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Cellulære og molekylære mekanismer ved metylkvikksølvindusert nevrotoksisitet  

Kvikksølv er et metall kjent og brukt til mange forskjellige formål i flere hundre år. Kvikksølv inngår i 

mange kjemiske forbindelser og på 1950-tallet ble det vist at en organisk form for kvikksølv, 

metylkvikksølv (MeHg), er nevrotoksisk. Til tross for omfattende forskning kjenner vi fortsatt ikke den 

molekylære mekanismen som ligger bak MeHg’s giftighet. MeHg reagerer med thiol-grupper og disse 

er vesentlige for enzymers normale funksjon. På denne måten kan MeHg skade de fleste enzymer i det 

cellulære maskineriet. MeHg’s giftvirkningen skyldes trolig et multippel av effekter på flere cellulære 

prosesser.

En av de viktige mekanismer bak MeHg-indusert giftighet er dannelse av reaktive oksygen radikaler 

(ROS) og reduksjon av mengden av glutation (GSH) i celler. Balansen mellom de antioksidante og 

reduktive prosesser er viktig for MeHg-indusert nevrotoksisitet. Cellekultursystemer er mindre 

komplekse enn hjernen og ble brukt som modell for å studere forandringene i slike cellulære prosesser 

etter MeHg-eksponering. MeHg-indusert oksidativt stress ble studert i primære nevroner og astrocytter 

fra stor- og lillehjernen, samt cellelinjer. Cellekulturene ble behandlet med N-acetyl cystein (NAC) som 

øker cellulært GSH eller med dietylmaleat (DEM) som reduserer cellulært GSH-innhold. Fluorescens-

mikroskopi ble benyttet til identifisering og kvantifisering av cellulær ROS og GSH i levende celler. 

Reduksjon av GSH førte til økt cellulært opptak av MeHg og forsterket MeHg-indusert oksidativ stress. 

Redusert GSH-nivå i nevroner i forhold til astrocytter viser betydningen av nevron-glia interaksjon med 

hensyn til MeHg nevrotoksisitet. Økningen av MeHg i cerebellare nevroner kan forklare økt følsomhet 

av cerebellare nevroner i forhold til cerebellare astrocytter. Modulasjonen av GSH forklarer i noen grad 

forskjellen i ROS-endringer i cerebellare og kortikale kulturer. Behandling med NAC eller DEM førte 

til økt cellulært opptak av MeHg i cerebellare kulturer i forhold til kortikale kulturer.  

Epidemiologiske studier av fiskespisende populasjoner har gitt noe forskjellig resultat med hensyn til 

hvordan MeHg kan påvirke hjernens utvikling. Mengden av ernæringsfaktorer som dokosaheksaensyre 

(DHA) kan påvirke MeHg-giftighet og bidra til å forklare uoverensstemmelsene i de ulike studiene. I 

denne avhandlingen har vi sett på hvordan DHA kan påvirke MeHg-indusert nevrotoksisitet i cellelinjer 

og primær-cellekulturer. I primær cellekulturer ble det vist hvordan DHA kan redusere mengden av 

MeHg i cellene samt redusere den oksidative effekt. Dette støtter hypotesen om at næringsstoffer fra 

fisk kan bidra til å beskytte hjernen mot MeHg.  
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II. Abbreviations 

Hg   mercury  
MeHg   methylmercury 
PCB’s   poly chlorinated biphenyls 
SH   sulfhydryl 
CNS  central nervous system 
NAC  N-acetyl cysteine 
DMPS  2,3-dimercapto-1-propane sulfonate 
GABA   gamma amino butyric acid 
ROS  reactive oxygen species 
GPx  glutathione peroxidase 
GSH  glutathione 
PUFA’s  poly unsaturated fatty acids 
DHA  docosahexaenoic acid 
GFAP  glial fibrillary acidic protein 
CMH2DCFDA chloro methyl derivative of di-chloro di-hydro fluoresceindiacetate
MCB  monochlorobimane 
DCF   dichlorofluorescein 
FID  flame ionization detector 
MTT  [3-(4, 5-dimethylthiazol-2-yl)-2, 5 diphenyltetrazolium bromide] 
DEM  di-ethyl maleate 
FAF-BSA fatty acid free bovine serum albumin 
AA  arachidonic acid 
EPA  eicosapentaenoic acid 
LA  linoleic acid.  
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III. Summary 

Methyl mercury (MeHg), a metal known and used for various purposes over many 

years became recognized as a neurotoxicant during the 1950’s. In spite of decades of 

research, the toxic mechanisms of MeHg still remain an enigma. It can react rapidly 

with any thiol group and since this binding is reversible, it can jump freely from one 

protein thiol group to another. Therefore, it can damage any protein present in the 

cellular machinery. There is no single specific mechanism of action ascribed to MeHg 

and its toxicity likely involves multiple coordinated effects on several parallel processes 

in the cell.  

One of the major mechanisms behind MeHg-induced toxicity is via generation of 

reactive oxygen species (ROS) and depletion of glutathione (GSH). The balance 

between the oxidative and reductive cellular processes is critical for MeHg-induced 

neurotoxicity. Tissue culture systems being less complex than the heterogenous brain 

were selected as a model for studying the changes in these cellular processes after 

MeHg exposure. Moreover, cell cultures can provide new insights into the mechanisms 

of neurotoxic compounds. The role of MeHg-induced oxidative stress was studied in 

primary neurons and astrocytes from cerebrum and cerebellum and in neuronal and 

glial cell lines. The cell cultures were treated with N-acetyl cysteine (NAC) which is 

known to increase the cellular GSH or with Di-ethyl maleate (DEM) which decreases 

the cellular GSH status. The technique of fluorescence microscopy allowed the 

identification as well as quantification of cellular ROS and GSH in live cells. The 

relationship between GSH and MeHg concentrations was also estimated. The depletion 

of GSH increased the MeHg accumulation and enhanced MeHg-induced oxidative 

stress. Conversely, supplementation with GSH precursor protected against MeHg 

exposure in vitro. The presence of increased GSH in neurons as compared to astrocytes 

indicated the importance of neuronal-glial interactions with respect to MeHg 

neurotoxicity. In addition, the increased cell-associated MeHg in cerebellar neurons 

provided an explanation for the increased susceptibility of cerebellar neurons as 

compared to cerebellar astrocytes. To a certain extent, the modulation of GSH also 

explained the differential sensitivity of MeHg towards ROS generation in cerebellar 

and cortical cultures. The increased cell-associated MeHg was observed in cerebellar 

cultures after treatment with NAC or DEM as compared to cortical cultures. Since in 

vitro cultures could be influenced by changes in cell density and concentration of 
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neurotoxic compounds; the importance of using an optimum concentration, time and 

cell density in cell cultures for assessing MeHg toxicity was also addressed.

There have been discrepancies in the outcomes of epidemiological studies estimating 

the effect of MeHg from fish diet. The availability of nutritional factors such as 

docosahexaenoic acid (DHA) might influence MeHg toxicity and may explain the 

discrepancies from the different studies. Therefore, the effect of DHA on modulating 

MeHg-induced neurotoxicity was studied in cell lines as well as primary cell cultures. 

In the cell lines, DHA augmented the response of MeHg-induced oxidative effects. 

However, in primary cell cultures the importance of DHA to reduce the cell-associated 

MeHg and prooxidant response from MeHg was addressed. This novel finding 

supported the hypothesis that fish-derived nutrients can offer possible neuroprotection 

from MeHg as well as highlighted the importance of using an appropriate model for 

investigating DHA and MeHg-induced effects. 
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VI. Introduction

a) Background 

Mercury (Hg) is a metal of many uses that has been known for thousands of years. Hg 

occupies the atomic number 80 in the periodic table and has an atomic weight of 200.6. 

The physical properties of Hg include a density of 13.6 and its melting and boiling 

points at normal pressure are -38.9 and 356.6oC, respectively. Thus, it is the only metal 

which is liquid at room temperature. Hg exists in nature mainly as three different 

molecular species; elemental (Hgo), inorganic (e.g., Hg+, Hg2+) and organic (e.g., 

methylmercury, ethylmercury, phenylmercuric acetate). One of the organic forms of 

Hg: methylmercury (MeHg) became a prime environmental heath issue during the 

1950’s.

The first case of fatal occupational poising caused by MeHg was recorded in 1863 

where the researchers working on the synthesis of organic mercurials were gravely 

affected (Edwards, 1865, 1866). Later in 1940, the first report on MeHg neurotoxicity 

by occupational exposure in four adults was reported (Hunter et al., 1940). Several 

catastrophic epidemics resulting from environmental contamination at the two cities in 

Japan - Minamata from 1953-1956 (Igata, 1993) and Niigata from 1964-1965 (Tsubaki 

et al., 1967) highlighted the potentially disastrous effects of MeHg. In mid-1960’s in 

Sweden (Westöö, 1966) MeHg was recognized as a widespread environmental issue. 

Later in the late 1960’s and early 1970’s exposure to MeHg via consumption of bread 

baked with Hg treated seed grains in Iraq (Bakir et al., 1973) caused a large outbreak of 

human intoxication from organic Hg. Similar incidents in Pakistan, Guatemala and 

Ghana led to the recognition of MeHg as a ubiquitous environmental toxicant 

(Clarkson, 2002). It is a hazardous trace metal that is still released into the environment 

from both natural and anthropogenic sources (ATSDR, 1999; US EPA, 1997). Hg 

released from such sources is sustained in the marine ecosphere (Stokes and Wren, 

1987; Veiga et al., 1994) and becomes methylated to MeHg in the upper sedimentary 

layers of sea or lake beds by the action of microorganisms (Jensen and Jernelöv, 1969). 

The MeHg formed is rapidly taken up by the living organisms in the aquatic 

environment. MeHg is then biomagnified through the food chain from 10,000-100,000 

times (US EPA, 1997; Wiener et al., 2003). After bioaccumulation it reaches humans 

through fish consumption (Clarkson, 1997; Kamps et al., 1972; Spry and Wiener, 

1991). A recent study by Boudou et al., (2005) reported higher concentrations of Hg in 
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a gold mining river at French Guiana resulting in high MeHg content in the fish. In 

general, nearly all fish contain detectable amounts of MeHg which when consumed in 

large amounts by humans can exert neurotoxic effects due to MeHg overload (Clarkson 

et al., 1988). However, the enrichment of MeHg in the food chain is not uniform. It is 

dependent upon the Hg content in the water and bottom sediments, pH of the water, 

redox potential of the water, species, age and size of the fish. In addition Boudou et al.,

(2005) also reported that environmental conditions such as anoxia favor the growth of 

microorganisms which increase the methylation of Hg and might account for high 

concentrations in fish. They observed that fish collected in rivers downstream of gold 

mining sites in French Guiana had 8-fold higher concentrations of MeHg than fish 

collected upstream.  

The current recommended maximal dose for MeHg is 0.4 g/kg body weight/day by the 

World Health Organization and US Food and Drug Administartion and more recently 

0.1µg/kg/day by the US Environmental Protection Agency (US EPA, 1997, 2001). 

Unfortunately, these levels can easily be attained with only a few meals of fish per 

week, depending on the source of the fish and its position in the food chain. The Hg 

intake via fish consumption in different epidemiological studies is shown in Table 1. In 

populations which consume large amounts of  fish as for example on the Faroe Islands, 

an increase in hair-Hg levels up to 4.27 ppm during pregnancy were associated with 

impaired psychomotor test performance of the child at 7 years of age (Grandjean et al.,

1997). This population consumed mainly pilot whale which contained both MeHg and 

PCB’s (poly chlorinated biphenyls). This type of diet led to average cord blood MeHg 

level of 22.9 µg/l and was correlated with deficits in neurophysiological and 

neuropsychological tests (eg finger tapping speed, reaction time on a continued 

performance task, cued naming, deficits in motor, attention and verbal tests) performed 

in children. In a follow up study performed on 14 year-old children at Faroe Islands it 

was reported that correlation between MeHg exposure via fish and deficits in scores of 

neurological tests were still persistent (Debes et al., 2006). Moreover, Budtz-Jorgensen 

et al., (1999), reported that PCB’s were not responsible for these effects. In Japan, 

strong association between the prevalence of mental retardation and Hg concentration 

in the umbilical cord were reported at Minamata (Harada, 1978) and Niigata (Tsubaki 

and Irukayma, 1977). In another study from New Zealand (Kjellstrom and Kennedy, 

1985) intake of MeHg via fish increased the maternal hair Hg levels to 5-20 ppm. In 
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this study, maternal hair Hg levels exceeding 6 ppm correlated with the deficit in the 

Denver developmental screening test and neurological screening test in children at 4 

years of age. However, studies carried out on the Seychelles (Davidson et al., 1998; 

Huang et al., 2005; Myers et al., 2003) showed no adverse effects at maternal hair Hg 

level of 6.8 ppm. Another epidemiological study in the province of Quebec, Canada 

(Keown-Eyssen et al., 1983) also indicated no consistent relation between hair MeHg 

levels of 24 ppm or lower in the mother during pregnancy and developmental outcomes 

in the female offspring. Although, the objective of both the Faroe Island and Seychelles 

studies was to evaluate the offspring of mothers exposed to MeHg during pregnancy, 

the apparent differences in outcomes between the Faroe Islands and Seychelles studies 

could be due to many reasons. For example, the effect of some of the confounding 

factors, such as socioenvironmental factors, differences in genetic disposition, 

nutritional status as well as pattern of exposure can be difficult to control and adjust for 

in the statistical analysis. In addition in the Faroe Islands study, umbilical cord blood 

was the preferred biomarker of exposure, although maternal hair was also collected and 

analyzed. In addition in the Seychelles study, maternal hair was used as the measure of 

fetal exposure. Moreover, the assessment of neurodevelopmental outcomes depends 

greatly upon the appropriate uses of the test for the skills being assessed and the age of 

the subjects being evaluated. At the Faroe Islands the tests were performed on 7 year 

olds but on the Seychelles it was performed on 5½ year (66 months) olds. Furthermore, 

the first testing in the Seychelles study was performed on 6-month-olds (Myers et al.,

1995) using the Denver Developmental Screening Test. This test is specific but 

insensitive, especially when administered to 6-month-olds. The co-exposure with 

confounders such as selenium, and omega-3 fatty acids might also influence the 

outcome of these studies. Conversely, it is also possible that the different populations 

simply produced different results due to differences in genetic dispositions. 

The MeHg content in food products excluding fish varies from few µg to 50µg/kg 

(Bouquiaux, 1974). Consumption of MeHg-contaminated bread in Iraq led to MeHg 

concentrations in hair exceeding 50 ppm and was correlated with severe psychomotor 

retardation (Marsh et al., 1980). In the United States in 1970, a case of MeHg exposure 

was reported in a family that consumed the meat of a pig fed treated grain (Likosky et 

al., 1970). Even recent contamination of rice with MeHg has also been reported from 

Jiangsu province in China (Shi et al., 2005). Therefore, the risk of exposure to MeHg 
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via contaminated food still persists and requires constant surveillance. When 

neurological impairments from MeHg consumption appear, the duration of exposure is 

of importance for recovery and rehabilitation. From the epidemiological studies, the 

duration of exposure can be divided into three categories (Table 1): a) chronic exposure 

at high levels as in Minamata or b) acute exposure at high levels as in Iraq or c) chronic 

exposure at low levels such as in Sweden, the Faroe Islands and the Seychelles. The 

outlook for recovery and rehabilitation seems to be better in the case of acute exposure 

compared with prolonged exposure (Amin-Zaki et al., 1978). However, exposure levels 

seem to be a critical factor in determining the extent of recovery.  

Table 1. Compilation of some epidemiological studies of MeHg exposure 

Epidemiological study Hg intake Source 

Prolonged low level

Swedish Population 

(Swedish Expert Group, 1971) 
1-20 µg/day Fish 

American Samoan Population 

(Marsh et al., 1974) 
200-300 µg/day Fish 

Seychelles

(Davidson et al., 1998) 

12 fish meals/week leading to 

maternal hair level of 6.8 ppm 

(median) 

Fish

Faroes

(Grandjean et al., 1997) 

1-3 fish meals/week leading to 

maternal hair level of 4.27 ppm 

(geometric mean) 

Fish and pilot 

whale

New Zealand 

(Kjellstrom and Kennedy, 1985) 

fish consumption leading to 

maternal hair level of 5-20 ppm 
Fish

High level exposure

Minamata and Niigata 

(Eto, 1997) 
5 mg/day Fish

Iraq

(Bakir et al., 1973) 

hair levels above 50 ppm 

blood levels above 500 µg Hg/l 
Wheat
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b) Pharmacokinetics 

MeHg can be absorbed via skin (Friberg et al., 1961) or after inhalation where it readily 

penetrates the membranes of the lung at absorption level of 80% of the exposure. MeHg 

ingested via food is likely to be bound to proteins in the intestinal tract (Aberg et al.,

1969). The hazards involved in the intake of MeHg via food or occupational exposure 

is due to efficient absorption (90%) and long retention time (half life of 70 days) in 

man. After ingestion, the distribution to the blood compartment is complete within 30 

hrs and the blood levels account for about 7% of the ingested dose (Kershaw et al.,

1980). In blood, MeHg is accumulated to a larger extent in the red cells bound to 

cysteinyl residues on the beta-chain of the hemoglobin molecule (Doi, 1991). From the 

blood MeHg is distributed slowly to the organism and the equilibrium between blood 

and body is not reached until 4 days (Kershaw et al., 1980). It was shown by using 

radiolabeled MeHg that equilibrium between blood and brain requires about 3 days 

(Aberg et al., 1969). In humans about 10% of body content of MeHg is retained in the 

brain. MeHg is incorporated into the hair during its formation. The MeHg concentration 

in blood and hair reflects the body burden. The ratio of blood/hair concentration in man 

is 1/250 under steady state conditions (Skerfving, 1974). 

Demethylation of MeHg into inorganic Hg is the key step in the excretion process of 

MeHg. This process occurs mainly through microbial activity within the intestine 

(Rowland et al., 1984) or in vitro in rat liver microsomes (Suda and Hirayama, 1992) 

and has also been reported to occur in brain but at a slower rate (Charleston et al.,

1995). MeHg is predominantely excreted (about 90%) via the fecal route. The net 

excretion rate in humans is approximately 1% of the body content at non-symptomatic 

body burden (Swedish Expert Group, 1971). Most of the MeHg is eliminated through 

liver into the bile and through the kidney into the urine. From the bile most of the 

MeHg gets absorbed in the gut leading to enterohepatic circulation of MeHg. Slower 

excretion of MeHg via urine has been reported to result in more toxicity in female rats 

as compared to male rats (Hirayama and Yasutake, 1986). MeHg is also excreted in the 

breast milk which is about 5% of the MeHg in the maternal blood (Bakir et al., 1973). 

An influence of diet on the excretion rate of MeHg has also been shown (Landry et al.,

1979) since the diet interferes with the reabsorption of MeHg in the lower part of the 

intestines.  
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MeHg has a remarkable affinity for the anionic form of sulfhydryl (-SH) groups (log K, 

where K the affinity constant is in the order of 15-23) (Hughes, 1957). Despite the high 

thermodynamic stability of the MeHg-SH bond, very rapid exchange of MeHg between 

-SH groups is known to occur (Rabenstein and Fairhurst, 1975). In cells, MeHg can 

form a complex with the -SH containing amino acid cysteine (Bridges and Zalups, 

2004). The MeHg-S-Cys complex behaves as a mimic of the neutral amino acid, 

methionine, which is a substrate of the neutral amino acid transporter system L 

(Landner, 1971). This mimicry has been reported to be responsible for MeHg uptake 

into the cells. For MeHg, the uptake into the cells is both an active, energy dependent 

(e.g. MeHg-cysteine) as well as passive uptake (e.g. MeHgCl) depending on the Hg 

species (Aschner et al., 1990) 

c) Neurological disturbances

The brain and the central nervous system (CNS) are the primary target sites where the 

adverse effects of MeHg are observed (ATSDR, 2003; WHO, 2000). MeHg is a potent 

neurotoxicant that affects both the developing and mature CNS (Atchison, 2005; 

Clarkson et al., 1988). There is usually a latent period of weeks to months between 

exposure and the onset of symptoms (Clarkson et al., 2003). The pathological changes 

found in adult brain are different when compared to fetal brain (Lapham et al., 1995). 

The pathology of the Minamata disease is shown in Fig. 1 where MeHg poisoning 

results in focal damage in adults as compared to the widespread and diffuse damage in 

the fetal brain. MeHg from mother’s blood is transported through the placenta to the 

fetus (Reynolds and Pitkin, 1975). The brain levels of MeHg in fetus can be higher than 

in the mother (Berlin and Ullberg, 1963). In infants, MeHg poisoning results in an 

unspecific infantile cerebral palsy (Swedish Export Group, 1971) involving ataxic 

motor disturbances and mental symptoms. The brain is found to be hypoplastic upon 

autopsy with a symmetrical atrophy of cerebrum and cerebellum. The histological 

features involve decreased number of neurons and distortion of cytoarchitecture in the 

cortical areas (Choi et al., 1978; Takeuchi, 1977). In less severe cases, psychomotor 

retardation and increased incidence of seizures has been reported (Marsh et al., 1980). 

These generalized symptoms in infants with neuronal loss throughout the brain are 

mainly irreversible. A body burden of 0.5 mg/kg body weight in pregnant women may 

result in inhibited brain development of the fetus with psychomotor retardation of the 

child.
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In adults, chronic MeHg poisoning results in degeneration of the sensory cerebral 

cortex and severe neurological disturbances, such as paresthesia in the distal 

extremities, ataxia, sensory and speech impairment, and constriction of the visual field 

(Bakir et al., 1973; Elhassani, 1982; Harada, 1995). In severe cases clonic seizures have 

been observed. The pathological changes involve general neuronal degeneration with 

gliosis in the calcarine, precentral and postcentral areas of the cerebral cortex. In the 

cerebellar cortex, loss of granular cells in the neocerebellum is observed (Hunter and 

Russell, 1954). The signs and symptoms associated with the changes in the specific 

regions of the adult brain can be reversible at a very slow rate. Specific therapies 

against MeHg poisoning are aimed at lowering the MeHg body content and thus the 

concentration at the site of action. In severe cases the first choice is hemodialysis 

combined with extracorporeal infusion of chelating agents such as N-acetylcysteine 

(NAC) or cysteine and oral administration of DMPS- 2,3-dimercapto-1-propane 

sulfonate (Aposhian, 1998).  

Adult Non-fetal infantile Congenital 

Fig.1. Pathology of Minamata disease: Comparison of the distribution of lesions 

among the adult, non-fetal infantile and congenital Minamata disease 

(Takeuchi, 1968). 

d) Biochemical mechanisms behind MeHg toxicity  

Hg is covalently bound to the carbon moiety in MeHg (CH3-Hg+). The carbon-Hg bond 

is chemically stable because of the low affinity of Hg for oxygen. MeHg exists only at a 

very low concentration as a free, unbound cation in biological systems (Hughes, 1957) 

and the chloride form is highly soluble in organic solvents and lipids. MeHg is found to 

bind to protein -SH groups of amino acids such as cysteine which is also present in 

glutathione (Clarkson, 1993). This affinity of Hg for sulphur and sulfhydryl groups is a 

major factor underlying the biochemical properties of MeHg. The binding of MeHg to -



15

SH groups of proteins in membranes and enzymes may interfere with the membrane 

structure and function. This in turn, results in interference with the enzyme activity of 

several cellular targets. The main mechanisms involved in MeHg toxicity include: 

inhibition of macromolecule synthesis (DNA, RNA and protein),  

microtubule disruption,  

increase in intracellular Ca2+ with disturbances of neurotransmitter function,  

oxidative stress, 

excitotoxicity, secondary to altered glutamate homeostasis.  

MeHg reacts with DNA and RNA resulting in changes in secondary structure of these 

molecules (Gruenwedel and Lu, 1970). This could give rise to disturbances in the 

synthesis of protein, DNA and RNA and has been reported by several authors using 

cells (Choi et al., 1980; Gruenwedel and Cruikshank, 1979), mice (Chang et al., 1972) 

and rats (Farris and Smith, 1975) as a model. Inhibition of protein synthesis (Verity et

al., 1975), as well as increased protein synthesis due to reactive astrogliosis has been 

reported after in vivo exposure to MeHg (Brubaker et al., 1973). Using neuron enriched 

fractions from rat brain it has been shown that in vivo exposure to MeHg may induce 

temporary changes in protein and RNA synthesis (Syversen, 1977, 1982), indicating 

that some types of neurons may be able to repair the initial reduction in protein 

syntheis. It is still open for speculation as to whether such repair-mechanisms may play 

a role in the cellular selectivity of MeHg’s action in the nervous system. Due to the 

ability of MeHg to react with DNA and RNA, it has been proved to be mutagenic 

(Ramel, 1972). It can also cause chromosomal aberrations in human lymphocytes 

(Skerfving et al., 1974) and leukocytes and in bone-marrow cells from MeHg exposed 

cat (Miller et al., 1979).

Inhibition of polymerization of tubulin by MeHg (Fig. 2.) is among major mechanisms 

behind MeHg toxicity (Sager et al., 1982). Microtubular fragmentation has been 

reported in cultured primary rat cerebellar granular neurons at a MeHg concentration of 

0.5-1µM (Castoldi et al., 2000). Since microtubules participate in cell division, their 

fragmentation by MeHg results in antimitotic effects. Fragmentation of microtubule by 

MeHg results in inhibition of neuronal migration and causes degeneration of neuritis 

(Choi et al., 1980).
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   Healthy neuron 

Intact microtubules

  MeHg exposure 

Microtubules break down 

Neurons clump together 

Cease functioning 

Fig. 2. Methylmercury targets the cell structure and disturbs neuron migration 

(Mercury and the developing brain, Report of the National Environmental Trust 

for Clean the Air). 

MeHg depolarizes the presynaptic membrane which increases the Na2+ and decreases 

K+ ion concentration. This causes disruption of Ca2+ homeostasis leading to increased 

intracellular Ca2+ concentration (Komulainen and Bondy, 1987; Oyama et al., 1994). 

Blockers of voltage dependent Ca2+ channels prevent the appearance of neurological 

signs (Sakamoto et al., 1996). The damaged cell membranes due to increased Ca2+

levels are associated with disruption of neurotransmitter signaling. Disturbances in 

neurotransmitter concentrations (Fig. 3.), such as increased release of dopamine, 

glutamate, GABA-gamma amino butyric acid, glycine, choline (Bondy et al., 1979) and 

acetylcholine (Juang, 1976) also occur after MeHg exposure. Inhibition of uptake of 

excitatory amino acids like glutamate and aspartate by astrocytes has been one of the 

major mechanisms behind MeHg-induced neurotoxicity (Aschner et al., 1993, 2000). 

Antagonists of the N-methyl-D-aspartic acid receptor have been reported to inhibit the 

toxic effects of MeHg (Park et al., 1996).

MeHg also alters the cellular energy metabolism. It affects respiratory control in 

synaptosomes both in vitro and in vivo (Fox et al., 1975; Verity et al., 1975). It causes 

decrease in state 3 and increase in state 4 respirations. Effects on mitochondrial 

respiration in the brain have been reported to occur at 10-100µM MeHg (Verity et al.,

1975; Von Burg et al., 1979). This causes inhibition of glycolysis and tri-carboxylic-

acid cycle activity and decrease in adenosine triphosphate utilization. Since nervous 
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tissue is strictly dependent on glucose, high oxygen utilization and excitability renders 

it especially susceptible.  

Fig. 3. Methylmercury blocks the release of neurotransmitters such as 

dopamine (Mercury and the Developing Brain, Report of the National 

Environmental Trust for Clean the Air). 

Alterations in the heme biosynthetic pathway and porphyrinurias have also been 

reported after MeHg exposure (Woods and Fowler, 1977; Woods et al., 1991). These 

porphyrins have been reported to catalyze the formation of reactive oxygen species 

(ROS) (Woods and Sommer, 1991). Since the adult human brain consumes >20% of 

the oxygen utilized by the body and comprises only 2% of the body weight, the ROS 

are generated at high rates during oxidative metabolism of the brain (Clarke and 

Sokoloff, 1999). Disruption of redox cellular homeostasis by an excess of ROS 

formation leading to cumulative oxidative stress appears to be an important contributor 

to MeHg neurotoxicity (Fig. 4. and 5.). MeHg is known to induce oxidative stress 

(Sarafian, 1999) both in vitro and in vivo which is evidenced by membrane 

peroxidation (Ali et al., 1992; Fujimoto et al., 1985; LeBel et al., 1990; Sarafian and 

Verity, 1990; Shanker and Aschner, 2003; Taylor et al., 1973; Yee and Choi, 1994; 

Yonaha et al., 1983). The production of ROS by MeHg exacerbates the toxicity by 

facilitating cell death through apoptotic pathways. Inhibition of glutathione peroxidase 

(GPx) by MeHg further potentiates lipid peroxidation. Conversely, several studies have 

demonstrated partial amelioration of MeHg toxicity in the presence of antioxidants by 

inhibition of ROS (Gasso et al., 2001; Sanfeliu et al., 2001; Shanker and Aschner, 

2003). A major source of MeHg-increased ROS generation may be the mitochondrial 

electron transport chain. The damaged mitochondrion increases oxidative stress, 

leading to decrease in defense mechanisms such as reduced glutathione (GSH) content 

and excitotoxic damage. Both these triggered chains of events interact leading to 
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amplification of toxicity. In addition, inhibition of protein synthesis and microtubule 

assembly adds to the serious consequences on neurotransmission and neural cell 

development. Interaction of MeHg with respiratory enzyme complexes and its ability to 

cause oxidative damage in the mitochondria has been reported by Verity et al., (1975) 

and Yee and Choi, (1996). It has also been reported that MeHg causes increased ROS 

generation after stimulation of the ubiquinol: cytochrome c oxidoreductase complex in 

isolated mitochondria (Yee and Choi, 1996). Furthermore, blockage of the 

mitochondrial transition pore by cyclosporin A in brain synaptosomes has been 

reported to lower MeHg-induced ROS production (Myhre and Fonnum, 2001). MeHg 

binds to GSH which is one of the principal endogenous antioxidants and this binding is 

reported to be responsible for the excretion of MeHg. Decreased GSH levels usually 

parallel increased oxidative stress by MeHg (Sarafian and Verity, 1990; Sarafian et al.,

1994; Vijayalakshmi and Sood, 1994). The upregulation (Li et al., 1996) or the 

induction of an increased synthesis of GSH (Choi et al., 1996) has been reported to be 

neuroprotective against MeHg-induced neurotoxicity. 

Oxidative stress and antioxdant defences Mechanisms of oxidative stress

Fig. 4. Methylmercury causes increase in oxidants and decrease in antioxidants 

(James, 2005). 

Other effects of MeHg include inhibition of spermatogenesis (Homma-Takeda et al.,

2001), immune responses (Koller, 1980), changes in the axonal flow in the sciatic nerve 

(Wakabayashi et al., 1976) and decreased activity of lysosomal enzymes (Vinay and 

Sood, 1991).
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e) Advantages and disadvantages of brain cells and cell cultures: implications for 

neurotoxicity

Brain tissue is a heterogeneous system comprising of two distinct compartments known 

as neurons and glia (Van den Berg et al., 1969). The neuron is the functional unit 

responsible for transmitting and processing information in the nervous system 

(Augustine, 2004). The glial cells play a significant role by supplying neurons with a 

number of metabolites and precursors. In the cerebrum, the neurons are greatly 

outnumbered by glial cells (Nedergaard et al., 2003). In contrast to cerebrum, the 

cerebellum is one of the most evolutionary primitive brain regions where neurons 

outnumber the glial cells (Andersen et al., 1992). Of three main types of glial cells-

microglia, oligodendrocytes and astrocytes, the astrocytes regulate the chemical 

environment of the brain. Due to the heterogeneity and complexity of the brain, the 

molecular mechanisms leading to neurological abnormalities following exposure to 

neurotoxic substances are difficult to study in the CNS in vivo. In a heterogeneous 

system numerous factors such as neural, hormonal, and hemodynamic are not under 

experimental control. Hence, a simplified model, such as tissue culture, is indispensable 

as a tool for studying the cellular and molecular mechanisms of neurotoxicity produced 

by a variety of compounds. Tissue cultures allow direct evaluation of the effects of 

toxic agents on the CNS as toxins can be easily added and withdrawn from the cultures, 

and long term effects may be studied. In addition, tissue culture systems also could be 

very useful in studying the modification of the effects of neurotoxic substances since 

they can provide clues to reduce the effectiveness of neurotoxic agents and new insights 

into the mechanisms of their action.  

Primary cultures are prepared by taking cells directly from an organism in contrast to 

cell lines which originate from transformed cells (e.g. tumor cells). The primary cells 

are obtained after an initial mechanical and/or enzymatic dissociation of the tissue and 

consist of normal diploid cells. Once the cellular purity, content and degree of 

maturation have been established, monolayer cultures of astrocytes and neurons afford 

a host of advantages over in vivo techniques. Cell morphology, protein synthesis and 

release (myelin), energy metabolism, receptor interaction, neurotransmitter uptake and 

release, electrophysiological studies utilizing patch clamping as well as electrolyte and 

non-electrolye uptake and release can be easily studied using cell cultures. Direct 

effects of chemicals on a relatively homogeneous population allows for study of 
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specific aspects of the growth and differentiation of cells, as well as the kinetics of 

uptake and metabolism of the parent compound. The culture model also makes it 

possible to study regional specialization, and can be extended to study astrocytic-

neuronal interactions by co-culturing astroglial and neuronal cells as two separate 

monolayers in the same culture dish (at a distance from each other). The system may 

provide information on how astrocytes respond to the neuronal environment, and vice 

versa, and how astrocytic homeostasis affects neuronal development and function.  

Primary cell cultures are advantageous over the cell lines as their properties and 

metabolism closely resemble that of corresponding cells in vivo. On the other hand, cell 

lines are economical, easy to grow and handle and possess several features of nerve and 

glial cells. For example dibutyryl cAMP agents produce morphological differentiation 

in both glioma and normal embryonic glial cells (Vernadakis and Nidess, 1976).

Although the use of cultured astrocytes and oligodendrocytes in toxicity testing has 

emerged as a powerful tool to evaluate the responses of target cells at the cellular and 

molecular level, one must bear in mind some intrinsic pitfalls of culture systems.  

For example for the use of primary cells, the timing is very crucial to obtain viable 

cells. In mice, the neurogenesis is almost completed at the time of birth. Only the 

interneurons in cerebellar cortex such as granule neurons develop from day 2 until 15 

after birth. Therefore, the tissue must be at a particular developmental stage which 

favors the cultivation of a particular cell type. Such developmental stage requirements 

might be a challenge if cellular maturity or age is an important aspect of the toxicity 

mechanism. In addition, the cells can undergo varying degrees of differentiation. From 

the toxicologic viewpoint, the extent of cellular differentiation must be carefully 

defined, since multiple phenotypic states may exhibit different toxicologic 

responsiveness and the phenotypic expression of cells in culture may itself be the target 

of toxic insult. Since glial cells and neurons promote mutual functional differentiation 

of each other, cell types resulting from purified cultures may result in undifferentiated 

cells or cells with altered differentiation, making results difficult to interpret. The 

sensitivity of undifferentiated cells to neurotoxicants has not been assessed.   

The effect of MeHg in cell cultures depends on the total biomass present. It was shown 

by Furukawa et al., (1982) that cytolethal sensitivity of the mitotic cells to MeHg was 

equal to that of exponentially growing cells. Gülden et al., (2001), reported that for a 
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variety of toxic compounds including MeHg, the EC50 values increased with increasing 

cell concentration. They concluded that cell binding can significantly affect the 

availability of compounds in vitro and thus their toxic potencies and toxic equivalency 

factors. In addition, it was also reported that the presence of albumin concentrations in 

medium greatly influences the toxic potency of MeHg (Seibert et al., 2002). This may 

be due to the presence of extra binding sites for MeHg, which can dilute the effective 

concentration. Therefore, caution should be taken when extrapolating results from in

vitro experiments to the whole brain. Moreover, diverse cell types exhibit different 

sensitivity towards MeHg, which might be dissimilar from the in vivo situation. These 

differences in sensitivity can also be seen within different species. For example, the 

monkey brain resembles the human brain with respect to effects of MeHg exposure as 

the calcarine cortex is highly vulnerable and changes in vision are detected early 

(Berlin et al., 1975b). However, in rats, peripheral neuropathy is most commonly 

observed (Cavanagh, 1973). The characteristic effect of MeHg, i.e. loss of granular 

cells preceding Purkinje cell loss is found in rats (Klein, 1972), mice (MacDonald and 

Harbison, 1977) and rabbit cerebellum (Jacobs et al., 1977). However in rats, the 

haemoglobin has an extra chain, so there is a greater retention of MeHg in blood which 

to some extent limits the utility of rat as a model. Therefore, use of appropriate model is 

crucial for studying MeHg toxicity.

In addition, it still needs to be determined whether the receptor phenotype observed in

vitro accurately reflects the in vivo situation. The observed phenotype might be a 

function of culture conditions or inherent astrocyte heterogeneity. While chemicals can 

be easily added and withdrawn from the cultures, and their effects directly probed in 

culture systems, caution should be used when correlating effects occurring in vitro to 

those which are observed in the intact animal, where additive interactions are likely to 

occur. One must remember several concepts:  

A number of different, sometimes competing, processes influence the ability 

of a toxin to attack and destroy specific cells. Metabolism of the administered 

agent by a non-target cell or tissue may be responsible for bioactivation and/or 

detoxification of the compound or its metabolite, affecting the vulnerability of 

the cells to the neurotoxin.
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A cell culture is many fold more homogeneous and simpler than any tissues, in 

particular the CNS. Removal of many cell types and barriers can facilitate 

diffusion or even active transport of the compound or its metabolite, limiting 

or enhancing toxicity by determining at which sites the toxin can reach 

sufficiently high concentrations to interfere with vital cellular processes.  

The capacity of the cell to repair or replace damaged organelles or enzymes 

can also be critical in determining cell survival after toxic insult and may 

obviously depend on neighboring cells and physical barriers, which may be 

absent in the culture altogether. Accordingly, characteristics which are 

described as advantageous in particular circumstances may be described as 

disadvantageous in others. 

f) Neuronal- glial interactions with respect to MeHg neurotoxicity 

Neuronal-glial interactions play an important role in MeHg neurotoxicity (Fig. 5.). 

Neuronal damage in response to MeHg exposure has been suggested to be mediated by 

astrocytes (Aschner et al., 2007; Morken et al., 2005). Astrocytes support neurons and 

supply them with various factors which neurons themselves are unable to synthesize. 

The tripeptide glutathione ( -glutamyl-L-cysteinylglycine) is the most abundant thiol 

present in mammalian cells. It is also involved in the disposal of exogenous peroxides 

by astrocytes and neurons. MeHg toxicity has been reported to be caused by the 

reduction in the amount of intracellular GSH (Choi et al., 1996; Miura and Clarkson, 

1993; Sarafian et al., 1994) which leads to augmentation of ROS formation (Ali et al.,

1992; Gasso et al., 2001; Sanfeliu et al., 2001; Sarafian, 1999; Shanker and Aschner, 

2003; Sorg et al., 1998; Yee and Choi, 1996). Astrocytes contain higher concentrations 

of GSH than neurons (Kranich et al., 1996; Sagara et al., 1993). The astrocytes supply 

the rate limiting precursor molecules, e.g. cysteine, glycine and glutamine to neurons 

for GSH synthesis (Shanker and Aschner, 2001). Other enzymes which are present only 

in astrocytes include pyruvate carboxylase (Shank et al., 1985) and glutamine 

synthetase (Norenberg and Martinez-Hernandez, 1979). Glutamine synthetase is the 

enzyme required for synthesis of glutamine which is one of the substrates for 

glutathione synthesis. Glutamine is first converted to glutamate (Sonnewald et al.,

1993) by the mitochondrial enzyme phosphate activated glutaminase (Kvamme et al.,

1988). Glutamate then binds to cysteine and is converted to -glutamylcysteine with the 

help of the enzyme -glutamylcysteine synthetase. The -glutamylcysteine is then acted 
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upon by glutathione synthetase which leads to the formation of glutathione. Glutamine 

is also an important precursor for amino acids such as glutamate and GABA 

(Schousboe et al., 1977; Sonnewald et al., 1993). During glutamatergic 

neurotransmission, glutamate is released from neurons and is mainly taken up by 

astrocytes (Danbolt, 2001) and this is compensated for by the net flow of glutamine 

from astrocytes to neurons. The reason for such compensation is that the major 

anaplerotic enzyme in brain, pyruvate carboxylase, is only present in astrocytes, as 

pointed out above. The spontaneous release of glutamate and GABA from neurons 

(Atchison and Hare, 1994) and the inhibition of its uptake in astrocytes (Aschner et al., 

2000) are among the major mechanisms of MeHg-induced neurotoxicity. The drain of 

GABA from neurons to astrocytes is relatively modest (Hertz and Schousboe, 1987) 

and the glutamine transport is more intense in glutamatergic neurons than cortical 

neurons and astrocytes (Su et al., 1997). However, in the glutamatergic cerebellar 

granule cells, glutamate re-uptake might be important for glutamate homeostasis 

(Olstad et al., 2007). 
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Fig. 5. Neuronal-glial interactions with respect to MeHg neurotoxicity (Modified 

from Shanker et al., 2005a)

 Long chain poly unsaturated fatty acids (PUFA’s) such as docosahexaenoic acid 

(DHA; 22:6n-3) are essential for normal brain development (Innis, 1991). Astrocytes 

can readily release DHA into the extracellular fluid while neuronal DHA is not readily 
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released (Garcia and Kim, 1997; Kim et al., 1999; Moore, 2001). Neurons cannot 

produce DHA because they lack desaturase activity (Moore et al., 1991). The transport 

of DHA from astrocytes to neurons is considered trophic. Astrocytes may protect 

neurons from low doses of MeHg by upregulation of metallothionein synthesis 

(Aschner et al., 1997). Upon MeHg exposure, astrocytes also increase local interleukin-

6 release that leads to neuroprotection in 3 D brain cell cultures (Eskes et al., 2002).

Therefore, the interactions between neurons and glial cells play a critical role in MeHg-

induced neurotoxicity.

g) Prevailing conundrums behind MeHg neurotoxicity

Conundrum 1: The relationship between GSH and MeHg concentration in brain is 

unknown. Molecular oxygen is essential for many biological events associated with 

aerobic metabolism which results in the constant formation of ROS (Powis et al., 

1995). Conversely, GSH is the most abundant thiol tripeptide present in mammalian 

cells for scavenging ROS (Fang et al., 2002; Roberts et al., 1980). Several reports have 

implicated a critical role of GSH in modulating MeHg neurotoxicity (Choi et al., 1996;

Miura and Clarkson, 1993). However, it still remains unclear whether the protection 

afforded by GSH is due to protection against ROS generated by MeHg or due to the 

reduction of the intracellular concentration of MeHg. In addition, little is known 

concerning the relationship between GSH and MeHg concentrations in specific 

anatomical regions of the brain. 

Conundrum 2: The reason for the selective sensitivity of certain brain regions to MeHg 

remains unknown. MeHg has a high association constant (15<pKa<23) for -SH groups 

(Carty and Malone, 1979). It can react with any -SH group (Hughes, 1957) leading to 

conformational changes and thus inhibition of many enzymes. This indicates that more 

than one mechanism may contribute to the expression of MeHg-induced neurotoxicity. 

However, the existence of similar enzymes such as acetylcholine esterase in different 

regions makes it difficult to reconcile this with the specific pattern of neurological 

damage associated with MeHg, such as in the cerebellar granule cell layer and in the 

calcarine region of the occipital cortex in humans (Choi et al., 1978; Eto, 1997; Hunter 

and Russell, 1954; Takeuchi, 1982) and in rodent brains (Nagashima, 1997). Moreover 

in the cerebellum, which is a major target of MeHg effects, the Purkinje cell layer 

which tends to accumulate more Hg is spared as compared to the sensitive granule cell 
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layer (Clarkson and Strain, 2003). Neuronal dysfunction has been proposed to be 

secondary to disturbances in astrocytes (Allen et al., 2001). However, the sparing of 

Purkinje cells and the sensitivity of granule cells in the cerebellum cannot be attributed 

solely to the vulnerability of cerebellar astrocytes towards MeHg, for under these 

circumstances, both Purkinje and granule cells would be expected to respond in a 

similar fashion. Therefore, despite considerable scientific efforts, the reason for this 

selective degeneration of certain areas of the nervous system has not been satisfactorily 

explained.

Conundrum 3: The effect of DHA on modulation of MeHg-induced neurotoxicity 

remains unknown. The major dietary route of human exposure to MeHg is via the 

ingestion of seafood for adults (Clarkson, 1997; Kamps et al., 1972; Spry and Wiener, 

1991). The nervous system is also highly enriched in long chain PUFA’s which are also 

provided via consumption of fish and mother’s milk (Franco et al., 2006; Manfroi et

al., 2004). DHA, in particular, is the most abundant PUFA in the brain which is 

essential for normal brain function (Kim, 2007; Salem et al., 1999; Uauy et al., 2001).

DHA plays a crucial role in diverse cellular functions ranging from controlling the cell 

body size (Ahmad et al., 2002) and outgrowth of neurites by promoting cell 

differentiation (Ikemoto et al., 1997) to being antiapoptotic (Akbar and Kim, 2002) and 

neuroprotective (Martin, 1998). The availability of DHA is dependent upon type and 

amount of fish consumed and it varies within different epidemiological studies. On the 

Seychelles (Davidson et al., 1998), fish consumption was reported to be around 12 fish 

meals/week. On the Faroe Islands (Grandjean et al., 1997) the diet included whale meat 

and 1-3 fish meals/week. At Minamata and Niigata (Eto, 1997), tuna consumption was 

around 5mg/day. The discrepancies in the outcomes of the studies on the Seychelles 

(Davidson et al., 1998; Myers et al., 1997) and the Faroe Islands (Grandjean et al., 

1997) have raised the question of whether risks outweigh the benefits arising from the 

combined exposure to a neurotoxicant and neuroprotectant. Therefore, there is a need to 

investigate whether DHA supplementation would modulate the susceptibility of neural 

cells to MeHg exposure. Knowledge of this could assist in assessing the risk/benefit 

from their exposure. 
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VII. Aims  

The aim of the study was to explore the cellular and molecular mechanisms behind MeHg 

toxicity. More specifically, we wanted to elucidate the role of MeHg-induced oxidative 

stress by introduction of agents which are known to influence MeHg neurotoxicity.

1. Evaluate the concentration, time and cell density dependent effects of MeHg on 

generation of ROS using C6-glial and B35-neuronal cell lines. (Paper 1)

2. To investigate the role of GSH modulation on MeHg-induced neurotoxicity using 

primary cell cultures of cerebellar neurons and astrocytes. (Paper 2) 

3. To determine whether GSH is responsible for the differential sensitivity between the 

cortical and cerebellar cultures towards MeHg-induced oxidative stress using primary 

cell cultures. (Paper 3) 

4. To investigate the effect of DHA in modulating MeHg-induced neurotoxicity in C6-

glial and B35-neuronal cell lines. (Paper 4) 

5. To investigate the effect of DHA in modulating MeHg-induced neurotoxicity in 

primary astrocytes and neurons from the cerebellum. (Paper 5) 
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VIII. Materials and methods 

a) Primary cell cultures and cell lines  

Cerebellar granule cells are predominately glutamatergic, whereas cortical neurons 

are mainly GABAergic (Hertz and Schousboe, 1987; Yu et al., 1984). Glutamatergic 

neurons were prepared from the cerebella of 7-day-old mice according to the method 

described by Schousboe et al., (1989). GABAergic neurons were prepared from the 

cerebra of the pups obtained from pregnant mothers at 15 days of gestation 

(Schousboe et al., 1989). Addition of cytosine arabinoside to the culture medium 

between 24 to 48 hrs after preparation of neurons reduced the glial cell concentration 

to 5% (Messer, 1977). The cytosine arabinoside acts by being cytotoxic to the 

dividing glial cells whereas neurons which are in the post-mitotic stage are spared 

(Hertz et al., 1989. The neuronal cultures were used one week post isolation.

Cerebellar Neurons Cerebellar astrocytes 

Fig. 6. Primary cell cultures from the cerebellum prepared from 7-day-old 

mice. Phase contrast images taken with Nikon Eclipse TE 2000-S microscope 

equipped with SPOT RT Digital Camera. 

Primary astrocytes express a large variety of ion channels, neurotransmitter receptors 

and are glial fibrillary acidic protein (GFAP) specific (Verkhratsky and Steinhauser, 

2000). Cerebellar and cortical astrocytes were prepared from the respective brain part 

according to the method of (Hertz et al., 1989). For the cerebellar astrocytes, 7-day-

old mice were used whereas for cortical astrocytes, pups were used within 24 hrs of 

birth. The method used for the preparation of cerebellar astrocytes has been estimated 

to yield about 95% astrocytes (Hertz et al., 1989). Minor contaminations in these 
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cultures are phagocytic cells and oligodendrocytic precursors. The regular medium 

changes and use of dibutyryl-cAMP reduces the contamination from phagocytic cells. 

The insignificant amount of oligodendrocytes is due to their formation between three 

weeks to three months. Astrocytes were used for the experiment 21 days post 

isolation. Poly-D-lysine coating was used for all the cell cultures to improve the 

attachment of cells. Cell lines are widely used as a model to study neurotoxicity since 

they are economical, easy to grow and possess several features of nerve and glial 

cells. Therefore, both C6-glial (Benda et al., 1968) and B35-neuronal (Schubert et al.,

1974) cell lines from rat brain were selected to represent each cell type in the present 

study.

Cell type

In Paper 1 and 4, C6-glial and B35-neuronal cell lines have been used.

In paper 2, 3 and 5, primary neurons and astrocytes from cerebellum were 

used. In addition, cortical neurons and astrocytes were used in paper 2 where 

dialyzed serum was used for culturing cortical neurons to reduce the 

glutamate content in the media.  

Cell density

In Paper 1 and 4: For C6 cell line, 60,000 cells per well and for B35 cell line, 

160,000 cells per well were seeded in 24 well plates. 

For Paper 2: Kainic acid was used for culturing cerebellar neurons and the 

cells were seeded at a density of 0.5 cerebella / 24 well culture plate 

(astrocytes) and 0.8 x 106 cells / ml (neurons).  

For Paper 3 and 5: Kainic acid was not used for culturing cerebellar neurons 

since it did not significantly inhibit the GABA content in neurons (Sonnewald 

et al., 2004, 2006). The cells were seeded at a density of 1 cerebella / 24 well 

culture plate (astrocytes) and 1.5 x 106 cells / ml (neurons).  

b) Fluorescence microscopy 

Fluorescence reflects the property of some atoms, molecules or solids to absorb 

energy and get excited to a high energy level and then subsequently emit light of 

longer wavelength while coming back to the lower energy level. The intensity of 

fluorescence is very weak in comparison with the excitation light. Fluorochromes are 

stains that attach themselves to visible or sub-visible molecules and have highly 

specific biological targets. The technique of fluorescence microscopy has become an 
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essential tool in biology and the biomedical sciences. The application of an array of 

fluorochromes has made it possible to identify cells and sub-microscopic cellular 

components with a high degree of specificity amid non-fluorescing material. Through 

the use of multiple fluorescent labels, several target molecules can be identified 

simultaneously. In many cases it allows work on live cells where it is important to 

prevent background staining and photobleaching in order to improve the resolution. 

In a fluorescent microscope, light from the arc lamps or lasers passes thorough field 

and aperture diaphragms and then into a cube which contains a set of interference 

filters, dichoric mirror, barrier filter and excitation filter. After passing through the 

objective and being focused onto the specimen, the specimen gets excited. The 

reflected fluorescence is then filtered by the emission filter which is then sent to the 

eyepieces or detector. The oxidative effects of MeHg were detected with the help of 

fluorescent probes CMH2DCFDA- chloro methyl derivative of di-chloro di-hydro 

fluoresceindiacetate and MCB- monochlorobimane. The fluorescent probes 

CMH2DCFDA (485/535) and MCB (360/465) can be used for detecting the ROS and 

GSH content in live cells. The oxidation of the CMH2DCFDA dye by ROS yields a 

fluorescent product, 2 , 7 -dichlorofluorescein (DCF), which is retained inside the cell 

(Shanker et al., 2004; Shimazawa et al., 2005; Liu et al., 2001). It has been reported 

that CM-H2DCFDA dye is more useful than other DCF dyes since the addition of a 

chloromethyl group gives a better retention and more reliable fluorescent signals in 

live cells as compared to other DCF dyes (Liu et al., 2001). The content of reduced 

GSH can be determined by MCB (Bellomo et al., 1997) as it can diffuses passively 

across the plasma membrane into the cytoplasm where it binds with the reduced form 

of GSH leading to formation of blue fluorescent adducts (Haugland, 1996). The 

Fluorescent images of the cell cultures were taken with Nikon Eclipse TE 2000-S 

microscope which was equipped with SPOT RT Digital Camera. The excitation 

filters B-2A and UV-2 E/C*(DAPI) were used at the microscope and the emitted 

fluorescence was detected at Victor3
TM 1420 Multilabel counter by scanning the 

whole well using the desired excitation and emission wavelengths.  

c) Gas chromatography-flame ionization detection 

Chromatography is a technique for separating chemical substances that relies on 

differences in partitioning behavior between a flowing mobile phase and a stationary 

phase to separate the components in a mixture. The sample is carried by a moving gas 
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stream through a tube packed either with a finely divided solid material or which may 

be coated with a film of a liquid. The substances having the greater interaction with the 

stationary phase are retarded to a greater extent and consequently separate from those 

with smaller interaction. As the components elute from the column they can be 

quantified by a detector and/or collected for further analysis. The flame ionization 

detector (FID) uses an air-hydrogen flame to break the components to produce ions. 

The ions are collected on a biased electrode and produce an electrical signal. The 

greater the concentrations of the component, the more ions are produced and greater is 

the current. Because of its simplicity, sensitivity, and effectiveness in separating 

components of mixtures, gas chromatography is one of the most important tools in 

chemistry. It is widely used for quantitative and qualitative analysis of mixtures and for 

the purification of compounds. Since in paper 4 and 5, the cells were supplemented 

with the fatty acid DHA, it was important to detect the amount and type of intracellular 

fatty acids after DHA exposure.   

d) Other methods 

Cytotoxicity: Determined by changes in mitochondrial dehydrogenase activity using 

colorimetric 2.4 mM MTT [3-(4, 5-dimethylthiazol-2-yl)-2, 5 diphenyltetrazolium 

bromide] reduction assay (Carmichael et al., 1987; Dahlin et al., 1999).

Cell-associated MeHg: 99% pure 14C-labeled MeHg (20 mCi/mmol) obtained from 

American Radiolabeled Chemical (St.Louis, Mo, USA) was used and the 

radioactivity was counted in a 1450 Micro Beta Trilux Liquid scintillation counter 

(Wallac, Perkin Elmer Life Sciences, Norway).  

Estimation of protein: Total cellular protein was used as a measurement of biomass 

and all the measurements were corrected with respect to the biomass present. Protein 

concentration was determined by the method of Lowry et al., (1951) using Folin 

reagent with bovine serum albumin as a standard.  

IX. Data analysis 

All results are given as mean ± standard deviation. Differences between groups were 

analyzed statistically with one-way ANOVA followed by the least significant 

difference or Tukey post hoc test for multiple comparisons and p<0.05 was 

considered statistically significant. In addition, a two or three-way ANOVA was 

carried out to evaluate the interactive effects between different parameters. 



31

X. Summary of papers 

a) Paper 1 

For evaluating the concentration-, time- and cell density- dependent effects of MeHg, three 

different MeHg concentrations (5, 10 and 25µM) and time periods (30, 50 and 90 min) and 

two different cell densities (day3 v/s day4) were selected. For this purpose, C6-glial and 

B35-neuronal cell lines were selected. The MeHg-induced ROS was measured by the 

fluorescent probe, CMH2DCFDA. The cell-associated MeHg was measured with 14C-

labelled MeHg. For C6 cells, a significant increase (p<0.05) in MeHg-induced ROS was 

observed at 10 and 25µM MeHg for both 30 and 50 min time intervals. For B35 cells, a 

significant increase in ROS was observed only at 25µM MeHg. The amount of ROS 

produced with 25µM MeHg varied significantly (p<0.001) at different time periods. For 

both the cell lines, significant cell density-dependent differences (p<0.05) were observed 

at 10µM MeHg treatment for 50 minutes. A concentration-dependent increase in cell 

associated-MeHg provided an explanation for increased ROS at 30 and 50min. However, 

the cell density dependent differences in ROS were not due to differences in cell 

associated-MeHg. Therefore it was concluded that special attention should be focused 

upon concentration, exposure time and cell density for assessing MeHg-induced ROS 

effects by fluorescence. 

b) Paper 2 

In order to evaluate the effect of GSH on MeHg-induced cytotoxicity, the 

intracellular GSH content was modified by pretreatment with NAC or di-ethyl 

maleate (DEM) for 12 hrs. For this purpose, primary cell cultures of cerebellar 

neurons and astrocytes were used. ROS and GSH were measured using the 

fluorescent indicators CMH2DCFDA and MCB. Cell-associated MeHg was 

measured with 14C-radiolabeled MeHg. Mitochondrial dehydrogenase activity was 

detected by MTT. The MTT timeline study was also performed to evaluate the 

effects of both the concentration and duration of MeHg exposure. Treatment with 

5µM MeHg for 30 min led to significant (p<0.05) increase in ROS and reduction 

(p<0.001) in GSH content. Depletion of intracellular GSH by DEM further increased 

the generation of MeHg-induced ROS in both cell cultures. Conversely, NAC 

supplementation increased intracellular GSH and provided protection against MeHg-

induced oxidative stress in both cell cultures. MTT studies also confirmed the 

efficacy of NAC supplementation in attenuating MeHg-induced cytotoxicity. The 
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cell-associated MeHg was significantly (p<0.02) increased after DEM treatment. In 

summary, depletion of GSH increased MeHg accumulation and enhanced MeHg-

induced oxidative stress, and conversely, supplementation with GSH precursor 

protected against MeHg exposure in vitro.

c) Paper 3 

The role of GSH behind the differential sensitivity between the cerebrum and 

cerebellum towards MeHg-induced toxicity was investigated. MeHg-induced oxidative 

insult was determined in primary neuronal and astroglial cell cultures of both cerebellar 

and cortical origins. The intracellular GSH content was modified by pretreatment with 

NAC or DEM. The ROS and GSH were measured with the fluorescent indicators, 

CMH2DCFDA and MCB. The cell associated-MeHg was measured with 14C-

radiolabeled MeHg. The cerebellar cell cultures were more vulnerable to ROS (p<0.02) 

than the cortical cell cultures after MeHg, NAC or DEM treatment. 

A trend towards significant interaction between origin×MeHg×pretreatment was 

observed only for the dependent variable, ROS (astrocytes p<0.06; neurons p<0.001). 

For GSH, a significant interaction between origin×MeHg was observed only in 

astrocytes (p<0.05). The increased content of GSH in cortical astrocytes as compared to 

cerebellar astrocytes accounted for the increased ROS production in cerebellar 

astrocytes. However, the similar content of GSH in cortical and cerebellar neurons after 

MeHg exposure did not provide an explanation for the increased susceptibility of 

cerebellar neurons. The cell associated-MeHg increased when cells were treated with 

DEM, and the cerebellar cultures were significantly different (p<0.05) from the cortical 

cultures. In summary, GSH modulation influenced MeHg-induced toxicity, and 

partially explained the differential sensitivity between the cortical and cerebellar 

cultures.  

d) Paper 4 

It is important to identify the biochemical mechanisms involved with fatty acids and 

MeHg exposure for understanding how fish consumption could modulate MeHg-induced 

neurotoxicity. For this purpose, the effect of DHA in modulating MeHg-induced 

neurotoxicity was investigated in C6-glial and B35-neuronal cell lines. Increased DHA 

content in both the cell lines after 24 hr supplementation was measured by gas 

chromatography. Decreased mitochondrial activity evaluated by MTT reduction indicated 

that 10µM MeHg treatment for 50 min led to a significant (p<0.001) and similar decrease 
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in MTT activity in both cell lines. However, DHA pretreatment led to more pronounced 

depletion (p<0.05) in the MTT activity in C6 cells as compared to B35 cells. Upon DHA 

and MeHg exposure, the C6 cells exhibited a more apparent decrease in GSH and increase 

in ROS (p<0.001) as compared to B35 cells. The cell associated-MeHg measurement 

using 14C-labelled MeHg indicated a decrease (p<0.05) in MeHg accumulation upon DHA 

exposure in both cell lines. These findings provide experimental evidence that although 

pretreatment with DHA reduced cell associated-MeHg, it caused increased ROS (p<0.001) 

and GSH depletion (p<0.05) in C6 cells. 

e) Paper 5 

The following reasons prompted us to ascertain the effects of DHA on MeHg-induced 

neurotoxicity in primary cell cultures. Firstly, the DHA exposure increased the MeHg-

induced ROS in tumor cell lines. We wanted to investigate whether primary cell 

cultures would respond similarly to DHA exposure. Secondly, the B35 neuronal cell 

line behaved differently from primary neuronal cells with respect to MeHg exposure. 

Therefore, the identification of these effects in primary cell cultures would help us in 

understanding the effect of potential natural modulators such as DHA in influencing the 

toxicity of fish-bound MeHg. This may improve the risk/benefit assessment of a MeHg-

containing fish diet. For this purpose, primary neuronal and astroglial cell cultures from 

cerebellum were selected. After individual or combined treatment with MeHg (10µM) 

and DHA (30 and 90µM), the neurons differed significantly (p<0.001) from astrocytes 

exhibiting increased ROS production and decreased MTT activity. After MeHg and 

30µM DHA treatment there were no changes in MTT or GSH content but significant 

decrease (p<0.001) in ROS was observed in both the cell types when compared to 

MeHg alone. The cell associated-MeHg measurements indicated reduced MeHg-

accumulation in both cell types (p<0.05) upon 30µM DHA exposure. Therefore it was 

established that DHA pretreatment effectively reduces cell-associated MeHg and 

prooxidant response from MeHg in both cerebellar astrocytes and neurons. This 

observation supported the hypothesis that fish-derived nutrients can possibly offer 

neuroprotection against MeHg-induced neurotoxicity.
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XI. Discussion 

Though considerable headway has been made in elucidating the effects of MeHg on the 

nervous system, it still remains an element of mystery. The underlying processes behind 

its mechanism of action are not very well understood. The reason for its selective 

sensitivity towards certain brain regions remains unknown. In addition, little is known 

concerning the cellular uptake of MeHg in various brain regions.

The considerable risk to the public from MeHg-contaminated food has raised the 

concern about the safe dose of ingested MeHg especially for pregnant women. Various 

regulatory agencies in the past have stressed uncertainities in their documentation 

regarding the effects of MeHg. The Joint FAO/WHO Expert Committee on Food 

Additives had reported in 1978 that ‘‘foetus may be more susceptible to MeHg toxicity 

than the adult’’ (JECFA, 1978). The workshop organized by Committee on 

Environmental and Natural Resources, Office of Science and Technology Policy and 

The White House in 1998 stated ‘‘These studies have provided valuable new 

information on the potential health effects of MeHg but significant uncertainties remain 

because of issues related to exposure, neurobehavioral endpoints, confounders and 

statistics, and design’’ (NIEHS, 1999). Later in 2000, the National Academy of 

Sciences committee reported that ‘‘60,000 children in the United States were at risk as 

a result of prenatal exposure’’ (National Research Council, 2000). However, they failed 

to provide any justification or explanation for that conclusion (Clarkson et al., 2003). 

Hence there is a possible discrepancy between the estimated effect of MeHg and its risk 

assessment. The issue which is a dilemma for the consumers and regulatory authorities 

is whether fish consumption should be encouraged for its nutritional benefits to the 

developing brain or should it be discouraged for the possible adverse effects of MeHg 

on the developing CNS? This suggests that there is a need to assess dietary nutrients as 

well as neurotoxic exposures in determining the risks and benefits of fish consumption 

(Myers et al., 2007). Therefore studies directed towards estimating the effect of 

modifiers such as essential nutrients available from seafood may provide a better 

assessment of risk from a contaimated fish diet. 

The work presented in this thesis attempts to explore the mechanism of action of MeHg. 

The cell culture models provide excellent tools to investigate the mechanistic 

pathyways since the effects on individual cell type could be determined. The present 
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work investigated the effects of MeHg on oxidative stress and identified the role played 

by GSH in modifying these effects. The differences in the MeHg-induced oxidative 

stress related effects in cerebellar and cortical cultures were reported. The cellular 

uptake of MeHg in these cell cultures was determined and correlated with the oxidative 

stress related effects. In addition, it identified the biochemical mechanisms behind DHA 

and MeHg exposure where DHA pretreatment effectively reduced cell-associated 

MeHg and decreased MeHg-induced ROS in primary cell cultures. 

It has been known that toxicity of MeHg is dependent upon the amount of biomass 

(Furukawa et al., 1982; Gülden et al., 2001; Seibert et al., 2002). Therefore, for all the 

experiments special attention was focused upon the use of consistent cell densities. In 

addition, for evaluating the effects of MeHg, three different concentrations and 

exposure intervals were selected to find out the optimum dose and time interval for the 

experiments. The dose of 5 or 10µM MeHg for 50min was selected for further 

experiments as consistent increase in ROS and cell associated-MeHg was observed for 

this exposure. The 10µM dose was used for estimating the toxicity in cell lines and 

5µM MeHg was used for primary cell cultures due to increased sensitivity of primary 

cell cultures as compared to cell lines. However, in paper 5, a dose of 10µM MeHg was 

used for primary cell cultures treated with DHA. This was attributable to introduction of 

small amounts of fatty acid free bovine serum albumin (FAF-BSA) along with DHA 

which diluted the effect of MeHg.

The well defined MeHg-induced effects on GSH depletion (Yee and Choi, 1996) and 

ROS generation (Ali et al., 1992; Gasso et al., 2001; Sanfeliu et al., 2001; Sarafian, 

1999; Shanker and Aschner, 2003; Shanker et al., 2004, 2005b; Sorg et al., 1998; Yee 

and Choi, 1996) were corroborated by primary cell cultures used in the presented 

papers. In papers 2 and 3, the effects of GSH modulation by NAC or DEM provided an 

important insight into the role of GSH in modulating the effect of MeHg-induced 

neurotoxicity in cerebellar and cortical cell cultures. Changes in intracellular MeHg 

content with GSH modulation provided an explanation for the increased susceptibility 

of neurons and cerebellar cultures towards MeHg-induced neurotoxicity as compared to 

astrocytes and cortical cultures. The papers 4 and 5 addressed the question of public 

health concern of whether PUFA intake from fish may modulate the MeHg-associated 

effects. It identified the biochemical mechanisms behind overall effects of fish 
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consumption (ie, providing DHA and MeHg). These papers may improve the basis for 

risk/benefit assessment of a MeHg-containing fish diet and our knowledge regarding the 

maximum permissible dose of MeHg from fish diet. 

a) MeHg-induced ROS effects  

In paper 1, it was observed that MeHg-induced ROS effects were dependent upon the 

MeHg concentration and exposure time. At 10µM MeHg in C6 cells, a consistent 

increase in ROS was observed with increased exposure time. In addition, at 30 and 

50min intervals there was an augmentation in ROS with increased MeHg concentration 

in both cell types. However, at 25µM MeHg there was a consistent decrease in ROS 

with an increase in exposure period. This decrease in ROS at 25µM MeHg could be due 

to leakage of dye from the cells. However, since the cell associated-MeHg did not 

decrease with time, the decreased ROS could be due to transition from the ROS 

generating state to the apoptic state in cells. Another possibility is the production of 

reducing agents in cells which could convert the dye to a reduced form. However, the 

reason for the decreased ROS needs to be determined. 

The ROS induction by MeHg was also observed to be dependent upon the cell density. 

At 10µM MeHg, decrease in fluorescence was associated with increase in cell density 

and increased cell-associated MeHg. The decreased fluorescence might be explained by 

the presence of extra binding sites for MeHg which may actually dilute the effective 

concentration of MeHg inside the cells. Another possibility could be the differences in 

cell cycle which may lead to changes in the intracellular microenvironment (Zurgil et 

al., 1996) which affects the ROS generation. 

b) Role of GSH in MeHg-induced neurotoxicity  

In Paper 2, it was determined that GSH played a major role in the cytotoxic effects of 

MeHg in cerebellar neurons and astrocytes. In the present study, NAC was effective 

in preventing ROS after MeHg exposure in both cell cultures. NAC, a relatively 

simple, nontoxic N-acetyl derivative of cysteine contains a thiol group that is 

stabilized by acetylation of the amino group (Aremu et al., 2008). NAC induces GSH 

synthesis (Zafarullah et al., 2003) and has been reported to enhance MeHg excretion 

in mice (Ballatori et al., 1998) and rats (Aremu et al., 2008). It has been reported that 

nucleophilic properties of NAC enables it to inactivate free radicals by direct 

conjugation and reduction (Moldeus et al., 1986). The loss of protective thiol groups 
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by DEM on the other hand further augmented MeHg-induced ROS. The low GSH 

content in neurons as compared to astrocytes was associated with increased 

intracellular MeHg and ROS in this cell type. The increased cell associated-MeHg in 

neurons as compared to astrocytes was different from what has been previously 

reported (Berlin et al., 1975a; Hargreaves et al., 1985). However, it provided an 

explanation for increased susceptibility of neurons as compared to astrocytes.  

GSH constitutes the most important antioxidant (Cooper, 1997) and the most 

abundant thiol with concentrations up to 10 mM in mammalian cells (Sies, 1979). 

Since MeHg is known to bind to GSH, the decrease in GSH is expected to decrease 

the cell-associated MeHg. However, the binding of MeHg to GSH is among one of 

the mechanisms for the efflux of MeHg. Therefore, the reported increase in cell-

associated MeHg after GSH depletion could be due to inhibition of MeHg efflux 

from the cells and has been previously observed to occur in endothelial cells (Kerper 

et al., 1996). Therefore, the limited availability of GSH might be one of the 

mechanisms responsible for the increased susceptibility of neurons to MeHg toxicity 

as compared to astrocytes.  

c) Role of GSH in the differential sensitivity of MeHg towards cerebellar and 

cortical cell cultures 

In Paper 3, the susceptibility of cells from the cerebrum and the cerebellum towards 

MeHg-induced toxicity were compared. It was reported that treatment with MeHg 

was associated with greater depletion of GSH in cerebellar astrocytes as compared to 

cortical astrocytes (Paper 3). This indicated that cortical astrocytes were more 

resistant to MeHg-induced depletion of GSH. However, the cortical astrocytes were 

more vulnerable when their GSH content was modified with NAC or DEM. This 

result might be attributed to the presence of a higher GSH content in cortical 

astrocytes possibly indicating that DEM is able to further deplete the available GSH 

content, whereas NAC is not able to upregulate the already elevated level of GSH in 

this cell type.  

The cortical neurons did not vary significantly from the cerebellar neurons with 

respect to their GSH content at either of the tested treatments. However, modulation 

of GSH content with NAC or DEM pretreatment did significantly influence the 

MeHg-induced GSH loss in neurons. This indicated that an increase in GSH content 
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with NAC pretreatment prevented MeHg-induced GSH loss in neurons, whereas a 

decrease in GSH content with DEM pretreatment augmented this loss. We further 

report that treatment with MeHg was associated with greater production of ROS in 

cerebellar cultures as compared to cortical cultures. The higher amount of GSH in 

cortical astrocytes after exposure to MeHg might explain the decreased production of 

ROS in this cell type. However, the similar content of GSH in cortical and cerebellar 

neurons after MeHg exposure does not provide an explanation for the increased 

susceptibility of cerebellar neurons. The increased susceptibility of cerebellar cultures 

could possibly be explained by the increase in cell associated-MeHg in these cultures 

as compared to cortical cultures. However, it has been postulated that the differential 

and selective vulnerability of cells is not simply due to the preferential accumulation 

of MeHg since Purkinje cells accumulate more Hg than granule cells (Leyshon-

Sørland et al., 1994). However, the study by Leyshon-Sørland using the silver nitrate 

technique detected only Hg2+, while the assessment of 14C labeled-MeHg provided a 

measurement of the presence of organic Hg only (Koh et al., 2002; Morken et al., 

2005; Simmons-Willis et al., 2002). Therefore, estimation of organic Hg in Purkinje 

and granule cells would provide a better assessment of organic Hg toxicity in these 

respective regions. 

In addition, the present study also points out the importance of using comparable cell 

densities for the study of MeHg toxicity as an increase in MTT activity was observed 

in MeHg treated cerebellar astrocytes when seeded from low to high concentrations. 

In addition, since GSH content only partially explained the differential MeHg-

sensitivity of cerebellar and cortical cultures, the role played by factors other than 

GSH in protecting cortical cultures from MeHg-induced ROS were discussed. Further 

studies on identifying these potentially selective targets are necessary.  

d) Role of DHA in moldulating MeHg-induced neurotoxicity 

There have been obvious differences in the dose effect relationships in population 

studies on the Faroe Islands (Grandjean et al., 1997; Harada, 1995; Keown-Eyssen et 

al., 1983; Kjellstrom et al., 1986, 1989) and other studies on the Seychelles 

(Davidson et al., 1998; Myers et al., 1997), Peru (Marsh et al., 1995) and in the US 

(Mozaffarian and Rimm, 2006; Oken et al., 2005). The availability of nutritional 

factors such as DHA might influence MeHg toxicity and may explain the 
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discrepancies from the different studies. Since dietary supplementation with DHA has 

been reported to enhance problem solving skills at 20 months of age (Willats et al.,

1998), boost the normal development of the visual system (Uauy-Dagach and 

Valenzuela, 1996) and result in better scores on visual and developmental tests 

(Makrides et al., 1994); there is a need to understand the overall effects of fish 

consumption (ie, providing DHA and MeHg). The identification of the biochemical 

mechanisms behind these effects may improve our basis to establish the maximum 

permissible dose of MeHg from fish diet. For that reason, the susceptibility of neural 

cells from MeHg and DHA exposure was investigated in paper 4 and 5. 

A relatively high concentration of MeHg (10µM) for a short time period (50min) was 

used in these studies which simulated the high level exposure conditions observed at 

Minamata (Eto, 1997). The MeHg content observed in these studies is 10-20 times 

that of the in vivo studies (Eto et al., 2001) or the same as in the extended in vitro 

exposure studies (Sakaue et al., 2006).

In paper 4, neural cell lines (C6-glial and B35-neuronal) were used. In the cell lines, 

the DHA exposure increased the relative DHA fraction of the total fatty acids content 

from 2-2.5% in control to 13-24% in DHA treated cells which is in agreement with 

the previous study (Leonardi et al., 2005). The 90µM DHA caused an increase in 

DHA, arachidonic acid (AA), eicosapentaenoic acid (EPA) and linoleic acid (LA). 

The LA can be desaturated and elongated to AA (Salem et al., 1999) and this is likely 

to occur in C6 and B35 cells. In the present study after DHA exposure, the C6-glial 

cells exhibited a higher content of DHA, AA and LA as compared to the neuronal-

B35 cells. This effect may be likely explained by the dependence of neurons on 

astrocytes for the availibilty of DHA (Moore, 2001).

The DHA exposure led to reduced cell associated-MeHg in both cell types which is in 

agreement with the previous study in rat brain (Berntssen et al., 2004) where a 

significant lower degree of MeHg was observed when rats were fed with naturally 

contaminated fish as compared to feed where MeHg was added chemically to the 

same matrix.  
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In cell lines, the combined exposure to MeHg and DHA resulted in a more 

pronounced reduction in MTT activity and GSH content and augmentation of ROS 

which was more evident in C6 cells. The B35 cells, on the other hand exhibited an 

increase in GSH content after MeHg exposure which might indicate an upregulation 

of protective mechanisms in this cell type. However, this is contrary to the 

characteristics of primary neurons which are not able to upregulate the synthesis of 

GSH on their own as they depend on astrocytes for this purpose (Wang and Cynader, 

2000). Our present observation of upregulated GSH in B35 cells may explain the 

previous finding by (Sakaue et al., 2005) of increased viability of B35 cells towards 

MeHg.

This peculiar behavior of B35 cells prompted us to study the effects of DHA and MeHg 

exposure in primary cells. This could provide a better understanding of the effects of 

DHA and MeHg treatment. Hence in paper 5, primary cerebellar cultures (astrocytes 

and neurons) were used. The amount of total lipid content in primary cells was not 

modified after exposure to DHA as compared with the cell lines. However, the amount 

of mg DHA/g test material in primary cells was reported to be similar to the levels 

previously reported in cell lines. This could be possibly due to the ability of cell lines to 

accumulate relatively high amounts of lipid droplets as compared to primary cells. In 

general, the cerebellar astrocytes had higher fatty acid content than neurons in all the 

tested groups possibly due to the dependence of neurons on the neighboring astrocytes 

for provision of long-chain PUFA’s (Moore et al., 1990; Spector and Moore, 1992). 

The primary neurons had higher Hg levels than B35-neuronal cell line in Paper 4 which 

may provide an explanation for the increased cytotoxicity in primary neurons to MeHg. 

Moreover, the reduced cell associated-MeHg observed in primary cells after DHA 

treatment may indicate its protective effect.

In primary cell cultures, the ability of DHA to afford protection against MeHg-induced 

generation of ROS was established. The combined exposure to DHA and MeHg was 

effective in attenuating the MeHg effect, reducing ROS levels in cerebellar astrocytes 

to levels indistinguishable from controls. Similar effects were seen in cerebellar 

neurons, where treatment with DHA significantly reduced ROS levels in comparison to 

MeHg treatment alone. These reduced ROS levels after DHA plus MeHg exposure in 
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cerebellar astrocytes and neurons did not induce any significant increase in MTT or 

GSH production when compared with MeHg alone. Moreover, significant reduction in 

MTT and GSH content was not associated with increased ROS production in neurons 

after 90µM DHA plus MeHg exposure. This effect could be possibly explained by the 

increased GPx activity by DHA which could lead to disposal of exogenous peroxides 

by conversion of reduced GSH to the oxidized form, GSSG. In primary cells, the DHA 

treatment was associated with an increase in EPA and decrease in AA possibly due to 

retroconversion (Alessandri et al., 2003). The decreased AA levels could also be 

integrated with an increase in GPx activity (Bryant et al., 1982; Vericel et al., 1992;

Weitzel and Wendel, 1993) and be related to protection against MeHg toxicity (Shanker 

et al., 2002). Therefore, the decrease in AA levels could be the mechanism behind 

decreased GSH and ROS levels. 

Differences between the cell lines and primary cells were observed with respect to the 

effect of DHA on MeHg toxicity. The cell lines used in paper 4 were derived from 

cancer tissue and the ability of DHA to augment ROS in these cancer cell lines might 

be attributed to the anti-tumor property of DHA (Calviello et al., 1998; Igarashi and 

Miyazawa, 2000; Merendino et al., 2005; Narayanan et al., 2003; Schley et al., 2005). 

Therefore the choice of cellular model for studying the effects of DHA is critical. The 

primary cells may be considered as an improved in vitro model which provided better 

insight into the mechanism behind the effect of DHA on MeHg toxicity. However, the 

primary cell cultures still represent a highly simplified model since these cultures are 

established using immature cells taken out of their anatomical context. Therefore, 

caution should be taken when extrapolating results from in vitro experiments to the 

whole brain. Nevertheless, the insight in mechanisms that can be provided from cell 

cultures may improve our experimental design for in vivo studies. As such, the 

recognition of the protective effects of DHA and identification of its mechanisms via in

vitro models may improve the basis for a risk/benefit assessment of a MeHg-containing 

fish diet.
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XII. Conclusion 

The present findings provide evidence that concentration, time and cell density play a 

crucial role while assessing MeHg-induced ROS effects (Paper 1). 

The confounding factors such as availability of GSH and fatty acids such as DHA 

effectively influenced MeHg-induced neurotoxicity. The modulation of GSH by NAC 

or DEM effectively played a major role in the cytotoxic effects of MeHg in primary cell 

cultures (Paper 2). To a certain extent, it also explained the differential sensitivity of 

MeHg towards cerebellar and cortical cultures (Paper 3).  

In the cell lines, DHA affected the peroxidative machinery and augmented the 

response of C6 and B35 cells to MeHg-induced oxidative effects (Paper 4). However, 

in primary cell cultures the novel ability of DHA to protect from the adverse effects 

of MeHg was highlighted. The reduction in cell-associated MeHg and the prooxidant 

response from MeHg challenge in primary cells with DHA was not associated with 

an increase in MTT activity or GSH content (Paper 5). This further highlights the 

importance of using an appropriate model for investigating DHA and MeHg-induced 

effects.

XIII. Future experiments 

The differential sensitivity of MeHg towards cerebellar and cortical cultures could be 

further explored. Since GSH content partially explained the differential sensitivity, the 

role of -SH groups after low and extended exposure to MeHg could be investigated. The 

capacity of these cultures to modulate GSH and ROS after low and extended MeHg 

exposure will be studied. In particular, the mechanism behind the differential sensitivity 

of granule and Purkinje cells will be explored. For this purpose, the authors would also 

like to expose the cell cultures to low level of MeHg throughout the maturation period. 

The protein and RNA isolated from these samples will then be tested for gene 

expression studies using microarrays and electrophoresis. These studies in different cell 

culture models would be later verified in animal studies. 
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Abstract

The effect of methylmercury (MeHg) on reactive oxygen species (ROS) induction in neural cell lines was measured by the fluorescent
probe, chloro methyl derivative of di-chloro di-hydro fluoresceindiacetate (CMH2DCFDA). Three different MeHg concentrations (5, 10
and 25 lM) and time periods (30, 50 and 90 min) were studied in C6-glial and B35-neuronal cell lines. In addition, the relationship
between MeHg-induced ROS and cell density (day3 vs. day4) was also explored. The 14C-labelled MeHg measurements were done to
determine the cell associated-MeHg content. At 30 and 50 min exposure, a significant increase (p < 0.05) in MeHg-induced ROS was
observed at 10 and 25 lM MeHg for C6 cells and at 25 lM MeHg for B35 cells. However, the amount of ROS produced with
25 lMMeHg varied significantly (p < 0.001) at different time periods. For both the cell lines, significant cell density dependent differences
(p < 0.05) were observed at 10 lM MeHg treatment for 50 min. MeHg treatments were associated with a concentration as well as cell-
density dependent increase in cell associated-MeHg. These findings provide experimental evidence that special attention should be
focused upon concentration, exposure time and cell density when assessing MeHg-induced ROS via fluorescence.
� 2008 Elsevier Ltd. All rights reserved.

Keywords: In vitro; Reactive oxygen species; Methylmercury; Fluorescence

1. Introduction

Methylmercury (MeHg) is a well known neurotoxicant
that affects both the developing and mature central nervous
system (Clarkson, 2002; Aschner and Syversen, 2005).
Major human epidemics in Iraq (Bakir et al., 1973) and
Japan (Takeuchi, 1982) have established its neurotoxic
effects. A major mechanism for MeHg-induced neurotox-
icity is through generation of reactive oxygen species

(ROS) (Sarafian and Verity, 1991; Ali et al., 1992; Yee
and Choi, 1996; Gasso et al., 2001; Shanker and Aschner,
2003). ROS, such as superoxide anion and hydroxyl radi-
cal, initiate oxidative cell damage and the brain is excep-
tionally sensitive to such free radicals. ROS can be
detected by the fluorescent dye-CMH2DCFDA as its oxi-
dation yields a fluorescent product, 20,70-dichlorofluoresce-
in (DCF), which is retained inside the cell (Shanker et al.,
2004; Kaur et al., 2006, 2007a). The CMH2DCFDA dye
has been extensively used for measuring cellular ROS
(Liu et al., 2001; Shanker et al., 2004; O’Donovan et al.,
2005; Shimazawa et al., 2005; Madhavan et al., 2006; Bai
et al., 2007). It has been reported that the addition of a
chloromethyl group to the CM-H2DCFDA dye gives a bet-
ter retention and more reliable fluorescent signals in live
cells as compared to other DCF dyes (Liu et al., 2001).
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Both C6 and B35 cells from rat brain which have been
extensively used as a glial (Benda et al., 1968; Schubert,
1974) and neuronal model (Schmid et al., 2000; Otey
et al., 2003; Diestel et al., 2005), respectively, were selected
to represent each cell type. The present study was designed
to assess the differences obtained with the DCF signal by
measuring the oxidative effects of MeHg, assessing concen-
tration, time and cell density dependence. This comparative
approach allowed us to recognize the importance of these
factors for determining ROS-induced neurotoxicity by the
use of fluorescence.

2. Materials and methods

2.1. Materials

24-well plastic tissue culture plates were purchased from
Falcon (Becton Dickinson Labware, USA). Fetal bovine
serum was purchased from PAA Laboratories, Pasching
(Austria). The medium for culturing C6 (F12 Kaighn’s
nutrient mixture) was purchased from Invitrogen (Nor-
way). The DMEM media used for culturing B35 cells was
purchased from PAA Laboratories, Pasching (Austria).
The fluorescent indicator CMH2DCFDA was purchased
from Molecular Probes, Inc. (Eugene, OR, USA). Radiola-
beled 14C-MeHg was purchased from American Radiola-
beled Chemicals Inc. (St. Louis, MO, USA). MeHgCl
was purchased from K&K Laboratories (Plainview, NY,
USA). All other chemicals were of analytical grade.

2.2. Cell lines

The C6-glial and B35-neuronal cell lines were purchased
from the ATCC-LGC Promochem (Sweden). After three
passages, approximately 60,000 C6 and 160,000 B35 cells
per well per ml of media were seeded in 24 well plates
and incubated in a humidified 5% CO2/95% air atmosphere
at 37 �C. The different seeding concentrations were used as
the C6 cells divided at a much higher rate as compared to
B35 cells. To study the MeHg concentration and exposure
time dependent effects, the cells were used at day 4 in vitro.
In addition, for investigating the cell density dependent
effects, cells were used both at day 3 and day 4. The amount
of average protein for control C6 cells at day 3 and day 4 of
the experiment was 84.6 ± 7.6 and 135.8 ± 7.9 lg protein/
well. For control B35 cells, the amount of average protein
at day 3 and day 4 of the experiment was 87.2 ± 4.9 and
137.7 ± 7.5 lg protein/well. The seeding density was cho-
sen to facilitate the fluorescence measurements.

2.3. Treatments

A stock solution of 1 mM MeHgCl was prepared in
5 mM Na2CO3. From this stock, a working solution was
prepared in HEPES buffer [122 mM NaCl, 3.3 mM KCl,
0.4 mM MgSO4 � 7H2O, 1.3 mM CaCl2, 1.2 mM KH2PO4,
10 mM glucose and 25 mM HEPES adjusted to pH 7.4

with 10 N NaOH]. On the day of the experiment, the cells
were washed once with HEPES buffer and incubated at
37 �C with 450 ll of 0, 5, 10 or 25 lM MeHg per well for
30, 50 or 90 min interval.

2.4. Detection of intracellular ROS accumulation

Intracellular ROS accumulation was monitored in the
cells by adding CMH2DCFDA (7 lM) to the wells contain-
ing MeHg for the last 20 min of the 30, 50 and 90 min
exposure intervals. There were no washing steps involved
before the addition of CMH2DCFDA and were done only
after incubation with MeHg and CMH2DCFDA was com-
plete. The final values were corrected for intracellular pro-
tein in each well and expressed as a percent of fluorescence
in control wells as described previously (Kaur et al.,
2007b).

2.5. Cellular MeHg accumulation

The cell associated-MeHg studies were done with 14C-
labeled 10 lM MeHg (82 nCi/lg Hg) for 30, 50 and
90 min intervals. After incubation, the cells were washed
with ice cold buffer and treated with 1 N NaOH for
90 min. Samples were neutralized with 10 N HCl and
100 ll aliquots were added to 500 ll of Ultima Gold (Pack-
ard) scintillation cocktail. The samples were then counted
in a 1450 Micro Beta Trilux Liquid scintillation counter
(Wallac, Perkin Elmer Life Sciences, Norway) and radioac-
tivity was corrected for cellular protein in each well as
described previously by Kaur et al. (2007b).

2.6. Estimation of protein

Protein concentration was determined by the Folin
reagent with BSA as a standard (Lowry et al., 1951). The
protein was measured after MeHg and CMH2DCFDA
incubation using the same wells in which the fluorescence
readings had been taken.

2.7. Data analysis

All results are given as mean ± standard deviation. Dif-
ferences between groups were analyzed statistically with
one-way ANOVA followed by the Tukey HSD post hoc
test for multiple comparisons and p < 0.05 was considered
statistically significant.

3. Results

3.1. MeHg-induced ROS effects

ROS levels quantified by the fluorescence intensity of the
oxidized product, DCF, for different MeHg concentrations
and time of exposure are shown for C6-glial and B35-neu-
ronal cells in Figs. 1 and 2, respectively. A significant
increase in ROS (p < 0.05) was observed with 10 lMMeHg
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in C6 cells for all the tested time intervals. However, at
25 lM MeHg, a significant increase in ROS (p < 0.001)
was induced only at 30 and 50 min interval for both the cell
lines. In C6 cells, a significant difference was observed
between 50 min and 90 min interval upon 10 lM MeHg
treatment. Likewise, at 25 lM MeHg, a significant differ-
ence was observed between the various time intervals for
both the cell lines. The protein values for each type of treat-
ment (provided below) did not vary significantly with any
one the above treatments.

3.2. Cell associated-MeHg

Cell associated-MeHg measured with 14C-radiolabeled
MeHg for different MeHg concentrations and time of

exposure are shown for C6-glial and B35-neuronal cells
in Figs. 3 and 4, respectively. A significant increase in cell
associated-MeHg (p < 0.05) was observed with increasing
MeHg concentrations at all the tested time intervals for
both the cell lines. The cell associated-MeHg at 50 min
increased significantly (p < 0.05) at 10 lM MeHg when
compared to 30 min in both C6 and B35 cells. In addition,
a significant time dependent increase (p < 0.05) in cell asso-
ciated-MeHg was observed for B35 cells at 25 lM MeHg
dose.

3.3. Cell density dependent changes in MeHg-induced ROS

The MeHg-induced ROS level at 50 min interval for two
different cell densities is shown in Fig. 5. In C6 cells, a

ROS detected by CMH2DCFDA fluorescence in C6 Cells-Day4 
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Fig. 1. Cellular ROS detected by CMH2DCFDA fluorescence in C6-glial cell line. Results are expressed as mean ± standard deviation (n = 6 replicates for
each cell type). The superscripts (a, b, c, d, and e) not showing common letters are significantly different (p < 0.05) from each other. Values were corrected
for protein content in each well (provided below) and determined as a percentage of fluorescence with respect to control cells.
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Cell associated-MeHg measured by 14C radiolabelled MeHg in c6 Cells-Day 4
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Fig. 3. Cell associated-MeHg in C6-glial cell line as measured by 14C radiolabeled MeHg. Results are expressed as ng Hg/mg protein, mean ± standard
deviation (n = 8 replicates for each cell type). The superscripts (a, b, c, and d) not showing common letters are significantly different (p < 0.05) from each
other. Values were corrected for protein content in each well.
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Fig. 4. Cell associated-MeHg in B35-neuronal cell line as measured by 14C radiolabeled MeHg. Results are expressed as ng Hg/mg protein,
mean ± standard deviation (n = 8 replicates for each cell type). The superscripts (a, b, c, d, and e) not showing common letters are significantly different
(p < 0.05) from each other. Values were corrected for protein content in each well.

Fig. 5. Cellular ROS detected by CMH2DCFDA fluorescence in C6-glial and B35-neuronal cell line at day 3 and day 4. Results are expressed as
mean ± standard deviation (n = 6 replicates for each cell type). The superscripts (a, b, c, d, e, f and g) not showing common letters are significantly
different (p < 0.05) from each other. Values were corrected for protein content in each well and determined as a percentage of fluorescence with respect to
control cells.
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significant difference (p < 0.001) in ROS production was
observed for both 10 and 25 lM MeHg dose. In B35 cells,
cell density dependent differences in ROS production were
observed only for 10 lM MeHg dose.

3.4. Cell density dependent changes in cell associated-MeHg

Cell density-dependent changes in cell associated MeHg
(treated with 10 lM for 50 min) are shown in Table 1. For
both the cell lines, significant differences in cell associated-
MeHg (p < 0.001) were observed between day 3 and day 4.
For both the cell lines, the cell associated-MeHg was more
at day 4 when compared to day 3. In addition, significant
differences (p < 0.05) between the two cell types were
observed with C6 cells exhibiting more cell associated-
MeHg when compared to B35 cells.

4. Discussion

Oxidative stress occurs when the normal balance
between the oxidative events and antioxidant defenses is
disrupted either by loss of reducing agents/antioxidant
enzymes or by increased production of oxidizing species.
The present study is a part of a larger study aimed at mod-
ulation of MeHg toxicity and estimation of intracellular
ROS levels (Kaur et al., 2007b). Three different MeHg con-
centrations used in the present study were selected on the
basis of MTT timeline study (Kaur et al., 2007b). The
exposure time was selected on the basis of previous uptake
studies showing maximum cell associated-MeHg level for
10 lM dose at 50 min of exposure (data not shown). The
MeHg content observed in the present study is 10–20 times
that of in vivo studies (Eto et al., 2001) and similar to cel-
lular levels after extended in vitro exposure studies (Sakaue
et al., 2006). For a range of toxic substances the effective
dose during in vitro exposure must be considerable higher
than the in vivo situation when the target organ concentra-
tion is used as a dose indicator. In order to compare dose in
a range of cell lines and primary cultures we prefer to use
cell-associated mercury as the dose indicator rather than
the nominal concentration in culture media. This becomes
vital if the cell density varies between cell culture types or
the serum quantity/quality varies in the growth media.

The present study demonstrates increase in MeHg-
induced ROS in both C6 and B35 cells; corroborating find-
ings from previous studies (Sarafian and Verity, 1991; Ali
et al., 1992; Yee and Choi, 1996; Shanker and Aschner,
2003; Shanker et al., 2004). In addition, it identifies signif-
icant differences between different MeHg concentrations
and time intervals for the production of ROS. From the
MTT Timeline study (Kaur et al., 2007b) it can be seen that
5 lM MeHg dose at 60 min interval resulted in a 15% and
4% reduction in MTT activity in C6 and B35 cell lines,
respectively. The primary cells on the other hand are more
sensitive (Kaur et al., 2006) exhibiting 40% and 50% reduc-
tion in MTT activity in cerebellar astrocytes and neurons.
This reduction in MTT activity was associated with signif-
icant induction of ROS in primary cells. However, the non-
significant reduction in MTT activity observed at 5 lM
MeHg in cell lines (Kaur et al., 2007b), indicates that at this
dose the cells are not significantly affected to produce sig-
nificant increase in ROS.

The decrease in the DCF signal at 25 lM MeHg dose
with increase in exposure time could have several explana-
tions including signal leakage, quenching and cellular defen-
sive response. Leakage of the DCF signal has been observed
in other cell types such as cancer cells (Ubezio and Civoli,
1994) and endothelial cells (Royall and Ischiropoulos,
1993). Quenching of the DCF fluorescence signal may occur
as a result of lower intracellular pHwhich can be induced by
extracellular glutamate in primary neurons (Reynolds and
Hastings, 1995). Exposure to MeHg may result in increased
release of glutamate (Aschner et al., 2000) which in turn
may induce a lower intracellular pH. In the present study,
the cellular defensive response is shown by B35 cells which
counteract the ROS effects more effectively than C6 cells.
We have previously reported that this is most likely con-
nected to the ability of B35 cells to upregulate their GSH
content (Kaur et al., 2007b). We have made an attempt to
address all these considerations in our approach and thus
use relatively high MeHg concentration for short exposure
times with co-exposure to the DCF probe.

The present study demonstrates decrease in ROS with
an increase in cell density at 10 lM MeHg in both the cell
lines. The in vitro results can be influenced by the density of
cells in culture (Preobrazhensky et al., 2001). Moreover, the
effect of MeHg depends on the total biomass present
(Furukawa et al., 1982). It was reported by Gulden et al.,
2001 that for a variety of toxic compounds including
MeHg, the EC50 values increased with increasing cell con-
centration. They concluded that cell binding can signifi-
cantly affect the availability of compounds in vitro and
thus their toxic potencies and toxic equivalency factors.
In addition it was also reported that the presence of albu-
min of variable concentrations in medium greatly influ-
ences the toxic potency of MeHg (Seibert et al., 2002).
This may be due to the presence of extra binding sites
which can reduce the effective dose at the primary toxicity
targets. The cell density-dependent production of ROS has
also been reported by previous studies using different

Table 1
Cell density dependent MeHg accumulation in C6-glial and B35-neuronal
cell lines as measured by 14C radiolabeled MeHg at 10 lM MeHg for
50 min

Cell type Day 3 Day 4

C6-glial 2048 ± 231c 5485 ± 755a

B35-neuronal 1499 ± 180d 3076 ± 426b

Values are expressed as ng Hg/mg protein, mean ± standard deviation.
Experiments were conducted in eight replications for each cell type. The
superscripts (a, b, c, and d) not showing common letters are significantly
different (p < 0.05) from each other. Values were corrected for protein
content in each well.
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models such as fibroblasts (Pani et al., 2000), granulocytes
(Rosenkranz et al., 1992) and neural precursor cells (Limoli
et al., 2004). It has been reported by Zurgil et al. (1996) that
cell density related differences result in differences in cell
cycle which lead to changes in intracellular environment
such as changes in membrane fluidity. They reported that
in T-lymphocyte Jurkat cell line, at highest cell density
the resting phase (G0/G1) predominated whereas at low cell
density the S or G2/M phase was predominant. Therefore,
the differences in cell cycle or dilution of effective dose at
high cell density can be responsible for increased ROS pro-
duction at day 3 with 10 lM MeHg dose in both the cell
lines. The decreased production of ROS in C6 cells at
25 lM MeHg dose at day 3 as compared to day 4 could
be due to increased effective dose at low cell density result-
ing in increased cytotoxicity and loss of the dye. The non-
differential production of ROS in B35 cells at 25 lMMeHg
dose at day 3 vs. day 4 could be due to the ability of this
cell type to upregulate the GSH content resulting in
decreased cytotoxicity. Therefore, changes in the intracellu-
lar environment may play a crucial role in the generation of
ROS detected by the DCF signal.

In cell culture uptake studies of compounds which are
sparingly water soluble and strongly bound to proteins,
the differentiation between the compounds being attached
to the surface of the cells from what is actually inside the
cell is difficult. Moreover, the extensive washing procedures
may cause the cells to release the compound which has
been accumulated inside the cells during the assay. There-
fore, for the present study we measure the cell-associated
MeHg which represents the MeHg associated to cellular
protein structures. For MeHg, the uptake into the cells is
both an active, energy dependent (e.g. MeHg-cystein) as
well as passive uptake (e.g. MeHgCl) depending on the
Hg species (Aschner et al., 1990; Kerper et al., 1992; Wang
et al., 2000). Effects of any unspecific binding of 14C-radio-
labeled MeHg in the culture well were prevented by wash-
ing the cells with cold Hepes buffer prior to solubilization
in NaOH. For both C6 and B35 cells, the cell associated-
MeHg was saturated after 60 min of exposure at doses
ranging from 1 to 10 lM MeHg (data not shown). The
increased cell associated-MeHg in C6 cells as compared
to B35 cells explains the increased production of ROS in
C6 cells. However, the increased cell associated-MeHg at
day 4 when compared to day 3 did not correlate with the
cell density dependent differences in MeHg-induced ROS.
This could be due to the presence of extra binding sites
at high cell density resulting in reduction of effective dose.
The concentration dependent increase in cell associated-
MeHg at 30 and 50 min intervals for both the cell lines cor-
related with the MeHg-induced ROS effects. However, the
changes in cell-associated MeHg at different exposure con-
ditions did not always correlate with the ROS production.
The authors do not have an explanation for this phenom-
enon. This further highlights the importance of using con-
sistent cell densities and exposure conditions when
estimating ROS from the DCF signal.

Taken together, our study establishes that concentration,
time and cell density effectively contributes to MeHg-
induced ROS generation. Therefore, optimum concentra-
tion, exposure time and consistent cell densities should be
of prime consideration while estimating the fluorescent
DCF signal for studying ROS-induced neurotoxicity.
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Abstract

Methyl mercury (MeHg) is highly neurotoxic and may lead to numerous neurodegenerative disorders. In this study, we investigated the role of

glutathione (GSH) and reactive oxygen species (ROS) in MeHg-induced neurotoxicity, using primary cell cultures of cerebellar neurons and

astrocytes. To evaluate the effect of GSH on MeHg-induced cytotoxicity, ROS and GSH were measured using the fluorescent indicators chloro

methyl derivative of di-chloro di-hydro fluorescein diacetate (CMH2DCFDA) and monochlorobimane (MCB). Cell-associated MeHg was

measured with 14C-radiolabeled MeHg. Mitochondrial dehydrogenase activity was detected by MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphe-

nyltetrazolium bromide]. MTT timeline study was also performed to evaluate the effects of both the concentration and duration of MeHg exposure.

The intracellular GSH content was modified by pretreatment with N-acetyl cysteine (NAC) or di-ethyl maleate (DEM) for 12 h. Treatment with

5 mMMeHg for 30 min led to significant ( p < 0.05) increase in ROS and reduction ( p < 0.001) in GSH content. Depletion of intracellular GSH by

DEM further increased the generation of MeHg-induced ROS in both cell cultures. Conversely, NAC supplementation increased intracellular GSH

and provided protection against MeHg-induced oxidative stress in both cell cultures. MTT studies also confirmed the efficacy of NAC

supplementation in attenuating MeHg-induced cytotoxicity. The cell-associated MeHg was significantly ( p < 0.02) increased after DEM

treatment. In summary, depletion of GSH increases MeHg accumulation and enhances MeHg-induced oxidative stress, and conversely,

supplementation with GSH precursor protects against MeHg exposure in vitro.

# 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Methyl mercury (MeHg) is a potent neurotoxicant that

affects both the developing and mature central nervous system

(CNS). Several catastrophic epidemics resulting from con-

sumption of MeHg-adulterated food in Iraq (Bakir et al., 1973),

Pakistan, Guatemala and Ghana, or via environmental

contamination in Japan (Harada, 1995) have led to its

recognition as a ubiquitous environmental toxicant (for a

review, see Clarkson, 2002). The CNS damage caused by

MeHg is irreparable and different in adult brain versus fetal

brain (Lapham et al., 1995). Severe neurological disturbances,

such as paresthesia, ataxia, sensory and speech impairment, and

constriction of the visual field are caused by MeHg poisoning

(Bakir et al., 1973; Harada, 1995; Elhassani, 1982). Con-

taminated fish from polluted areas, vaccines and dental

amalgams also pose as a potential source of Hg exposure in

humans (Clarkson et al., 2003). MeHg has a high association

constant (15 < pKa < 23) for sulfhydryl (SH) groups (Carty

and Malone, 1979). It can react with any SH-group leading to

conformational changes and thus inhibition of many enzymes.
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However, all signs and symptoms of toxicity in adults are

confined mostly to the nervous system where it affects

primarily the granule layer of the cerebellum and the visual

cortex of the cerebrum (Takeuchi, 1982). Despite considerable

scientific efforts, the reason for this selective degeneration of

the nervous system has not been satisfactorily explained.

The adult human brain consumes >20% of the oxygen

utilized by the body although it comprises only 2% of the body

weight, indicating that ROS are generated at high rates during

oxidative metabolism of the brain (Dringen et al., 2000; Clarke

and Sokoloff, 1999). ROS can be detected by the

CMH2DCFDA dye as its oxidation yields a fluorescent

product, 20,70-dichlorofluorescein (DCF), which is retained

inside the cell (Shanker et al., 2004). Antioxidants provide

cellular defense against ROS, with GSH constituting the most

important and abundant component (Cooper, 1997). Both

neurons and astrocytes contain GSH, which is involved in the

disposal of exogenous peroxides by acting as a co-substrate in

a reaction catalyzed by GSH peroxidase (GPx) (Eklow et al.,

1984;Wendel et al., 1980). However, astrocytes contain higher

concentrations of GSH than neurons (Kranich et al., 1996;

Sagara et al., 1993). The astrocytes provide precursor

molecules, e.g., cysteine, to neurons for GSH synthesis

(Shanker and Aschner, 2001; Sagara et al., 1993). The

availability of cysteine from glial cells becomes rate limiting

for synthesis of neuronal GSH (Kranich et al., 1998; Wang and

Cynader, 2000). The content of intracellular free thiols and the

subcellular compartmentation of GSH could be determined by

MCB (Bellomo et al., 1997). The MCB can diffuse passively

across the plasma membrane into the cytoplasm where it binds

with the reduced form of GSH and other thiol-containing

proteins leading to formation of blue fluorescent adducts

(Haugland, 1996). Previous studies on the mechanism of

MeHg have shown that MeHg toxicity leads to depletion of

GSH and generation of ROS (Sanfeliu et al., 2001; Yee and

Choi, 1996). Several reports have implicated a critical role of

GSH in modulating MeHg neurotoxicity (Choi et al., 1996;

Miura and Clarkson, 1993). However, it still remains unclear

whether the protection afforded by GSH is due to protection

against ROS generated by MeHg or by reduction of

intracellular concentration ofMeHg. The present investigation

addresses this issue by firstly, evaluating the effect of MeHg on

the content of GSH and ROS in neurons as well as astrocytes,

and secondly, by examining the effect of GSH modulation on

the accumulation of MeHg in both cell types. GSH content of

primary cultured cells can be modulated by variety of

treatments (Dringen, 2000). NAC or DEM were employed for

GSH modulation in the present study. DEM depletes cellular

GSH by forming adducts with the thiol groups. DEM has been

reported to cause high mortality in HgCl2 treated rats (Baggett

and Berndt, 1986). NAC is a source of thiol groups and

scavenger of free radicals such as H2O2 and OH� (Aruoma

et al., 1989). Previous studies have indicated the effectiveness

of NAC as an antidote against MeHg poisoning (Ballatori

et al., 1998; Koh et al., 2002). The present study attempts to

resolve the ambiguity concerning the cellular selectivity

exhibited by MeHg.

2. Materials and methods

2.1. Materials

Twenty-four-well plastic tissue culture plates were

purchased from Falcon (Becton Dickinson Labware). Fetal

calf serum (FCS) was acquired from Seralab Ltd. (Sussex,

UK) and culture medium was acquired from GIBCO BRL,

Life Technologies (Roskilde, Denmark). The fluorescent

indicator CMH2DCFDA was purchased from Molecular

Probes Inc. (Eugene, OR). NAC, DEM and MCB were

acquired from Sigma Aldrich (Norway). Radiolabeled 14C-

MeHg (Cat. no. ARC-1302) was purchased from American

Radiolabeled Chemicals Inc. (St. Louis, MO, USA). MeHgCl

(Cat. No 23308) was purchased from K&K Laboratories

(Plainview, NY, USA). All other chemicals were of analytical

grade.

2.2. Animals

NMRI mice were purchased from Møllegaard Breeding

Center (Copenhagen, Denmark). Prior to experiments the

animals had free access to food and water and were kept

under constant conditions of temperature (22 8C), humidity

(60%) and 12 h light/dark cycles. The animals were handled

in compliance with the NTNU Animal Care and Use

Committee.

2.3. Cell cultures

Cerebellar astrocytes were prepared as described earlier

(Hertz et al., 1989). Briefly, cerebella obtained from 7-day-old

mice were passed through Nitex nylon netting (80 mm pore

size) into Dulbecco’s minimum essential medium (DMEM)

containing 20% (v/v) fetal calf serum (FCS). The cell

suspension was then plated at a density of 0.5 cerebella per

24-well culture plate, which was coated previously with poly-D-

lysine. Medium was changed 2 days after plating and

subsequently twice a week, gradually decreasing the FCS

concentration to 10%. At 14 days in culture, dibutyryl-cAMP

was added to the medium for 1 week to promote the

morphological differentiation of astrocytes. Cells were used

for the experiment 21 days post-isolation and the cultures were

80% confluent by this time.

Primary cultures of cerebellar neuronal cells were prepared

from cerebella of 7-day-old mice according to the method

described by Schousboe et al., 1989. Briefly, mild trypsinized

cerebella were triturated in a DNase solution containing a

soybean trypsin inhibitor. The cells were suspended in

DMEM (19 mM KCl, 31 mM glucose, and 0.2 mM gluta-

mine) supplemented with 50 mM kainic acid, p-aminobenzo-

ate, insulin, penicillin, garamycin and 10% (v/v) FCS. Cells

were seeded at a density of (0.8 � 106 cells/ml) in 24-

multiwell plate, which were previously coated with poly-D-

lysine and incubated in a humidified 5% CO2/95% air

atmosphere at 37 8C. Neuronal cultures were used 1 week

post-isolation.
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notable ( p < 0.001) at 10 mM concentration and at 60 min

exposure for both cell types. A slight increase in MTT activity

was observed in astroglial cultures at 1 mM concentration and

at 15 min interval, which may indicate inherent protective

mechanisms. At any particular concentration and time interval,

cerebellar neurons were more susceptible to MeHg-induced

reduction in MTT activity than cerebellar astrocytes. At 5 mM
MeHg concentration for 30 min there was a 41% ( p < 0.001)

reduction in mitochondrial activity in neurons (Fig. 6) as

compared to 25% ( p < 0.05) reduction in astrocytes (Fig. 6).

4. Discussion

The present study addresses the role of GSH in differential

cytotoxic effects of MeHg in cerebellar neurons and astrocytes.

It determined that depletion of GSH increases the intracellular

concentration of MeHg in both cell types and therefore

influences the generation of ROS.

4.1. GSH modification and ROS generation

MCB fluorescence studies indicated that MeHg causes a

depletion in GSH content both in neuronal and astroglial cells,

which is in accordance with the previous studies (Sarafian and

Verity, 1990). It has been reported that NAC is an acetylated

analog of cysteine, which easily crosses the cell membrane and

is rapidly deacetylated inside the cell to become available for

GSH synthesis (Zafarullah et al., 2003). Our present data shows

that NAC was effective in preventing MeHg-induced GSH loss

in both cell cultures. In the control cells, NAC did not increase

the GSH level. However, after MeHg exposure NAC-pretreated

cells more readily met the increased demand for reduced GSH.

In contrast, loss of protective thiol groups by DEM further

augmented MeHg-induced loss of GSH. The average control

MCB values indicated that cerebellar astrocytes contained a

greater supplement of GSH than cerebellar neurons, which is

consistent with previous observation (Raps et al., 1989). The

present study demonstrates that neurons were more vulnerable

to MeHg-induced GSH depletion, indicating that GSH status

likely represents a key factor in the neuropathologic and cell

specific effects of MeHg.

Previous in vivo studies in rodent cerebellum and in vitro

studies in sub cellular fractions (Ali et al., 1992) in cell lines

(Sarafian et al., 1994) and primary cultures (Shanker et al.,

2004; Shanker and Aschner, 2003) have indicated that ROS are

mediators of MeHg-induced neurotoxicity. In addition, GSH

modulators have been reported to influence MeHg-induced

ROS in cerebellar astrocytes (Shanker et al., 2005). The present

study is in accordance with the previous studies, as we also

observed an increase in CMH2DCFDA fluorescence in both cell

types with MeHg treatment. The results indicate that depletion

of cellular thiols by DEM induced and augmented MeHg-

induced accumulation of ROS. CMH2DCFDA measurements

indicated that neurons were more affected by MeHg treatment

as well as DEM induced ROS than astrocytes. MeHg-induced

ROSwas however, ameliorated with NAC treatment in both cell

cultures as indicated by decrease in CMH2DCFDA fluores-

cence. Thus, GSH modulators affect MeHg-induced ROS

generation differentially in neurons and astrocytes.

4.2. MeHg accumulation

The unique aspect of the present study is that intracellular

GSH concentrations were directly correlated both in astrocytes

and neurons not only with MeHg-induced oxidative stress, but

also with cell-associated MeHg content. Since the demethyla-

tion of MeHg is a slow process (Magos et al., 1985) it will not

occur at any significant rate during the 30 min incubation

period used in the present study and the 14C measurements thus

represent MeHg content (Simmons-Willis et al., 2002; Morken

et al., 2005; Koh et al., 2002).

The GSHmodulator-DEM increasedMeHg accumulation in

both cell types, indicating that depletion of thiol groups

predisposes the cells to MeHg-induced cytotoxicity. However,

the tendency of DEM to increase Hg accumulation was more

considerable in neurons ( p < 0.001) versus astrocytes

( p < 0.02). It was also observed that cell associated-MeHg

was approximately five times higher in neurons than astrocytes.

These data suggest that cerebellar neurons were more sensitive

to thiol depletion and MeHg-induced neurotoxicity than

astrocytes. No significant differences were observed in either

cell type between MeHg group and NAC pretreated MeHg

group. The non-significant increase in cell associated-MeHg

with NACmay be due to binding of MeHg to the cysteine group

of NAC, which may prevent binding of MeHg to other sensitive

target sites. Previous studies have indicated that MeHg uptake

increases when it is present as L-cysteine complex but not as D-

cysteine, NAC, penicillamine or GSH complexes (Wang and

Clarkson, 2000; Simmons-Willis et al., 2002) suggesting the

active role of L-neutral amino acid transporter in MeHg uptake.

The MeHg-thiol interactive chemistry is responsible for

variable accumulation of MeHg. Increased MeHg accumula-

tion increases MeHg-induced toxicity as indicated by the more

pronounced production of ROS, depletion of GSH and

reduction of MTT, when both neurons and astrocytes are co-

incubated with MeHg and DEM.

4.3. Effects on mitochondrial function (MTT-reduction)

The MTT data supports MeHg’s differential effects in

neurons versus astrocytes. Cerebellar neurons are more

sensitive to MeHg than cerebellar astrocytes, consistent with

previous reports (Sanfeliu et al., 2001). Our present data asserts

that this cellular specificity reflects increased neuronal

accumulation of MeHg in neurons versus astrocytes. Previous

studies have indicated the protective effects of NAC against

thimerosal (James et al., 2005) and MeHg hydroxide (Gatti

et al., 2004) induced reduction of MTT activity in different cell

lines. Effectiveness of amino acids and antioxidants, such as

cysteine and GSH against MeHg-induced decrease in MTT

activity has also been previously reported in primary cell

cultures (Sanfeliu et al., 2001). Our present MTT data

corroborates these studies and demonstrates the efficacy of

NAC supplementation in primary neuronal and astroglial cell

P. Kaur et al. / NeuroToxicology 27 (2006) 492–500498



cultures. In both cell types, DEM and MeHg treatment induced

a reduction in MTT activity. The combined effect of MeHg and

DEM was, however, synergistic and not additive. Previous

studies have proposed that decrease in intracellular GSH by

DEM causes inhibition of MeHg efflux from brain endothelial

cells (Kerper et al., 1996). Our present data shows that DEM

causes increase in intracellular concentration of MeHg

available for reduction in MTT activity.

In summary, the present study demonstrates that main-

tenance of adequate GSH levels protects against MeHg-induced

oxidative stress in primary cell cultures of neurons and

astrocytes. The difference in the GSH status provides a possible

explanation for the differences between MeHg-induced

neuronal and astroglial toxicity. The limited GSH availability

might be one of the mechanisms responsible for making

neurons more susceptible to MeHg toxicity versus astrocytes. It

affirms that modulation of GSH levels effectively change the

intracellular concentration of MeHg which in turn will alter the

risk of MeHg-induced oxidative stress.
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Abstract

Certain discrete areas of the CNS exhibit enhanced sensitivity towards MeHg. To determine whether GSH is responsible for
this particular sensitivity, we investigated its role in MeHg-induced oxidative insult in primary neuronal and astroglial cell cul-
tures of both cerebellar and cortical origins. For this purpose, ROS and GSH were measured with the fluorescent indicators,
CMH2DCFDA and MCB. Cell associated-MeHg was measured with 14C-radiolabeled MeHg. The intracellular GSH content was
modified by pretreatment with NAC or DEM. For each of the dependent variables (ROS, GSH, and MTT), there was an overall
significant effect of cellular origin, MeHg and pretreatment in all the cell cultures. A trend towards significant interaction between
origin × MeHg × pretreatment was observed only for the dependent variable, ROS (astrocytes p = 0.056; neurons p = 0.000). For
GSH, a significant interaction between origin × MeHg was observed only in astrocytes (p = 0.030). The cerebellar cell cultures
were more vulnerable (astrocytesmean = 223.77; neuronsmean = 138.06) to ROS than the cortical cell cultures (astrocytesmean = 125.18;
neuronsmean = 107.91) for each of the tested treatments. The cell associated-MeHg increased when treated with DEM, and the cere-
bellar cultures varied significantly from the cortical cultures. Non-significant interactions between origin × MeHg × pretreatment
for GSH did not explain the significant interactions responsible for the increased amount of ROS produced in these cultures. In
summary, although GSH modulation influences MeHg-induced toxicity, the difference in the content of GSH in cortical and cere-
bellar cultures fails to account for the increased ROS production in cerebellar cultures. Hence, different approaches for the future
studies regarding the mechanisms behind selectivity of MeHg have been discussed.
© 2006 Elsevier Ireland Ltd. All rights reserved.
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1. Introduction

Methylmercury (MeHg) is an important environmen-
tal neurotoxicant capable of posing risks to human
health (Aschner and Syversen, 2005). It is a hazardous
trace metal that is released into the environment from
both natural and anthropogenic sources (EPA, 1997;
ATSDR, 1999). MeHg accumulates in aquatic organ-
isms and biomagnifies through the food web from 10,000
to 100,000 times (EPA, 1997; Wiener et al., 2003).
Thus, the major dietary route of human exposure to
MeHg is via the ingestion of seafood for adults and
via maternal milk for infants (Manfroi et al., 2004).
Major human epidemics in Japan (Takeuchi, 1982; Eto,
2000) and Iraq (Bakir et al., 1973) have established the
toxicity of MeHg in the nervous system. It is critical
that we ascertain the neurobiological processes which
may be detrimentally affected by this environmental
agent.

MeHg has a high affinity for binding to all thiol groups
(Hughes, 1957), indicating that more than one mecha-
nism may contribute to the expression of MeHg-induced
neurotoxicity. However, the existence of multiple mech-
anisms of toxicity are difficult to reconcile with the
specific pattern of neurological damage associated with
MeHg, such as in the cerebellar granule cell layer and
in the calcarine region of the occipital cortex in humans
(Hunter and Russell, 1954; Choi et al., 1978; Takeuchi,
1982; Eto, 1997) and in rodent brains (Nagashima,
1997). The mechanisms associated with enhanced sen-
sitivity in these areas of the CNS remain unknown.
Cerebellar granule cells are predominately glutamater-
gic, whereas cortical neurons are mainly GABAergic,
while expressing glutamate receptors also (Yu et al.,
1984; Hertz and Schousboe, 1987). Major mechanisms
of MeHg neurotoxicity involve the spontaneous release
of glutamate and GABA in neurons (Atchison and Hare,
1994) and the inhibition of the uptake of glutamate and
GABA in astrocytes (Aschner et al., 2000) and in cortical
slices of adult rat brains (Farina et al., 2003). Neuronal
dysfunction has been proposed to be secondary to dis-
turbances in astrocytes (Allen et al., 2001). However, the
sparing of Purkinje cells and the sensitivity of granule
cells in the cerebellum cannot be attributable solely to
the vulnerability of cerebellar astrocytes towards MeHg,
for under these circumstances, both Purkinje and granule
cells would be expected to respond in a similar fashion.
Therefore, it is important to identify the unique charac-
teristics of cells that express high resistance to MeHg.

Molecular oxygen is essential for many biological
events associated with aerobic metabolism, and this
results in the constant formation of ROS (Powis et

al., 1995). Conversely, GSH is the most abundant thiol
tripeptide present in mammalian cells for scavenging
reactive oxygen species (Roberts et al., 1980; Fang et
al., 2002). MeHg causes a reduction in the amount of
intracellular GSH (Miura and Clarkson, 1993; Sarafian
et al., 1994; Choi et al., 1996; Gatti et al., 2004) and
the augmentation of ROS formation (Ali et al., 1992;
Yee and Choi, 1996; Sorg et al., 1998; Sarafian, 1999;
Gasso et al., 2001; Sanfeliu et al., 2001; Shanker and
Aschner, 2003). However, little is known concerning this
relationship in specific anatomical regions of the brain.
Previous work from our laboratory (Kaur et al., 2006)
prompted us to investigate whether GSH is responsi-
ble for the differences induced by MeHg in cerebellar
and cortical cultures. MCB has been previously used
for measuring GSH levels in tissue (Kamencic et al.,
2000), glia (Chatterjee et al., 1999, 2000), neuroblastoma
and neuronal cultures (Tauskela et al., 2000; Sebastia
et al., 2003). MCB is a cell permeable, nonfluorescent
bimane which conjugates to GSH, forming a fluorescent
compound with the help of the enzyme, glutathione-
S-transferase. Application of CMH2DCFDA dye for
measuring ROS (Liu et al., 2001; Shanker et al., 2004;
Shimazawa et al., 2005) is more useful than other DCF
dyes (Carter et al., 1994; Oyama et al., 1994), since
the trapped fluorescent adduct inside the cell is better
retained in live cells.

The present study was designed to assess the dif-
ferences between the oxidative effects of MeHg in
cerebellar and cortical primary cultures of neurons and
astrocytes from mice brains. This comparative approach
allowed us to test the effect of differences in GSH con-
tent on the generation of MeHg-induced ROS in these
regions of the brain.

2. Materials and methods

2.1. Materials

Twenty-four-well plastic tissue culture plates were pur-
chased from Falcon (Becton Dickinson Labware). FCS used
for cerebellar cultures and cortical astrocytes was acquired
from Seralab Ltd. (Sussex, UK). Dialyzed serum for cultur-
ing cortical neurons was obtained from GIBCO BRL, Life
Technologies (Roskilde, Denmark). The culture medium was
acquired from Sigma Aldrich (Germany). The fluorescent indi-
cator CMH2DCFDA was purchased from Molecular Probes,
Inc. (Eugene, OR). NAC, DEM and MCB were acquired
from Sigma Aldrich (Norway). Radiolabeled 14C-MeHg (Cat.
no. ARC-1302) was purchased from American Radiolabeled
Chemicals Inc. (St. Louis, MO, USA). MeHgCl (Cat. no.
23308) was purchased from K&K Laboratories (Plainview, NY,
USA). All other chemicals were of analytical grade.
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Fig. 5. Cellular ROS detected by CMH2DCFDA fluorescence in primary astroglial cultures from the cerebellum and the cerebrum. Results are
expressed as mean ± standard deviation (n = 8 replicates for each cell type in two independent experiments). The letters (a, b, and c) indicate the
interaction between MeHg × pretreatment and data not showing common letters are significantly different from each other (p = 0.000); #significant
difference between the cerebellum and the cerebrum for each type of treatment (origin × MeHg p = 0.007; origin × MeHg × pretreatment p = 0.056).
Values were corrected for protein content in each well and determined as a percentage of fluorescence with respect to control cells.

action between origin × MeHg (astrocytes p = 0.007;
neurons p = 0.000, Table 1) indicated that the amount
of ROS produced in the cerebellar cultures varied
significantly from the cortical cultures. Interaction
between origin × MeHg × pretreatment (astrocytes
p = 0.056; neurons p = 0.000) indicated that treatment
with MeHg resulted in the increased production of
ROS in cerebellar astrocytes and neurons from both
the cerebellum and the cortex with respect to the
control groups. This interaction also underlines that
cerebellar cultures exposed to MeHg produce more
ROS (astrocytesmean = 151.915; neuronsmean = 411.770)
than cortical cultures (astrocytesmean = 108.384;
neuronsmean = 133.729). In particular, ROS generated
by MeHg in cerebellar neurons varied significantly
from ROS generated in the cortical neurons, and

this difference was sustained upon DEM treatment.
However, in astrocytes, an increase in the amount of
ROS was observed in the DEM-pretreated MeHg group
when compared to the MeHg group. The amount of
ROS generated in cerebellar cultures which were treated
with NAC and MeHg varied significantly from the
amount of ROS generated in the cortical cultures. In
addition, for neurons, the NAC-pretreated MeHg group
varied from the MeHg group.

3.3. Depletion of GSH and ROS accumulation
induces cytotoxicity

Exposure to MeHg (5 �M) resulted in a reduction
of MTT activity in all of the cultures when compared
to the control (Fig. 7, astrocytes; Fig. 8, neurons).

Fig. 6. Cellular ROS detected by CMH2DCFDA fluorescence in primary neuronal cultures from the cerebellum and the cerebrum. Results are
expressed as mean ± standard deviation (n = 8 replicates for each cell type in two independent experiments). The letters (a and b) indicate the
interaction between MeHg × pretreatment, and data not showing common letters are significantly different from each other (p = 0.000); #significant
difference between the cerebellum and the cerebrum for each type of treatment (origin × MeHg × pretreatment p = 0.000). Values were corrected
for protein content in each well and determined as a percentage of fluorescence with respect to control cells.
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Fig. 7. Cytotoxicity detected by reduction of MTT in primary astroglial cultures from the cerebellum and the cerebrum. Results are expressed as
mean ± standard deviation (n = 8 replicates for each cell type in two independent experiments). The letters (a, b, c, and d) indicate the interaction
between MeHg × pretreatment, and data not showing common letters are significantly different from each other (p = 0.000); #significant difference
between the cerebellum and the cerebrum for each type of treatment (origin × pretreatment p = 0.000). Values are presented as a percentage of
activity in control cells.

The MTT activity was further reduced upon DEM and
MeHg treatment in all of the cultures when compared
to the DEM group as well as the MeHg group. For the
dependent variable, MTT, non-significant interactions
between the origin × MeHg × pretreatment (Table 1)
were observed for both neurons and astrocytes. How-
ever, significant interactions between the origin × MeHg
(neurons p = 0.000, Table 1) indicated that there was a
significant difference in the MTT activity in cortical neu-
rons when compared to cerebellar neurons upon MeHg
treatment. No significant difference in the MTT activity
was observed between cerebellar and cortical astrocytes
when treated with MeHg. However, we observed that
cortical astrocytes are more viable than cerebellar astro-
cytes when continuously exposed to a low dose of MeHg
during maturation (data not shown). Increased MTT
activity was observed with NAC pretreatment in cerebel-
lar cultures as compared to cortical cultures. The MTT

activity in the NAC-pretreated MeHg group did not vary
significantly from the MeHg group in any of the cell
cultures.

3.4. MeHg accumulation

Depletion of GSH with DEM treatment led to
increased MeHg accumulation in both cortical and
cerebellar cultures (Table 2). However, no significant
changes were observed in cell associated-MeHg in NAC
pretreated cortical astrocytes and neurons from the cere-
bellum or the cortex when compared to the control.
The MeHg accumulation in cortical cultures treated
with either NAC or DEM differed significantly from the
MeHg accumulation in the cerebellar cultures. It was
observed that cerebellar cultures accumulated MeHg to
a greater extent than cortical cultures when modified by
NAC or DEM.

Fig. 8. Cytotoxicity detected by the reduction of MTT in primary neuronal cultures from the cerebellum and the cerebrum. Results are expressed
as mean ± standard deviation (n = 8 replicates for each cell type in two independent experiments). The letters (a, b, and c) indicate the interaction
between MeHg × pretreatment, and data not showing common letters are significantly different from each other (p = 0.000); #significant difference
between the cerebellum and the cerebrum for each type of treatment (origin × MeHg p = 0.003; origin × pretreatment p = 0.000). Values are presented
as a percentage of activity in control cells.
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Table 2
Effect of GSH modulators on MeHg accumulation in primary cultures of cerebellar and cortical origin as measured by 14C radiolabeled MeHg at
50 min

Cell type Region MeHg MeHg + NAC MeHg + DEM

Astrocytes Cerebellar 1.06 ± 0.09 d 1.21 ± 0.22 bc 1.61 ± 0.25 a
Cortical 1.11 ± 0.14 cd 1.00 ± 0.14 d 1.32 ± 0.11 b

Neurons Cerebellar 1.37 ± 0.18 b 1.31 ± 0.20 b 1.55 ± 0.22 a
Cortical 1.04 ± 0.16 c 1.06 ± 0.24 c 1.34 ± 0.26 b

Values are expressed as �gHg/mg protein, mean ± standard deviation. Experiments were conducted in 15 replications for each cell types in three
independent experiments. The letters (a, b, c, and d) indicate the interaction between origin × pretreatment and data not showing common letters
are significantly different from each other. Values were corrected for protein content in each well.

3.5. MTT timeline studies

A significant effect of time and MeHg concentra-
tion (p = 0.000) was observed for astrocytes (Fig. 9)
from both the cortex and the cerebellum, which indi-
cated that an increase in MeHg concentration and
exposure time results in reduced mitochondrial activ-
ity. There was a significant difference between the
control and 5 and 10 �M MeHg treated astrocytes
(p = 0.000). The timeline for astrocytes indicated that
the 15 min interval varied significantly from the 30 min
(p = 0.018) and 60 min (p = 0.000) intervals. How-
ever, there was a non-significant interaction between
the origin × MeHg treatment (p = 0.078) in astrocytes.
For neurons (Fig. 10.), a significant effect of ori-
gin, time and MeHg concentration (p = 0.000) was
observed. Additionally, a significant interaction between
the origin × MeHg group (p = 0.000) as well as the
time × MeHg group (p = 0.003) was observed for neu-
rons. These significant interactions indicated that the
cortical neurons varied from the cerebellar neurons
both at 5 and 10 �M concentrations of MeHg. The

time × MeHg interaction for neurons indicated that all
of the time intervals (15, 30 and 60 min) varied sig-
nificantly from each other. However, both neurons and
astrocytes demonstrated non-significant interactions for
the origin × MeHg × time treatment.

3.6. Effect of biological material on MTT activity

The effect of two different cell concentrations on
MTT activity was observed (Table 3) in order to signify
the importance of optimal and consistent cell seeding
densities while comparing cells from different regions
for investigating MeHg cytotoxicity. The significant
interaction between the origin × MeHg × cell density
for astrocytes (p = 0.002) indicated that the MTT activity
in cortical astrocytes treated with MeHg varied signifi-
cantly from the MTT activity in MeHg treated cerebellar
astrocytes only at a lower cell density. Moreover, the
MTT activity in cerebellar astrocytes at a low cell density
varied significantly for the respective culture at a high
cell density. For neurons, the significant differences for
the fixed factors such as origin (p = 0.010), cell density

Fig. 9. Study of MTT timeline in primary cerebellar and cortical astrocytes. Results are expressed as mean ± standard deviation (n = 4 replicates for
each cell type in two independent experiments) where ‘*’ indicates the significant difference when compared to the control group (MeHg p = 0.000).
No significant interaction between origin × MeHg and origin × MeHg × time was observed. Values were corrected for protein content in each well
and determined as a percentage of activity with respect to control cells.
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Fig. 10. Study of MTT timeline in primary cerebellar and cortical neurons. Results are expressed as mean ± standard deviation (n = 4 replicates for
each cell type in two independent experiments) where ‘*’ indicates the significant difference when compared to the control group (MeHg p = 0.000);
#significant difference between the cerebellum and the cerebrum for each type of treatment (origin × MeHg p = 0.000). No significant interaction
between origin × MeHg × time was observed. Values were corrected for protein content in each well and determined as a percentage of activity
with respect to control cells.

Table 3
Effect of different cell densities on MTT activity in cerebellar and cortical cultures

Cell type Region Low cell density High cell density

Control 5 �M MeHg Control 5 �M MeHg

Astrocytes Cerebellar 100 ± 10 a 70 ± 8 d 100 ± 3 ab 84 ± 2 c
Cortical 100 ± 8 a 90 ± 5 bc 100 ± 1 a 85 ± 4 c

Neurons Cerebellar 100 ± 1 63 ± 4 100 ± 5 72 ± 5
Cortical 100 ± 3 50 ± 6 100 ± 13 61 ± 6

Low cell density = 0.5 cerebella or cerebra/24-well culture plate (astrocytes); 0.8 × 106 cells/2 cm2 (neurons) and high cell density = 1 cerebella or
cerebra/24 well plate (astrocytes); 1.5 × 106 cells/2 cm2 (neurons). Values were determined as a percentage of activity with respect to control cells.
Results are expressed as mean ± standard deviation (n = 8 replicates for each cell type in two independent experiments). The letters (a, b, c, and d)
indicate the interaction between origin × MeHg × seeding density for astrocytes and data not showing common letters are significantly different
from each other. No significant interaction between origin × MeHg × seeding density was observed for neurons. However, please note that all the
MeHg treated cultures differed significantly from the control cultures.

(p = 0.035) and MeHg (p = 0.000) as well as significant
interactions between the origin × MeHg (p = 0.010) and
cell density × MeHg (p = 0.035) were observed. These
findings indicated that the cortical neurons were signif-
icantly different from the cerebellar neurons, and low
cell density was significantly different from high cell
density. However, no significant interaction between ori-
gin × MeHg × cell density was observed for neurons.

4. Discussion

The susceptibility of cells from the cerebrum and
the cerebellum towards MeHg-induced toxicity has been
compared in very few studies (Mundy and Freudenrich,
2000; Gasso et al., 2001; Adachi and Kunimoto, 2005).
Moreover, these studies have not compared the ability
of cerebellar and cerebral cultures to generate MeHg-
induced ROS with respect to the amount of GSH present

in each of these cultures. Therefore, the present study
explores the role of GSH in exhibiting the differential
effects of MeHg in cerebellar and cortical cultures.

This study corroborates previous studies (Yee and
Choi, 1996; Sanfeliu et al., 2001; Shanker and Aschner,
2003; Shanker et al., 2004, 2005; Kaur et al., 2006) con-
firming that MeHg depletes GSH content in both cortical
and cerebellar cultures. It further reports that treatment
with MeHg is associated with greater depletion of GSH
in cerebellar astrocytes, indicating that cortical astro-
cytes are more resistant to MeHg-induced depletion of
GSH. Conversely, cortical astrocytes were more vulner-
able when their GSH content was modified with NAC
or DEM. This result might be attributed to the pres-
ence of a higher GSH content in cortical astrocytes as
compared to cerebellar astrocytes, as observed in the
present study, possibly indicating that DEM is able to
further deplete the available GSH content, whereas NAC
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is not able to upregulate the already saturated state of
GSH in these cultures. However, non-significant inter-
actions between MeHg × pretreatment do not tell us
whether these differences between cortical and cerebel-
lar astrocytes are maintained in NAC or DEM-pretreated
MeHg groups. In neurons, non-significant interactions
between origin × MeHg and origin × pretreatment for
GSH indicated that cortical neurons did not vary signif-
icantly from cerebellar neurons for either of the tested
treatments. However, modulation of GSH content with
NAC or DEM pretreatment did significantly influence
the MeHg-induced GSH loss in neurons. This indicates
that an increase in GSH content with NAC pretreatment
prevents MeHg-induced GSH loss in neurons, whereas
a decrease in GSH content with DEM pretreatment aug-
ments this loss.

In accordance with the previous studies (Ali et al.,
1992; Yee and Choi, 1996; Sorg et al., 1998; Sarafian,
1999; Sanfeliu et al., 2001; Shanker and Aschner,
2003; Shanker et al., 2004, 2005), the present study
demonstrates that treatment with MeHg induces ROS
in both cerebellar and cortical cultures. It further reports
that modulation of the GSH content influences MeHg-
induced ROS in these cultures and treatment with MeHg
is associated with greater production of ROS in cere-
bellar cultures. The higher amount of GSH in cortical
astrocytes after exposure to MeHg might explain the
decreased production of ROS in this cell type when
compared to cerebellar astrocytes. However, the non-
differential status of GSH in cortical and cerebellar
neurons after MeHg exposure does not provide an expla-
nation for the increased susceptibility of cerebellar neu-
rons, indicating the importance of factors other than GSH
in protecting cortical cultures from MeHg-induced ROS.

The present study reports that cortical neurons were
more sensitive to MeHg-induced cytotoxicity, which is
in accordance with the observation by Miyamoto et al.
(2001). The present study also indicates that NAC alone
is more effective for increasing mitochondrial activity in
cerebellar versus cortical cultures, emphasizing the need
for a better understanding of NAC transporters in vari-
ous brain regions. Moreover, the DEM-pretreated MeHg
group caused a reduction in MTT activity when com-
pared to the MeHg group, suggesting that, after depletion
of thiol groups by DEM, more MeHg is available for
inhibiting mitochondrial enzymes.

The present study supplements our knowledge
regarding the effects of intracellular GSH concentrations
on cell associated-MeHg. The depletion of GSH by DEM
increased the accumulation of MeHg in cell cultures
from both the cerebrum and the cerebellum. The rea-
son for this increased cell associated-MeHg content after

DEM treatment warrants further investigation. Increased
cell associated-MeHg in cerebellar cultures treated with
NAC or DEM might explain the increased vulnerabil-
ity to MeHg toxicity in cerebellar cultures as compared
to cortical cultures. However, previous studies using sil-
ver nitrate, which detects Hg2+ (Leyshon-Sørland et al.,
1994), have postulated that the differential and selective
vulnerability of cells is not simply due to the preferential
accumulation of MeHg since Purkinje cells accumulate
more Hg than granule cells. However, assessment of 14C
labeled-MeHg provides a measurement of the presence
of organic mercury only.

The importance of comparable cell densities for the
study of MeHg toxicity for comparing different cell types
is of prime importance and appears not to be consid-
ered in previous studies (Mundy and Freudenrich, 2000;
Gatti et al., 2004). The present study reports an increase
in MTT activity in MeHg treated primary cultures of
cerebellar astrocytes when seeded from low to high con-
centrations. Previous studies have reported the effects of
cell density on neuronal survival (Barbin et al., 1984; Dal
et al., 1988) and MTT activity (Erl et al., 2000; Fujita
et al., 2001). Therefore, in cell-based assays, particular
attention should be given to optimal and consistent cell
seeding densities.

Since GSH content only partially explained the dif-
ferential MeHg-sensitivity of cerebellar and cortical
cultures, the role played by other factors should be con-
sidered. Specific neurotransmitter receptors have been
suggested to contribute to the selective vulnerability of
granule cells (Atchison, 2005). It has been proposed that
MeHg inhibits GABAA receptors and that the presence
of the �6 subunit in cerebellar granule cells (Laurie et
al., 1992; Mathews et al., 1994; Yuan and Atchison,
2003) makes them more vulnerable to MeHg toxicity
than Purkinje cells which contain the �1 subunit (Wisden
et al., 1992; Puia et al., 1994). Astrocytes express a large
variety of ion channels and neurotransmitter receptors
(Verkhratsky and Steinhauser, 2000). However, cere-
bellar astrocytes do not contain the �6 subunit of the
GABAA receptor (Bovolin et al., 1992), making the
question of the enhanced sensitivity of cerebellar versus
cortical astrocytes even more intriguing. Additionally,
granule cells express the highest density of muscarinic
M3 receptors within the cerebellar cortex (Neustadt et
al., 1988), and downregulation of these receptors has
been reported to protect against MeHg-induced cell
death (Limke et al., 2004). Furthermore, it has been
reported (Basu et al., 2005) that receptors for mus-
carinic acetylcholine (mACh) binding are more sensitive
in the cerebellum. Another receptor likely to play a role
in distinguishing cell types is the N-methyl-d-aspartate
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receptor (NMDA), since its enhanced sensitivity has
been reported to cause the increased vulnerability of
cortical neurons (Miyamoto et al., 2001). The resistant
Purkinje cells, however, contain AMPA-type receptors
as opposed to the NMDA receptors in the cerebellum.
Alteration of intracellular calcium has been investigated
for comparing the sensitivities of different types of cells
(Denny and Atchison, 1996; Marty and Atchison, 1997;
Mundy and Freudenrich, 2000; Edwards et al., 2005).
Additionally, the inhibition of ryanodine receptors by
MeHg could lead to alterations in calcium signaling,
which might be responsible for the sensitivity of cerebel-
lar cultures since the cerebellum contains many of these
types of receptors (Roegge and Schantz, 2006). Iden-
tifying these potentially selective targets during MeHg
poisoning should provide a basis for future research for
determining the mechanism(s) responsible for MeHg
neurotoxicity.
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Abstract

The ability of docosahexaenoic acid (DHA) to modulate methylmercury (MeHg)-

induced neurotoxicity was investigated in primary astrocytes and neurons from the 

cerebellum. Gas chromatography measurements indicated increased DHA content in 

both cell types after 24 hr supplementation. After individual or combined treatment

with MeHg (10µM) and DHA (30 and 90µM), the cell associated-MeHg measurements

were done using 14C-labelled MeHg. In addition, mitochondrial activity was evaluated 

by MTT reduction, glutathione (GSH) content was measured with the fluorescent 

indicator monochlorobimane (MCB) and reactive oxygen species (ROS) were detected 

with the fluorescent indicator -chloro methyl derivative of di-chloro di-hydro 

fluorescein diacetate (CMH2DCFDA). For all the tested treatments i.e. DHA, MeHg or 

DHA + MeHg treatment, the neurons differed significantly (p<0.001) from astrocytes 

exhibiting increased ROS production and decreased MTT activity. After MeHg and 

30µM DHA treatment there were no changes in MTT or GSH content but significant 

decrease (p<0.001) in ROS was observed in both the cell types when compared to 

MeHg alone. The cell associated-MeHg measurements indicated reduced MeHg-

accumulation in both cell types (p<0.05) upon 30µM DHA exposure. Taken together, 

this study, for the first time establishes that DHA pretreatment effectively reduces cell-

associated MeHg and prooxidant response from MeHg in both cerebellar astrocytes and 

neurons and thus supports the hypothesis that fish-derived nutrients offer possible 

neuroprotection from MeHg.

Keywords: Neurotoxicology, In vitro, Primary cell cultures, Glutathione, Reactive 

oxygen species.
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Abbreviations: DHA, Docosahexaenoic acid; MeHg, methylmercury; MTT, [3-(4, 5-

dimethylthiazol-2-yl)-2, 5 diphenyltetrazolium bromide]; GSH, glutathione; MCB, 

monochlorobimane; ROS, reactive oxygen species; CMH2DCFDA, chloro methyl

derivative of di-chloro di-hydro fluoresceindiacetate; PUFA, poly unsaturated fatty 

acids; GFAP, glial fibrillary acidic protein; ALA, Alpha linolenic acid; FAF-BSA,

Fatty acid free bovine serum albumin; DMEM, Dulbecco’s modified eagle’s medium-

low glucose; HEPES, N-2-hydroxy-ethylpiperazine N -2-ethansulfonic acid; BSA, 

bovine serum albumin; FCS, fetal calf serum; GC, gas chromatography; LA, linoleic 

acid; DPA, docosapentaenoic acid; AA, arachidonic acid; EPA, eicosapentaenoic acid; 

GPx, glutathione peroxidase .
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1. Introduction

Methylmercury (MeHg) is an important environmental neurotoxicant that affects the 

developing and mature nervous system (Atchison, 2005; Clarkson et al., 1988). The 

major dietary route of human exposure to MeHg is via the ingestion of seafood for 

adults (Clarkson, 1997; Kamps et al., 1972; Spry and Wiener, 1991) and via maternal

milk for infants (Franco et al., 2006; Manfroi et al., 2004). MeHg causes a reduction in 

intracellular glutathione (GSH) (Choi et al., 1996; Miura and Clarkson, 1993; Sarafian 

et al., 1994). Previous work from our laboratory (Kaur et al., 2007b) reported that the 

B35 neuronal cell line responded to MeHg by increasing GSH levels, an effect that was

opposite to what had been reported for in situ primary neurons (Sanfeliu et al., 2001). 

Since cerebellum is the major target organ of MeHg exposure which is accompanied

with the loss of granule cell layer (Eto and Takeuchi, 1978; Vendrell et al., 2007); 

neural cells from cerebellum were selected for the present study as a cellular model for

studying MeHg-induced neurotoxicity.

The nervous system is highly enriched in long-chain poly unsaturated fatty acids 

(PUFAs). Fish and maternal milk are the major dietary sources of PUFAs (Larque et 

al., 2002; Rodriguez et al., 1999). Docosahexaenoic acid (DHA; 22:6n-3), in particular, 

is the most abundant polyunsaturated fatty acid in the brain and it is essential for the 

normal brain function (Kim, 2007; Salem et al., 1999; Uauy et al., 2001). Accretion of 

DHA in the central nervous system occurs actively during the developmental period 

(Scott and Bazan, 1989). DHA can be biosynthesized from alpha-linolenic acid (ALA) 

through chain elongation and desaturation processes (Sprecher, 2000). While neurons 

are highly enriched with DHA, they cannot produce it because of lack of desaturase 

activity; only astrocytes have the capacity to synthesize DHA (Moore et al., 1991). 
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Astrocytes are in close contact with neurons and readily release DHA into the 

extracellular fluid under basal and stimulated conditions, thus providing a source for 

neuronal DHA (Garcia and Kim, 1997; Kim et al., 1999; Moore, 2001). Considering 

astroglia support neurons by providing neurotrophic factors, the supply of DHA by 

astrocytes can also be trophic.

MeHg has been reported to augment reactive oxygen species (ROS) formation (Ali et

al., 1992; Gasso et al., 2001; Sanfeliu et al., 2001; Sarafian, 1999; Shanker and 

Aschner, 2003; Sorg et al., 1998; Stringari et al., 2008; Yee and Choi, 1996). However, 

the ability of DHA to induce ROS is controversial. Several contrasting studies 

documenting the apoptotic (Albino et al., 2000; Chen and Istfan, 2000; Diep et al., 

2000) and antiapoptotic (Akbar and Kim, 2002; Kim et al., 2000; Kishida et al., 1998; 

Rotstein et al., 1997; Yano et al., 2000) effects of DHA have been reported. In addition, 

contrary to the ability of DHA to decrease the level of lipid peroxide (Gamoh et al., 

1999; Hashimoto et al., 2002, 2005); it has also been reported to cause free radical-

mediated peroxidation in the brain (Leonardi et al., 2005; Montuschi et al., 2004; Tsai 

et al., 1998). Therefore, it is of importance to ascertain whether the balance between the 

oxidative and reductive cellular processes is disturbed following combined exposure to 

DHA and MeHg (DHA + MeHg). 

The current advice on human mercury contaminated seafood intake is based on 

population data where the primary source of MeHg is either fish diet (Davidson et al., 

1998; Harada, 1995; Myers et al., 1997), combined fish and whale meat diet (Grandjean 

et al., 1997) or wheat (Bakir et al., 1973). In particular the Seychelles (Myers et al.,

1997) and the Faroes (Grandjean et al., 1997) studies differ with respect to possible 
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neurodevelopmental effects of MeHg exposure. The sources for these differences in the 

above mentioned studies have not been clearly identified (CENR, OSTP and The White

house, 1998). The risk evaluation of the combined exposure to a neurotoxicant and 

neuroprotectant remains unsettled. Therefore, it is important to assess dietary nutrients 

as well as neurotoxic exposures in determining the risks and benefits of fish 

consumption (Myers et al., 2007). Our aim has been to provide an experimental

rationale for the possible neuroprotective components present in the fish diet. Our 

findings contribute to a better understanding on the neurodevelopmental discrepancies 

found in the Seychelles (Davidson et al., 1998) and Faroes studies (Grandjean et al., 

1997).
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2. Materials and methods 

2.1. Materials 

24-well plastic tissue culture plates were purchased from Falcon (Becton Dickinson 

Labware, USA). Fetal bovine serum (Cat. No. 04-007-1A) used for cerebellar 

cultures was purchased from Biological Industries, In Vitro AS (Denmark). The 

culture medium (Cat. No. D5030) was acquired from Sigma Aldrich (Germany).

Fatty acid free bovine serum albumin (FAF-BSA, Cat. No. A0281), DHA (Cat. No. 

D2534), MCB (Cat. No. 69899), MTT (Cat. No. M2128) and Poly-D-Lysine (Cat. 

No. P1024) were purchased from Sigma Aldrich (Norway). The fluorescent indicator 

CMH2DCFDA (Cat. No. C6827) was purchased from Molecular Probes, Inc. 

(Eugene, OR, USA). Radiolabeled 14C-MeHg (Cat. no. ARC-1302) was purchased 

from American Radiolabeled Chemicals Inc. (St. Louis, MO, USA). MeHgCl which 

was 99% pure (Cat. No. 23308) was purchased from K&K Laboratories (Plainview, 

NY, USA). All other chemicals were of analytical grade.

2.2. Animals 

NMRI mice were purchased from Møllegaard Breeding Center (Copenhagen, 

Denmark). The animals had free access to food and water and were kept under the 

following constant conditions: temperature (22°C), humidity (60%) and 12 hr 

light/dark cycles. The animals were handled in compliance with the NTNU Animal

Care and Use Committee.

2.3. Cell cultures 

Primary cultures of cerebellar astrocytes were prepared from 7-day-old mice as 

described earlier (Hertz et al., 1989). Briefly, cerebella obtained from the brains of 
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mice were directly passed through Nitex nylon netting (80 µm pore size) into DMEM 

containing 20% (v/v) fetal calf serum (FCS). The cell suspension was then plated at a 

density of 1 cerebellum per 24-well culture plate, which was coated previously with 

poly-D-lysine. The medium was changed two days after plating and subsequently 

twice a week, gradually decreasing the FCS concentration to 10%. At 14 days in 

culture, dibutyryl-cAMP was added to the medium for one week to promote the 

morphological differentiation of astrocytes. The cerebellar astrocytes multiply during

this period and were used for the experiment 21 days post isolation.

Primary cultures of cerebellar neurons were prepared from 7-day-old mice according to 

the method described by (Schousboe et al., 1989). Briefly, mild trypsinized cerebella

were triturated in a DNase solution containing a soybean trypsin inhibitor. The cells 

were suspended in DMEM (19 mM KCl, 31 mM glucose, and 0.2 mM glutamine)

supplemented with p-aminobenzoate, insulin, penicillin, garamycin and 10% (v/v) FCS. 

Cells were seeded at a density of 1.5×106 cells/2cm2 in 24-multiwell plates, which were 

previously coated with poly-D-lysine. The cell were then incubated in a humidified 5% 

CO2 / 95% air atmosphere at 37°C and used one week post isolation as previously 

described (Kaur et al., 2007a). 

2.4. Cell culture and DHA modification 

Cell morphology was frequently checked using phase contrast microscopy. A stock 

solution of 630 and 1890µM DHA was prepared in media with FFA-BSA and was 

used to modify the fatty acid content of the primary cells (shown in Table 2 and 3). 

The stock solution was added directly to the cells such that the final concentration

given to the cells was 30 and 90µM DHA. The control cells received the same
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amount of normal media with FFA-BSA. The cerebellar astrocytes and neurons 

received DHA on day twenty and seven respectively; and were then used for the 

experiment on day twenty one and eight i.e. 24 hrs after incubation with DHA. The 

concentrations of DHA were identical to those used in the previous study in cell lines 

(Kaur et al., 2007b) as a major aim of this study is to compare those effects in 

primary cells. The amount of protein present at the day of the experiment was 

between 100-125 µg protein per well for both cerebellar astrocytes and neurons. The 

seeding density was chosen to facilitate the fluorescence measurements.

2.5. Treatments 

A stock solution of 1mM MeHgCl was prepared in 5mM Na2CO3. From this stock, a 

working solution was prepared in HEPES buffer [122 mM NaCl, 3.3 mM KCl, 0.4 

mM MgSO4.7H2O, 1.3 mM CaCl2, 1.2 mM KH2PO4, 10 mM glucose and 25 mM

HEPES adjusted to pH 7.4 with 10 N NaOH]. On the day of the experiment, the cells 

were washed once with HEPES buffer and incubated with 10µM MeHg for 50 min.

For the last 20 min, the cells were incubated with either fluorescent probes 

CMH2DCFDA (7µM) or MCB (40µM) or with colorimetric reagent MTT (2.4mM).

We selected the same MeHg concentration for a short exposure time since we wanted 

to compare the effects in primary cells as opposed to the previously used cell lines 

(Kaur et al., 2007b).

2.6. Determination of fatty acid content in media and primary cells 

Fatty acid composition of total lipids was analyzed by using a Trace Gas 

Chromatography (GC) Ultra gas chromatograph (Thermo Electron Corporation, 

Waltham Massachusetts, USA) with a Merlin microseal septumless SSL injector. The
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gradient temperature program started at 100°C, rising to 220°C (at 50°C/min), holding 

220°C for 1 minute then rising to 250°C (at 80°C/min), then holding for 1.5 minutes.

The GC was equipped with a Thermo UFM Ultrafast wax column (length: 5 m, id: 

0.1 mm). Lipids from the samples were extracted and then saponified and methylated

with NaOH and BF3 (both in methanol) under heat, respectively. Fatty acids were 

detected by Flame Ionization Dectector and identified by retention time using standard 

mixtures of methyl esters (Nu-Chek, Elyian, USA), and then quantified using 

Chromeleon software (version 6.80, Dionex). The amount of fatty acid per weight of 

the tissue or media was calculated using 19:0 methyl ester as an internal standard.

2.7. Determination of free thiol levels 

The content of intracellular free thiols was determined by using the fluorescent

indicator, MCB (40µM) as described previously (Kaur et al., 2006, 2007a). The final 

values of fluorescence were corrected for intracellular protein in each well and 

expressed as a percent of fluorescence in control wells. 

2.8. Detection of intracellular ROS accumulation 

Intracellular ROS accumulation was monitored as described previously (Kaur et al., 

2006, 2007a) using CMH2DCFDA (7µM) which upon oxidation yields a fluorescent 

adduct dichloro fluorescein (DCF). The final values were corrected for intracellular 

protein in each well and expressed as a percent of fluorescence in control wells. 

2.9. Cytotoxicity activity 

Cytotoxicity was determined by colorimetric MTT (2.4mM) reduction assay 

(Carmichael et al., 1987; Dahlin et al., 1999) by measuring the absorbance obtained 
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at 570 nm using a Sunrise absorbance reader (Tecan, Austria). Cytotoxicity was then 

expressed as a percent of MTT activity in control wells. 

2.10. Cellular MeHg accumulation 

The cell associated-MeHg studies were done with 14C-labeled 10µM MeHg (82 

nCi/µg Hg) for 50 min as described previously (Kaur et al., 2007a,b). The 

radioactivity in cells was counted in a 1450 Micro Beta Trilux Liquid scintillation 

counter (Wallac, Perkin Elmer Life Sciences, Norway) and corrected for cellular 

protein.

2.11. Estimation of protein

Protein concentration was determined by the folin reagent with BSA as a standard 

(Lowry et al., 1951). 

2.12. Data analysis 

All results are given as mean ± standard deviation. Differences between groups were 

analyzed statistically with one-way ANOVA followed by the Tukey HSD post hoc

test for multiple comparisons and p<0.05 was considered statistically significant. In 

addition, a three-way ANOVA was done to evaluate the interactive effects between 

different parameters. Cell type (cerebellar astrocytes or neurons), MeHg treatment

and DHA pretreatment were considered as three fixed factors for the dependent 

variables, DCF, MCB and MTT. For the dependent variable, fatty acids, cell type, 

type of fatty acid and DHA pretreatment were considered as three fixed factors. The 

three-way ANOVA was done according to the SPSS Base 14.0 User’s Guide, GLM 

Univariate Analysis.
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3. Results

The interactive effect between cell type, MeHg treatment and DHA pretreatment for 

primary cells is shown in Table 1. For both cell types, a significant interactive effect

(p=0.000) between all three parameters was noted for the dependent variables ROS 

and MTT. This indicates that neurons differed significantly from astrocytes 

exhibiting increased ROS and decreased MTT activity after DHA, MeHg or DHA + 

MeHg treatment. For the dependent variable GSH, a significant interactive effect 

between cell type and DHA pretreatment, as well as cell type and MeHg treatment

was noted. Observation under the microscope indicated that treatment with DHA for 

24 hrs did not induce any morphological changes in the cells. 

3.1. Modification of fatty acids by treatment with DHA

The fatty acid composition for the incubation media and for the primary cells is 

shown in Tables 2 and 3, respectively. The significant interaction between type of 

fatty acid × DHA pretreatment in the incubation media and primary cells (Table 1) 

indicated that pretreatment with DHA for 24 hrs resulted in a concentration-

dependent cellular uptake of DHA from the incubation media. In addition, significant 

interaction between the effect of cell type × type of fatty acid in primary cells 

indicated that astrocytes varied significantly and had increased fatty acid content as 

compared to neurons. However, the non-significant interaction between the cell type 

× type of fatty acid × DHA pretreatment in the media and cells (Table 1) indicated 

that the DHA content in media used for pretreatment and the DHA content in cells 

after pretreatment was similar for both astrocytes and neurons. The incubation media

(Table 2) contained the majority of DHA with small amounts of other PUFAs, such 
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as linoleic acid (LA) and ALA. However, the levels of LA and ALA in the incubation 

media did not vary significantly between the control, 630 and 1890 µM DHA media.

The cerebellar astrocytes treated with DHA (Table 3) varied significantly (p<0.05) 

from the cerebellar neurons in the levels of total, sum of identified, DPA 

(docosapentaenoic acid), AA (arachidonic acid), LA, ALA, stearic and palmitic fatty 

acids. Furthermore, the level of DHA, AA and EPA (eicosapentaenoic acid) were 

also modified in cerebellar astrocytes after 90µM DHA treatment when compared to 

the control group. The increase of DHA in cerebellar astrocytes was associated with 

an increase in EPA and decrease in AA. After DHA treatment, the ratio of DHA/AA 

increased significantly (p<0.001) in astrocytes and neurons, the most prominent

increase being observed in the neurons.

3.2. Modification of mitochondrial activity by treatment with MeHg and DHA

Exposure to MeHg (10µM) resulted in a more pronounced reduction of MTT activity 

in cerebellar neurons as compared to cerebellar astrocytes (Fig. 1). For the dependent 

variable, MTT, significant interactions for all the tested parameters were observed 

(Table 1), indicating that cerebellar neurons exhibited a greater reduction in MTT 

activity at all the tested treatments and differed significantly from the cerebellar 

astrocytes. In cerebellar astrocytes a significant increase (p<0.05) in MTT activity 

was observed after 30 and 90µM DHA treatment. On the other hand, the cerebellar 

neurons treated with 90µM DHA, exhibited a reduction in mitochondrial activity 

(p<0.001) when compared to control group. For both astrocytes and neurons treated 

with 30µM DHA + MeHg, no further reduction in MTT activity was observed when 

compared to MeHg group. Only in cerebellar neurons treated with 90µM DHA + 
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MeHg, a greater reduction in mitochondrial activity (p<0.001) was observed when 

compared with MeHg alone.

3.3. Modification of cellular thiols by treatment with MeHg and DHA

The GSH levels in cerebellar astrocytes and neurons were quantified with 

fluorescence intensity measurements of the bimane-GSH adduct (Fig. 2). The 

significant interactions for the dependent variable GSH (Table 1) indicated that 

cerebellar astrocytes varied significantly from the cerebellar neurons after MeHg 

treatment (cell type × MeHg p=0.000) and DHA pretreatment (cell type × DHA 

pretreatment p=0.000). Treatment with DHA alone induced a reduction in GSH 

activity (p<0.001) only in cerebellar neurons at 90µM dose when compared to control 

group. Additionally, 90µM DHA + MeHg treatment was able to further reduce the 

GSH content in cerebellar neurons when compared with MeHg alone (p<0.001). 

However, the cerebellar neurons at 30µM DHA and cerebellar astrocytes at both 30 

and 90µM DHA did not exhibit this trend of decreased GSH content after combined

DHA + MeHg treatment as compared to the group treated with MeHg only.

3.4. Depletion of GSH content induces ROS generation 

ROS levels in primary cultures quantified by the fluorescence intensity of the 

oxidized product, DCF, are shown in Fig. 3. A significant interaction between cell 

type × MeHg × pretreatment (Table 1) indicated that the amount of ROS produced in 

cerebellar astrocytes varied significantly (p=0.000) from the cerebellar neurons. The 

cerebellar neurons, when treated with MeHg alone or MeHg + DHA, exhibited

increased production of ROS (p<0.001) as compared to cerebellar astrocytes. In the 

cerebellar neurons, treatment with 90µM DHA alone resulted in induction of ROS 

14



(p<0.05). However, after DHA + MeHg exposure there was a decrease in ROS 

production in cerebellar neurons (p<0.001) when compared to MeHg treated group. 

In addition, the amount of ROS produced in cerebellar astrocytes in the DHA + 

MeHg treated group did not vary significantly from the control group. The DHA + 

MeHg treatment resulted in 60% decrease in ROS in cerebellar neurons (p<0.001) as 

compared to 30% decrease in cerebellar astrocytes when compared to MeHg treated 

group.

3.5. DHA modulation affects cell associated-MeHg 

In both the cell types, treatment with 30µM DHA led to significant (p<0.05) decrease 

in cell-associated MeHg when compared to MeHg treated group (Table 4). The 90µM 

DHA concentration resulted in decreased cell-associated MeHg only in cerebellar 

neurons. In both cell types, the 30 and 90µM DHA treated groups did not vary 

significantly from each other with respect to the cell-associated MeHg. The cerebellar

astrocytes varied significantly (p<0.001) and exhibited decreased cell-associated 

MeHg when compared to cerebellar neurons for all the tested treatments.
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4. Discussion

Dietary exposure to MeHg has been linked to adverse neurological effects and is a 

public health concern particularly among fish-eating populations (Crump et al., 1998; 

Grandjean et al., 1997; Kjellstrom et al., 1989). However, findings by Hibbeln et al. 

(2007), using the Avon Longitudinal Study of Parents and Children (ALSPAC), 

indicated that lower intake of seafood during pregnancy is associated with higher risk 

of suboptimal neurodevelopmental outcomes. In addition, studies at Seychelles 

(Davidson et al., 1998; Myers et al., 1997), Peru (Marsh et al., 1995) and US 

(Mozaffarian and Rimm, 2006; Oken et al., 2005) have also indicated possible 

opposing effects of overall fish consumption (i.e., providing DHA) and MeHg 

exposure. These studies have raised the question of the rationale behind the decision of 

FDA’s fish advisories (US EPA and FDA, 2004) to limit seafood consumption. 

Therefore, more studies aimed at analyzing the combined effects of MeHg and DHA 

exposure are necessitated. The innovative aspect of this study is the analysis of effects 

inherent to each of these compounds individually or when simultaneously administered

to primary neural cells. Overall, the present study clearly establishes the ability of DHA 

to afford reduction towards normalization of MeHg-induced ROS. 

Previous work from this laboratory (Kaur et al., 2007b) reported increased MeHg-

induced ROS after DHA pretreatment using C6-glial and B35-neuronal cells. It was 

reported that C6-glial cells had increased sensitivity towards MeHg and DHA-

induced oxidative stress as compared to the B35-neuronal cells. However, it has been 

well known that astrocytes contain higher concentrations of GSH than neurons 

(Kranich et al., 1996), and GSH provides a major cellular defense against MeHg-

induced ROS (Yee and Choi, 1996). In addition, the rate limiting precursor for GSH 
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synthesis, cysteine, is provided by astrocytes to neurons for the neuronal synthesis of 

GSH (Kranich et al., 1998; Sagara et al., 1993; Wang and Cynader, 2000). Therefore, 

the previously reported results on increased GSH content in B35 cells upon MeHg 

exposure was contrary to other observations from a range of neuronal models. This 

observation warranted a study using primary cells to provide a better understanding 

and characterization of the effects of DHA and MeHg treatment.

The present study reports that MTT activity in cerebellar neurons was attenuated to a 

greater degree at all the experimental conditions when compared to astrocytes. This 

indicates that mitochondrial dehydrogenase enzyme is inhibited more significantly in 

cerebellar neurons after MeHg exposure as compared to astrocytes, which is in 

accordance with other studies (Morken et al., 2005; Sanfeliu et al., 2001). In addition, 

the well documented effects of MeHg-induced GSH depletion (Carty and Malone, 

1979; Hughes, 1957; Mokrzan et al., 1995) and ROS generation (Sanfeliu et al., 

2001; Sorg et al., 1998) were corroborated by cerebellar neurons and astrocytes 

where neurons exhibit more pronounced GSH depletion and ROS production.

The relationship between DHA levels and oxidative stress remains controversial. It 

has been reported that DHA enrichment either increases (Song et al., 2000; Brand et 

al., 2000) or decreases (Bechoua et al., 1999; Yavin et al., 2002) sensitivity to free 

radicals. Moreover, the combined effects of DHA and MeHg exposure on ROS levels 

have not been investigated in primary neural cells. Here, we note that combined

exposure to DHA and MeHg was effective in attenuating MeHg’s effect alone, 

reducing ROS levels in cerebellar astrocytes to levels indistinguishable from controls. 

Similar effects were seen in cerebellar neurons, where treatment with DHA and 
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MeHg significantly reduced ROS levels in comparison to MeHg treatment alone. The 

ability of DHA to reduce the ROS levels in primary cells is contrary to our results in 

transformed cell lines (Kaur et al., 2007b). It has been previously reported 

(Grammatikos et al., 1994; Tsai et al., 1998) that the growth of cancerous cells is 

more significantly inhibited by DHA as compared to non-cancerous cell type. They 

also reported that the cellular response to exogenous long-chain PUFAs is modified

during the course of malignant transformation. Therefore the choice of cellular model

for studying the effects of DHA is critical. 

The reduced ROS levels after DHA + MeHg exposure in cerebellar astrocytes and 

neurons did not induce any significant changes in MTT or GSH production when 

compared with MeHg alone. Only in neurons at 90µM DHA concentration, there was 

a significant reduction in MTT activity and GSH content which was associated with 

increased ROS production. However after combined exposure to 90µM DHA and 

MeHg, there was no further increase in ROS in this group. This could be due to the 

presence of higher DHA/AA ratio in neurons as compared to astrocytes. It has been 

reported that a higher DHA/AA ratio prevents the generation of lipid peroxides 

(Gamoh et al., 1999; Hashimoto et al., 2005). In addition, it has been reported that 

toxicity of DHA is due to decrease in glutathione peroxidase (GPx) levels (Ding and 

Lind, 2007). Therefore, the protective effects of DHA against MeHg-induced ROS 

could be due to increased GPx levels, which, in turn, could lead to disposal of 

exogenous peroxides by conversion of reduced GSH to the oxidized form, GSSG 

(Eklow et al., 1984; Wendel, 1980). Since, the fluorescent compound MCB has been 

reported to react with the reduced form of GSH (Haugland, 1996), the decreased 

GSH and ROS levels might be explained by the increased activity of GPx by DHA.
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We further noted a concentration-dependent accumulation of DHA in both primary

neurons and astrocytes. However, the total lipid content of the primary cells was not 

modified after exposure to 30 and 90µM DHA. The concentration of DHA in adult 

rat brain and retina has been reported to range from 17% to >33% of the weight of the 

total fatty acids (Hamano et al., 1996; Stubbs and Smith, 1984). In the present study, 

DHA treatment resulted in DHA constituting 24-41% of the total fatty acids in the 

primary cultures. The amount of mg DHA/gm test material in primary cells is similar

to the levels previously reported in cell lines (Kaur et al., 2007b). Apart from DHA, 

the cerebellar astrocytes varied significantly from the cerebellar neurons in the 

content of total, sum of identified, DPA, AA, EPA, LA, ALA, stearic and palmitic

fatty acids. In general, astrocytes had higher fatty acid content than neurons in all the 

tested groups. These differences can be attributed to the supporting role played by 

astrocytes and the dependence of neurons on long-chain PUFA’s derived from

neighboring astrocytes (Moore et al., 1990; Spector and Moore, 1992).

Our results show that DHA treatment was associated with an increase in EPA and 

decrease in AA, probably due to reverse metabolism (retroconversion) of DHA to 

EPA leading to a compensatory decrease in AA which is in accordance with the

previous reports in astrocytes (Champeil-Potokar et al., 2004, 2006) and other cell 

types (Alessandri et al., 2003). Since MeHg has been reported to increase the release 

of AA (Shanker et al., 2002), decrease in AA levels with DHA could be one of the 

mechanisms behind the protective effects of DHA. Moreover, the increase in AA 

metabolites is intimately integrated with decrease in GPx activity (Bryant et al., 1982;

Vericel et al., 1992; Weitzel and Wendel, 1993). This phenomenon further 

19



strengthens our proposed mechanism of increased GPx activity behind decreased 

GSH and ROS levels in 90µM DHA + MeHg treated cerebellar neurons.

The same 10µM MeHg concentration for a short exposure time (50min) was selected 

in order to compare the effects in primary cells to the previously used cell lines (Kaur 

et al., 2007b). The MeHg content observed in the present study is 10-20 times that of 

in vivo studies (Eto, et al., 2001) or same as in extended in vitro exposure studies 

(Sakaue et al., 2006) since the effective dose during in vitro exposure must be 

considerable higher than the in vivo situation when the target concentration is used as 

a dose indicator. Exposure to 10µM MeHg for a 50min period resulted in Hg levels in 

primary astrocytes analogous to the levels observed in the C6-glial cell line (Kaur et 

al., 2007b). However, the Hg levels found in primary neurons were higher than the 

levels found in B35-neuronal cell line (Kaur et al., 2007b). This may explain the 

increased cytotoxicity in primary neurons to MeHg vs. B35 cells. In the present 

study, DHA treatment led to reduced cell associated-MeHg in neurons at both 30µM 

and 90µM dose and in astrocytes at 30µM dose. The reduced cell associated-MeHg in 

astrocytes and neurons correlates with the protective effect of DHA against MeHg-

induced ROS.

Primary neurons accumulated more MeHg than astrocytes, which is in accordance 

with our previous reports (Kaur et al., 2006, 2007a). However, previous studies using 

silver nitrate have reported that MeHg accumulates preferentially in astrocytes rather 

than in neurons (Leyshon-Sørland et al., 1994). The possible explanation for this 

discrepancy is that silver nitrate technique detects Hg2+ whereas the assessment of 14C

labeled-MeHg provides a measurement of organic mercury only.
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In summary, the DHA pretreatment reduced the cell-associated MeHg and prooxidant 

response from MeHg challenge in primary cells. This was not associated with an 

increase in MTT activity or GSH content. The protection afforded against ROS in 

DHA + MeHg treated group could be due to production of less ROS due to reduced 

cell-associated or intracellular MeHg. The proposed protective mechanisms against 

MeHg-induced ROS may include the reduction in AA levels and increase in GPx 

activity which may further influence the downstream transcription factors and signal 

transduction pathways. Recognition of these protective effects and identification of

their mechanisms may improve the basis for risk/benefit assessment of a MeHg-

containing fish diet.
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TABLE 1. 

F and P values calculated with three-way ANOVA for interactive effects between cell 

type (cerebellar astrocytes or neurons), MeHg treatment and DHA pretreatment for 

different parameters investigated in primary astrocytes and neurons from the

cerebellum. N.S. indicates not statistically significant effect. 

Interactions GSH ROS MTT

Effect of cell type × MeHg F=49.249
P=0.000

F=136.795
P=0.000

F=4.271
P=0.041

Effect of cell type × DHA pretreatment F=11.158
P=0.000

F=1.630
P=0.200

F=45.274
P=0.000

Effect of MeHg × DHA pretreatment F=1.385
P=0.256

F=33.607
P=0.000

F=3.811
P=0.025

Effect of cell type × MeHg × DHA 
pretreatment

F=2.878
P=0.062

F=8.554
P=0.000

F=12.247
P=0.000

Interactions Fatty Acids-media Fatty Acids-cells

Effect of cell type × type of fatty acid N.S. F=6.260
P=0.000

Effect of cell type × DHA pretreatment N.S. N.S.

Effect of type of fatty acid × DHA 
pretreatment

F=219.498
P=0.000

F=4.942
P=0.000

Effect of cell type × type of fatty acid × DHA 
pretreatment

N.S. N.S.
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TABLE 2. Fatty acid composition in the media after DHA treatment as measured by 

GC. N.D. indicates not detectable. 

Incubation Media Fatty Acids Control 630µM DHA 1890µM DHA 

Total Fatty Acids 26.0 ± 9.3 221.4 ± 5.7 a 622.4 ± 27.4 a b

Fatty Acids Identified 24.7 ± 8.6 215.4 ± 12.1 a 625.8 ± 25.9 a b

DHA (22:6n-3) N.D. 192.0 ± 17.9 584.1 ± 51.1 b

LA (18:2n-6) 2.4 ± 1.1 1.7 ± 0.6 1.5 ± 0.5 

Ast-DMEM
(Cerebellar
astrocytes)

 linoleic (18:3n-3) 2.0 ± 0.4 2.3 ± 0.8 2.7 ± 0.4
Total Fatty Acids 19.6 ± 9.8 237.4 ± 37.3 a 659.3 ± 94.8 a b

Fatty Acids Identified 18.5 ± 8.9 235.9 ± 36.3 a 652.7 ± 100.1 a b

DHA (22:6n-3) N.D. 213.0 ± 24.8 617.7 ± 87.1 b

LA (18:2n-6) N.D. 1.8 ± 0.8 1.5 ± 0.4 

N-DMEM
(Cerebellar

neurons)

 linoleic (18:3n-3) 2.4 ± 0.3 2.5 ± 0.3 2.9 ± 0.8

Values are expressed as mean ± standard deviation (µg fatty acids/gm test material).

Experiments were conducted in 4 replications for each cell types. The superscript (a)

indicates p<0.05 as compared to control group; (b) indicates p<0.05 as compared to 

630µM DHA treated group.
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TABLE 3. Fatty acid composition in the cells after DHA pretreatment as measured

by GC. N.D. indicates not detectable.

Primary Cells Fatty Acids Control 30µM DHA 90µM DHA 
Total Fatty Acids 2.3 ± 0.7 c 2.8 ± 0.7 c 3.3 ± 1.1 c

Fatty Acids 
Identified

2.1 ± 0.6 c 2.3 ± 0.6 c 3.2 ± 1.2 c

DHA (22:6n-3) 0.16 ± 0.02 0.68 ± 0.2 a 1.3 ± 0.2 a b

DPA (22:5n-3) 0.1 ± 0.03 c 0.1 ± 0.03 c 0.1 ± 0.04 c

AA (20:4n-6) 0.37 ± 0.04 c 0.30 ± 0.08 c 0.20 ± 0.08 a c

EPA (20:5n-3) 0.02 ± 0.01 0.05 ± 0.02 0.06 ± 0.02 a

LA (18:2n-6) 0.03 ± 0.01 0.03 ± 0.01 c 0.03 ± 0.02 c

 linoleic (18:3n-3) 0.01 ± 0.005 c 0.01 ± 0.002 c 0.01 ± 0.002 c

Stearic (18:0) 0.4 ± 0.07 c 0.5 ± 0.03 c 0.5 ± 0.14 c

Palmitic (16:0) 0.5 ± 0.1 c 0.6 ± 0.2 c 0.7 ± 0.1 c

Cerebellar
Astrocytes

DHA/AA ratio 0.43 ± 0.05 c 2.27 ± 1.25 a c 6.5 ± 1.52 a b c

Total Fatty Acids 0.9 ± 0.2 1.6 ± 0.7 2.6 ± 0.8 
Fatty Acids 
Identified

0.8 ± 0.1 1.5 ± 0.7 2.4 ± 0.7 

DHA (22:6n-3) 0.1 ± 0.02 0.47 ± 0.1 a 1.05 ± 0.3 a b

DPA (22:5n-3) 0.02 ± 0.007 0.03 ± 0.01 0.03 ± 0.01 

AA (20:4n-6) 0.08 ± 0.03 0.08 ± 0.02 0.10 ± 0.01 

EPA (20:5n-3) N.D. N.D. N.D.
LA (18:2n-6) 0.009 ± 0.0004 0.011 ± 0.009 0.014 ± 0.006 

 linoleic (18:3n-3) 0.004 ± 0.0007 0.004 ± 0.0005 0.006 ± 0.001 

Stearic (18:0) 0.3 ± 0.01 0.3 ± 0.09 0.3 ± 0.05 

Palmitic (16:0) 0.1 ± 0.04 0.1 ± 0.07 0.2 ± 0.14 

Cerebellar
Neurons

DHA/AA ratio 1.25 ± 0.22 5.88 ± 0.54 a 10.5 ± 1.83 a b

Values are expressed as mean ± standard deviation (mg fatty acids/gm test material).

Experiments were conducted in 4 replications for each cell types. The superscript (a) 

indicates p<0.05 as compared to control group; (b) indicates p<0.05 as compared to 

30µM DHA treated group; (c) indicates p<0.05 when astrocyte v/s neurons for each 

type of treatment.
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TABLE 4. 

Effect of DHA on MeHg accumulation in cerebellar astrocytes and neurons as 

measured by 14C radiolabeled MeHg at 50 min.

Cell Line 10µM MeHg 30µM DHA + MeHg 90µM DHA + MeHg 

Cerebellar astrocytes 2.9 ± 0.2 c 2.5 ± 0.2 a c 2.6 ± 0.2 c

Cerebellar neurons 4.6 ± 0.3 4.1 ± 0.2 a 4.1 ± 0.2 a

Values are expressed mean ± standard deviation (µg Hg/mg protein). Experiments

were conducted in 10 replications for each cell types in two independent experiments.

The superscript (a) indicates p<0.05 as compared to only MeHg treated group; (c)

indicates p<0.05 when astrocytes v/s neurons for each type of treatment. Values were 

corrected for protein content in each well.
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Cytoxicity detected by reduction of MTT in primary cells
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Cellular GSH detected by MCB fluorescence in primary cells
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Cellular ROS detected by CMH2DCFDA fluorescence in primary cells
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Legends

FIG. 1. Cytotoxicity detected by reduction of MTT in cerebellar astrocytes and

neurons. Results are expressed as mean ± standard deviation (n=8 replicates for each

cell type in two independent experiments). The superscript (*) indicates p<0.05 as 

compared to control group; (#) indicates p<0.05 when astrocytes v/s neurons for each 

type of treatment; (§) indicates p<0.05 where MeHg v/s (DHA + MeHg) treated 

group. Values are presented as a percentage of activity in control cells.

FIG. 2. Cellular GSH detected by MCB fluorescence in cerebellar astrocytes and

neurons. Results are expressed as mean ± standard deviation (n=8 replicates for each

cell type in two independent experiments). The superscript (*) indicates p<0.05 as 

compared to control group; (#) indicates p<0.05 when astrocytes v/s neurons for each 

type of treatment; (§) indicates p<0.05 where MeHg v/s (DHA + MeHg) treated 

group. Values were corrected for protein content in each well and determined as a

percentage of fluorescence with respect to control cells. The average control

fluorescence units for cerebellar astrocytes are 29764 ± 283 and for cerebellar 

neurons are 19982 ± 1368.

FIG. 3. Cellular ROS detected by CMH2DCFDA fluorescence in cerebellar 

astrocytes and neurons. Results are expressed as mean ± standard deviation (n=8 

replicates for each cell type in two independent experiments). The superscript (*)

indicates p<0.05 as compared to control group; (#) indicates p<0.05 when astrocytes 

v/s neurons for each type of treatment; (§) indicates p<0.05 where MeHg v/s (DHA + 

MeHg) treated group. Values were corrected for protein content in each well and 

determined as a percentage of fluorescence with respect to control cells.
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