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Introduction

The 1990s saw rapid development in numerical methods for differential equations on
manifolds that are intrinsic in the sense that they preserve the manifold structure
by evolving using geometric operations such as group actions and exponentials, see
[CG93, MK95, MKZ97, MK98, MK99]. The case where the manifold in question is
a homogeneous space has received particular focus, as it allows the equation to be
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phrased in terms of Lie group actions, with important consequences for both practical
implementation and theoretical analysis of methods.

Two classes of method in particular, the Runge-Kutta Munthe-Kaas (RKMK) meth-
ods and commutator-free methods (a generalization of Crouch-Grossmann methods)
[CMO03] are now widely used in geometric integration theory and have proven them-
selves in a wide range of problems (see e.g. [IMNZ00] for a survey).

The order theory of such methods is developed in Lie-Butcher theory, [Owr06,MW08,
ELM15], which generalizes the order theory of numerical methods in Rn rooted in
B-series to homogeneous spaces. Whilst the algebraic side of this field has reached
considerable maturity, there remain notable analytic gaps which we aim to fill. Indeed,
in this context, the Taylor expansion of the pullback action of the approximate flow
on smooth functions is compared to that of the exact flow; a Lie-group integrator is
then said to be of order p if the two expansion coincide up to order p. A method of
order p hence obeys the following local estimate:

Suppose V is a Cp+1 vector field on a manifold M , and let ŷ be an approximation
of the integral curve y of V , arising from a Lie-group integrator of order p. Then for
all f ∈ C∞(M),

|f(ŷ)− f(y)| ≤ Chp+1 for some constant C. (1)

There does not, however, seem to exist a fully satisfactory derivation of either local
or global estimates at present. Indeed, to the authors knowledge, only partial results
are available, such as [Fal00] cf. also the survey in [IMNZ00, Section 9] and most
recently [CEOR18, Section 3]. The main issue here is twofold:

• local error estimates of the form (1) are not immediately relatable to the Rie-
mannian distance.

• global error estimates are only available with additional assumptions on the
vector fields or the geometry of the manifold.

Our first main result (Theorem 3.4) clarifies how the local estimate, given with
respect to test functions, implies a comparable estimate involving the Riemannian
distance as is often required [Fal00, IMNZ00]. Recall that the natural setting for Lie
group methods is a homogeneous Riemannian manifold (M, g)1.For the rest of this
introduction we will always assume that (M, g) is such a manifold. Then our results
subsume the following:

Theorem A Let V be a Cp+1 vector field such that ŷ approximates the integral
curve y of V up to order p. Then the local estimate

d(y(h), ŷ(h)) ≤ Chp+1

holds, where d is the geodesic distance on M .

This result settles the problem of local error estimates and clarifies the dependency
on the different kinds of error estimates found in the literature. The second point is

1Every Lie group is a homogeneous Riemannian manifold. We recall the necessary results and facts
on these manifolds in Section 1.
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covered by Theorem 4.4, which shows that global error estimates follow from local
estimates involving the Riemannian metric. As such it subsumes the following:

Theorem B For a Cp+1 vector field V we fix a sequence {ŷn}i=1,...,n approximating
the integral curve of V through y0 at a discrete set of times ti with hi = ti+1 − ti, and
maxi hi = h. If ŷ obeys either of the local estimates above with exponent p + 1, then
we obtain the global estimate

d(yn, ŷn) ≤ Chp,

We mention here that our results also clarify the dependency of the constants C on the
parameters such as the vector field V (which we have deliberately suppressed in the
above statements of our theorems). These results taken together give a fully rigorous
analytic counterpart to the algebraic Lie-Butcher order theory.

The paper is organized as follows: we begin with a brief overview of Riemannian
homogeneous spaces, fixing notation and stating some standard results. We follow
this in §2 by a brief treatment of the local estimates obtained from Lie-Butcher theory,
where for the sequel it is important that we establish estimates with explicit remainder
terms. The passage from local estimates obtained via Lie-Butcher theory to local
estimates using the Riemannian metric is then accomplished in §3. We conclude in §4
with a derivation of the global error estimate.

1. Preliminaries on Riemannian manifolds

In this section we fix the notation and general setting. All of the material here is
standard and can be found in books on differential geometry and Riemannian geometry,
e.g. [Lan99, Kli95, KN96]. We assume that the reader is familiar with basic concepts
such as Riemannian metrics and associated concepts such as (Levi-Civita) connections
and covariant derivatives.

1.1 We let N := {1, 2, . . .} denote the natural numbers and N0 := N ∪ {0}. All
manifolds in this paper are assumed to be paracompact and finite dimensional. By
(M, g) we denote a Riemannian manifold, where we write the following for the data
associated to g:

• gm will be the inner product on TmM,m ∈M with associated norm ‖·‖gm .

• ∇X will be the covariant derivative of a vector field X.

• d : M ×M → R will be the geodesic length metric induced by g.

In general we will be working with a special class of Riemannian manifolds, arising
as quotients of isometric Lie group actions: the so called homogeneous Riemannian
manifolds (see e.g. [Bes08, B.7]).

1.2 By Λ: G×M →M we denote a (left) Lie group action on (M, g) such that
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1. the action Λ is transitive,

2. ∀g ∈ G, the map Λg := Λ(g, ·) is a Riemannian isometry (g is left G-invariant).

Note that by the above (M, g) becomes a Riemannian homogeneous space, i.e. the
isometry group Iso(M, g) acts transitively. This entails that as manifolds M ∼= G/H
where H is a compact subgroup of G (where H can be identified as the stabiliser
subgroup of a point). Denote by π : G → G/H ∼= M the canonical quotient map and
set o := π(e) (where e is the identity element of G).

Finally note that Riemannian homogeneous spaces are geodesically complete [KN96,
IV. Theorem 4.5], i.e. geodesics exist for all time.

Many manifolds appearing in applications are homogeneous Riemannian manifolds
as is recalled in the following example.

1.3 Example 1. Every Lie group G is a Riemannian homogeneous space, where
H = {e} is the identity subgroup and g is a left invariant Riemannian metric

2. Spheres [Bes08, B. Example 7.13] and projective spaces [Bes08, B. Example 7.1]
are homogeneous Riemannian spaces (e.g. Sn ∼= SO(n)/SO(n − 1) where the
Riemannian metric is induced by the biinvariant metric on SO(n))

We refer to the survey [IMNZ00] for a wealth of examples on numerical integrators
on these spaces which can be treated in the framework of Lie-Butcher theory.

Let us remind readers who are not familiar with Riemannian geometry that many
properties of Riemannian homogeneous spaces might be conveniently formulated as
properties of the geodesic length metric d. We collect two important facts:

1.4 (Metric view of Riemannian manifolds) 1. The Riemannian manifold (M, g) is
complete if and only if (M,d) is a complete metric space (this is part of the
famous Hopf-Rinow theorem [Bes08, Theorem 1.65]).

2. A surjective smooth map f : M →M is an isometry, if and only if it is distance
preserving: d(f(x), f(y)) = d(x, y),∀x, y ∈M (see [Bes08, Theorem 1.75]).

Finally, we fix notation concerning vector fields.

1.5 (Vector fields and flows) We will denote by X p(M) the space of all vector fields
on M of class p ∈ N ∪ {∞} (writing X (M) := X∞(M)). For V ∈ X p(M) we write

FlV0 : R×M ⊇ D(V )→M

for the flow associated to V . The flow is defined by sending a pair (t, x0) ∈ D(V )
(D(V ) is open subset of R ×M) to the solution y(t) := yx0

(t) = FlV0 (x0, t) of the
initial value problem

y′ = V (y) y(0) = x0.
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We let ϕt := FlV0 (t, ·) be the associated (local) diffeomorphism (assuming that D(V )∩
{t} ×M is non void).

Further, the usual conventions (cf. e.g. [Lan99, Section V]) for the derivative op-
eration of a vector field on a Ck function f , i.e. V (f) and the shorthand V k(f) =
V (V (· · ·V (f))) are used throughout the text. As is common Cp(M) denotes the set
of real valued Cp-functions on the manifold M .

For f ∈ Cp(M), we let ϕ∗h(f) = f ◦ ϕh denote the pullback.

In the next section we turn now to Lie-Butcher theory. After a very brief primer on
the most important concepts, we are interested in the description of Taylor expansions
of exact and numerical solutions to differential equations on Riemannian manifolds.

2. Lie-Butcher theory and Lie Series estimates

This section is devoted to giving a precise version of the local estimates deriving from
the Lie-Butcher order theory for Lie group integration methods developed in [MK98,
MK99, MO99]. Only an extremely brief discussion of Lie-Butcher theory is provided
to lay the foundation for the following computations. For a friendly introduction to
the theory of Lie group integrators we refer the reader to [CMO14].

Let us first consider the Taylor expansion of an exact solution of a differential equa-
tion given by the vector field V tested against a C∞ function.

2.1 Lemma (Lie Series) Let V ∈ X p+1(M). For any f ∈ C∞(M), the pullback action
of the flow of V has the Taylor series expansion

ϕ∗h(f)(x) = f(x) +

p∑
k=1

1

k!
hkV k(f)(x) +

1

(p+ 1)!
hp+1ϕ∗tV

p+1(f)(x), (2)

where t < h.

Proof. Assume that (h, x) ∈ D(V ) (whence (t, x) ∈ D(V ) for all 0 ≤ t ≤ h). It is a
standard result [Lan99, V.§5 Propositions 5.2 and 5.3] that

d

dt
(ϕ∗t f) = ϕ∗tV (f).

Now V (f) ∈ Cp+1(M), and each further application of V reduces the differentiability
by one degree, so we can iterate this p + 1 times to obtain p + 1 derivatives of ϕ∗t f .
Fixing x ∈ M , we can view ϕ∗t (f)(x) as a function of t alone, and the given result
follows immediately from Taylor’s theorem.

A key idea of Lie-Butcher theory is that a numerical scheme yields a Taylor series like
expansion, the Lie-Butcher series, which can be compared to the Taylor expansion (2)
of the exact solution. To give the Lie-Butcher series of an (numerical) approximation
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of the exact flow, we require the notion of an elementary (covariant) differential. A
suitably general setting to define these differentials is the following:

2.2 Suppose that . : X (M) × X (M) → X (M), X . Y := ∇̃XY is a binary product
defined through a flat, constant torsion Koszul connection.2 This may be extended to
give a product on the enveloping algebra by

(XY ) . Z = X . (Y . Z)− (X . Y ) . Z

X . (Y Z) = (X . Y )Z + Y (X . Z),
(3)

see [ELM15,CEMM18]. Note that we can not define a similar concept for vector fields
of class Cp for p ∈ N as they do not form a Lie algebra (whose universal envelop-
ing algebra the construction uses). However, given a connection as above covariant
derivatives of Cp vector fields make sense if one takes care to account for the loss of
differentiability.

Now we note that in every term of (2), the vector field V acts (up to p + 1 times)
as a derivation on the test function f . Following an idea by Cayley, this situation can
conveniently be described using rooted trees:

2.3 (Trees) For n ∈ N0, a rooted tree of degree n is a finite oriented tree with n vertices.
We distinguish one vertex without outgoing edges, the root of the tree. Any vertex can
have arbitrarily many incoming edges, and any vertex other than the root has exactly
one outgoing edge. Vertices with no incoming edges are called leaves. A planar rooted
tree is a rooted tree together with an embedding in the plane 3. A planar rooted forest
is a finite ordered collection of planar rooted trees. Here the planar rooted forests are
depicted up to order three (with ∅ being the empty tree):

∅

We will see now, one one can construct differential operators from forests with edges
using the binary product ..

2.4 Definition (Elementary differentials) Let τ = B+(τ1, τ2, . . . , τn) be a planar tree
defined recursively by connecting the branches τ1, . . . , τn from left to right onto a root.

2See [KN96, Chapters II and III] for basic informations on the connections used here. We write “∇̃”
to emphasise that the connection will in general not be the Levi-Civita connection [KN96, IV.2]
of the Riemannian manifold.

3A standard notion from graph theory, informally comprising a drawing of the tree in the plane such
that branches (paths from a node to a leaf) do not cross. In practice, this introduces an order
(left-to-right) on the set of branches starting from a given node.
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We then define the elementary (covariant) differentials of V recursively by

V• = V,

Vτ = (Vτ1 · · ·Vτn) . V,

where • is the tree with a single node and products are expanded via (3). This is
extended to forests of trees τ1 · · · τn by

Vτ1τ2(f) = Vτ1
(
Vτ2(f)

)
−
(
Vτ1 . Vτ2

)
(f),

see [ELM15, Section 3] or [CEMM18, 5.2].

2.5 Remark 1. For a forest τ of order p, the construction of the differential oper-
ator Vτ in Definition 2.4 requires one to take (recursively) at most p (covariant)
derivatives of the vector field V . Thus if the order of the forest τ is smaller then
p, we may consider the differential operator Vτ for any vector field V ∈ X p(M).

2. Again by construction Vτ takes at most p derivatives of the function f if τ is a
forest of order at most p.

The typical assumption of Lie-Butcher order theory is that a method of order p
admits a Taylor expansion of the following type:

2.6 Assumption (Lie-Butcher series) For any test function f ∈ C∞(M), the pullback
action of an approximate flow ŷ of order p has a Taylor series expansion

ϕ̂∗h(f)(x) = f(x) +

p∑
k=1

1

k!
hkV k(f)(x) +

∑
|τ |=p+1

α(τ)hp+1ϕ̂∗tVτ (f),

where |τ | is the number of nodes in the forest τ , α is a linear functional on forests and
ϕ̂h is the (local) diffeomorphism associated to the flow ŷ.

We emphasise here that due to Remark 2.5, it makes sense to consider the Assump-
tion 2.6 for V ∈ X p+1(M) for p ∈ N as the differential operators Vτ make sense in this
regime.

2.7 Remark In a universal setting, the Lie-Butcher series of a method is often identi-
fied with a character α(τ), i.e. a multiplicative linear functional on the space of planar
forests with concatenation product, see [ELM15], in particular [ELM15, Section 3.3].

The Assumption 2.6 is then satisfied whenever V ∈ X p+1(M), and the functional
α agrees with the exact solution character 1

σ(τ)τ ! on forests with p or fewer nodes

(here σ is the internal symmetry factor and τ ! is the planar forest factorial character,
see [CEMM18] for definitions).
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By comparing the Lie-Butcher series of an approximate flow ϕ̂ to the Lie series of
the exact flow ϕ, we obtain the first local estimate:

2.8 (Local estimate for smooth test functions) Suppose V ∈ X p+1(M), and let ŷ be
an approximation of the integral curve y of V , of order p in the sense of Assumption
2.6. Then for all f ∈ C∞(M) and y0 ∈M ,

|f(ŷ)− f(y)| ≤ C(V, f)hp+1 (4)

2.9 Remark For later use we wish to be very explicit on how the constant C(V, f)
from 2.8 (4) depends on f . Comparing the Lie-Butcher series and the Lie series of the
exact method we see that the remainder term is given (for an order p method) by

R(V, f)(x) =
1

(p+ 1)!
ϕ∗tV

p+1(f)(x)−
∑
|τ |=p+1

α(τ)ϕ̂∗tVτ (f).

where (t, x) ∈ D(V ), ϕt is the flow of the exact solution and ϕ̂t the flow of the
approximate solution. As C(V, f) can be chosen to be any constant which dominates
the norm of the remainder term, we need an estimate on this norm. Thus

|R(V, f)(x)| . sup
t∈[0,h]

|V p+1(f)(ϕt(x))|+
∑
|τ |=p+1

|Vτ (f)(ϕ̂t(x))|

 ,

where “.” denotes an inequality up to constants which neither depend on f nor on
V . Now by definition (cf. Remark 2.5) V p+1 and Vτ act on smooth functions as
differential operators whose order is at most p + 1. Thus the terms V p+1(f)(ϕt(x))
and Vτ (f)(ϕ̂t(x)) can be computed as linear combinations (depending on V, p, τ and
the connection ∇̃) of the partial derivatives of f up to order p+1. Further, we note that
to obtain an estimate we only need to give an upper bound on all partial derivatives
of f up to order p+ 1 on the compact set {ϕt(x) | t ∈ [0, h]} ∪ {ϕ̂t(x) | t ∈ [0, h]}.

3. Local estimates to local metric estimates

Our first step is to show that the condition above implies the weaker (but in some
senses more natural) condition.

3.1 Definition (Local metric estimate) Let ŷ approximate the integral curve y through
y0 at y(h) of order p ∈ N. Then there is a constant C = C(ŷ, y) such that

d(y(h), ŷ(h)) ≤ Chp+1. (5)

Note that the condition (5) appeared in the stability analysis for Lie group methods
in [IMNZ00, Section 9] and the earlier work by Faltinsen [Fal00]. However, there
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the local metric estimate (5) is assumed to hold for a given method to enable the
analysis, whereas we will deduce the validity of (5) in case the method satisfies local
estimate (4).

To prove this result we introduce a family of smooth functions which will allow
us to deduce the local metric estimate (5) from the local estimate for smooth test
functions 4. To this end, we need smooth functions controlling the geodesic distance.
The constructions of these functions in Lemma 3.2 and Lemma 3.3 below is somewhat
technical, hence we postpone it to Appendix A. We need a smooth function which
allows us to control the geodesic distance for points “far away” from o.

3.2 Lemma For ε > 0 and (M, g) a connected4 complete Riemannian manifold, there
exists Fε ∈ C∞(M) with the following properties.

1. Fε(o) = 0 and Fε(x) ≥ 0, ∀x ∈M ,

2. if d(x, o) > ε, then Fε(x) ≥ d(x, o).

Note that the Riemannian distance from a fixed point is in general only continuous.
Due to the cut locus of the Riemannian manifold, the distance d(o, ·) does not become
smooth if we consider it only on an open set away from o. This phenomenon prevents
us from simply “smoothing out” the Riemannian distance at o to obtain the desired
smooth function. Furthermore, the geodesic distance d(·, o) is also non smooth at o
whence we need smooth functions controlling the distance near o.

3.3 Lemma Choose ε > 0 such that the closure of the metric ball Bdε (o) is contained
in a manifold chart (U,ϕ). Then there is N ∈ N and a family {fn}1≤n≤N ⊆ C∞(M)
with the following properties

1. fn(o) = 0,

2. if d(x, o) < ε then there is 1 ≤ nx ≤ N such that fn(x) ≥ d(x, o).

Note that the functions {fn}n are also allowed to take negative values (which they
will take on a neighborhood of o!). This is unavoidable if one wants to obtain smooth
functions which dominate the distance (at least in some directions) and are 0 at o. We
now have all technical tools at our disposal to prove the main result of this section:

3.4 Theorem Let (M, g) be a homogeneous Riemannian manifold with G-invariant
Riemannian metric and V ∈ X p+1(M). Assume that ŷ approximates the integral curve
y = FlV0 (·, y0) up to order p as in Assumption 2.6. Then ŷ satisfies the local metric
estimate (5).

4Here connectedness is only needed to make sense of condition 2 in the statement, as for a non-
connected manifold it is customary to set d(x, y) = ∞ if x, y are from different connected compo-
nents. Assuming that M is connected is no essential restriction as we will only compare curves
lying in the same connected component.
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Proof. We proceed in several steps to obtain the estimate from the family of smooth
functions constructed in Lemma 3.3 and Lemma 3.2. To this end, let y : [0, h] → M
be the integral curve y(t) := FlV0 (t, y0) of a Cp+1-vector field V defined (at least) on
the compact interval [0, h] with h > 0. By standard arguments [Lan99, Section IV] y
is a Cp+2-mapping. The construction of the functions (see Step 2) does not depend
on h and work for any choice of h as long as the integral curve exists up to time h.
However, the estimates in Step 3 depend on h as they are taken over the interval [0, h].

Step 1: Smooth shift from y(t) to o: Since M is a homogeneous space, there ex-
ists a Cp+2-curve ỹ : [0, h] → G which lifts y, i.e. π ◦ ỹ = y.5 Note that the lift is
non-unique but the estimates will not depend on the choices made. By construction,
Λỹ(t))−1 : M →M is the left action of the Lie group element (ỹ(t))−1 on the homoge-
neous space M , see 1.2. Since ỹ lifts the curve y, we have Λỹ(t))−1(y(t)) = o, ∀t ∈
[0, h]. Using left invariance of the metric, for every t ∈ [0, h] the map Λỹ(t)−1 is an
isometry, whence for x ∈M and t ∈ [0, h],

d(x, y(t)) = d(Λỹ(t)−1(x)),Λỹ(t)−1(y(t))) = d(Λỹ(t)−1(x), o). (6)

Step 2: A family of smooth comparison functions. Choose ε > 0 such that the
closure of the ball B := Bdε (o) is contained in a chart (U,ϕ). By Lemma 3.3 we obtain
a family of smooth functions {fn}1≤n≤N (where we can choose N = 2dimM ) which
controls the geodesic distance on B such that every fn vanishes in o. Then Lemma 3.2
applied for the same ε yields Fε ∈ C∞(M) which controls the Riemannian distance
d(·, o) outside of B and satisfies Fε(o) = 0.

We construct now the functions which will yield the necessary estimates:

ωn : [0, h]×M → R, (t, x) 7→ fn ◦ Λy(t)−1(x), 1 ≤ n ≤ N
ωN+1 : [0, h]×M → R, (t, x) 7→ Fε ◦ Λy(t)−1(x).

By construction the ωn are p + 2-times continuously differentiable with respect to t
and every of these differentials is smooth with respect to x. Thus we obtain continuous
maps into the space C∞(M) endowed with the compact open C∞-topology via6

ω∨n : [0, h]→ C∞(M), ω∨(t) := ωn(t, ·) 1 ≤ n ≤ N + 1.

Recall that the compact open C∞ topology is generated by the family of seminorms
which control the growth of a function and up to finitely many of its derivatives on
some compact subset in M (cf. e.g. [HS17] for more on topologies for C∞(M)). Since
ω∨n is continuous, ω∨n ([0, h]) is compact whence every continuous seminorm of C∞(M)

5Here we use that a homogeneous space is a principal H-bundle, whence a Cp+2-curve admits a
Cp+2 horizontal lift, cf. e.g. [OR04, Chapter 5.1].

6Functions with the differentiability exhibited by ωn are called Cp+2,∞-functions in [AS15]. Indeed
that ωn is Cp+2,∞ follows from the chain rules in ibid. The continuity of ω∨n into the locally
convex space C∞(M) is a consequence of the exponential law [AS15, Theorem B] which even
shows that ω∨n is a Cp+2 map. Since continuity is sufficient for our purposes we do not need to
explain what differentiable functions into the (non normable!) space C∞(M) are.
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is bounded on the image of ω∨n . Summarising: The growth of (up to finitely many)
derivatives of the functions ω∨n (t) on a given compact set can be uniformly bounded
in t. Finally, by construction ω∨n (t)(y(t)) = 0 for all 1 ≤ n ≤ N + 1 and t ∈ [0, h].

Step 3: The metric estimate. By construction, the functions obtained via Lemma
3.3 and 3.2 control the geodesic distance of a point to o. Hence (6) implies that for
d(ŷ(t), y(t)) ≥ ε the function ω∨N+1(t) controls d(ŷ(t), y(t)), while for d(ŷ(t), y(t)) < ε
one of the functions ω∨n (t), 1 ≤ n ≤ N controls d(ŷ(t), y(t)). We deduce that for every
t ∈ [0, h] there is some index nt such that

d(ŷ(t), y(t)) ≤ ω∨nt
(t)(ŷ(t)) = |ω∨nt

(t)(ŷ(t))− ω∨nt
(t)(y(t))︸ ︷︷ ︸
=0

| ≤ Cω∨nt
(t)t

p+1 (7)

where the last inequality follows from the local estimate (4) and Cω∨nt
depends on

ω∨nt
(t) (where the other dependencies do not matter here). Since we are after a global

estimate independent of ω∨n and t we have to recall how these constants depend on ω∨n .
From Remark 2.9 we know that up to some constant A (depending on the Lie-Butcher
series, V and the initial conditions but not on the smooth function), the constants
Cω∨n (t) can be bounded by the partial derivatives up to order p + 1 of ω∨n (t) on the
compact set

K := {y(t) | t ∈ [0, h]} ∪ {ŷ(t) | t ∈ [0, h]} ⊆M.

In other words, we have to control supt∈[0,h]‖ω∨n (t)‖p+1,K , where ‖·‖p+1,K measures
the (sum of) absolute values of partial derivatives on K up to order p+ 1.

Following Step 2, we know that there is a uniform bound in t, i.e.

R := sup
1≤n≤N+1

sup
t∈[0,h]

‖ω∨n (t)‖p+1,K <∞

and thus supt∈[0,h] Cω∨nt
(t) ≤ AR =: C. Hence, from (7) we conclude that

d(ŷ(t), y(t)) ≤ Ctp+1 ≤ Chp+1 ∀t ∈ [0, h].

Note that the main point in the proof of Theorem 3.4 was to establish a uniform
bound independent of t. We remark that the constant C obtained for the metric
estimate still depends on the choices we made in the proof (e.g. the choice of ε > 0).
Thus the proof is a pure existence proof without any claim of optimality of C. Indeed,
if one chooses ε very small one should expect C to become bigger as it is derived
from an estimate of the derivatives of smooth functions which involve cut-off functions
confined to the ε-ball.

4. Local to global estimates

In this section we prove our second main result, a global error estimate for the Lie group
methods. In the last chapter we have seen that Lie group methods satisfy a (local)
metric estimate with respect to the geodesic metric. We apply now a suitable version
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of a Gronwall type estimate for Riemannian manifolds which was first established
in [KSSV06]. Let us recall its statement for easy reference:

4.1 For X ∈ X p(M) (and p ∈ N ∪ {∞}) the covariant derivative induces continuous
linear maps

∇X(p) : (TpM, ‖·‖p)→ (TpM, ‖·‖p), Yp 7→ ∇YpX, p ∈M,

(cf. [Kli95, Section 1.5] and [Lan99, Section VIII, in particular VIII, §2 Lemma 2.3]).7

The operator norm of these mappings will be denoted by ‖∇X(p)‖g.

4.2 (From [KSSV06, Corollary 1.6]) Let (M, g) be a connected and complete Rieman-
nian manifold, V ∈ X (M) and p0, q0 ∈ M . Let S be a minimizing geodesic segment
connecting p0 and q0 (cf. [Kli95, Section 2.1 and Theorem 2.1.3]). Choose T > 0 such
that the flow FlX of the vector field X is defined on [0, T ]× S.
Then the integral curves ϕ(t) := FlXt (p0), ψ(t) := FlXt (q0) with initial value p0 (resp.
q0) satisfy the Gronwall type estimate

d(ϕ(t), ψ(t)) ≤ d(p0, q0)eCT t, t ∈ [0, T ] (8)

where CT = sup{‖∇X(p)‖g | p ∈ FlX([0, T ]× S)}.

The Gronwall type estimate exhibited in 4.2 has been established in [KSSV06] only
for smooth vector fields. We wish to obtain a similar estimate for X p(M) vector fields
(p ∈ N ∪ {∞}).

4.3 Remark (Estimate 4.2 holds for X ∈ X p(M), p ∈ N.) To prove that the Gron-
wall estimate (8) holds also with lower differentiability of the vector field, note that
[KSSV06, Corollary 1.6] is a direct consequence of [KSSV06, Theorem 1.4]. The proof
of said theorem uses the differentiability class of the vector field V only through an
application of [KSSV06, Proposition 1.1] in the proof. Hence if [KSSV06, Proposition
1.1] holds for vector fields in X p(M) for p ∈ N we are done.

Reexamining the proof of [KSSV06, Proposition 1.1]: One needs differentiability
of the flow map FlV0 (t, x0) (cf. 1.5 for details on the notation). Namely, the existence
of iterated derivatives of the type ∂t∂x0

FlV and ∂t∂x0
FlV are required. If these second

mixed partial derivatives (with respect to t and x0) exist, then the proof can be carried
out exactly as presented in [KSSV06, p. 134-135].

The case p ≥ 2. For p ≥ 2 by standard ODE arguments (cf. e.g. [Lan99, Section
IV] or [AS15, Proposition 5.13]) also FlV0 is a Cp map whence the iterated differentials
exist.
7Covariant derivatives are often only defined for smooth vector fields. However, the ∇XV makes

sense for vector fields from X p(M) (for p ∈ N using that (M, g) is smooth) if one accounts for the
loss of differentiability.
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The case p = 1. Looking closer, the derivatives still exist for p = 1: We call a
continuous f : M × N → L between (finite dimensional) manifolds a C1,1 map if
(in charts) the partial derivative with respect to M exists, is continuous and f and
the derivative are again continuously differentiable with respect to the N variable
(cf. [AS15, Definition 5.11]). The concept of C1,1 (or the general Cr,s maps developed
in [AS15]) captures exactly existence of the mixed partial derivatives needed. Now for
V ∈ X 1(M), [AS15, Proposition 5.13] asserts that the flow FlV0 is indeed of class C1,1.

Summing up, the Gronwall estimate 4.2 holds V ∈ X p(M) where p ∈ N ∪ {∞}.

4.4 Theorem (Global error estimate) Consider a vector field V ∈ X p+1(M) with
p ∈ N0 ∪ {∞} on a Riemannian homogeneous space (M, g) together with a sequence
{ŷn}i=1,...,n approximating the integral curve of V through y0 at a discrete set of times
ti with hi = ti+1 − ti, and maxi hi = h. If ŷ obeys either of the local estimates (4) or
(5) with exponent p+ 1, then we obtain the global estimate

d(yn, ŷn) ≤ Chp,

where C is a constant depending only on V, y0 and T .

Proof. The proof follows the standard “Lady Windemere’s fan” argument, as per
[HNW08, Section 2.3]. Indeed, for i = 1, . . . , n, define the local error

ei = d
(
ŷi, ϕh(ŷi−1)

)
,

and the transported local error

Ei = d
(
ϕTi(ŷi), ϕTi−1(ŷi−1)

)
,

where Ti = T − ti. From 4.2 and Remark 4.3 (adapting [KSSV06, Corollary 1.6]) the
errors are related by

Ei ≤ eCTTiei

We then use the local metric estimate (5), if necessary invoking Theorem 3.4 to justify
this, obtaining

ei ≤ Cihp+1
i .

The Lady Windemere’s fan estimate then concludes the argument; indeed taking C =
maxi Ci we have

d(yn, ŷn) ≤
n∑
i=1

Ei

≤ hpC
(
h0e

CTT1 + h1e
CTT2 + . . .

)
≤ hp C

CT

(
eCTT − 1

)
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4.5 Remark Global error estimates for discrete gradient descent methods were re-
cently obtained in [CEOR18] and the methods in ibid. are very similar to the ones
used to derive Theorem 4.4. Though ibid. concerns itself with discrete gradient meth-
ods, it is not hard to see that the arguments given there are universal, i.e. could be
adapted to analyse the convergence of general numerical methods.

The key difference between our approach and the analysis in [CEOR18] is in the
basic setting: Studying Lie group integrators we are working by default in a complete
Riemannian manifold. On non complete Riemannian manifolds, the local to global
argument using a Gronwall inequality 4.2 breaks down (see [KSSV06, Example 1]).
Without completeness of the manifold the argument holds in general only for complete
vector fields. Thus the local to global result [CEOR18, Theorem 2] is derived only for
complete and smooth vector fields (though on a possibly non complete manifold, see
also [CEOR18, Remark after Theorem 2] on how to relax the completeness condition).
Note that in light of Remark 4.3 the proofs developed in ibid. hold up if one replaces
smooth vector fields with C1-vector fields.

A. Auxiliary constructions

In this appendix we collect several auxiliary results which enable us to construct
smooth functions needed in the estimates. We begin with a technical Lemma con-
cerning partitions of unity with some desirable properties:

A.1 Lemma Let M be a paracompact finite dimensional manifold, o ∈ M and B be
an open o-neighborhood. There exists a locally finite open cover {Ui}i∈I of M , such
that I = J ∪ {io} and the following holds:

1. io is the unique index such that o ∈ Uio ,

2. Uio ⊆ B,

3. every Ui is connected and relatively compact,

Proof. Since M is locally compact, we can choose a connected manifold chart (Uio , ϕio)
and compact o-neighborhoods C1, C2 of o such that the following inclusions hold:

o ∈ C1 ⊆ Uio ⊆ U io ⊆ C◦2 ⊆ C2 ⊆ B

(where U io is the closure and C◦2 the interior). Then U := M \ C1 is open and
metrisable, whence paracompact. Following [Lan99, II, §3 Theorem 3.3] there is a
locally finite cover of U by charts (Uj , ϕj)j∈J′ such that Uj is connected and relatively
compact. Let us now throw out all elements of the cover which are contained in Uio ,
i.e. define J := {j ∈ J ′ | Uj ∩M \ Uio 6= ∅} and set I := J ∪ {io}. By construction
o ∈ Ui for i ∈ I if and only if i = io, Uio ⊆ B and every Ui is connected and relatively
compact. To prove that {Ui}i∈I is a locally finite cover of M , we observe that {Ui}i∈I
covers M by construction. Now K := C2 \ Uio ⊆ U is compact, whence only finitely
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many elements of the locally finite cover {Uj}j∈J intersect it. This means that only
finitely many of the sets Uj , j ∈ J intersect Uio , whence {Ui}i∈I is locally finite.

We now prove Lemma 3.2 whose statement we repeat here for convenience.

A.2 Lemma For ε > 0 and (M, g) a connected complete Riemannian manifold, there
exists Fε ∈ C∞(M) with the following properties.

1. Fε(o) = 0 and Fε(x) ≥ 0, ∀x ∈M ,

2. if d(x, o) ≥ ε, then Fε(x) ≥ d(x, o).

Proof. Let ε > 0 and denote by B := Bdε (o) the metric ball of radius ε around o.
Apply now Lemma A.1 with the above choice of B to obtain a locally finite open cover
{Ui}i∈I of M with a unique element Uio such that o ∈ Uio ⊆ B. Following [Lan99, II,
§3 Corollary 3.8] we pick a smooth partition of unity {χi}i∈I subordinate to the cover
{Ui}i∈I . Note that by construction of the cover, we must have χi0(o) = 1. Define
the constants Mj := max{ε, supy∈Uj

d(o, y)} for j ∈ J . By compactness of U j and

continuity of the Riemannian distance (follows from [Kli95, Theorem 1.9.5]), the Mj

are finite. Hence we can build a family of smooth function:

fi(x) :=

{
ε(1− χi0(x)) for i = io

Mjχj(x) for i = j ∈ J
i ∈ I.

Observe now that since the {χi}i∈I is a partition of unity, their supports form a locally
finite family {suppχi}i∈I . We deduce that the family of supports for the functions fi
is also locally finite, whence we can define a smooth function

Fε(x) :=
∑
i∈I

fi(x) x ∈M

which satisfies Fε(o) = 0 and Fε(x) ≥ 0 for all x ∈M . If x ∈M \B, there is a finite non
empty Lx ⊆ J such that x ∈ Ui if and only if i ∈ Lx. In particular

∑
i∈Lx

χi(x) = 1
and as x ∈ Ui for every i ∈ Lx by construction one has d(x, o) ≤ Mi for all i ∈ Lx.
Thus we deduce that

d(x, o) ≤ min
i∈Lx

{Mi}
∑
i∈Lx

χi(x) ≤
∑
i∈Lx

Miχi(x) ≤
∑

i∈Lx∪{io}

fi(x) = Fε(x).

Finally, we construct a family of smooth functions which allows us to obtain esti-
mates on the Riemannian distance for points close to o. This is Lemma 3.3 whose
statement we repeat for the readers convenience.

A.3 Lemma Let ε > 0 be sufficiently small that the closure of the metric ball Bdε (o) is
contained in a manifold chart (U,ϕ). Then there is N ∈ N and a family {fn}1≤n≤N ⊆
C∞(M) with the following properties
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1. fn(o) = 0,

2. if d(x, o) < ε then there is 1 ≤ nx ≤ N such that fn(x) ≥ d(x, o).

Proof. As a homogeneous Riemannian manifold, (M, g) is complete, see 1.4. Thus the

closed and bounded set K := Bdε (o) is compact by the Hopf-Rinow theorem [Bes08,
Theorem 1.65]. We may assume without loss of generality that ϕ(o) = 0. Now by
standard arguments 8 for every smooth Riemannian manifold the charts are locally
bi-Lipschitz to Euclidean space. Since K ⊆ U is compact, we may (after shrinking U
if necessary) assume that ϕ is bi-Lipschitz with respect to the euclidean distance d2
on Rn and the geodesic distance on U , i.e.

d2(ϕ(x), ϕ(y)) . d(x, y) . d2(ϕ(x), ϕ(y)), ∀x, y ∈ U, (9)

where “.” is used to denote an inequality up to a (multiplicative) constant. Using the
equivalence of norms on Rn, we now replace the euclidean distance d2 in (9) by the
distance d1, induced by the `1-norm ‖x‖1 :=

∑n
i=1 |xi|. We claim now, that there is

N ∈ N and a family of smooth functions {Pn}1≤n≤N ⊆ C∞(ϕ(U)) which satisfy the
following properties for all 1 ≤ n ≤ N :

1. Pn(ϕ(o)) = Hn(0) = 0

2. if x ∈ ϕ(K) then there exists 1 ≤ nx ≤ N such that ‖x‖ = d1(x, ϕ(o)) ≤ Pnx
(x).

If this were true, then the proof can be finished as follows: Let L be the (smallest)
Lipschitz constant such that d(x, y) ≤ Ld1(ϕ(x), ϕ(y)), ∀x, y ∈ U . Since U is an
open neighborhood of K, we can choose a smooth cut-off function ξ : M → [0, 1] such
that ξ|K ≡ 1 and ξ|M\U ≡ 0. Then we set

fn : M → R, x 7→

{
Lξ(x) · Pn ◦ ϕ(x) if x ∈ U
0 otherwise.

,

Clearly we have fn ∈ C∞(M) and fn(o) = 0 for all 1 ≤ n ≤ N . If d(x, o) < ε, then
x ∈ K, whence there is nx := nϕ(x) as in property 2. of the family {Pn}n such that

fnx
(x) = Lξ(x)︸︷︷︸

=1

·Pnϕ(x)
◦ ϕ(x)︸︷︷︸
∈ϕ(K)

≥ Ld1(ϕ(x), ϕ(o)) ≥ d(x, o).

Proof of the claim: We have to construct smooth functions which satisfy properties
1. and 2. To this end, consider for 1 ≤ k ≤ n the smooth (linear) functions

pk,0 : Rn → R, (x1, . . . , xn) 7→ xk, pk,1 : Rn → R, pk,1(x) := −pk,0(x)

Construct for every multiindex α = (α1, . . . , αn) ∈ {0, 1}n a function

Pα(x) :=

n∑
i=1

pi,αi
(x), x ∈ Rn

8see eg. the answer by Benôıt Kloeckner at https://mathoverflow.net/a/236851/
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Set N := 2n and choose an arbitrary order of the multiindices α (naming the ith αi,
to define the desired family Pn := Pαn |U for 1 ≤ n ≤ N . Obviously Pn(0) = 0 and
from the construction it is clear that the Pn satisfy property 2.
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