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Abstract

In an exact quantum-mechanical framework we show that space-time expectation values of the
second-quantized electromagnetic fields in the Coulomb gauge in the presence of a classical conserved
source automatically lead to causal and properly retarded h-independent electromagnetic field
strengths. The classical i-independent and gauge invariant Maxwell’s equations naturally emerge in
terms of quantum-mechanical expectation values and are therefore also consistent with the classical
special theory of relativity. The fundamental difference between interference phenomena due to the
linear nature of the classical Maxwell theory as considered in, e.g., classical optics, and interference
effects of quantum states is clarified. In addition to these issues, the framework outlined also provides
for a simple approach to invariance under time-reversal, some spontaneous photon emission and/or
absorption processes as well as an approach to Vavilov-Cherenkov radiation. The inherent and
necessary quantum uncertainty, limiting a precise space-time knowledge of expectation values of the
quantum fields considered, is, finally, recalled.

1. Introduction

The roles of causality and retardation in classical, -independent, and quantum-mechanical versions of
electrodynamics are issues that one encounters in various contexts (for recent discussions see, e.g., [ [-14]). In
electrodynamics it is natural to introduce gauge-dependent scalar and vector potentials. These potentials do not
have to be local in space-time. It can then be a rather delicate issue to verify that gauge-independent observables
obey the physical constraint of causality and that they also are properly retarded. Attention to this and related
issues are often discussed in a classical framework where one explicitly shows how various choices of gauge give
rise to the same electromagnetic field strengths (see, e.g., the excellent discussion in [8]). Even though issues
related to causality in physics have been discussed for many years they are still open for investigations and we are
facing new insights regarding such fundamental concepts. In a recent investigation [12] the near-, intermediate-,
and far-field causal properties of classical electromagnetic fields have, e.g., been discussed in great detail. In
terms of experimental and theoretical considerations, locally backward velocities and apparent super-luminal
features of electromagnetic fields were demonstrated. Such observations do not challenge our understanding of
causality since they describe phenomena that occur behind the light front of electromagnetic signals (see, e.g.,
[7,12, 14] and references cited therein).

In the present paper, we investigate the problems mentioned above, in a quantum-mechanical framework.
Some aspects of this were, in fact, already considered a long time ago by Fermi [15]. Here we consider, in
particular, the finite time and exact time-evolution as dictated by quantum mechanics with second-quantized
electromagnetic fields in the presence of arbitrary classical conserved currents.

In terms of suitable and well-known optical quadratures (see, e.g., [16]), the corresponding /i-dependent
dynamical equations can then be reduced to a system of decoupled harmonic oscillators with space-time
dependent external forces. No pre-defined global causal order is assumed other than the deterministic
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time-evolution as prescribed by the Schrodinger equation. The classical #-independent theory of Maxwell
then naturally emerges in terms of properly causal and retarded expectation values of the second-quantized
electromagnetic field for any initial quantum state. This is in line with more general S-matrix arguments due
to Weinberg [17]. Thus we demonstrate explicitly that the quantized theory of electro-magnetic fields

is an adequate framework for solving a whole set of classical field-theory problems. We also clarify the
fundamental role of quantum-mechanical interference in comparison to classical interference, as expressed
by the linearity of Maxwell’s equations.

In a straightforward manner, we have also extended this kind of presentation to a quantized theory of
gravitational fluctuations around a flat Minkowski space-time, in the presence of a classical source in terms of a
conserved energy-momentum tensor. From this, the weak-field limit of Einstein’s general theory of relativity
emerges. Our work on this was presented in a separate publication [18].

The paper is organized as follows. In section 2 we recall, for reasons of completeness, the classical version
of electrodynamics in vacuum and the corresponding issues of causality and retardation in the presence of a
space-time dependent source, and the extraction of a proper set of physical but non-local degrees of freedom.
The exact quantum-mechanical framework approach is illustrated in terms of a second-quantized single-
mode electromagnetic field in the presence of a time-dependent classical source in section 3, where
emergence of the classical i-independent physics is also made explicit. In section 4, the analysis of section 3 is
extended to multi-modes and to a general space-time dependent classical source. The issues of causality,
retardation, and time-reversal are then discussed in section 5. The framework also provides for a discussion
of some radiative processes, and in section 6 we consider dipole radiation, and the famous classical Vavilov-
Cherenkov radiation is reproduced in a straightforward and exact manner. In section 7, we briefly discuss the
role of the intrinsic quantum uncertainty of expectation values considered. Finally, in section 8, we present
conclusions and final remarks. Some multi-mode considerations as referred to in the main text are presented
in an appendix.

2. Maxwell’s equations with a classical source

Unless stated explicitly, we often make use of the notation E = E(x, f) for the electric field and similarly for other
fields. The microscopic classical Maxwell’s equations in vacuum are then (see, e.g., [19]):

v.E=2, 2.1)
€0
V.-B=0, 2.2)
VxE-_2B 2.3)
ot
. OE
VXB:MOJ“‘fONoE’ (2.4)

with the velocity of light in vacuum as given by ¢ = 1/ /¢4, Equations (2.1) and (2.4) imply current
conservation, i.e.,
dp
— +V-.j=0. (2.5)
ot )
The classical Maxwell’s equations can, of course, be written in a form that is explicitly covariant under Lorentz
transformations but this will not be of importance here.
The general vector identity

Vx(VxF=V(V-F — V%P, (2.6)
applied to the electric field E, making use of Maxwell’s equations (2.3) and (2.4), implies that
1 O%E dj p
— = — V2 =—u,— - V|1, 2.7
¢ o Fo 5 (60 27)

with retarded as well as advanced solutions. By physical arguments one selects the retarded solution, even though
Maxwell’s equations are invariant under time-reversal as, e.g., discussed by Rohrlich [6].
We now write the electric field E and the magnetic field B in terms of the vector potential A and the scalar
potential ¢, i.e.,
O0A

E= o Vo, (2.8)
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and
B=V xA. (2.9)
The Coulomb (or radiation) gauge, which, of course, is not Lorentz covariant, is defined by the requirement
V-A=0, (2.10)

and therefore leads to at most two physical degrees of freedom of the electromagnetic field. A defined with this
gauge-choice restriction is denoted by A7. By making use of the vector identity equation (2.6) with F = Ap,
Ampere’slaw, i.e., equation (2.3), may then be written in the form

O*Ar j

— VA =L, (2.11)
81'2 €0
where we have introduced a transverse current jraccording to
L. 0
ir=j—e_-Vo. (2.12)

ot

Equation (2.11) s, of course, the well-known wave-equation for the vector potential Arin the Coulomb gauge.
The transversality condition V - j; = 0 follows from charge conservation and
V.E= V=2, (2.13)
€0

in the Coulomb gauge. Equation (2.13) is, therefore, not dynamical but should rather be regarded as a constraint
on the physical degrees of freedom in the Coulomb gauge enforcing current conservation. The instantaneous
scalar potential ¢ degree of freedom can therefore be eliminated entirely in terms of the physical charge density p
(in this context see, e.g., [20, 21]).

In passing we also recall that in the Coulomb gauge, the scalar potential ¢ is, according to equation (2.13),
given by

b, 1) = f pox LD (2.14)
47T60 x — x|
Due to the conservation of the current, i.e., equation (2.5), the time derivative of ¢» may be written in the form
t
00, 1) _ _ fd3 VD 2.15)
ot 47'('60 x — x|

According to the well-known Helmholtz decomposition theorem F = F; + Fyforavector field (see, e.g., [19]),
formally written in the form

1
F:ﬁ(V(VT)—Vx(VxF)), (2.16)
using equation (2.6), we can identify the corresponding longitudinal currentjy, i.e.,

: __ 1 5V & 1)
1) = 47erdx .

2.17
N (2.17)

Itis now evident that the right-hand side of the wave-equation equation (2.11) for the vector potential can be
expressed in terms of the current j(x, 1), i.e.,

(X, 1) )

: 2.18
N (2.18)

0 = -2V x (V% [d
4T
The important point here is that jris an instantaneous and non-local function in space of the physical current
j(x, t). When the Helmholtz decomposition theorem is applied to the vector potential A = A; + Arp it
follows that the transverse part A7is gauge-invariant but, again, a non-local function in space of the vector
potential A.
At the classical level, we now make a normal-mode Ansatz for the real-valued vector field A confined in, e.g.,

a cubic box with volume V = L> and with periodic boundary conditions. Withk = 27 (1, n,, n,)/L, where n,,
n,, 1, are integers, we therefore write

A, D) = 3 [ —— (g (el Ne + g () ek Ne*> ) , 2.19)
i V Ve

with time-dependent Fourier components gy ,(¢). The, in general, complex-valued polarization vectors € (k; \)
obey the transversality condition k - € (k; A) = 0. Theyare normalized in such a way that

Py =Pk =Y €l Nej(k \) = 6; — kik;, (2.20)
A
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where we have defined the unit vector k = k/ |k|. In the case of linear polarization the real-valued, orthonormal,
and linear polarization unit vectors € (k; \), with A = 1,2, aresuch that ¢;(—k; \) = (—1)**'¢(k; \). Since
Aritselfis independent of the actual realization of the polarization degrees of freedom € (k; M), itis without any
difficulty to express equation (2.19) in terms of, e.g., the complex circular polarization vectors with A = =+, 1i.e.,

1

ahiﬁ5ﬁ

(e(k; 1) % ie(k; 2)), (2.21)

suchthat e (—k; +) = e*(k; ).
The Ansatz equation (2.19) for Az is, of course, consistent with transversality of the current jrin
equation (2.11). Due to the transversality of j, we can then also write that

jroon =3 % UD€ N + il (1) e¥l Ne ™) . (2.22)
)

The time-dependence of gi\(f) is now determined by the dynamical equation equation (2.11) for Ay i.e.,

i () + WE g (D) = jin () (2.23)
with wy = c|k|. If we define classical real-valued quadratures
Q) = g4, () + g5, (2.24)
then
Qi (1) + Wi QuA() = ji, (1) + i\ (1) = fi, (1) - (2.25)

This equation has the same form as the dynamical equation for a time-dependent forced harmonic oscillator.
The corresponding quantum dynamics will be treated in the next session.

3. Single mode considerations

As seen in the previous section, a single mode of the electromagnetic field reduces to a dynamical system
equivalent to a forced harmonic oscillator with a time-dependent external force. The quantization of such a
system is well-known (see, e.g., [22—-27]) and is presented here in a form suitable for illustrating a calculational
procedure to be used in later sections for finite time intervals.

With only one mode present, we write Q = Qp\(t), w = wy, aswellasf(t) = fi\(¢). Equation (2.25) then
takes the form

Q+ wQ=f(t). 3.1

This classical equation of motion can, of course, be obtained from the classical time-dependent Hamiltonian
H(t) for a forced harmonic oscillator with unit mass, i.e.,

Pz 1,
Hy(t) = - + S Q*—-fHQ. (3.2)

We quantize this classical system by making use of the canonical commutation relation
[QP]=il. (3.3)

We express Q and P in terms of the quantum-mechanical quadratures

Qzﬂfi(wra*), (3.4)
2w

P=i %(a*—a), (3.5)

aswell as

where [a, a*] = 1. The classical Hamiltonian H,(f) is then promoted to the explicitly time-dependent
quantum-mechanical Hamiltonian H(f) according to

Hy(t) — H(@) = /ﬁu(a*a + %) + g(®)(a + a*), (3.6)

gt) = —f(t),/i . (3.7)
2w

where we have defined
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In general, it is notoriously difficult to solve the Schrédinger equation with an explicitly time-dependent
Hamiltonian. Due to the at most quadratic dependence of aand a* in equation (3.6) it is, however, easy to solve
exactly for the unitary quantum dynamics. Indeed, if one considers the dynamical evolution of the system in the
interaction picture with |1 (#)); = exp(itHy /7)1 (t)), where we for convenience make the choice t, = 0 of
initial time, then

d
i W’d—f”’ — HOD) - (3.8)

For observables O in the interaction picture we also have that

Oy(t) = exp(itHy / /) Oexp(—itHy / /2) . (3.9
Inour case Hy = /w(a*a + 1/2) and therefore
Hi(t) = g(t)(ae ™" + a*e™"). (3.10)

The explicit solution for |1 (¢)); is then given by
[ () = exp (éwt)) exp (—% j: dt’ HI(t/)) 114(0)) (3.11)

for any initial pure state |1 (0)). Equation (3.11) can easily be verified by, e.g., considering the limit At — 0 of
(I + AD)) — |[())) /At usingthat exp(A + B) = exp(A)exp(B)exp(—[A, B]/2)if[A, B]isac-number.
The c-number phase ¢(#) can then be computed according to

M — 1 ! ! ! ! _ L t ! 3 " " !
z¢(t)f£f0 '[N (), H1<t>1fzﬁf0 dtfo dt"[Hy (t"), Hy ()], (3.12)

with
N@) = f Ca () (3.13)
0

since, in our case, [ N ('), H;(t") ]is ac-number. We therefore see that, apart from a phase, the time-evolution
in the interaction picture is controlled by a conventional displacement operator as used in various studies of
coherent states (see, e.g., [28, 29] and references cited therein).

The expectation value of the quantum-mechanical quadrature Q in equation (3.4) at time t, i.e.,
(Q)(®) = W®|QI (1)) = 1{¥(#)|Qs(t)|1(t))r, can now easily be evaluated for an arbitrary initial pure state
[1(0)) with the result

(Q) (1) = {Q) cos(wt) + l<P> sin(wt) + 1 ft dt'f (t)sin (w(t — t')), (3.14)
w w Jo

where (O) = (O)(0) for the initial expectation value of an observable O. In equation (3.14) we, of course,
recognize the general classical solution of the forced harmonic oscillator equations of motion equation (3.1), i.e.,
42

ﬁ@)(t) + Q) (1) = f(®), (3.15)

in terms of its properly retarded Green’s function (see, e.g., [30]). The last term in equation (3.14) is classical in
the sense that it does not depend on 7. Possible quantum-interference effects are hidden in the homogeneous
solution of equation (3.15). Similarly, we find for the P-quadrature in equation (3.5) that (P) (t) = d (Q) (¢) /dt
or more explicitly:

(P)(t) = (P) cos(wt) — (Q)w sin(wr)
+ f " () cos (w(t — 1)), (3.16)
0

Even though the classical equation of motion emerges in terms of quantum-mechanical expectation values,
intrinsic quantum uncertainty for any observable O as defined by

(A0P(1) = (YOO = (ON1 (1), (3.17)
is in general present. For O = Q one finds that

,sin? wt , coswt sin wt
o2

(AQ)*(t) = (AQ)*cos?wt + (AP) (PQ + QP — 2(Q)(P)), (3.18)

independent of the external force f(¢). For minimal dispersion states, i.e., states for which AQAP = £/2, thelast
term is zero. For coherent states one then finds the intrinsic and time-independent quantum-mechanical
uncertainty (AQ)*(t) = 7 /2w and (AP)*(t) = 7w/2.

5



IOP Publishing J. Phys. Commun. 3 (2019) 082001 B-S K Skagerstam et al

Figure 1. Absorption and emission of photons from a classical current j(x, t).

The classical equation of motion equation (3.15) allows for linear superpositions of solutions. Such linear
superposition are, however, not directly related to quantum-mechanical superpositions of the initial quantum states
since expectation values are non-linear functions of quantum states. For number states |n) = (a*)"|0) / Jn!, with
al0) = 0, which in terms of; e.g., a Wigner function have no classical interpretation except for the vacuum state |0)
(see, e.g., [16]), we have that (Q) = (P) = 0but (AQ)*(¢) = (AP)*(t) /w? = (n + 1/2)7 /w.Foran nitial
state of the form [1/(0)) = (|0) + |1))/~/2 wefindthat (Q) = /7 /2w and (P) = 0 with an intrinsic time-
dependent quantum uncertainty, e.g., (AQ)?(t) = 7 (2 — cos?wt) /2w. This initial state therefore leads to
expectation values that do not correspond to a superposition of the classical solutions obtained from the initial states
|0) or |1). This simple example demonstrates the fundamental difference between the role of the superposition
principle in classical and in quantum physics. It is a remarkable achievement of experimental quantum optics that
such quantum-mechanical interference effects between the vacuum state and a single-photon state have been
observed [31, 32] (for a related discussions also see [33—37]). In the next section we extend this simple single-mode
case to the general multi-mode space-time dependent situation.

4, Multi-mode considerations

We will now consider emission as well as absorption processes of photons in the presence of a general space-time
dependent classical source as illustrated in figure 1. In the multi-mode case the interaction Hamiltonian H,(t) for
aclassical current j is now an extension of the single-mode version equation (3.10). In the Coulomb gauge and in
the interaction picture, we therefore consider

Hi(H) = — fv Pxjx, 1) - Ar(x, 1)
7

==y Ve (jk, t) - € (ks Nawe ™ + ¥k, t) - €*(ks Naghe“ ), (4.1)
kA oWk
with the ‘free’ field Hamiltonian
1
H, = E fz/wk(a]aak,\ + 5) (4.2)
kA

Here we have introduced the Fourier transformed current
jk, 1) = j; dx e j(x, 1) . (4.3)

Since j; (k, t) = lA<(lA( -jk, 1)) and j.(k, t) = jk, t) — j; (k, t),itis clear due to the transversality condition
k - € (k; A) = 0 that only the transverse part of the current contributes in equation (4.1).

The interaction equation (4.1) therefore corresponds to a system of independent forced harmonic oscillators
of the one-mode form as discussed in the previous section. The second-quantized version of the vector-potential
in equation (2.19) then has the form of a free quantum field, i.e.,

6
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(are (ks N)e! &) 4 gl e¥(k; A)e!kx—et)) | (4.4)

Arx, ) =3

o ¥ 2Veowy
with the basic canonical commutation relation
*
[axr, agry] = OO (4.5)

and where we recall that wy = ¢|k|. The vacuum state |0) is then such that ay,|0) = 0 for all quantum numbers
k. The quantum field A7 is then normalized in such a way that

Ho= [ ax|aBiex 0+ B 0, (4.6)
voo2 Ho
where, for the free field in equation (4.4), we make use of Ey = —0A;/0tandB =V x A =V X Ar.
If we consider the circular polarization vectors € (k; +) according to equation (2.21), we have to replace the
annihilation operators ay), with

1 .
ax+ = —(a 1dx2)- 4.7
Kt ﬁ( kt F idx2) (4.7)
We then observe that
Yo o€l Nawy = Y ek Nag, (4.8)
A=1,2 A=+

which means that the quantum field Ardoes not depend on the actual realization of the choice of polarization
degrees of freedom.

The single photon quantum states |k\) = a;4|0), with A = +, will then carry the energy /iy, momentum
hk as well as the intrinsic spin angular momentum =7 along the direction k,ie., the helicity quantum number
of a massless spin-one particle. In passing, we remark that the latter property can be inferred from a
consideration of a rotation with an angle § around the wave-vector k in terms of a rotation matrix R;(f)), which
implies that g — ax(0) = exp(£if)ak~. In terms of the corresponding rotated polarization vectors
€i(k; A|0) = R;;(0)¢;j(k; \)wethen have, in accordance with equation (4.8), that

> ek Nay = Y, €k; A|f)ax (0). (4.9)

A=1,2 A=+
In addition to the intrinsic spin angular momentum, photon states can also carry conventional orbital
angular momentum which plays an important role in many current contexts (see, e.g., [38] and references
cited therein) but will not be of concern in the present work. A complete set of physical and well-defined
Fock-states can then be generated in a conventional manner. By construction, these states have positive norm
avoiding the presence of indefinite norm states in manifestly covariant formulations (for some considera-
tions see, e.g., [39—41]).
Since, obviously,

t ﬁ t . ’ . ’
dt/ H t/ — _ dt/ —iwgt k; A) - k) l’/ + X iwpt! S% k; ) - ok k) tl )
fo (1) %; o fo (@ e e (I \) - j(k, ) + afy e (ks N) - 7k, 1))

(4.10)

we conclude that the time-evolution for |1 (¢)); in equation (3.11) is, apart from a phase factor, given by a multi-
mode displacement operator

D(x) = exp(—;—ij(; dt’ HI(t’)) = H exp (amn(B)ayy, — agy(t)axy) . (4.11)
kA

Here ay) (t) is, as inferred from equation (4.10), explicitly given by

() = : U ft dt’ et (k, t) - e¥(k; \), (4.12)
7\ 2Veywr Yo

with j*(k, £) = j(—Kk, ). The displacement operator D () has the form of a product of independent single-
mode displacement operators. By making use of equation (3.11), and by considering the action on the vacuum
state, the quantum-mechanical time-evolution generates a multi-mode coherent state D («x)|0), apart from the
h-dependent phase ¢ () in equation (3.11). As in the single-mode case, the time-dependent expectation value of
the transverse quantum field A{(x, t) will then obey a classical equation of motion similar to equation (3.15), i.e.,
(see appendix)

a2<AT(X’ t)) o sz2<AT(X7 t)> — M R (4.13)

ot? €o
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to be investigated in more detail in section 5. In other words, there are particular quantum states of the radiation
field, namely multi-mode coherent states, which naturally lead to the classical electromagnetic fields obeying
Maxwell’s equations equations (2.1)—(2.4) in terms of quantum-mechanical expectation values.

5. The causality issue

The expectation value of the transverse second-quantized vector field Aris now given by equation (A.4), i.e.,
<AT(X, 1) = f(zﬂ)s zkxf dt /Sln(wk(t t") fd3 ’ —zkx] «, t), (5.1)

where we have carried out a sum over polarizations accordlng to equation (2.20) as in equation (A.5), and where
the sum over kin the large volume Vlimit is replaced by

S = o f 3%, (5.2)

k

The Fourier transform of the transverse current vector in equation (5.1) is as above given by

jp(k, £) = f ey, (x, 1) . (5.3)
The time-derivative of equation (5.1) can now be written in the form
<AT(X> t) 3.0 / ! ! !
S -~ fd f A= Gx =X, 1 = (O 1) — i 6, 1) (5.4)

by making use of the Helmholtz decomposition of the current vector j(x, £), and where we identified the Green’s
function G(x, t)

— lim 2 axSin(wit) Ak sin(wit)
Coo = th v 21; ‘ we f @r)? ‘ W

= 2| |(5(t x|/c) — 6(t + [x]/0)). (5.5)

This Green’s function is a solution to the homogeneous wave-equation
0°G(x, t)
or?

such that G(x, ) = 0and 0G(x,t)/0t = 0att = 0. For the second term in equation (5.4) we need to consider
the integral

= 2V3G(x, 1), (5.6)

t . ,0 0
= 3,/ il IR v/ -
1= [a [ dr G —x, = VDo ). (5.7)
This is so since the longitudinal vector current j; (x, t) may be written in the form
01 p(x )
t —V | &X' —V t 5.8
0 ) = 5V [ LT < Vo0, (5:8)

where we make use of the Helmholtz decomposition equation (2.17) and current conservation. After a partial
integration in the time variable ' and by making use of equation (5.6), the integral I can therefore be written in
the following form

t
1= Vo t) + 2 f dx! f AV - V'Gx — X, t — YV, 1), (5.9)
0

where we have used the fact that G (x, t) /9t = §°(x) att = 0as well as the initial condition j;(x, 0) = 0 forall
x. We now perform two partial integrations over the spatial variable and by using equation (2.13), we finally see
that

1= Vo, 1) — fd3 /f dGx — X, t — thVp, 1), (5.10)

neglecting spatial boundary terms and using the initial condition p(x, 0) = 0 for all x. The first term in
equation (5.10) exactly cancels the instantaneous Coulomb potential contribution in the expectation value of the
quantized electric field observable

O{Ar(x, 1))

<E(Xa t)> = - ot

~ Ve 1). (5.11)
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For t > t/, we therefore obtain the desired result

(B(x, t)>:_3( 1 fd3x,j(x’,t—|x—x’|/c))_ 1 dex,V’p(x’,t—lx—x’I/c)’ (5.12)

Ot \ 4meyc? |x — x/| 47e |x — x/|

where V/p(x/, t') in equation (5.12) has to be evaluated for a fixed value of t’ = ¢t — |x — x/|/c. Inasimilar
manner we also see that

(B(x, ) = V x (Ar(x, D)) = — f &’ f CAGx — Xt — )V X (K, 1)
€o 0

= ﬂf{ﬁx’ ! V' xj&x,t— |x = x|/c), (5.13)
4T |x — x|

since V/ x j. (X, t') = V/ x j(x/, t'). Inequation (5.13), we remark again that V' x j(x, t') hastobe
evaluated for a fixed value of t’ = ¢t — |x — x/|/c. The causal and properly retarded form of the electric and
magnetic quantum field expectation values in terms of the physical and local sources given have therefore been
obtained (see in this context, e.g., [19], section 6.5).

The expectation values as given by equations (5.12) and (5.13) obey Maxwell’s equations in terms of the
classical charge density p and current j. The quantization procedure above of the electromagnetic field explicitly
breaks Lorentz covariance. Since, however, Maxwell’s equations transform covariantly under Lorentz
transformations we can, nevertheless, now argue that the special theory of relativity emerges in terms of
expectation values of gauge-invariant second-quantized electromagnetic fields.

Maxwell’s equations of motion according to equations (2.1)—(2.4) are invariant under the discrete

T
time-reversal transformation t — ¢’ = —t with E(x, t) — E/(x, t) = E(x, —t)and
T T
B(x, t) — B'(x, t) = —B(x, —t) provided j(x, t) — j'(x, t) = —j(x, —t) and
T
p(x, 1) — p'(x, t) = p(x, —1). At the classical level, the corresponding transverse vector potential

. T . . . .
transforms according to Ap(x, t) —> AM(X, t) = —Aq(X, —t). The anti-unitary time-reversal transformation
7T isimplemented on second-quantized fields in the interaction picture according to the rule (see, e.g., [20,
42-44])

(YO A, D (O) = K OIAT &, D[ ®) = 1(P(=0)|TAr(x, T (1) (5.14)
It then follows that () () |A7(X, )1 () = — (P (=) |Ar(x, =) [t (—1))if Ta, T ' = a_yn(—1) and
provided the vacuum state |0) is invariant under time-reversal. We therefore find that (A7(x, t)) = —(Ar(x, —t)).

We therefore obtain (E(x, t)) R (E(x, —t))and (B(x, 1)) I, _ (B(x, —1))asitshould. Due to the form of
the Green’s function G(x, t) in equation (5.5) it can be verified that equation (5.1) also leads to expectation values
(E(x, 1))and (B(x, t)) that transform correctly under time-reversal.

The arrow of time can therefore, as expected, not be explained by our approach but as soon as the direction
of time is defined the observable quantities (E(x, ¢)) and (B(x, t)) are causal and properly retarded. In the
presence of external sources we could have an apparent breakdown of time-reversal invariance unless one also
time-reverses the external sources.

6. Electromagnetic radiation processes

The rate for spontaneous emission of a photon from, e.g., an excited hydrogen atom can now be obtained in a
straightforward manner in terms of a slight extension of the interaction equation (4.10) as to be made use of in
first-order time-dependent perturbation theory. We then make use of the long wave-length approximation

d
ik, 1) ~ f dxj(x, 1) = % f dexp(, 1) = g2 x(0), 6.1)

taking current conservation equation (2.5) into account, where p(x, t) = g6 (x — x(t)) in terms of the
position x(#) of the charged electron in the interaction picture. For the spontaneous single photon transition
li) — |f)with|i) = |a;) ® |0)and|f) = |as) ® |kA), we thenarrive at the standard dipole radiation first-

order matrix element
. . 7
(fIH(0)]i) = ie., | wir €*(k; A) - (agl|x|a;), (6.2)
2Veqwy

using equation (4.10) with ¢ = —e in the interaction picture. The relevant matrix element (as|x(¢)|a;) is then
given by exp(—iwjrt) (ag|x|a;). For the atomic transition from |a;) = |nlm) = |2pm) to the final atomic ground
state [as) = |1s), the corresponding rate is then given by
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3 ap

8
T = —ZZé(wk— wip) [(i1H )| f) P (3) at=, 6.3)
kA

in terms of the fine-structure constant o = e?/4me, /ic and the Bohr radius ag. The rate I is independent
of the quantum number m. Stimulated emission gives rise to a multiplicative factor (1 + ). Equation (6.3)
is, of course, a well-known text-book result in agreement with the experimental value (see, e.g., [45]). The
considerations above can be extended to graviton quadrupole radiation processes in an analogous manner [18].
The power of electromagnetic emission from a classical conserved electric currentin, e.g., a non-dissipative
dielectric medium and the famous Vavilov-Cherenkov [46] radiation can, furthermore, now also be derived in
terms of the quantum-mechanical framework above. This form of radiation was first explained by Frank and
Tamm [47] using the framework of Maxwell’s classical theory of electromagnetism. The exact classical /-
independent expression for the power of Vavilov-Cherenkov radiation (see, e.g., Section 13.4 in [19]), neglecting
possible spin effects to be discussed elsewhere [48], can now be obtained as follows. For a particle with electric
charge g, mass m, and an initial velocity v, moving in dielectric medium such that ¢y — e, withe > 1, the
interaction Hy(f) in equation (4.10) leads to a displacement operator D(«) (see equation (4.11)) with ay\(f) now

replaced by
h
1) = dt’ iwit! d3 t *k A ikx
=1 A [ [ @it ) - e Ner
= g— /7v e*k; \ dt’ Wk’ 6.4
q/i 2Veeywy ( ) to (6-4)

where the relativistic current j(x, f) in an inertial frame is given by
jx, t) = qvé®(x — vt). (6.5)

The power P(w)dw of emitted radiation in the range wto w + dwis then obtained by evaluating the exact
expression d (Hy) (¢) /dt, using equation (6.4), where

d (Hy) (t) d

Zla VOP = [ duPw), (6.6)
dt

in the large volume V'limit, and by considering thelarge T' = ¢ — #, limit. The cut-off angular frequency

w, < mc?/7 isto be determined in a standard manner taken the w-dependence of € into account (see, e.g.,

[19]). Here we can, of course, disregard the additive divergent zero-point fluctuations in (Hy) (¢). The large T
limit leads to a phase-matching condition wy = k - v = vk cos f¢, using v = |v|and k = |k|, expressed in terms
of the well-known Cherenkov angle cos fc = ¢/nv, where wy = ck/n with the refractive index n = /€. The
A-sum over the polarization degrees of freedom in equation (6.6) leads to

STIv - ek NP = [vP(1 — cos?0), (6.7)

A=1,2

using equation (2.20), where, in general, cos § = ¥ - k in terms of the unit vectors. In summing over the angular
distribution of the radiation emitted in equation (6.6), the large T phase-matching condition is taken into
account. We then easily find the well-known 7i-independent power spectrum

62

Zcu(l — cos?bp). (6.8)

P(w) =
4megc ¢

Alternatively, but in aless rigorous manner, one may consider (Hp) (t) /T and make use of equation (6.4) in the

lar ge | —lilllit, i.e.,
A 7 2V €coWk ’ ' '

By inspection we then observe that oy () in equation (6.9) exactly corresponds the quantum-mechanical
amplitude for the emission of one photon from the source to first-order in time-dependent perturbation theory
even though our expression for ay, (¢) is exact.

We have therefore derived a power spectrum that exactly corresponds to the 1937 Frank-Tamm expression
[47]in terms of the Cherenkov angle cos ¢ as obtained from the 6-function constraint in equation (6.9). In the
quantum-mechanical perturbation theory language this constraint corresponds to an energy-conservation -
function as a well as to conservation of momentum taking the refractive index n = /€ into account. The
corresponding energy of the emitted photon is then given by E, = fiw and the Minkowski canonical momentum
by p, = 721k (see, e.g., [49]), with w = c[k|/n. The expression for the Cherenkov angle cos ¢ is then modified
according to [50]

10
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1 — 272
g g -

cosbc =
nv 2mc?

(6.10)

Aswas first noted by Ginzburg ([50] and references cited therein), and also presented in various text-books
accounts (see, e.g., [51, 52]), first-order perturbation theory in quantum mechanics actually leads to the same
exact power spectrum for Vavilov-Cherenkov radiation. The explanation of this curious circumstance can be
traced back to the fact that all higher order corrections are taken into account by the presence of the phase ¢(#) in
equation (3.11).

7. Quantum uncertainty

The displacement of quantum states as induced by D (), as defined in equation (4.11), acting on an arbitrary
pure initial state again leads to Maxwell’s equations for the expectation value of the quantum field changing, at
most, the homogeneous solution of the expectation value of the wave-equation (4.13). The corresponding
quantum uncertainty of E(x, f), however, depends on the choice of the initial state along the same reasoning as in
the single-mode case in section 3. An essential and additional ingredient with regard to the approach to the
classical limit is to consider the variance of, e.g., the second-quantized E(x, £)-field suitably defined. We consider
the scalar quantity

(AE(x, 1))? = (BX(x, t)) — (E(x, 1)). (7.1)

We observe that the uncertainty in equation (7.1) in general does not depend on the complex parameters &
when evaluated for the displaced state D () |¢)(0)) and is therefore determined by the uncertainty as determined
by the initial state |1/ (0)).

In order to be specific, we will evaluate the uncertainty AE(x, t) for a displaced Fock state with
[1(0)) = [...; Ay seveer AR A7 »-). We then obtain

(AE(x, 1)) = a > wk(nkA + l) (7.2)
VE() k) 2

Physical requirements now demand that the uncertainty AE(x, t) must be smaller than expectation values of

the components of the second-quantized electromagnetic field E(x, #). If the sum in equation (7.2) had been

convergent, the variance would have vanished in the naive limit /2 — 0. Since the natural constant 7 is non-zero,

the sum in equation (7.2) is, however, divergent.

Even though the expectation value of the quantum field at a space-time point (x, ) in our case is well-
defined, the corresponding uncertainty is therefore actually divergent. This means that the observable value of
the quantum field in a space-time point (x, £) is physically ill-defined. In the early days of quantum field theory,
this fact was actually noticed already in 1933 by Bohr and Rosenfeld [53] and later proved in a rigorous manner
by Wightman [54]. Bohr and Rosenfeld also provided a solution of this apparent physical contradiction. The
basic idea is to introduce quantum field observables averaged over some finite space-time volume. Bohr and
Rosenfeld made use of a cube centered at the space-point x at a fixed time t which, however, makes some of the
expressions obtained rather complicated. We will follow another approach which makes the expressions more
tractable (see, e.g., problem 2.3 in [20]), i.e., we consider

B 0= [ Z dr’ fv Exf.(x — X)f.(t — HEX, 1), (7.3)
where
) = % eXp(x—zz), (7.4)
nol)*/? 20
and
f,(t) = m exp (—%) (7.5)

The parameter o, gives a characteristic scale for the space-volume around the point x where we perform the
space average. Correspondingly, the parameter o, gives a characteristic time-scale for the time average
procedure.

The linear classical Maxwell’s equations can then again be obtained as in the previous sections in terms of the
quantum-mechanical average of fields like E,(x, f) provided that the classical sources are space and/or time
averaged in the same manner. It now follows that
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Ty o’k olrwd
exp| ——— —
ZVE() 2

By(x, 1) = 3 i )(me(k; Neitx—at) g (I e 16X 9) (7.6)
kA

The variance (AE,(x, t))? of the space and time averaged electric quantum field E,(x, £), in a sufficiently large
quantization volume V, will then be finite and corresponds to an energy

L 2k 7.7)

@n)? o

e0(AEq(x, 1)*0” > E, =

localized in a volume V, = ¢ < V, where

o2 = ol + 2ol (7.8)

Itis now clear that E,, will be finite in the cases 0; = 0, o, = Oaswellas o; = 0, 0; = 0.

Physically, the expression in equation (7.7) corresponds, apart from an irrelevant numerical factor, to the
energy of a photon with a wave-length A ~ o and, hence, a wave-number k ~ 27/ and therefore to an energy
E, ~ /xk ~ 27/ic/o,in atypical localization volume V. It is now clear that E, will tend to infinityas 0 — 0,
i.e., we would then obtain an arbitrarily large energy and/or energy density if we try to localize the quantum field
in the sense above in an arbitrary small V.. A macroscopic field, however, corresponds to a localization volume
much larger than V,,, and therefore these quantum uncertainties can be disregarded in the classical regime.

This latter feature can be illustrated by evaluating (AE, (x, t))? for a thermal Planck distribution of g at a
temperature T with a typical coherence length scale oy = /ic/kg T. For localization scales 0 < o i.e., at
sufficiently small temperatures, one then finds that ) (AE,(x, t))?0® = E,(1 + 47*(0/07)*/15). The thermal
induced uncertainty can therefore be neglected in comparison with E,, for large thermal coherence lengths o ras
compared to o. If, on the other hand, o1 < 0, i.e., at sufficiently high temperatures, it follows that
£0(AEL(x, 1))?0> = kg T(1 + (o7 /0)?/8) /47>/? and, as expected, the thermal uncertainty will then be
dominating at sufficiently high temperatures.

As was predicted along time ago for single-mode quantum fields [55], it is possible to reduce the uncertainty
(AE(x, t))? below the vacuum value by making use of initial squeezed quantum states |t/ (0)). This feature has
recently been confirmed experimentally ([56] references cited therein). For multi-mode considerations, relevant
for the framework of the present work, this may also be possible for (AE,(x, t))? but this will not be a topic in
the present paper.

8. Final remarks

We have shown how a quantum-mechanical framework offers a good platform to analyze causality and
retardation issues in the classical theory of Maxwell. As we have shown elsewhere, our quantum-mechanical
framework can rather easily be extended to a derivation of the weak-field limit of Einstein’s general theory of
relativity [ 18]. From second-quantization of the physical degrees of freedom under the condition of current
conservation the well established classical theory for electromagnetism naturally emerges. The overwhelming
experimental support for Maxwell’s classical theory does not necessarily imply the existence of photons and
doubts on the existence of such quantum states are sometimes put forward (see, e.g., [57]). However, the
quantum-mechanical derivation of the classical theory necessarily implies the existence of single particle
quantum states corresponding to a photon.

We have also observed that various radiation processes including the classical, i.e., i-independent, Vavilov-
Cherenkov radiation can be obtained in a straightforward manner. It may come as a surprise that a first-order
quantum-mechanical perturbation theory calculation can give an exact fi-independent answer. This, as it seems,
remarkable fact is explained by the factorization of the time-evolution operator in terms of a displacement
operator for quantum states in the interaction picture according to equation (3.11) making use of
equation (4.10). The phase ¢(¢) then contains the non-perturbative effects of all higher-order corrections to the
first-order result.

As a matter of fact, similar features are known to occur also in some other situations. As is well-known, the
famous differential cross-section for Rutherford scattering can be obtained exactly in terms of the first-order
Born approximation. All higher order corrections will then contribute with an overall phase for probability
amplitudes which follows from the exact solution (see, e.g., the excellent discussion in [58]). The classical
Thomson cross-section for low-energy light scattering on a charged particle is also exactly obtained from a Born
approximation due to the existence of an exact low-energy theorem in quantum electrodynamics (see, e.g., the
discussions in [2, 3, 59]).
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Appendix. expectation value of the quantum field A(x, t)

Apart from a phase-factor, the time-evolution in the interaction picture is controlled by the operator
i t
exp (— - fo dt’ Hy(t') ) =[I exp(an®a - an®aw), (A1)
9)

where ayc\(¥) is given by equation (4.12) in the main text. Since expectation values are independent of the picture
used, i.e.,

s 0 ()s = (YOOI (@) = (On1)), (A2)

we see that

(Ar(x, 1)) Z (e M (1) e 4 ¥l N afoy (1) e kxtiat), (A.3)

ZVLUk €

If we, in particular, consider initial states |t/ (0)) such that (1) (0) |ax,|1(0)) = 0 for all k), like quantum states
with a fixed number of photons, we find that

(Ar(x, ) =Y — (e(k; N [ L e el ) -, )
0

K\ 2Vu.)k€()
t o .
— e*(k; )\)f dt’ em ' =D=ikx ¢ (s )) - j(k, t’))
=3 e [ D) g et v ), (Ad)
k) VE() Wk

after achange k — —k in the last term above, using j(—k, t) = j*(k, t) as well as equation (4.12). The second
time-derivative of this expression will then contain the following factor:

T L ek g (e N -l ) = 3 VL e (e, 1) — Rk - 7k, 1)) (A5)

kx V€0 k Véo

where j*T((k, ) =jr(=k t) =j(-k, t) — IA(( k- j(—k, t) ) corresponds to the Fourier-components of a
transverse current j.(x, t) suchthat V - j.(x, t) = 0,and where use have been made of equation (2.20). The
transverse term obtained using equation (A.5) can therefore be written in the form:

—_— Z e**j (—k, t) = 1 > eikx fd3x’ e (X, 1) = 1 irx 1), (A.6)
Véo 60 k €0

where we make use of the fact that
1 S ek = §0)(x — x/) | (A7)
Vv

We have therefore reproduced the source-term in the wave-equation equation (4.13) in the main text and terms

we have left out in the evaluation of 9*(Ar(x, t)) /Ot for (1 (0) |axx|1)(0)) = 0 will satisfy the homogeneous
wave-equation.
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