is phenomenologically important, as the choice cβ−α = 0 corresponds

to the alignment limit where h couples to SM particles exactly like the Standard Model

Higgs [59].

Physical masses are found by mass-matrix diagonalization and have been calculated

in refs. [1, 59], so we will not list them here. Inverting the eigenvalue relations allows us to

write the Lagrangian parameters in terms of the masses mh,mH0
,mA0

,mH± and mixing

parameters tβ, cβ−α, µ, which are what we input into our parameter-space scans. These

relations are listed in appendix B. Precision tests of the 2HDM suggest that mH± should be

close to either mH0
or mA0

[60–62]. For the numerical analysis presented in the companion

paper [36], we have chosen to set mH± = mA0
, and have assumed that h is the observed

Higgs boson with mass mh = 125GeV.

For the gauge couplings and top Yukawa coupling, at tree-level

g2 = g20, (2.14)

g′2 =
g20
m2

W

(m2
Z −m2

W ), (2.15)

g2Y =
g20
2

m2
t

m2
W sin2 β

, (2.16)

where we have denoted g20 ≡ 4
√
2Gfm

2
W , with Gf being the Fermi constant related to

the lifetime of the muon. Similarly to the scalar couplings in appendix B.2, we identify

these as the renormalized parameters at MS scale Λ = mZ (Λ = mt for the top Yukawa),

neglecting the effects of vacuum renormalization on the MS parameters. However, one-loop

vacuum renormalization contributes at the same order in our power counting as two-loop

dimensional reduction for doublet mass parameters and may have a sizeable effect on our

results concerning the phase transition. We will address the numerical impact of zero-

temperature renormalization in a future work. In the special case of the inert doublet

model, one-loop vacuum renormalization calculations can be found in ref. [63].

Tree-level stability [55, 59, 64–67] and unitarity [68–70] requirements set additional

constraints on the potential parameters. The relevant equations are listed in appendix B.

It has recently been pointed out that loop corrections to the stability conditions in the

2HDM are of importance [71]; we plan to account for these in future work.

3 Dimensional reduction and effective field theories

Physically, dimensional reduction is made possible by the fact that in thermal equilibrium,

the four-dimensional fields can be expressed in terms of three-dimensional Matsubara modes

that generate thermal masses proportional to πT , a scale which we shall refer to as “su-

perheavy” (see table 1). This causes all non-zero modes to decouple from long-distance

physics at high temperatures. The remaining fields in the effective theory are just the

bosonic zero modes.

– 7 –
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Start: Two Higgs doublet model

Name Scale of validity Dimensions Lagrangian Fields (excl. ghosts) Parameters

“Superheavy” πT 4 Lfull ≡ L (2.1) Gµν , Fµν , Hµν , φ1,2, fermions µ2
11, µ122 , µ

2
22, gY , g, g

′, λ1 · · ·λ7y Integrate out n 6= 0 modes and fermions

“Heavy” gT 3 L(3) (3.2) Grs, Frs, (Hrs), A0, B0, C0, φ1,2 mD,m
′
D,m

′′
D, µ

2
11,3, µ

2
12,3, µ

2
22,3,

g3, g
′
3, λ1,3 · · ·λ7,3, h1 · · ·h6y Integrate out temporal scalars

“Heavy” gT 3 L̄(3) (scalar part: 3.6) Grs, Frs, (Hrs), φ1,2 µ̄2
11,3, µ̄

2
12,3, µ̄

2
22,3, ḡ3, ḡ

′
3, λ̄1,3 · · · λ̄7,3

↓ 3D 2HDM ⇒ new 3D simulations required
y Diagonalize theory at heavy scale

“Heavy” gT 3 L̃(3) (scalar part: 3.7) Grs, Frs, (Hrs), θ, φ µ̃2
φ, µ̃

2
θ ḡ3, ḡ

′
3, λ̃1 · · · λ̃7y Where possible: integrate out heavy second doublet

“Light” g2T 3 L̂(3) (3.9) Grs, Frs, (Hrs), φ µ̂2
3, ĝ3, ĝ

′
3, λ̂3

Finish: 3D minimal Standard Model ⇒ existing 3D simulations available

Table 1. Dimensional reduction of the 2HDM into effective three-dimensional theories. Couplings

of the effective theories are functions of the couplings of the full theory and are determined by the

matching procedure. The last step is possible in the presence of a large µ2

12
mixing term.

In practice, DR is performed by matching parameters of the three-dimensional theory

to those of the full theory so that the long-distance Green’s functions match. This requires

perturbative calculations of correlation functions in the four-dimensional theory to a given

accuracy and results in matching relations for parameters and fields in the effective theory.

For DR, we apply renormalization in the MS scheme; details can be found in appendix C.2.

The temporal components of the gauge fields are treated in the three-dimensional

theory as additional scalar fields with masses of order gT : a mass scale we shall refer to as

“heavy”. These can be integrated out as well to obtain a theory valid at the “light” scale

g2T , and information about the heavy and superheavy scales is then contained in the fields

and couplings of this effective theory. The theory at the light scale is used to describe the

equilibrium thermodynamics of the full theory, as near the critical temperature thermal

corrections make at least one of the scalar mass parameters light. In the presence of sizable

mass mixing between the scalar doublets, we may further integrate out one doublet for an

even simpler effective theory; this is described in section 3.2.

We emphasize that the three-dimensional theories are super-renormalizable and hence

lattice simulations can reasonably be performed (see ref. [72]), in contrast to performing

direct simulations of the full four-dimensional theory. In addition, combining the pertur-

bative method of DR with non-perturbative three-dimensional simulations is very efficient,

as the DR procedure is free of IR problems and can be performed accurately using pertur-

bation theory, while the latter is used to study the dynamics of the light bosonic modes,

which are the source of IR problems in perturbative studies.

We work in Landau gauge, as this choice significantly simplifies many diagrammatic

calculations. However, we highlight that to the order O(g4) that we work in, the parameters

of the effective theory — in terms of T and other physical quantities — are independent of
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the choice of gauge. This can be verified by performing the calculation in general covariant

gauge and explicitly verifying the cancellation of the gauge parameter between terms from

field normalization and correlation functions. Thus, DR combined with lattice simulations

can be used to study the EWPT in a manifestly gauge-invariant manner. For discussions

on gauge dependence in perturbative studies of the EWPT, see refs. [73–75].

3.1 Effective theories at the heavy scale

We denote the fields of the effective theories with the same symbols as those of the four-

dimensional theory, but emphasize that their normalization is different and will affect the

mapping between the full and effective theories. For a generic field, the relation between

the four-dimensional and three-dimensional fields reads [33]

ψ2
3d =

1

T

[
1 + Π′

ψ(0)− δZψ

]
ψ2
4d, (3.1)

where Πψ(P ) is the self-energy of the field, a prime denotes a derivative with respect to

P 2, and δZψ is the field renormalization counterterm.

The effective-theory gauge couplings are denoted by g3 and g′3. The Lagrangian of the

first effective theory (again in Landau gauge) has the schematic form

L
(3) = L

(3)
gauge + L

(3)
ghost + L

(3)
scalar + L

(3)
temporal + δL (3). (3.2)

We include the SU(2)L and U(1)Y gauge fields in the gauge sector part,

L
(3)
gauge =

1

4
Ga

rsG
a
rs +

1

4
FrsFrs, (3.3)

where only spatial Lorentz indices are summed over. The spatial SU(3)c gluon fields can

be neglected at O(g4).

The form of L
(3)
scalar is the same as in the four-dimensional theory, but we denote the

couplings with an additional subscript, emphasizing that they are couplings of a three-

dimensional theory. Furthermore, as a consequence of broken Lorentz symmetry in the

temporal direction it is necessary to introduce additional scalar fields in the effective the-

ory. These arise from the temporal components of gauge fields, hence we denote them by

A0, B0, C0 and call them temporal scalars. Their contribution reads

L
(3)
temporal =

1

2
(DrA

a
0)

2 +
1

2
m2

DA
a
0A

a
0 +

1

2
(∂rB0)

2 +
1

2
m′2

DB
2
0 +

1

4
κ1(A

a
0A

a
0)

2 +
1

4
κ2B

4
0

+
1

4
κ3A

a
0A

a
0B

2
0 + h1φ

†
1φ1A

a
0A

a
0 + h2φ

†
1φ1B

2
0 + h3B0φ

†
1A

a
0σ

aφ1

+h4φ
†
2φ2A

a
0A

a
0 + h5φ

†
2φ2B

2
0 + h6B0φ

†
2A

a
0σ

aφ2

+δ1φ
†
1φ2A

a
0A

a
0 + δ∗1φ

†
2φ1A

a
0A

a
0 + δ2φ

†
1φ2B

2
0 + δ∗2φ

†
2φ1B

2
0

+δ3B0φ
†
1A

a
0σ

aφ2 + δ∗3B0φ
†
2A

a
0σ

aφ1

+
1

2
(∂rC

α
0 )

2 +
1

2
m′′2

D Cα
0 C

α
0 + ω3C

α
0 C

α
0 φ

†
2φ2. (3.4)

Here the (spatial) covariant derivative of an isospin triplet is DrA
a
0 = ∂rA

a
0 + g3ǫ

abcAb
rA

c
0

and for the temporal gluon field we have used the usual derivative instead of the covariant
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derivative DrC
α
0 = ∂rC

α
0 + gsf

α
βρC

β
r C

ρ
0 , as the operators Hα

rsH
α
rs, (C

α
0 C

α
0 )

2, Aa
0A

a
0C

α
0 C

α
0

and B2
0C

α
0 C

α
0 have been discarded from the effective theory. Spatial gluons do not couple

to the scalar fields, and self-interactions of temporal gluons and their interactions with

other temporal scalars would have a very small contribution to quantities of interest, such

as scalar mass parameters of the light scale effective theories.

The counterterm part δL (3) plays an important role in determining relations between

the continuum and lattice three-dimensional theories and is needed for the calculation of

lattice counterterms [76]. In a continuum three-dimensional theory with dimensional regu-

larization, the one-loop correlation functions are finite, while two-loop contributions to self-

energies contain UV divergences. The three-dimensional theory is super-renormalizable,

and from the two-loop mass counterterms one can solve the exact running of the mass

parameters in terms of the three-dimensional theory renormalization scale Λ3 [37]. The

mass counterterms have been collected in appendix C.5.

Furthermore, since the scalar mass parameters can be close to zero near the phase

transition, IR-sensitive contributions of the type 1/m2 need to be considered carefully.

These appear in two-loop calculation of scalar two-point correlators. In order to perform

the parameter matching, we apply a procedure analogous to the thermal resummation in

the four-dimensional theory (see section 2.1) by adding and subtracting one-loop correc-

tions from temporal scalar fields to fundamental scalar masses. Terms with plus signs

contribute to the masses in scalar propagators, while terms with minus signs are treated

as (counterterm-like) interactions, i.e.

(
µ2
11,3 + Π̄1,3

)
φ†
1φ1 − Π̄1,3φ

†
1φ1 +

1

2

(
µ2
22,3 + Π̄2,3

)
φ†
2φ2 −

1

2
Π̄2,3φ

†
2φ2

= µ2
11,3

φ†
1φ1 − Π̄1,3φ

†
1φ1 +

1

2
µ2
22,3

φ†
2φ2 −

1

2
Π̄2,3φ

†
2φ2, (3.5)

where m ≡
√
m2 + Π̄. The effect of the new interactions is to cancel the IR-sensitive terms

in the loop expansions, and the resulting matching relations are IR safe. Note that we do

not need to include a counterterm interaction for the mixing mass parameter µ2
12,3, as the

one-loop correction from the temporal scalar fields is of higher order. Explicit expressions

for these mass corrections are given in appendix C.3.

The temporal scalar masses (Debye masses) are of the order ∼ gT and are thus safe

to treat perturbatively. Following ref. [33], we integrate these out in a separate step of

dimensional reduction, obtaining a theory where the scalar sector has the form

L̄
(3)
scalar = (Drφ1)

†(Drφ1) + (Drφ2)
†(Drφ2) + V̄ (φ1, φ2), (3.6)

and the parameters are denoted with a bar as ḡ3, ḡ
′
3, µ̄

2
11,3, etc. The gauge sector is as in

eq. (3.3). With the lattice-continuum relations presented in refs. [76, 77], this theory is

readily studied non-perturbatively on the lattice using Monte Carlo simulations.

3.2 SM-like effective theory for the 2HDM

In the limit of a large mass-mixing term µ2
12, we may simplify the effective theory of

eq. (3.6) further by noticing that the phase transition takes place close to the point where
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the mass matrix has a zero eigenvalue, and in the diagonal basis the other mass parameter

is then generically heavy. By performing a unitary transformation (see appendix A), one

can remove the mixing mass term, and the resulting theory is given by

L̃
(3)
scalar, diagonal = (Drφ)

†(Drφ) + (Drθ)
†(Drθ) + Ṽ (φ, θ), (3.7)

where the scalar potential reads

Ṽ (φ, θ) = µ̃2
φφ

†φ+ µ̃2
θθ

†θ + λ̃1(φ
†φ)2 + λ̃2(θ

†θ)2 + λ̃3(φ
†φ)(θ†θ) + λ̃4(φ

†θ)(θ†φ) (3.8)

+
λ̃5

2
(φ†θ)2 +

λ̃∗
5

2
(θ†φ)2 + λ̃6(φ

†φ)(φ†θ) + λ̃∗
6(φ

†φ)(θ†φ) + λ̃7(θ
†θ)(θ†φ) + λ̃∗

7(θ
†θ)(φ†θ),

and φ and θ are the light and heavy doublets, respectively. Note that in general the

diagonalization procedure generates non-zero couplings λ̃6 and λ̃7 even in the case of a

softly broken Z2-symmetry.

The heavy doublet θ can be integrated out in a similar fashion as the temporal scalars.

This leads to a final effective theory which has the same form as the effective theory

constructed for the SM in refs. [33, 37]:

L̂
(3) =

1

4
Ga

rsG
a
rs +

1

4
FrsFrs + (Drφ)

†(Drφ) + V (φ), (3.9)

where the couplings are denoted with a hat as ĝ3, ĝ
′
3, and

V (φ) = µ̂2
3φ

†φ+ λ̂3(φ
†φ)2. (3.10)

This method of three-step DR is analogous to that of ref. [41] in the MSSM. Cou-

plings are RG invariant, and the mass parameter runs at two-loop order. Due to super-

renormalizability, the running of µ̂2
3 can be solved exactly from two-loop mass renormal-

ization, and the corresponding β function receives no additional corrections at higher loop

orders.

In certain regions of parameter space, it is possible for both doublets to be light in

the vicinity of the electroweak phase transition, in which case the final three-dimensional

effective theory is given by eq. (3.6). Non-perturbative studies in this theory require simula-

tions with two dynamical doublets and are beyond the scope of our current study. Instead,

we shall now focus on the regions of parameter space where the second doublet is heavy

and can be integrated out. In this case, we use the DR matching relations that map the

four-dimensional theory to the effective three-dimensional theory of eq. (3.9), and recycle

the existing non-perturbative results of ref. [7]. Non-perturbative effects related to the

U(1) gauge field were neglected in the aforementioned study; however, a non-perturbative

analysis with U(1) field is presented in ref. [78] and shows no significant difference from

the case where only the SU(2) field is considered. In our study, we include effects of the

U(1) sector in our parameter matching, but use the simpler results of ref. [7] to analyze

the phase structure of the 2HDM.

In the final effective theory, one of the four parameters ĝ3, ĝ
′
3, µ̂

2
3, λ̂3 can be used to

measure all the dimensionful quantities as well as to fix the RG scale for the mass parameter
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(the couplings are RG invariant). We follow ref. [7] and choose ĝ3. Then, the dynamics is

determined by the three dimensionless ratios

z ≡ ĝ′23
ĝ23

, y ≡ µ̂2
3(ĝ

2
3)

ĝ43
, x ≡ λ̂3

ĝ23
. (3.11)

Properties of the phase transition, however, depend essentially on only one parameter: as a

justifiable approximation, non-perturbative effects of the U(1) gauge field can be neglected

by setting z = 0, and in practice, y ≈ 0 on the critical line, close to its leading order

value. This means that the character of the transition is described only by the magnitude

of the parameter x. Results from Monte Carlo simulations [7] show that for a first-order

transition, 0 . x . 0.11. The transition gets weaker as x increases, and above x ≈ 0.11

only a smooth crossover remains.

With a DR mapping between the four-dimensional 2HDM and the SM-like three-

dimensional effective theory, we can scan the physical parameter space, searching for

x < 0.11 and y = 0 to find regions of first order transitions and the corresponding criti-

cal temperatures. Results of such parameter-space scans are presented in the companion

paper [36]. Note that if x < 0 for some physical input parameters, the three-dimensional

theory is not bounded from below and simulations are not possible. This indicates that our

DR procedure has broken down, either because of neglected higher-order corrections to the

matching relations, or neglected dimension six (hereafter 6-dim.) or higher-dimensional

operators.

3.3 Matching of the parameters

The recipe for obtaining the matching relations has been presented in refs. [33, 47]. In the

first step of the DR, i.e., when the superheavy scale is integrated out, matching relations are

calculated up to O(g4) in our power counting. This accuracy requires one-loop accuracy for

couplings and two-loop for mass parameters (see appendix C.1 for computational details).

One-loop β functions are required to make the matching relations independent of the

renormalization scale at O(g4). In the second step of DR, when integrating out the heavy

scale, it is convenient and numerically reasonable to perform calculations to the same loop

order as in the first step of DR.

Although the main motivation for DR is to facilitate non-perturbative simulations,

the DR procedure is perturbative, and the validity of perturbation theory at each step of

the DR should therefore be estimated. Perturbative errors arise from two sources: firstly,

there are higher-order corrections to the parameters of the effective theories. Secondly,

higher-dimensional operators have been neglected in the effective theories. We discuss

these higher-order operators in section 3.4. In the parameter-space scans of the companion

paper [36], first-order phase transitions are mainly found in the large-mass regime where

some of the couplings are large; hence, is is particularly important to estimate the validity

of the DR procedure. For the same reason, we expect the one-loop-corrected relations to

physical quantities to be of importance.

In the presence of the mixing term µ2
12φ

†
1φ2, the correlation functions should be calcu-

lated only after a proper diagonalization of the scalar potential. Such a diagonalization is
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described in appendix A and generally induces complex Yukawa couplings to the top quark

for both doublets. However, under the scaling assumption µ2
12 ∼ g2T 2 we may evaluate the

correlation functions in the off-diagonal basis where couplings remain simple by treating

the mixing term as an interaction and neglecting contributions beyond O(g4). The match-

ing relations below are derived in this fashion. Justifying the validity of this approach is

straightforward by performing the DR properly in the diagonal basis where generally λ6, λ7

are non-vanishing, and comparing the resulting 3d parameters. Apart from the Yukawa

contributions, we have verified numerically that the off-diagonal computation works very

well for |µ2
12| . (400GeV)2 and that the error is negligible. This is the main reason we

keep the Z2-violating couplings λ6, λ7 explicit in the matching relations.

In the DR procedure, by using thermal-mass-resummed propagators and corresponding

thermal counterterms, we are explicitly able to show that at two-loop level, products of

zero-mode and non-zero mode contributions in the correlation functions vanish. Due to

this cancellation, one could neglect the effect of the zero modes at two-loop level as only

the non-zero modes contribute to the final result. However, keeping the zero modes and

explicitly verifying this cancellation serves as a valuable cross-check of our calculations,

even though it technically complicates computations of the correlation functions.

We generalize the dimensional reduction presented in the companion paper [36] to

a general CP-violating 2HDM containing the complex λ6, λ7 terms. Furthermore, the

relations presented below fully incorporate the contributions from the U(1) sector, which

have been partly neglected in previous DR studies [51, 52].

We use the following notation:

Nd = 2,

Nf = 3,

Lb ≡ 2 ln

(
Λ

T

)
− 2[ln(4π)− γ],

Lf ≡ Lb + 4 ln 2,

c ≡ 1

2

(
ln
(8π

9

)
+

ζ ′(2)
ζ(2)

− 2γ

)
, (3.12)

where γ is the Euler-Mascheroni constant.

3.3.1 Integration over the superheavy scale

Matching relations for the first step of DR, leading to the theory in eq. (3.2), are listed in this

section. When running of the O(g2) part is accounted for using the β functions presented

in appendix C.2, the matching relations are manifestly independent of the renormalization

scale Λ to the order O(g4), except for the relations for the Debye masses, which we only

calculate at one-loop level as they only enter the construction of the final effective theories
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through loop effects.

m2
D = g2T 2

(
4 +Nd

6
+

Nf

3

)
, (3.13)

m′2
D = g′2T 2

(
Nd

6
+

5Nf

9

)
, (3.14)

m′′2
D = g2sT

2

(
1 +

Nf

6

)
, (3.15)

g23 = g2(Λ)T

(
1 +

g2

(4π)2

[
44−Nd

6
Lb +

2

3
− 4Nf

3
Lf

])
, (3.16)

g′23 = g′2(Λ)T

(
1 +

g′2

(4π)2

[
− Nd

6
Lb −

20Nf

9
Lf

])
, (3.17)

κ1 = T
g4

16π2

16 +Nd − 4Nf

3
, (3.18)

κ2 = T
g′4

16π2

(
Nd

3
− 380

81
Nf

)
, (3.19)

κ3 = T
g2g′2

16π2

(
2Nd −

8

3
Nf

)
, (3.20)

h1 =
g2(Λ)T

4

(
1 +

1

(4π)2

{[
44−Nd

6
Lb +

53

6
− Nd

3
− 4Nf

3
(Lf − 1)

]
g2 +

g′2

2

+ 12λ1 + 2(2λ3 + λ4)

})
, (3.21)

h2 =
g′2(Λ)T

4

(
1 +

1

(4π)2

{
3g2

2
+

[
1

2
− Nd

6

(
2 + Lb

)
− 20Nf

9
(Lf − 1)

]
g′2

+ 12λ1 + 2(2λ3 + λ4)

})
, (3.22)

h3 =
g(Λ)g′(Λ)T

2

{
1 +

1

(4π)2

[
− 5 +Nd

6
g2 +

3−Nd

6
g′2 + Lb

(
44−Nd

12
g2 − Nd

12
g′2

)

−Nf (Lf − 1)

(
2

3
g2 +

10

9
g′2

)
+ 4λ1 + 2λ4

]}
, (3.23)

h4 =
g2(Λ)T

4

(
1 +

1

(4π)2

{[
44−Nd

6
Lb +

53

6
− Nd

3
− 4Nf

3
(Lf − 1)

]
g2 +

g′2

2
− 6g2Y

+ 12λ2 + 2(2λ3 + λ4)

})
, (3.24)

h5 =
g′2(Λ)T

4

(
1 +

1

(4π)2

{
3g2

2
+

[
1

2
− Nd

6

(
2 + Lb

)
− 20Nf

9
(Lf − 1)

]
g′2 − 34

3
g2Y

+ 12λ2 + 2(2λ3 + λ4)

})
, (3.25)

h6 =
g(Λ)g′(Λ)T

2

{
1 +

1

(4π)2

[
− 5 +Nd

6
g2 +

3−Nd

6
g′2 + Lb

(
44−Nd

12
g2 − Nd

12
g′2

)

−Nf (Lf − 1)

(
2

3
g2 +

10

9
g′2

)
+ 2g2Y + 4λ2 + 2λ4

]}
, (3.26)

– 14 –



J
H
E
P
0
2
(
2
0
1
9
)
0
8
1

δ1 =
3

2

g2T

16π2
(λ6 + λ∗

7), (3.27)

δ2 =
3

2

g′2T
16π2

(λ6 + λ∗
7), (3.28)

δ3 =
gg′T
16π2

(λ6 + λ∗
7), (3.29)

ω3 = − T
1

16π2
2g2sg

2
Y , (3.30)

λ1,3 = T

(
λ1(Λ) +

1

(4π)2

[
1

8

(
3g4 + g′4 + 2g2g′2

)
− Lb

(
3

16

(
3g4 + g′4 + 2g2g′2

)

+ λ2
3 + λ3λ4 +

1

2
λ2
4 +

1

2
|λ5|2 + 6|λ6|2 −

3

2

(
3g2 + g′2 − 8λ1

)
λ1

)])
, (3.31)

λ2,3 = T

(
λ2(Λ) +

1

(4π)2

[
1

8

(
3g4 + g′4 + 2g2g′2

)
+ 3Lf

(
g4Y − 2λ2g

2
Y

)

− Lb

(
3

16

(
3g4 + g′4 + 2g2g′2

)
+ λ2

3 + λ3λ4 +
1

2
λ2
4 +

1

2
|λ5|2 + 6|λ7|2

− 3

2

(
3g2 + g′2 − 8λ2

)
λ2

)])
, (3.32)

λ3,3 = T

(
λ3(Λ) +

1

(4π)2

[
1

4

(
3g4 + g′4 − 2g2g′2

)
− 3Lfλ3g

2
Y

− Lb

(
3

8

(
3g4 + g′4 − 2g2g′2

)
+ 2(λ1 + λ2)(3λ3 + λ4) + 2λ2

3 + λ2
4 + |λ5|2

+ 2(|λ6|2 + |λ7|2) + 8Re(λ6λ7)−
3

2

(
3g2 + g′2

)
λ3

)])
, (3.33)

λ4,3 = T

(
λ4(Λ) +

1

(4π)2

[
g2g′2 − 3Lfλ4g

2
Y

− Lb

(
3

2
g2g′2 + 2(λ1 + λ2)λ4 + 2λ2

4 + 4λ3λ4 + 4|λ5|2

+ 5(|λ6|2 + |λ7|2) + 2Re(λ6λ7)−
3

2

(
3g2 + g′2

)
λ4

)])
, (3.34)

λ5,3 = T

(
λ5(Λ) +

1

(4π)2

[
− 3Lfλ5g

2
Y − Lb

(
2(λ1 + λ2 + 2λ3 + 3λ4)λ5

+ 5(λ6λ6 + λ∗
7λ

∗
7) + 2λ6λ

∗
7 −

3

2

(
3g2 + g′2

)
λ5

)])
, (3.35)

λ6,3 = T

(
λ6(Λ) +

1

(4π)2

[
− 3

2
Lfλ6g

2
Y − Lb

(
12λ1λ6 + (3λ3 + 2λ4)λ

∗
7

+ λ5λ7 + (3λ3 + 4λ4)λ6 + 5λ5λ
∗
6 −

3

2

(
3g2 + g′2

)
λ6

)])
, (3.36)

λ7,3 = T

(
λ7(Λ) +

1

(4π)2

[
− 9

2
Lfλ7g

2
Y − Lb

(
12λ2λ7 + (3λ3 + 2λ4)λ

∗
6

+ λ∗
5λ6 + (3λ3 + 4λ4)λ7 + 5λ∗

5λ
∗
7 −

3

2

(
3g2 + g′2

)
λ7

)])
. (3.37)
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The SM result for the three-dimensional mass parameter reads

(
µ2
22,3

)
SM

= µ2
22(Λ) +

T 2

16

(
3g2(Λ) + g′2(Λ) + 4g2Y (Λ) + 8λ2(Λ)

)
(3.38)

+
1

16π2

{
µ2
22

((
3

4
(3g2 + g′2)− 6λ2

)
Lb − 3g2Y Lf

)

+ T 2

(
167

96
g4 +

1

288
g′4 − 3

16
g2g′2 +

1

4
λ2(3g

2 + g′2)

+ Lb

(
17

16
g4 − 5

48
g′4 − 3

16
g2g′2 +

3

4
λ2(3g

2 + g′2)− 6λ2
2

)

+
1

T 2

(
c+ ln

(
3T

Λ3d

))(
39

16
g43 + 12g23h4 − 6h24 + 9g23λ2,3 − 12λ2

2,3

− 5

16
g′43 −

9

8
g23g

′2
3 − 2h25 − 3h26 + 3g′23λ2,3

)

− g2Y

(
3

16
g2 +

11

48
g′2 + 2g2s

)
+

(
1

12
g4 +

5

108
g′4

)
Nf

+ Lf

(
g2Y

(
9

16
g2 +

17

48
g′2 + 2g2s − 3λ2

)
+

3

8
g4Y −

(
1

4
g4 +

5

36
g′4

)
Nf

)

+ ln(2)

(
g2Y

(
− 21

8
g2 − 47

72
g′2 +

8

3
g2s + 9λ2

)
− 3

2
g4Y +

(
3

2
g4 +

5

6
g′4

)
Nf

))}
.

This result can also be found from ref. [33], apart from the two-loop contributions involving

g′, as it was assumed to scale as g′ ∼ g3/2. In the 2HDM, full results for the scalar mass

parameters read:

(
µ2
22,3

)
2HDM

=
(
µ2
22,3

)
SM

+
T 2

12

(
2λ3(Λ) + λ4(Λ)

)

+
1

16π2

{
µ2
11

(
− Lb(2λ3 + λ4)

)

+ T 2

(
5

48
g4 +

5

144
g′4 +

1

24
(3g2 + g′2)(2λ3 + λ4)

+
1

T 2

(
c+ ln

(
3T

Λ3

))(
− 1

8
(3g43 + g′43) +

1

2
(3g23 + g′23)(2λ3,3 + λ4,3)

− 2(λ2
3,3 + λ3,3λ4,3 + λ2

4,3)− 3|λ5,3|2
)

+ Lb

(
− 7

32
g4 − 7

96
g′4 − 1

2
(λ1 + λ2)(2λ3 + λ4)

− 5

6
λ2
3 −

7

12
λ2
4 −

5

6
λ3λ4 −

3

4
|λ5|2 +

1

8
(3g2 + g′2)

(
2λ3 + λ4

))

+

(
− 1

4
g2Y

(
2λ3 + λ4

))
Lf

)

− 6LbRe(µ
2
12λ7) + T 2

(
Lb

(
− 15

4
|λ7|2 −

3

4
|λ6|2 −

3

2
Re(λ6λ7)

)

+
1

T 2

(
c+ ln

(
3T

Λ3

))(
− 3|λ6,3|2 − 9|λ7,3|2

))}
(3.39)
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and

µ2
11,3 =µ2

11(Λ) +
T 2

16

(
3g2(Λ) + g′2(Λ) + 8λ1(Λ) +

4

3

(
2λ3(Λ) + λ4(Λ)

))

+
1

16π2

{
Lb

((
3

4
(3g2 + g′2)− 6λ1

)
µ2
11 − (2λ3 + λ4)µ

2
22 − 6Re(λ6µ

2∗
12)

)

+ T 2

(
59

32
g4 +

11

288
g′4 − 3

16
g2g′2 +

1

4
λ1(3g

2 + g′2) +
1

24
(3g2 + g′2)(2λ3 + λ4)

+ Lb

(
27

32
g4 − 17

96
g′4 − 3

16
g2g′2 +

1

8
(3g2 + g′2)(6λ1 + 2λ3 + λ4)

− 1

2
(λ1 + λ2)(2λ3 + λ4)− 6λ2

1 −
5

6
λ2
3 −

5

6
λ3λ4 −

7

12
λ2
4 −

3

4
|λ5|2 −

3

4
|λ7|2

− 15

4
|λ6|2 −

3

2
Re(λ6λ7)

)

+
1

T 2

(
c+ ln

(
3T

Λ3

))(
33

16
g43 + 12g23h1 − 6h21 + 9g23λ1,3 − 12λ2

1,3

− 7

16
g′43 −

9

8
g23g

′2
3 − 2h22 − 3h23 + 3g′23λ1,3 +

1

2
(3g23 + g′23)(2λ3,3 + λ4,3)

− 2(λ2
3,3 + λ3,3λ4,3 + λ2

4,3)− 3|λ5,3|2 − 3|λ7,3|2 − 9|λ6,3|2
)

+

(
1

12
g4 +

5

108
g′4

)
Nf + Lf

(
− 1

4
g2Y (2λ3 + λ4)−

(
1

4
g4 +

5

36
g′4

)
Nf

)

+ ln(2)

(
3

2
g2Y

(
2λ3 + λ4

)
+

(
3

2
g4 +

5

6
g′4

)
Nf

))}
, (3.40)

and finally

µ2
12,3 =µ2

12(Λ) +
T 2

4

(
λ∗
7(Λ) + λ6(Λ)

)
+

1

16π2

{
Lb

((
3

4
(3g2 + g′2)− λ3 − 2λ4

)
µ2
12

− 3
(
λ5µ

2∗
12 + λ6µ

2
11 + λ∗

7µ
2
22

))
− 3

2
g2Y µ

2
12Lf + T 2

(
−
(
3

8
λ6 +

9

8
λ∗
7

)
g2Y Lf

+
1

8
(3g2 + g′2)(λ6 + λ∗

7) +
1

8
Lb

[
3(λ6 + λ∗

7)
(
3g2 + g′2 − 4(λ3 + λ4)

)

− 12λ5λ
∗
6 − 12λ5λ7 − 24λ2λ

∗
7 − 24λ1λ6

]

+
1

T 2

(
c+ ln

(
3T

Λ3

))(
3

2
(3g23 + g′3

2
)(λ6,3 + λ∗

7,3)− 3λ6,3(2λ1,3 + λ3,3 + λ4,3)

− 3λ∗
7,3(2λ2,3 + λ3,3 + λ4,3)− 3λ5,3(λ

∗
6,3 + λ7,3)

))
+

9

2
g2Y λ

∗
7 ln(2)

}
. (3.41)

The renormalization scale in the three-dimensional theory, Λ3, as well as other three-

dimensional parameters, appear above as exact solutions of the RG equations for the mass

parameters of the effective theory, and we emphasize that this running is separate from

that of the full four-dimensional theory.
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3.3.2 Integrating out the temporal scalars

Results for parameter matching when integrating out the temporal scalar fields are listed

below.

ḡ23 =g23

(
1− g23

24πmD

)
, (3.42)

ḡ′23 =g′23 , (3.43)

µ̄2
11,3 =µ2

11,3 −
1

4π

(
3h1mD + h2m

′
D

)

+
1

16π2

(
3g23h1 − 3h21 − h22 −

3

2
h23

+

(
− 3

4
g43 + 12g23h1

)
ln

(
Λ3

2mD

)
− 6h21 ln

(
Λ3

2mD + µ11,3

)

− 2h22 ln

(
Λ3

2m′
D + µ11,3

)
− 3h23 ln

(
Λ3

mD +m′
D + µ11,3

)

+ 2µ11,3

(
3
h21
mD

+
h22
m′

D

)
+ 2µ22,3

(
3
h1h4
mD

+
h2h5
m′

D

))
, (3.44)

µ̄2
22,3 =µ2

22,3 −
1

4π

(
3h4mD + h5m

′
D + 8ω3m

′′
D

)

+
1

16π2

(
3g23h4 − 3h24 − h25 −

3

2
h26

+

(
− 3

4
g43 + 12g23h4

)
ln

(
Λ3

2mD

)
− 6h24 ln

(
Λ3

2mD + µ22,3

)

− 2h25 ln

(
Λ3

2m′
D + µ2

22,3

)
− 3h26 ln

(
Λ3

mD +m′
D + µ22,3

)

+ 2µ2
22,3

(
3
h24
mD

+
h25
m′

D

)
+ 2µ11,3

(
3
h4h1
mD

+
h5h2
m′

D

))
, (3.45)

µ̄2
12,3 =µ2

12,3, (3.46)

λ̄1,3 =λ1,3 −
1

8π

(
3h21
mD

+
h22
m′

D

+
h23

mD +m′
D

)
, (3.47)

λ̄2,3 =λ2,3 −
1

8π

(
3h24
mD

+
h25
m′

D

+
h26

mD +m′
D

)
, (3.48)

λ̄3,3 =λ3,3 −
1

4π

(
3h1h4
mD

+
h2h5
m′

D

+
h3h6

mD +m′
D

)
, (3.49)

λ̄4,3 =λ4,3, (3.50)

λ̄5,3 =λ5,3, (3.51)

λ̄6,3 =λ6,3, (3.52)

λ̄7,3 =λ7,3 (3.53)

As before, the logarithms correspond to the running of masses in the resulting theory. For

the numerical analysis presented in the companion paper [36], we have chosen the RG scale

– 18 –



J
H
E
P
0
2
(
2
0
1
9
)
0
8
1

in the resulting 3d theory as Λ′
3 = ḡ23, and have verified that numerical uncertainties from

scale variations in this step of DR are negligible.

3.3.3 Integrating out the heavy second doublet

Finally, we present matching relations for the SM-like effective theory described in sec-

tion 3.2. In order to integrate out the heavy doublet, we diagonalize the scalar Lagrangian

by means of a unitary transformation. Relations between couplings of the off-diagonal and

diagonalized theories are given in appendix A.

ĝ23 =ḡ23

(
1− ḡ23

48πµ̃θ

)
, (3.54)

ĝ′23 =ḡ′23

(
1− ḡ′23

48πµ̃θ

)
, (3.55)

λ̂ =λ̃1 −
1

16π

1

µ̃θ

(
2λ̃2

3 + 2λ̃3λ̃4 + λ̃2
4 + |λ̃5|2 − 48Re(λ̃6λ̃7) + 48|λ̃6|2

)
, (3.56)

µ̂2
3 =µ̃2

φ − µ̃θ

4π

(
2λ̃3 + λ̃4

)
+

1

16π2

(
1

8
(3ḡ23 + ḡ′23 )(2λ̃3 + λ̃4)− λ̃2

3 − λ̃3λ̃4 − λ̃2
4

+ 3λ̃2(2λ̃3 + λ̃4) + 18Re(λ̃7λ̃6)− 3|λ̃5|2
(
ln

(
Λ′
3

2µ̃θ

)
+

1

2

)
− 3|λ̃7|2

(
ln

(
Λ′
3

3µ̃θ

)
+ 2

)

− 9|λ̃6|2
(
ln

(
Λ′
3

µ̃θ

)
+

1

2

)
+

1

8

(
− 3ḡ43 − ḡ′43 + 4(3ḡ23 + ḡ′23 )(2λ̃3 + λ̃4)

− 16(λ̃2
3 + λ̃3λ̃4 + λ̃2

4)
)
ln

(
Λ′
3

2µ̃θ

))
. (3.57)

Logarithmic terms could again be replaced by the exact RG evolution in the final effective

theory (3.9). In order to make a connection to the existing lattice results of ref. [7], we fix

the renormalization scale of the final effective theory as Λ′′
3 = ĝ23.

3.4 Effects from 6-dim. operators

In our O(g4) DR procedure, we omitted the effects coming from higher-order operators.

For the validity of DR, it is important to estimate the effect of these neglected operators;

indeed, we observe regions in the parameter space where the parameter x becomes negative,

signaling the breakdown of the last step of DR (see figure 2 in the companion paper [36]).

In this section we discuss a few simple 6-dim. operators and give perturbative estimates for

the validity of our effective theories, yet we emphasize that a full evaluation of all 6-dim.

operators for a more comprehensive estimate is a formidable task.

3.4.1 6-dim. operators from the first DR step

By using the effective potential and the background field method (see appendix C.1), it is

trivial to obtain the three-dimensional coefficients for the most simple 6-dim. operators in

the heavy-scale effective theory, of which we analyze (φ†
1φ1)

3 and (φ†
2φ2)

3. The magnitude

of these correlators provide a rough estimate of the validity of the first step of DR.
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Coefficients of the aforementioned operators in the effective potential read

V6,1 =
ζ(3)

3(4π)4T 2

[
30λ3

1 +
1

4
λ3
3 + λ3

+ + λ3
− +

3

32
g6 +

3

64
(g2 + g′2)3

]
, (3.58)

V6,2 =
ζ(3)

3(4π)4T 2

[
30λ3

2 +
1

4
λ3
3 + λ3

+ + λ3
− +

3

32
g6 +

3

64
(g2 + g′2)3 − 21

2
g6Y

]
, (3.59)

where λ± ≡ 1
2(λ3 + λ4 ± λ5). In the SM case in ref. [33], in eq. (201) it was shown that

the dominant 6-dim. contribution comes from the top quark (compared to the Higgs self-

coupling and gauge contributions) and that the relative shift caused by this 6-dim. operator

to the vev of the Higgs in the effective theory is of the order of one percent. Therefore, we

get a rough estimate of the validity of DR by investigating the ratios

V BSM
6,1

V SM
6,2

and
V BSM
6,2

V SM
6,2

. (3.60)

If these ratios are large, we can expect that even the first step of DR fails. These estimates

have been included in the parameter-space scans of the companion paper [36].

3.4.2 Validity of the SM-like effective theory

The phase-transition analysis presented in the companion paper [36] is based on the as-

sumption that dynamics of the transition can effectively be described by the one-doublet

theory discussed in section 3.2. We previously argued that this approximation can be jus-

tified in the presence of a sizable mixing term µ2
12φ

†
1φ2, but shall now study the reliability

of the last DR step in more detail by explicitly including the operator (φ†φ)3 in the final

effective theory and studying it perturbatively.

The scalar potential in this theory reads

V (φ) = µ̂2
3φ

†φ+ λ̂3(φ
†φ)2 + Λ̂6(φ

†φ)3, (3.61)

where the coefficients µ̂2
3, λ̂3 are as in section 3.3.2 and Λ̂6 is to be matched by computing

the six-point function in the diagonalized theory of eq. (3.7). Due to the presence of λ̃6

and λ̃7 terms, the six-point function contains one-particle-reducible contributions that are

not reproduced by the SM-like effective theory. In particular, the matching relation is

dominated by a tree-level diagram proportional to |λ̃6|2 [41]. Including only this leading-

order contribution, we obtain a matching relation for the 6-dim. coefficient

Λ̂6 =
8

3

|λ̃2
6|

m2
θ

. (3.62)

The effect of the operator (φ†φ)3 can be probed by calculating the effective potential

in this effective theory. Since the theory is purely spatial with all temperature dependence

being nested in the parameters themselves, we face no issues regarding thermal resumma-

tion. For the SM-like effective theory without the 6-dim. operator, the two-loop effective

potential has previously been obtained in ref. [37]. Our calculation is similar to theirs

but with modified couplings and masses (see appendix C.7). Finally, let us point out that
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since the 6-point coupling Λ̂6 is matched already at tree level, there exist three-loop and

higher diagrams that may be of numerical importance, but have been left out from our

error estimate.

If the minimum of the potential is shifted significantly by the inclusion of the 6-dim.

operator, we can conclude that the SM-like effective theory is inadequate for describing the

EWPT without accounting for higher-order operators, and basing the analysis on the lattice

results of ref. [7] is not reliable. In the companion paper, two points3 with a sizable mass

splitting between the scalar states A0 and H0 were analyzed using the three-dimensional

effective potential (see figure 3 in ref. [36]). While near the crossover boundary (x ≈ 0.11),

the SM-like effective theory was found to work well, increasing mA0
caused effects from the

6-dim. operator to became large and the location of the degenerate minimum was shifted

considerably. This is caused by the large portal couplings resulting from the mass hierarchy

between the H0 and A0 eigenstates, which, after diagonalization, leads to a large λ̃6 in the

6-dim. coefficient. This is an unfortunate result, since in perturbation theory, very strong

phase transitions are obtained precisely in the large-mA0
region [2, 4].

The conclusion is that although qualitative understanding of the phase structure of

2HDM can be obtained by integrating out the second doublet, accurate determination of

equilibrium quantities relevant for applications is beyond the reach of the SM-like effective

theory and clearly calls for new simulations with two dynamical doublets. However, the

SM-like theory may still be used to accurately find the critical line where a crossover turns

into a first-order transition, which is something not visible in perturbation theory.

4 Discussion

In this work, we have derived three-dimensional high-temperature effective theories for the

2HDM. We emphasize that each of these theories is able to reproduce long-distance physics

of the full 2HDM and can be studied on the lattice. An advantage of this three-dimensional

approach combined with lattice simulations is the accurate treatment of the IR physics at

high temperatures, which cannot be reliably described by purely perturbative methods. In

particular, dimensional reduction naturally incorporates resummations of higher-order IR-

sensitive contributions, and results obtained from the three-dimensional effective theories

can hence be expected to be more reliable than those obtained with resummed effective

potential alone.

However, as the 2HDM is often studied with fairly large couplings in the scalar sector,

the validity of the perturbative expansion used for dimensional reduction must be addressed

in order to reach reliable results. In practice, this requires a careful analysis of higher-order

corrections to the parameters of the effective theory, and estimates for neglected higher-

order operators. In the context of a finite-T effective potential, perturbativity of the one-

loop contribution must be analyzed by including full two-loop corrections and investigating

relative convergence. In the inert doublet model, a resummed two-loop effective potential

3The exact input parameters used were mA0
= 270GeV (x = 0.108) and mA0

= 280GeV (x = 0.063),

with tβ = 2, mH0
= 180GeV, µ = 75GeV, mH± = mA0

and cos(β − α) = 0 for both cases.
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has been calculated in ref. [63] with considerably large differences in the results relative to

a one-loop analysis.

Using existing lattice results, we have performed a non-perturbative analysis of the

three-dimensional theory where the second doublet has been integrated out. In the align-

ment limit of the 2HDM, our results are presented in a companion paper [36]. We have also

found that the analysis based on this SM-like effective theory is unreliable in the presence

of large portal couplings. In the near future, we plan on extending our study to lattice

simulations of two dynamical doublets, and non-perturbatively determining the thermody-

namic quantities of interest, such as the latent heat and surface tension, in addition to the

character and strength of the transition that were analyzed in the companion paper [36].

This would allow us to set a concrete benchmark for the accuracy of the widely-used per-

turbative treatment with a finite-T effective potential.
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A Diagonalization into a doublet-diagonal basis

A unitary transformation diagonalizing the 2HDM scalar potential can be written as

(
φ1

φ2

)
≡

(
α β

−β α∗

)(
φ

θ

)
, (A.1)

where

α =± eiϕ
√

µ2
22 − µ2

11 + Ω̄

2Ω̄
, (A.2)

β =

√
µ2
11 − µ2

22 + Ω̄

2Ω̄
, (A.3)

ϕ =tan−1 Im(µ2
12)

Re(µ2
12)

, (A.4)

Ω̄ =
√
(µ2

11 − µ2
22)

2 + 4|µ2
12|2. (A.5)
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The sign in eq. (A.2) should be chosen to match that of Reµ2
12 (for Reµ2

12 = 0, the sign

is determined by that of Im µ2
12, and we choose ϕ = π/2). This transformation generalizes

the rotation of eqs. (6.16-17) of ref. [41] to complex µ2
12. Mass parameters in the diagonal

basis read

µ2
φ =

1

2
(µ2

11 + µ2
22 − Ω̄), (A.6)

µ2
θ =

1

2
(µ2

11 + µ2
22 + Ω̄). (A.7)

When the mixing mass is considerably heavy, µ12 & gT , there will generally be a mass

hierarchy between the eigenstates φ, θ. When diagonalization is applied to the effective

theory of eq. (3.6), we may integrate out the heavier doublet θ in the limit of a large mixing

term to obtain the SM-like effective theory described in section 3.2. See the companion

paper [36] for an application of this approach. However, in the case of small Ω̄, both

doublets can be light and must be dynamically included in the three-dimensional lattice

simulations.

Scalar self-couplings in diagonal basis are given by




λ̃1

λ̃2

λ̃3

λ̃4

λ̃5/2

λ̃6

λ̃7




= M




λ̄1,3

λ̄2,3

λ̄3,3

λ̄4,3

λ̄5,3

λ̄∗
5,3

λ̄6,3

λ̄∗
6,3

λ̄7,3

λ̄∗
7,3




, (A.8)

where

M=




α2 (α∗)2 β4 αβ2α∗ αβ2α∗ 1
2β

2 (α∗)2 α2β2

2 −αβ (α∗)2 −α2βα∗ −αβ3 −β3α∗

β4 α2 (α∗)2 αβ2α∗ αβ2α∗ 1
2β

2 (α∗)2 α2β2

2 β3α∗ αβ3 α2βα∗ αβ (α∗)2

2αβ2α∗ 2αβ2α∗ β4 + α2 (α∗)2 −2αβ2α∗ −β2 (α∗)2 −α2β2 αβ (α∗)2 − β3α∗ αβ
(
αα∗ − β2

)
αβ3 − α2βα∗ β3α∗ − αβ (α∗)2

2αβ2α∗ 2αβ2α∗ −2αβ2α∗ β4 + α2 (α∗)2 −β2 (α∗)2 −α2β2 αβ (α∗)2 − β3α∗ αβ
(
αα∗ − β2

)
αβ3 − α2βα∗ β3α∗ − αβ (α∗)2

β2 (α∗)2 β2 (α∗)2 −β2 (α∗)2 −β2 (α∗)2 (α∗)4

2
β4

2 β (α∗)3 −β3α∗ β3α∗ −β (α∗)3

2αβ (α∗)2 −2β3α∗ β3α∗ − αβ (α∗)2 β3α∗ − αβ (α∗)2 −β (α∗)3 αβ3 α (α∗)3 − β2 (α∗)2 −2αβ2α∗ αβ2α∗ − β4 2β2 (α∗)2

2αβ3 −2α2βα∗ α2βα∗ − αβ3 α2βα∗ − αβ3 −β3α∗ α3β αβ2α∗ − β4 2α2β2 α3α∗ − α2β2 −2αβ2α∗




.

(A.9)

B Parameterization of the scalar sector

B.1 Stability and unitarity constraints

For the potential defined in eq. (2.3), boundedness from below is achieved if

λ1 > 0, λ2 > 0, λ3 > −2
√
λ1λ2 and λ3 + λ4 − |λ5| > −2

√
λ1λ2. (B.1)
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These have been obtained in refs. [55, 59, 64–67]. Furthermore, to guarantee that the v =

246GeV vacuum is a global minimum of the potential, we impose the following constraint

(in the case of a softly-broken Z2 symmetry):

[(
m2

H±

v2
+

λ4

2

)2

− |λ5|2
4

][
m2

H±

v2
+

2
√
λ1λ2 − λ3

2

]
> 0. (B.2)

This relation, as well as discussion on the possibility of a metastable vacuum in the 2HDM,

can be found in refs. [79, 80].

Requirement of unitarity conservation, discussed in refs. [68–70], further limits the

possible values of the λ’s. Tree-level unitarity constraints can be written in the form

|ΛZ2

Y σ±| < 8π, (B.3)

where in our parameterization

Λeven
21± = λ1 + λ2 ±

√
(λ1 − λ2)2 + |λ5|2, (B.4)

Λeven
01± = λ1 + λ2 ±

√
(λ1 − λ2)2 + λ2

4, (B.5)

Λeven
00± = 3(λ1 + λ2)±

√
9(λ1 − λ2)2 + (2λ3 + λ4)2, (B.6)

Λodd
21 = λ3 + λ4, (B.7)

Λodd
20 = λ3 − λ4, (B.8)

Λodd
01± = λ3 ± |λ5|, (B.9)

Λodd
00± = λ3 + 2λ4 ± 3|λ5|. (B.10)

B.2 Parameters of the four-dimensional theory in terms of physical quantities

Here we have set λ5 and µ2
12 to be real and defined Ω2 ≡ m2

H0
− µ2(tβ + t−1

β ), where

µ2 ≡ −Reµ2
12. Mass parameters and couplings of the scalar sector are given by

µ2
11 = µ2tβ − 1

2
[m2

h + (m2
H0

−m2
h)cβ−α(cβ−α + sβ−αtβ)], (B.11)

µ2
22 = µ2t−1

β − 1

2
[m2

h + (m2
H0

−m2
h)cβ−α(cβ−α − sβ−αt

−1
β )], (B.12)

v2λ1 =
1

2

{
m2

h +Ω2t2β − (m2
H0

−m2
h)[1− (sβ−α + cβ−αt

−1
β )2]t2β

}
, (B.13)

v2λ2 =
1

2

{
m2

h +Ω2t−2
β − (m2

H0
−m2

h)[1− (sβ−α − cβ−αtβ)
2]t−2

β

}
, (B.14)

v2λ3 = 2mH± +Ω2 −m2
h − (m2

H0
−m2

h)[1 + (sβ−α + cβ−αt
−1
β )(sβ−α − cβ−αtβ)], (B.15)

v2λ4 = m2
A0

− 2mH± +m2
H0

− Ω2, (B.16)

v2λ5 = m2
H0

−m2
A0

− Ω2. (B.17)

These can also be found in ref. [5], but note that there are misprints in powers of tβ in the

equations for λ1 and λ2.
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C Details of dimensional reduction

In principle, all zero-momentum correlator functions necessary for the matching relations

could be read from the effective potential. While for pure scalars this is straightforward,

calculating the effective potential for mixed scalar-gauge correlators is more subtle. There-

fore, we have chosen to evaluate the gauge correlators by a direct diagram-by-diagram

calculation, in analogy to refs. [33, 47]. For pure-scalar correlators at one-loop level, we

apply both of these methods as a cross-check of the correctness of our calculation.

At two-loop level, we only need doublet self energies, which we have calculated diagram-

matically rather than evaluating the two-loop effective potential as was done in ref. [33] in

the case of the SM. For this calculation, one has to evaluate a decent amount of individual

diagrams; we choose not to present intermediate results in a diagram-by-diagram form, and

only the final results have been given in section 3.3. However, in appendix C.6 we provide

a list of the required integrals for this calculation.

C.1 Matching relations from the effective potential

An economic way of calculating the scalar correlators needed for dimensional reduction is

to use the effective potential; we illustrate the procedure in this appendix (see also [81]).

In order to calculate the effective potential, one decomposes the scalar fields into quantum

and classical fields, φi → φi + ϕi. The quantum fields φi are integrated over in the path-

integral formalism in the usual way, while the classical fields ϕi are not. The functional

form of the effective potential can be found by expanding the resulting potential in the

background fields.

Following ref. [33], we include one-loop contributions from scalars, gauge bosons and

fermions to the effective potential:

V 1-loop
eff = CS(m) + CV (M) + CF (mf ), (C.1)

where

CS(m) ≡ −
∫∑

K
log

(
1

K2 +m2

)1/2

= Jb(m) (C.2)

CV (M) ≡ −
∫∑

K
log

(
det

δµν −KµKν/K
2

K2 +M2

)1/2

= (3− 2ǫ)Jb(M) (C.3)

CF (mf ) ≡ −
∫∑

{K}
log

(
1

i /K +mf

)1/2

= −4Jf (mf ), (C.4)

where m, M , and mf are the mass eigenvalues for the scalars, gauge bosons, and fermions,

respectively. In eq. (C.3) the prefactor comes from the trace of the projection operator

in the gauge field propagator, in d = 3 − 2ǫ dimensions. Fermions in consideration are

Dirac fermions, as indicated by the prefactor in eq. (C.4). The integrals Jb(m) and Jf (mf )

are given in eqs. (C.95) and (C.96). Note that for one-loop matching, we only need the

non-zero mode contributions of these sum-integrals.

We can extract the mass matrix from the quadratic parts in the gauge, scalar, and

fermion fields. This matrix can be diagonalized and, using different choices of background
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fields, we extract the contributions to the correlators at zero external momentum. Due to

our power counting scheme, at one-loop level only the φ†
1φ2 correlator and its Hermitian

conjugate are affected by the mass-mixing term. For all other correlation functions, the

mass-mixing effects occur only at a higher order. Therefore, in order to keep our illustration

simple, in this section we only consider the Z2 symmetric case λ6 = λ7 = 0 and µ2
12 = 0,

and we set Im(λ5) = 0 for simplicity. The effective potential can be expanded in the

background fields,

Veff = V11ϕ
†
1ϕ1 + V22ϕ

†
2ϕ2 + V1

[
ϕ†
1ϕ1

]2
+ V2

[
ϕ†
2ϕ2

]2
+ V3

[
ϕ†
1ϕ1

] [
ϕ†
2ϕ2

]

+ V4

[
ϕ†
1ϕ2

] [
ϕ†
2ϕ1

]
+

V5

2

[[
ϕ†
1ϕ2

]2
+
[
ϕ†
2ϕ1

]2]
. (C.5)

By determining the above coefficients V , we can find the correlators needed for dimensional

reduction. We shift the scalar fields φi → φi+ϕi, and focus first on the bilinear scalar terms,

Vscalar[φ1 + ϕ1, φ2 + ϕ2] =− 1

2
m̃2

11φ
†
1φ1 −

1

2
m̃2

22φ
†
2φ2

+ λ1

[
φ†
1ϕ1 + ϕ†

1φ1

]2
+ λ2

[
φ†
2ϕ2 + ϕ†

2φ2

]2

+ λ3

[
φ†
1ϕ1 + ϕ†

1φ1

][
φ†
2ϕ2 + ϕ†

2φ2

]

+ λ4

[
(φ†

1φ2)(ϕ
†
2ϕ1) + (φ†

2φ1)(ϕ
†
1ϕ2)

+ (φ†
1ϕ2 + ϕ†

1φ2)(φ
†
2ϕ1 + ϕ†

2φ1)
]

+
1

2
λ5

[
2(φ†

1φ2)(ϕ
†
1ϕ2) + 2(φ†

2φ1)(ϕ
†
2ϕ1)

+
[
φ†
1ϕ2 + ϕ†

1φ2

]2
+
[
φ†
2ϕ1 + ϕ†

2φ1

]2]
+O(φ3

i ) +O(φ4
i ) (C.6)

where m̃2
11 = −2µ2

11 − 4λ1ϕ
†
1ϕ1 − 2λ3ϕ

†
2ϕ2 and m̃2

22 = −2µ2
22 − 4λ2ϕ

†
2ϕ2 − 2λ3ϕ

†
1ϕ1.

We encounter a complication when trying to distinguish the V3, V4 and V5 contribu-

tions. In order to separate them, we make three different choices for the background fields

Case 1 : ϕ1 =
1√
2

(
0

v1

)
, ϕ2 =

1√
2

(
0

v2

)
(C.7)

Case 2 : ϕ1 =
1√
2

(
0

v1

)
, ϕ2 =

1√
2

(
0

iw0

)
(C.8)

Case 3 : ϕ1 =
1√
2

(
0

v1

)
, ϕ2 =

1√
2

(
w+

0

)
. (C.9)

For each case, we diagonalize the mass matrix, and evaluate the scalar part of the effective

potential by using background-field-dependent mass-squared eigenvalues, and the sum-

integral of eq. (C.95). By expanding to order O(g2) in mass parameters and to O(g4) in
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couplings, we find expressions of the form

Case 1: Veff =
1

2
V11v

2
1 +

1

2
V22v

2
2 +

1

4
V1v

4
1 +

1

4
V2v

4
2 +

1

4
(V3 + V4 + V5)v

2
1v

2
2, (C.10)

Case 2: Veff =
1

2
V11v

2
1 +

1

2
V22w

2
0 +

1

4
V1v

4
1 +

1

4
V2w

4
0 +

1

4
(V3 + V4 − V5)v

2
1w

2
0, (C.11)

Case 3: Veff =
1

2
V11v

2
1 +

1

2
V22w

2
+ +

1

4
V1v

4
1 +

1

4
V2w

4
+ +

1

4
V3v

2
1w

2
+. (C.12)

We immediately obtain the coefficients V11, V22, V1 and V2 from the above expansions, and

the remaining V3, V4 and V5 can be solved from the linear system of coefficients of v21v
2
2,

v21ω
2
0 and v21ω

2
+.

In the gauge sector, the covariant derivative Dµφ
†
iDµφi, where i = 1, 2, couples the

scalar and gauge fields. When the scalar fields are shifted by background fields, we get the

bilinear terms

Dµφ
†
1Dµφ1 +Dµφ

†
2Dµφ2 → Dµφ

†
1Dµφ1 +Dµφ

†
2Dµφ2

+
ig

2
~Aµ

[
ϕ†
1~σ∂µφ1 − ∂µφ

†
1~σϕ1 + ϕ†

2~σ∂µφ2 − ∂µφ
†
2~σϕ2

]

+
ig′

2
Bµ

[
ϕ†
1∂µφ1 − ∂µφ

†
1ϕ1 + ϕ†

2∂µφ2 − ∂µφ
†
2ϕ2

]

+
1

4
(ϕ†

1ϕ1 + ϕ†
2ϕ2)

[
g2 ~Aµ

~Aµ + g′2BµBµ

]

+
1

2
gg′Bµ

~Aµ

[
ϕ†
1~σϕ1 + ϕ†

2~σϕ2

]
. (C.13)

The bilinear mixing terms between gauge bosons and Nambu-Goldstone bosons are removed

by fixing the gauge using the usual Faddeev-Popov gauge-fixing procedure. One must also

include ghost fields, with ghost masses and new ghost interactions proportional to the

gauge fixing parameter ξ. However, in the Landau gauge, ξ = 0, the ghost masses and

interactions vanish. As there is no bilinear mixing between gauge bosons and ghost, we

can safely go to the Landau gauge in the ghost sector. The part bilinear in the gauge fields

is given by the last two terms above.

We follow the same procedure as outlined above, making use of the three choices of

background fields. In Case 1, we get two massive charged, one massive neutral and one

massless gauge boson with squared mass eigenvalues

M2
W =

1

4
g2(v21 + v22), (C.14)

M2
Z =

1

4
(g2 + g′2)(v21 + v22). (C.15)

In Case 2, we similarly find

M2
W =

1

4
g2(v21 + w2

0), (C.16)

M2
Z =

1

4
(g2 + g′2)(v21 + w2

0), (C.17)
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and in finally Case 3, we find four massive gauge bosons, with eigenvalues

M2
W =

1

4
g2(v21 + w2

+), (C.18)

M2
± =

1

8

[
(g2 + g′2)(v21 + w2

+)±
√
(g2 − g′2)2(v21 + w2

+)
2 + 4g2g′2(v21 − w2

+)
2
]
. (C.19)

By using eq. (C.3) we can evaluate the coefficients of background fields in each case. Finally,

we include contributions from the top quark, that only couples to φ2, and thus only affects

V22 and V2.

By collecting all contributions from the scalars, gauge bosons, and top quark at one-

loop, coefficients of the effective potential of eq. (C.5) take the form

V11 =µ2
11 +

T 2

12

[
9

4
g2 +

3

4
g′2 + 6λ1 + 2λ3 + λ4

]
, (C.20a)

V22 =µ2
22 +

T 2

12

[
9

4
g2 +

3

4
g′2 + 6λ2 + 2λ3 + λ4 + 3g2Y

]
, (C.20b)

V1 =λ1 −
1

16(4π)2

[
3

ǫ
+ 3Lb − 2

](
3g4 + g′4 + 2g2g′2

)

− 1

(4π)2

(
1

ǫ
+ Lb

)[
12λ2

1 +
1

2
λ2
3 + λ2

+ + λ2
−

]
, (C.20c)

V2 =λ2 −
1

16(4π)2

[
3

ǫ
+ 3Lb − 2

](
3g4 + g′4 + 2g2g′2

)

− 1

(4π)2

(
1

ǫ
+ Lb

)[
12λ2

2 +
1

2
λ2
3 + λ2

+ + λ2
−

]
+

3

(4π)2

(
1

ǫ
+ Lf

)
g4Y , (C.20d)

V3 =λ3 −
1

8(4π)2

[
3

ǫ
+ 3Lb − 2

](
3g4 + g′4 − 2g2g′2

)

− 1

(4π)2

(
1

ǫ
+ Lb

)[
2(λ1 + λ2)(3λ3 + λ4) + 2λ2

3 + λ2
4 + λ2

5

]
, (C.20e)

V4 =λ4 −
g2g′2

2(4π)2

(
3

ǫ
+ 3Lb − 2

)
− 1

(4π)2

(
1

ǫ
+ Lb

)[
2(λ1 + λ2 + 2λ3 + λ4)λ4 + 4λ2

5

]
,

(C.20f)

V5 =λ5 −
1

(4π)2

(
1

ǫ
+ Lb

)[
2λ5(λ1 + λ2 + 2λ3 + 3λ4)

]
. (C.20g)

We have included both tree-level and one-loop contributions. From these coefficients, one

can identify the required correlators and the corresponding counterterms.

C.2 Renormalization and one-loop β functions

All fields and couplings appearing in the Lagrangian of section 2.1 are the renormalized

ones, while the counterterms are included in δL . We use the following conventions for

the relations between the renormalized fields and couplings and their bare counterparts,
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denoted by the subscript (b):

~Aµ(b) ≡ Z
1/2
A

~Aµ = (1 + δZA)
1/2 ~Aµ, Bµ(b) ≡ Z

1/2
B Bµ = (1 + δZB)

1/2Bµ,

φ1(b) ≡ Z
1/2
φ1

φ = (1 + δZφ1
)1/2φ1, φ2(b) ≡ Z

1/2
φ2

φ = (1 + δZφ2
)1/2φ2,

q(b) ≡ Z1/2
q q = (1 + δZq)

1/2q, t(b) ≡ Z
1/2
t t = (1 + δZt)

1/2t, (C.21)

for the fields, and

g(b) ≡ Λǫ(g + δg), g′(b) ≡ Λǫ(g′ + δg′),

gY (b) ≡ Z
− 1

2

φ2
Z

− 1

2
q Z

− 1

2

t Λǫ(gY + δgY ), µ2
11(b) ≡ Z−1

φ1
(µ2

11 + δµ2
11),

µ2
22(b) ≡ Z−1

φ2
(µ2

22 + δµ2
22), µ2

12(b) ≡ Z
− 1

2

φ1
Z

− 1

2

φ2
(µ2

12 + δµ2
12),

λ1(b) ≡ Z−2
φ1

Λ2ǫ(λ1 + δλ1), λ2(b) ≡ Z−2
φ2

Λ2ǫ(λ2 + δλ2),

λ3(b) ≡ Z−1
φ1

Z−1
φ2

Λ2ǫ(λ3 + δλ3), λ4(b) ≡ Z−1
φ1

Z−1
φ2

Λ2ǫ(λ4 + δλ4),

λ5(b) ≡ Z−1
φ1

Z−1
φ2

Λ2ǫ(λ5 + δλ5), λ6(b) ≡ Z
− 3

2

φ1
Z

− 1

2

φ2
Λ2ǫ(λ6 + δλ6),

λ7(b) ≡ Z
− 1

2

φ1
Z

− 3

2

φ2
Λ2ǫ(λ7 + δλ7). (C.22)

for the couplings, where Λ is the renormalization scale.

In Landau gauge, the counterterms read explicitly

δZA =
g2

16π2ǫ

(
26−Nd

6
− 4

3
Nf

)
, (C.23)

δZB =− g′2

96π2ǫ

(
Nd +Nf

[
2Y 2

ℓ + Y 2
e + 3(2Y 2

q + Y 2
u + Y 2

d )
])

= − g′2

96π2ǫ

(
Nd +

40

3
Nf

)
,

(C.24)

δZφn
=

1

16π2ǫ

(
9

4
g2 +

3

4
g′2 − 3δ2,ng

2
Y

)
, (C.25)

δZt =2δZq = − g2Y
16π2ǫ

, (C.26)

δg =− g3

16π2ǫ

(
44−Nd

12
− 2

3
Nf

)
, (C.27)

δg′ =
g′3

192π2ǫ

(
Nd +

40

3
Nf

)
, (C.28)

δgY =− gY
16π2ǫ

(
1

3
g′2 + 4g2s

)
, (C.29)

δµ2
11 =

1

16π2

1

ǫ

(
6λ1µ

2
11 + (2λ3 + λ4)µ

2
22 + 6Re(λ6µ

2∗
12)

)
, (C.30)

δµ2
22 =

1

16π2

1

ǫ

(
6λ2µ

2
22 + (2λ3 + λ4)µ

2
11 + 6Re(λ∗

7µ
2∗
12)

)
, (C.31)

δµ2
12 =

1

16π2

1

ǫ

(
3λ6µ

2
11 + 3λ∗

7µ
2
22 + 3λ5µ

2∗
12 + (2λ4 + λ3)µ

2
12

)
, (C.32)
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δλ1 =
1

16π2

1

ǫ

1

2

(
24λ2

1 + 2λ2
3 + 2λ3λ4 + λ2

4 + |λ5|2 + 12|λ6|2

+
3

8
(3g4 + g′4 + 2g2g′2)

)
, (C.33)

δλ2 =
1

16π2

1

ǫ

1

2

(
24λ2

2 + 2λ2
3 + 2λ3λ4 + λ2

4 + |λ5|2 + 12|λ7|2

+
3

8
(3g4 + g′4 + 2g2g′2)− 6g4Y

)
, (C.34)

δλ3 =
1

16π2

1

ǫ

(
2(λ1 + λ2)(3λ3 + λ4) + 2λ2

3 + λ2
4 + |λ5|2 +

3

8
(3g4 + g′4 − 2g2g′2)

+ 2(|λ6|2 + |λ7|2) + 8Re(λ6λ7)

)
, (C.35)

δλ4 =
1

16π2

1

ǫ

(
2(λ1 + λ2)λ4 + 2λ2

4 + 4λ3λ4 + 4|λ5|2 +
3

2
g2g′2

+ 5(|λ6|2 + |λ7|2) + 2Re(λ6λ7)

)
, (C.36)

δλ5 =
1

16π2

1

ǫ

(
2(λ1 + λ2 + 2λ3 + 3λ4)λ5 + 5(λ6λ6 + λ∗

7λ
∗
7) + 2λ6λ

∗
7

)
, (C.37)

δλ6 =
1

16π2

1

ǫ

(
12λ1λ6 + (3λ3 + 2λ4)λ

∗
7 + λ5λ7 + (3λ3 + 4λ4)λ6 + 5λ5λ

∗
6

)
, (C.38)

δλ7 =
1

16π2

1

ǫ

(
12λ2λ7 + (3λ3 + 2λ4)λ

∗
6 + λ∗

5λ6 + (3λ3 + 4λ4)λ7 + 5λ∗
5λ

∗
7

)
. (C.39)

These may also be used to renormalize the theory in vacuum and are thus useful for

determining one-loop-corrected relations to physical pole masses. We leave this calculation

for future work.

By requiring that the bare parameters are independent of the renormalization scale,

one obtains the following β functions:

Λ
d

dΛ
g2 = − g4

8π2

(
22

3
− Nd

6
− 4

3
Nf

)
, (C.40)

Λ
d

dΛ
g′2 =

g′4

8π2

(
Nd

6
+

20

9
Nf

)
, (C.41)

Λ
d

dΛ
g2Y =

g2Y
8π2

(
9

2
g2Y − 9

4
g2 − 17

12
g′2 − 8g2s

)
, (C.42)

Λ
d

dΛ
µ2
11 =

1

16π2

(
− 3µ2

11

(
3

2
g2 +

1

2
g′2 − 4λ1

)
+ 2µ2

22(2λ3 + λ4) + 12Re(λ∗
6µ

2
12)

)
, (C.43)

Λ
d

dΛ
µ2
22 =

1

16π2

(
− 3µ2

22

(
3

2
g2 +

1

2
g′2 − 2g2Y − 4λ2

)
+ 2µ2

11(2λ3 + λ4) + 12Re(λ7µ
2
12)

)
,

(C.44)

Λ
d

dΛ
µ2
12 =

1

16π2

(
− 3µ2

12

(
3

2
g2 +

1

2
g′2 − g2Y

)
+ 6(µ2

11λ6 + µ2
22λ

∗
7) + 6λ5µ

2∗
12

+ 2(2λ4 + λ3)µ
2
12

)
, (C.45)
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Λ
d

dΛ
λ1 =

1

16π2

1

2

(
48λ2

1 + 4λ2
3 + 4λ3λ4 + 2λ2

4 + 2|λ5|2 + 24|λ6|2 +
3

4
(3g4 + g′4 + 2g2g′2)

− 6λ1(3g
2 + g′2)

)
, (C.46)

Λ
d

dΛ
λ2 =

1

16π2

1

2

(
48λ2

2 + 4λ2
3 + 4λ3λ4 + 2λ2

4 + 2|λ5|2 + 24|λ7|2 +
3

4
(3g4 + g′4 + 2g2g′2)

− 12g4Y − 6λ2(3g
2 + g′2 − 4g2Y )

)
, (C.47)

Λ
d

dΛ
λ3 =

1

16π2
2

(
2(λ1 + λ2)(3λ3 + λ4) + 2λ2

3 + λ2
4 + |λ5|2 +

3

8
(3g4 + g′4 − 2g2g′2)

+ 2(|λ6|2 + |λ7|2) + 8Re(λ6λ7)−
3

2
λ3

(
3g2 + g′2 − 2g2Y

))
, (C.48)

Λ
d

dΛ
λ4 =

1

16π2
2

(
2(λ1 + λ2)λ4 + 2λ2

4 + 4λ3λ4 + 4|λ5|2 +
3

2
g2g′2

+ 5(|λ6|2 + |λ7|2) + 2Re(λ6λ7)−
3

2
λ4

(
3g2 + g′2 − 2g2Y

))
, (C.49)

Λ
d

dΛ
λ5 =

1

16π2
2

(
2(λ1 + λ2 + 2λ3 + 3λ4)λ5 + 5(λ6λ6 + λ∗

7λ
∗
7) + 2λ6λ

∗
7

− 3

2
λ5

(
3g2 + g′2 − 2g2Y

))
, (C.50)

Λ
d

dΛ
λ6 =

1

16π2
2

(
12λ1λ6 + (3λ3 + 2λ4)λ

∗
7 + λ5λ7 + (3λ3 + 4λ4)λ6 + 5λ5λ

∗
6

− 3

2
λ6

(
3g2 + g′2 − g2Y

))
, (C.51)

Λ
d

dΛ
λ7 =

1

16π2
2

(
12λ2λ7 + (3λ3 + 2λ4)λ

∗
6 + λ∗

5λ6 + (3λ3 + 4λ4)λ7 + 5λ∗
5λ

∗
7

− 3

2
λ7

(
3g2 + g′2 − 3g2Y

))
. (C.52)

Two-loop-corrected β functions have been obtained in ref. [82].

C.3 One-loop thermal masses

Here we collect the one-loop thermal masses that are needed for thermal counterterms in

the four-dimensional theory:

Π̄1 ≡
T 2

12

(
6λ1 + 2λ3 + λ4 +

d

4
(3g2 + g′2)

)
, (C.53)

Π̄2 ≡
T 2

12

(
6λ2 + 2λ3 + λ4 +

d

4
(3g2 + g′2)− 6(22−d − 1)g2Y

)
, (C.54)

Π̄12 ≡
3T 2

12
(λ6 + λ∗

7), (C.55)
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m2
D =g2T 2

(
4 +Nd

6
+

Nf

3

)
, (C.56)

m′2
D =g′2T 2

(
Nd

6
+

5Nf

9

)
. (C.57)

In the effective theory containing temporal scalar fields A0, B0 and C0, the analogous

mass corrections read

Π̄φ1,3 ≡ −mD

4π
(3h1 + h2), (C.58)

Π̄φ2,3 ≡ −mD

4π
(3h4 + h5). (C.59)

Contributions from temporal gluons are of higher order, and have been omitted.

After the temporal scalars have been integrated out, the mass correction for the φ field

in the diagonalized theory is given by

Π̄φ,3 = −mθ

4π
(2λ̃3 + λ̃4). (C.60)

C.4 Normalization of fields

Relations between four- and three-dimensional fields, in Landau gauge, read:

A2
3d,0 =

A2
4d,0

T

[
1 +

g2

(4π)2

(
Nd − 26

6
Lb +

1

3
(8 +Nd) +

4Nf

3
(Lf − 1)

)]
, (C.61)

A2
3d,r =

A2
4d,r

T

[
1 +

g2

(4π)2

(
Nd − 26

6
Lb −

2

3
+

4Nf

3
Lf

)]
, (C.62)

B2
3d,0 =

B2
4d,0

T

[
1 +

g′2

(4π)2

(
Nd

(
Lb

6
+

1

3

)
+

20Nf

9
(Lf − 1)

)]
, (C.63)

B2
3d,r =

B2
4d,r

T

[
1 +

g′2

(4π)2

(
Nd

Lb

6
+

20Nf

9
Lf

)]
, (C.64)

(
φ†
1φ1

)
3d

=

(
φ†
1φ1

)
4d

T

[
1− 1

(4π)2

(
3

4
(3g2 + g′2)Lb

)]
, (C.65)

(
φ†
2φ2

)
3d

=

(
φ†
2φ2

)
4d

T

[
1− 1

(4π)2

(
3

4
(3g2 + g′2)Lb − 3g2Y Lf

)]
, (C.66)

(
φ†
1φ2

)
3d

=

(
φ†
1φ2

)
4d

T

[
1− 1

(4π)2

(
3

4
(3g2 + g′2)Lb −

3

2
g2Y Lf

)]
. (C.67)

C.5 Mass counterterms in the effective theories

We list here mass counterterms in the effective theories. These play a role in determin-

ing relations between lattice and continuum physics [76, 77]. In the first effective theory

containing temporal scalars (eq. (3.2)), UV divergences are canceled by introducing coun-
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terterms as

δµ2
22,3 =− 1

16π2

1

4ǫ

(
39g43
16

− 5

16
g′3

4 − 9

8
g23g

′
3
2 + 3(3g23 + g′3

2)λ2,3 − 12λ2
2,3 + 12g23h4

− 6h24 − 2h25 − 3h26

)

SM

− 1

16π2

1

4ǫ

(
− 1

8

(
3g43 + g′3

4
)
+ (3g23 + g′3

2)

(
λ3,3 +

1

2
λ4,3

)

− 2(λ2
3,3 + λ3,3λ4,3 + λ2

4,3)− 3|λ5,3|2 − 3|λ6,3|2 − 9|λ7,3|2
)

2HDM

, (C.68)

δµ2
11,3 =− 1

16π2

1

4ǫ

(
33g43
16

− 7

16
g′3

4 − 9

8
g23g

′
3
2 + 3(3g23 + g′3

2)λ1,3

+ (3g23 + g′3
2)(λ3,3 +

1

2
λ4,3)− 12λ2

1,3 − 2(λ2
3,3 + λ3,3λ4,3 + λ2

4,3)

− 3|λ5,3|2 − 9|λ6,3|2 − 3|λ7,3|2 + 12g23h1 − 6h21 − 2h22 − 3h23

)
, (C.69)

δµ2
12,3 =− 1

16π2

1

4ǫ

(
3

2

(
3g23 + g′2

)(
λ6,3 + λ∗

7,3

)
− 3(2λ1,3 + λ3,3 + λ4,3)λ6,3

− 3(2λ2,3 + λ3,3 + λ4,3)λ
∗
7,3 − 3λ5,3(λ

∗
6,3 + λ7,3)

)
. (C.70)

For convenience, we have separated contributions from diagrams specific to 2HDM in the

equation for δµ2
22,3.

In the effective theory of eq. (3.6) where temporal scalars have been integrated out,

the mass counterterms are given by

δµ̄2
22,3 =δµ2

22,3

∣∣∣
hi=0

− 1

16π2

1

4ǫ

(
3

16
ḡ43

)

SM

, (C.71)

δµ̄2
11,3 =δµ2

11,3

∣∣∣
hi=0

− 1

16π2

1

4ǫ

(
3

16
ḡ43

)
, (C.72)

δµ̄2
12,3 =δµ2

12,3, (C.73)

where the parameters are understood to be ḡ3, ḡ
′
3, λ̄1,3 . . . .

Finally, the mass counterterm in the SM-like effective theory reads

δµ̂2
3 =− 1

16π2

1

4ǫ

(
51ĝ43
16

− 5

16
ĝ′3

4 − 9

8
ĝ23 ĝ

′
3
2 + 3(3ĝ23 + ĝ′3

2)λ̂3 − 12λ̂2
3

)
. (C.74)

C.6 Collection of integrals

The Euclidean four-momentum is denoted as P = (ωn,p) for bosons, where ωn = 2nπT ,

and as P = (νn,p) for fermions, where νn = (2n + 1)πT . In dimensional regularization,

spatial integration is performed in d ≡ 3 − 2ǫ dimensions. We introduce the following
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shorthand notation for the combined Matsubara sum and space integration:

bosons:

∫∑
P
≡ T

∑

ωn

∫

p
,

∫∑′
P
≡ T

∑

ωn 6=0

∫

p
(sum over nonzero modes), (C.75)

fermions:

∫∑
{P}

≡ T
∑

νn

∫

p
, where

∫

p
≡

(
eγΛ2

4π

)ǫ ∫
d3−2ǫ p

(2π)3−2ǫ
.

All integrals relevant for O(g4) DR are listed below.

C.6.1 Three-dimensional integrals

We denote

PT (k)rs ≡ δrs −
krks
k2

. (C.76)

One-loop integrals.

I3α(m) ≡
∫

p

1

(p2 +m2)α
=

(
eγΛ2

4π

)ǫ (m2)
d
2
−α

(4π)
d
2

Γ
(
α− d

2

)

Γ(α)
, (C.77)

L3
2(m1,m2) ≡

∫

p

1

(p2 +m2
1)(p

2 +m2
2)

=
1

m2
2 −m2

1

(
I31 (m1)− I31 (m2)

)
, (C.78)

I31 (m) =

∫

p

1

p2 +m2
= − m

4π

(
Λ

2m

)2ǫ [
1 + 2ǫ+O(ǫ2)

]
, (C.79)

I32 (m) =

∫

p

1

(p2 +m2)2
=

1

8πm

(
Λ

2m

)2ǫ [
1 +O(ǫ2)

]
. (C.80)

Two-loop integrals.
∫

pq

1

(p2 +m2)α(q2 +m2)β [(p+ q)2]δ

=

(
eγΛ2

4π

)2ǫ (m2)d−α−β−δ

(4π)d
Γ
(
d
2 − δ

)
Γ
(
α+ δ − d

2

)
Γ
(
β + δ − d

2

)
Γ(α+ β + δ − d)

Γ
(
d
2

)
Γ(α)Γ(β)Γ(α+ β + 2δ − d)

,

(C.81)
∫

pq

1

(p2 +m2)(q2)α[(p− q)2]β

=

(
eγΛ2

4π

)2ǫ (m2)d−α−β−1

(4π)d
Γ (1 + α+ β − d) Γ

(
α+ β − d

2

)
Γ
(
d
2 − α

)
Γ
(
d
2 − β

)

Γ (α) Γ (β) Γ
(
d
2

) , (C.82)

∫

pq

1

(p2 +m2)(q2 +m2)[(p+ q)2 +m2]

= −
(

1

2π

)2d(eγΛ2

4π

)2ǫ 3(d− 2)

4(d− 3)
(m2)d−3

(
π

d
2Γ(1− d

2
)
)2

×
(

2F1

(
4− d

2
, 1;

5− d

2
;
3

4

)
− 3

d−5

2 2π
Γ(5− d)

Γ(4−d
2 )Γ(6−d

2 )

)
. (C.83)
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Eq. (C.83) can be found in ref. [83]. For arbitrary masses, the three-dimensional sunset

integral has a series expansion given by

S3
3(m1,m2,m3) ≡

∫

p,q

1

(p2 +m2
1)(k

2 +m2
2)((p+ k)2 +m2

3)

=
1

16π2

(
1

4ǫ
+ ln

(
Λ

m1 +m2 +m3

)
+

1

2

)
, (C.84)

and we need the following integrals containing gauge-field propagators:

B3
4(m) ≡

∫

pq

(2p+ q)r(2p+ q)s
(p2 +m2)2q2((p+ q)2 +m2)

PT (q)rs =
1

16π2

1

2

(
1

ǫ
+ 1 + 4 ln

(
Λ

2m

))
,

(C.85)

B3
5(m) ≡

∫

pq

(p− q)r(p− q)s
(p2 +m2)(q2 +m2)(p+ q)4

PT (p+ q)rs = − 1

16π2

1

4

(
1

ǫ
+ 4 ln

(
Λ

2m

))
,

(C.86)

B3
6(m) ≡

∫

pq

Pτ (p)rsPT (q)rs
p2q2((p+ q)2 +m2)

=
1

16π2

(
3

8ǫ
+

1

8
+

3

2
ln

(
Λ

m

))
. (C.87)

Finally, we have extracted the UV divergent parts of the following integrals that vanish

in dimensional regularization due to exact cancellation of UV and IR divergences:

b33(m) ≡
∫

pq

qr(ps + qs)Pτ (p)rs
(p2 +m2)2q2)[(p+ q)2]2

= − 1

16π2

1

16ǫ
+UV finite part, (C.88)

b37(m) ≡
∫

pq

Pτ (p)rsPτ (q)ijPτ (p+ q)mn(qsδmi − piδms − qmδis)(qrδnj − pjδrn − qnδrj)

(p2 +m2)2(q2 +m2)[(p+ q)2 +m2]

=
1

16π2

5

16ǫ
+UV finite part. (C.89)

These are needed in the limit m → 0 to calculate mass counterterms in the effective

theories.

C.6.2 Four-dimensional sum-integrals

I4bα,β,δ ≡
∫∑′

P

(P 2
0 )

β(p2)δ

(P 2)α
=

(eγΛ2)ǫ

8π2

Γ
(
α− d

2 − δ
)
Γ
(
d
2 + δ

)
ζ(2α− 2β − 2δ − d)

Γ
(
1
2

)
Γ(α)Γ

(
d
2

) (2πT )1+d−2α+2β+2δ, (C.90)

I4bα,β ≡ I4bα,β,0 =

∫∑′
P

(P 2
0 )

β

(P 2)α
=

(eγΛ2)ǫ

8π2

Γ
(
α− d

2

)
ζ(2α− 2β − d)

Γ
(
1
2

)
Γ(α)

(2πT )1+d−2α+2β , (C.91)

I4bα ≡ I4bα,0 =

∫∑′
P

1

(P 2)α
, (C.92)

I4b1 =

∫∑′
P

1

P 2
=

T 2

12

(
Λ

4πT

)2ǫ{
1 + 2

[
log 2π + γ − ζ ′(2)

ζ(2)

]
ǫ+O(ǫ2)

}
, (C.93)

I4b2 =

∫∑′
P

1

(P 2)2
=

1

16π2

(
Λ

4πT

)2ǫ [1
ǫ
+ 2γ +O(ǫ)

]
. (C.94)
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For the one-loop effective potential we need the sum-integrals

Jb(m) =
1

2

∫∑
K
log(K2 +m2)

=
m2T 2

24
− m3T

12π
− m4

64π2

(
1

ǫ
+ Lb

)
+

ζ(3)m6

3(4π)4T 2
+O

(
m8

T 2
, ǫ

)
, (C.95)

Jf (m) =
1

2

∫∑
{K}

log(K2 +m2)

= −m2T 2

48
− m4

64π2

(
1

ǫ
+ Lf

)
+

7ζ(3)m6

3(4π)4T 2
+O

(
m8

T 2
, ǫ

)
. (C.96)

Two-loop sum-integrals. We introduce the following shorthand notation:

m ≡
√
m2 +m2

T , (C.97)

S(P,m) ≡ 1

P 2 +m2 + δP0
m2

T

, (C.98)

PT (K)µν ≡ δµν −
KµKν

K2
, (C.99)

Pτ (K)µν ≡ δµiδνj

(
δij −

kikj
k2

)
, (C.100)

Dµν
α (K,mT ) ≡

(
(1− δK0

)
PT (K)µν
(K2)α

+ δK0

(
δµ0δν0

(K2 +m2
T )

α
+

Pτ (K)µν
(K2)α

))
. (C.101)

m2
T corresponds to a thermal-mass correction required for resummation.

Results for the sum-integrals are given up to terms of order O(|m|T ) ∼ O(gT 2) in

high-T expansion.

F1(m) ≡
∫∑

{P},K
Dµµ

1 (K,m)

P 2(P +K)2
≃ 0, (C.102)

F2(m) ≡
∫∑

{P},K
Dµν

1 (K,m)

P 4(P +K)2

(
− δµν(P

2 + P ·K) + 2PµPν

)

≃1

2
(1− d)(2− 22−d)(24−d − 1)I4b1 I4b2 , (C.103)

F3(m) ≡
∫∑

{P},K
Dµν

2 (K,m)

P 2(P +K)2

(
− δµν(P

2 + P ·K) + 2PµPν

)

≃(1− d)(22−d − 1)
(
TI4b1 I32 (m) + I4b1 I4b2

)
, (C.104)

F4(m) ≡
∫∑

{P},K
P 2 + P ·K
P 4(P +K)2

S(K,m)

≃1

2
(2− 22−d)(24−d − 1)I4b1 I4b2 , (C.105)

F5(m) ≡
∫∑

{P},K
P 2 + P ·K
P 2(P +K)2

(
S(K,m)

)2

≃(22−d − 1)
(
I4b1 I4b2 + TI4b1 I32 (m)

)
, (C.106)
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S1(m1,m2) ≡
∫∑

P,K

(
S(P,m1)

)2
S(K,m2)

≃T 2I32 (m1)I
3
1 (m2) + TI32 (m1)I

4b
1 + I4b1 I4b2 , (C.107)

S2(m1,m2) ≡
∫∑

P,K
S(P,m1)S(P,m2)S(K,m2)

≃T 2L3
2(m1,m2)I

3
2 (m2) + TL3

2(m1,m2)I
4b
1 + I4b1 I4b2 , (C.108)

S3(m1,m2,m3) ≡
∫∑

P,K
S(P,m1)S(K,m2)S(P +K,m3)

≃T 2S3
3(m1,m2,m3), (C.109)

B11(m1,m2) ≡
∫∑

P,K
Dµµ

1 (K,m2)
(
S(P,m1)

)2

≃T 2I31 (m2)I
3
2 (m1) + d

(
TI32 (m1)I

4b
1 + I4b1 I4b2

)
, (C.110)

B12(m1,m2) ≡
∫∑

P,K
Dµµ

2 (K,m2)S(P,m1)

≃T 2I31 (m1)I
3
2 (m2) + TI32 (m2)I

4b
1 + dI4b1 I4b2 , (C.111)

L0 ≡
∫∑

P,K

(P ·K)2

P 4K6
=

1

8
(d− 2)(d− 4)I4b1 I4b2 , (C.112)

B2(m) ≡
∫∑

P,K
(−2δµνδρσ + δµσδνρ + δµρδνσ)D

µν
2 (P,m)Dρσ

1 (K,m)

≃2L0 − dTI32 (m)I4b1 + 2(d− d2 − 1)I4b1 I4b2 , (C.113)

B3(m) ≡
∫∑

P,K

KµKν

K2(P +K)2
Dµν

2 (P,m)

≃
(
1− d

2

)
TI32 (m)I4b1 +

1

2
I4b1 I4b2 , (C.114)

B4(m1,m2) ≡
∫∑

P,K
(2P +K)µ(2P +K)νD

µν
1 (K,m2)

(
S(P,m1)

)2

× S(P +K,m1,mT )

≃T 2B3
4(m1), (C.115)

B5(m1,m2) ≡
∫∑

P,K
(P −K)µ(P −K)νD

µν
2 (P +K,m2)S(P,m1)S(K,m1)

≃T 2B3
5(m1) + 4

(
1− d

2

)
TI32 (m2)I

4b
1 + 2I4b1 I4b2 (C.116)

B6(m1,m2,m3) ≡
∫∑

P,K
Dµν

1 (P,m2)D
µν
1 (K,m3)S(P +K,m1)

≃T 2
(
B3

6(m1) + S3
3(m1,m2,m3)

)
, (C.117)
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B7(m) ≡
∫∑

P,K
Dβν

2 (P,m)Dκλ
1 (K,m)Dρσ

1 (P +K,m)

× (Kνδρκ − Pκδρν −Kρδκν)(Kβδσλ − Pλδβσ −Kσδβλ)

≃1

4
T 2

(
2B3

4(m,m) +B3
5(m,m)

)
+

1

4
(1 + 2d)I4b1 I4b2

− 1

2
L0 +

d

2
(d− 2) TI32 (m)I4b1 . (C.118)

Finally, note that the following fermionic sunset sum-integral vanishes:
∫∑

{P},K
1

P 2K2(P +K)2
= 0. (C.119)

These master sum-integrals are required in the evaluation of two-loop scalar two-point

functions directly in the unbroken phase, without using the effective potential (which was

used in ref. [33]). It will turn out that terms with mixed zero mode and non-zero mode

contributions, i.e. terms of the form I32 (m)I4b1 , are entirely canceled in resummation, and

so the matching relations are obtained solely from the pure non-zero mode parts.

C.7 Effective potential for the SM-like theory with a 6-dim. operator

We describe here details of the calculation leading to the error estimate discussed in sec-

tion 3.4.2. The 6-dim. operator Λ̂6(φ
†φ) modifies couplings in the mass-eigenstate basis,

and also enters the relations for mass eigenvalues. Parameterizing the doublet φ in the

effective theory as

φ =

(
G+

1√
2
(ϕ+ h+ iG)

)
, (C.120)

where ϕ is a classical background field, the scalar masses read

m2
h = 3λ̂3ϕ

2 +
15

4
Λ̂6ϕ

4 + µ̂2
3, (C.121)

m2
G = m2

G± = λ̂3ϕ
2 +

3

4
Λ̂6ϕ

4 + µ̂2
3, (C.122)

while the gauge boson masses obtain no corrections from Λ̂6. Furthermore, the 6-dim.

operator contributes to vertex rules of the scalar sector as follows:

Ch,h,h = −3
(
2λ̂3ϕ+ 5Λ̂6ϕ

3
)
, (C.123)

Ch,h,h,h = −6λ̂3 − 45Λ̂6ϕ
2, (C.124)

Ch,h,G,G = −2λ̂3 − 9Λ̂6ϕ
2, (C.125)

Ch,h,G+,G− = −2λ̂3 − 9Λ̂6ϕ
2, (C.126)

Ch,G,G = −2λ̂3ϕ− 3Λ̂6ϕ
3, (C.127)

Ch,G+,G− = −2λ̂3ϕ− 3Λ̂6ϕ
3, (C.128)

CG,G,G,G = −6λ̂3 − 9Λ̂6ϕ
2, (C.129)

CG,G,G+,G− = −2λ̂3 − 3Λ̂6ϕ
2, (C.130)

CG+,G+,G−,G− = −4λ̂3 − 6Λ̂6ϕ
2. (C.131)
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Using these, we may calculate the effective potential to two-loop level in the SM-like

+ 6-dim. effective theory: the tree-level contribution reads

V
(0)
eff =

1

2
µ̂2
3ϕ

2 +
1

4
λ̂3ϕ

4 +
1

8
Λ̂6ϕ

6, (C.132)

while the required integrals for one- and two-loop corrections have been presented in ap-

pendix B.2 of ref. [37]. At two-loop order, the 6-dim. operator enters the calculation only

via its contribution to the masses and couplings listed above, so generalizing the calculation

of ref. [37] for our purposes is straightforward and will not be presented explicitly. For the

analysis in the companion paper [36], we have discarded the U(1) coupling ĝ′3, which has

little effect on our 6-dim. error estimate.

Due to the presence of the 6-dim. operator, the effective theory is no longer super-

renormalizable. UV divergences arising at two-loop level can be canceled by introducing

the following counterterms in the tree-level part:

δµ̂2
3 = − 1

16π2

1

4ǫ

(
51

16
ĝ43 + 9ĝ23λ̂3 − 12λ̂2

3

)
, (C.133)

δλ̂3 = − 1

16π2

1

2ǫ
(9Λ̂6ĝ

2
3 − 48Λ̂6λ̂3), (C.134)

δΛ̂6 =
1

16π2

1

ǫ
51Λ̂2

6. (C.135)

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] G.C. Branco, P.M. Ferreira, L. Lavoura, M.N. Rebelo, M. Sher and J.P. Silva, Theory and

phenomenology of two-Higgs-doublet models, Phys. Rept. 516 (2012) 1 [arXiv:1106.0034]

[INSPIRE].

[2] G.C. Dorsch, S.J. Huber, K. Mimasu and J.M. No, Echoes of the Electroweak Phase

Transition: Discovering a second Higgs doublet through A0 → ZH0,

Phys. Rev. Lett. 113 (2014) 211802 [arXiv:1405.5537] [INSPIRE].

[3] G.C. Dorsch, S.J. Huber, K. Mimasu and J.M. No, Hierarchical versus degenerate 2HDM:

The LHC run 1 legacy at the onset of run 2, Phys. Rev. D 93 (2016) 115033

[arXiv:1601.04545] [INSPIRE].
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