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Abstract
In an exact quantum-mechanical frameworkwe show that space-time expectation values of the
second-quantized electromagnetic fields in theCoulomb gauge in the presence of a classical conserved
source automatically lead to causal and properly retarded ÿ-independent electromagnetic field
strengths. The classical ÿ-independent and gauge invariantMaxwell’s equations naturally emerge in
terms of quantum-mechanical expectation values and are therefore also consistent with the classical
special theory of relativity. The fundamental difference between interference phenomena due to the
linear nature of the classicalMaxwell theory as considered in, e.g., classical optics, and interference
effects of quantum states is clarified. In addition to these issues, the framework outlined also provides
for a simple approach to invariance under time-reversal, some spontaneous photon emission and/or
absorption processes as well as an approach toVavilov-Čherenkov radiation. The inherent and
necessary quantumuncertainty, limiting a precise space-time knowledge of expectation values of the
quantumfields considered, is,finally, recalled.

1. Introduction

The roles of causality and retardation in classical, ÿ-independent, and quantum-mechanical versions of
electrodynamics are issues that one encounters in various contexts (for recent discussions see, e.g., [1–14]). In
electrodynamics it is natural to introduce gauge-dependent scalar and vector potentials. These potentials do not
have to be local in space-time. It can then be a rather delicate issue to verify that gauge-independent observables
obey the physical constraint of causality and that they also are properly retarded. Attention to this and related
issues are often discussed in a classical frameworkwhere one explicitly shows how various choices of gauge give
rise to the same electromagnetic field strengths (see, e.g., the excellent discussion in [8]). Even though issues
related to causality in physics have been discussed formany years they are still open for investigations andwe are
facing new insights regarding such fundamental concepts. In a recent investigation [12] the near-, intermediate-,
and far-field causal properties of classical electromagnetic fields have, e.g., been discussed in great detail. In
terms of experimental and theoretical considerations, locally backward velocities and apparent super-luminal
features of electromagnetic fields were demonstrated. Such observations do not challenge our understanding of
causality since they describe phenomena that occur behind the light front of electromagnetic signals (see, e.g.,
[7, 12, 14] and references cited therein).

In the present paper, we investigate the problemsmentioned above, in a quantum-mechanical framework.
Some aspects of this were, in fact, already considered a long time ago by Fermi [15]. Herewe consider, in
particular, the finite time and exact time-evolution as dictated by quantummechanics with second-quantized
electromagnetic fields in the presence of arbitrary classical conserved currents.

In terms of suitable and well-known optical quadratures (see, e.g., [16]), the corresponding ÿ-dependent
dynamical equations can then be reduced to a system of decoupled harmonic oscillators with space-time
dependent external forces. No pre-defined global causal order is assumed other than the deterministic
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time-evolution as prescribed by the Schrödinger equation. The classical ÿ-independent theory ofMaxwell
then naturally emerges in terms of properly causal and retarded expectation values of the second-quantized
electromagnetic field for any initial quantum state. This is in line withmore general S-matrix arguments due
toWeinberg [17]. Thus we demonstrate explicitly that the quantized theory of electro-magnetic fields
is an adequate framework for solving a whole set of classical field-theory problems.We also clarify the
fundamental role of quantum-mechanical interference in comparison to classical interference, as expressed
by the linearity ofMaxwell’s equations.

In a straightforwardmanner, we have also extended this kind of presentation to a quantized theory of
gravitational fluctuations around aflatMinkowski space-time, in the presence of a classical source in terms of a
conserved energy-momentum tensor. From this, theweak-field limit of Einstein’s general theory of relativity
emerges. Ourwork on this was presented in a separate publication [18].

The paper is organized as follows. In section 2 we recall, for reasons of completeness, the classical version
of electrodynamics in vacuum and the corresponding issues of causality and retardation in the presence of a
space-time dependent source, and the extraction of a proper set of physical but non-local degrees of freedom.
The exact quantum-mechanical framework approach is illustrated in terms of a second-quantized single-
mode electromagnetic field in the presence of a time-dependent classical source in section 3, where
emergence of the classical ÿ-independent physics is alsomade explicit. In section 4, the analysis of section 3 is
extended tomulti-modes and to a general space-time dependent classical source. The issues of causality,
retardation, and time-reversal are then discussed in section 5. The framework also provides for a discussion
of some radiative processes, and in section 6 we consider dipole radiation, and the famous classical Vavilov-
Čherenkov radiation is reproduced in a straightforward and exactmanner. In section 7, we briefly discuss the
role of the intrinsic quantumuncertainty of expectation values considered. Finally, in section 8, we present
conclusions and final remarks. Somemulti-mode considerations as referred to in themain text are presented
in an appendix.

2.Maxwell’s equationswith a classical source

Unless stated explicitly, we oftenmake use of the notationE≡E(x, t) for the electric field and similarly for other
fields. Themicroscopic classicalMaxwell’s equations in vacuumare then (see, e.g., [19]):

E , 2.1
0
r

 =· ( )

B 0 , 2.2 =· ( )

t
E

B
, 2.3 ´ = -

¶
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( )

t
B j

E
, 2.40 0 0m m ´ = +

¶
¶

( )

with the velocity of light in vacuumas given by c 1 0 0 m= . Equations (2.1) and (2.4) imply current
conservation, i.e.,

t
j 0 . 2.5

r¶
¶

+  =· ( )

The classicalMaxwell’s equations can, of course, bewritten in a form that is explicitly covariant under Lorentz
transformations but this will not be of importance here.

The general vector identity

F F F , 2.62 ´  ´ =   - ( ) ( · ) ( )

applied to the electric fieldE,making use ofMaxwell’s equations (2.3) and (2.4), implies that
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with retarded aswell as advanced solutions. By physical arguments one selects the retarded solution, even though
Maxwell’s equations are invariant under time-reversal as, e.g., discussed by Rohrlich [6].

We nowwrite the electric fieldE and themagnetic fieldB in terms of the vector potentialA and the scalar
potentialf, i.e.,

t
E

A
, 2.8f= -

¶
¶

-  ( )
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and

B A . 2.9=  ´ ( )
TheCoulomb (or radiation) gauge, which, of course, is not Lorentz covariant, is defined by the requirement

A 0 , 2.10 =· ( )

and therefore leads to atmost two physical degrees of freedomof the electromagnetic field.A definedwith this
gauge-choice restriction is denoted byAT. Bymaking use of the vector identity equation (2.6)withF=AT,
Ampère’s law, i.e., equation (2.3), may then bewritten in the form

t
c

A
A

j
, 2.11T
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T
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2
2 2

0
¶
¶

-  = ( )

wherewe have introduced a transverse current jT according to

t
j j . 2.12T 0 fº -

¶
¶

 ( )

Equation (2.11) is, of course, thewell-knownwave-equation for the vector potentialAT in theCoulomb gauge.
The transversality condition∇·jT=0 follows from charge conservation and

E , 2.132

0
f

r
 = - =· ( )

in theCoulomb gauge. Equation (2.13) is, therefore, not dynamical but should rather be regarded as a constraint
on the physical degrees of freedom in theCoulomb gauge enforcing current conservation. The instantaneous
scalar potentialf degree of freedom can therefore be eliminated entirely in terms of the physical charge density ρ
(in this context see, e.g., [20, 21]).

In passingwe also recall that in theCoulomb gauge, the scalar potentialf is, according to equation (2.13),
given by
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Due to the conservation of the current, i.e., equation (2.5), the time derivative offmay bewritten in the form

t

t
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According to thewell-knownHelmholtz decomposition theorem F=FL+FT for a vector field (see, e.g., [19]),
formally written in the form

F F F
1

, 2.16
2

=


  -  ´  ´( ( · ) ( )) ( )

using equation (2.6), we can identify the corresponding longitudinal current jL, i.e.,
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It is now evident that the right-hand side of thewave-equation equation (2.11) for the vector potential can be
expressed in terms of the current j(x, t), i.e.,

t d x
t

j x
j x

x x
,

1

4

,
. 2.18T

3òp
º  ´  ´ ¢

¢
- ¢

( ) ( ( )
∣ ∣

) ( )

The important point here is that jT is an instantaneous and non-local function in space of the physical current
j(x, t).When theHelmholtz decomposition theorem is applied to the vector potentialA=AL+AT, it
follows that the transverse partAT is gauge-invariant but, again, a non-local function in space of the vector
potentialA.

At the classical level, we nowmake a normal-mode Ansatz for the real-valued vector fieldA confined in, e.g.,
a cubic boxwith volumeV=L3 andwith periodic boundary conditions.With k=2π (nx, ny, nz)/L, where nx,
ny, nz are integers, we therefore write

t
V
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1
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i i
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with time-dependent Fourier components qkλ(t). The, in general, complex-valued polarization vectors k; l( )
obey the transversality condition k k; 0 l =· ( ) . They are normalized in such away that

P P k kk k k; ; , 2.20ij ij i j ij i j* å l l dº º = -
l
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wherewe have defined the unit vector k k kºˆ ∣ ∣. In the case of linear polarization the real-valued, orthonormal,
and linear polarization unit vectors k; l( ), withλ=1, 2, are such that k k; 1 ;i i

1 l l- = - l+( ) ( ) ( ). Since
AT itself is independent of the actual realization of the polarization degrees of freedom k; l( ), it is without any
difficulty to express equation (2.19) in terms of, e.g., the complex circular polarization vectors withλ=±, i.e.,

ik k k;
1

2
; 1 ; 2 , 2.21   = ( ) ( ( ) ( )) ( )

such that k k; ;* -  = ( ) ( ).
TheAnsatz equation (2.19) forAT is, of course, consistent with transversality of the current jT in

equation (2.11). Due to the transversality of jT, we can then alsowrite that

t
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i i
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The time-dependence of qkλ(t) is nowdetermined by the dynamical equation equation (2.11) forAT, i.e.,

q t q t j t¨ , 2.23kk k k
2w+ =l l l( ) ( ) ( ) ( )

with c kkw = ∣ ∣. If we define classical real-valued quadratures

Q t q t q t , 2.24k k k
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then

Q t Q t j t j t f t¨ . 2.25kk k k k k
2 *w+ = + ºl l l l l( ) ( ) ( ) ( ) ( ) ( )

This equation has the same form as the dynamical equation for a time-dependent forced harmonic oscillator.
The corresponding quantumdynamics will be treated in the next session.

3. Singlemode considerations

As seen in the previous section, a singlemode of the electromagnetic field reduces to a dynamical system
equivalent to a forced harmonic oscillator with a time-dependent external force. The quantization of such a
system iswell-known (see, e.g., [22–27]) and is presented here in a form suitable for illustrating a calculational
procedure to be used in later sections for finite time intervals.

With only onemode present, wewriteQ≡Qkλ(t),ω≡ωk, as well as f (t)≡fkλ(t). Equation (2.25) then
takes the form

Q Q f t¨ . 3.12w+ = ( ) ( )

This classical equation ofmotion can, of course, be obtained from the classical time-dependentHamiltonian
Hcl(t) for a forced harmonic oscillator with unitmass, i.e.,

H t
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Wequantize this classical systembymaking use of the canonical commutation relation
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WeexpressQ andP in terms of the quantum-mechanical quadratures
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where a a, 1* =[ ] . The classical HamiltonianHcl(t) is then promoted to the explicitly time-dependent
quantum-mechanical HamiltonianH(t) according to
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In general, it is notoriously difficult to solve the Schrödinger equationwith an explicitly time-dependent
Hamiltonian. Due to the atmost quadratic dependence of a and a* in equation (3.6) it is, however, easy to solve
exactly for the unitary quantumdynamics. Indeed, if one considers the dynamical evolution of the system in the
interaction picture with t itH texpI 0 y yñ º ñ∣ ( ) ( )∣ ( ) , wherewe for conveniencemake the choice t0=0 of
initial time, then

i
d t

dt
H t t . 3.8I

I I
y

y
ñ

= ñ
∣ ( ) ( )∣ ( ) ( )

For observables in the interaction picturewe also have that

t itH itHexp exp . 3.9I 0 0  º -( ) ( ) ( ) ( )

In our case H a a 1 20 *w= +( ) and therefore

H t g t ae a e . 3.10I
i t i t*= +w w-( ) ( )( ) ( )

The explicit solution for t Iy ñ∣ ( ) is then given by
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for any initial pure state 0y ñ∣ ( ) . Equation (3.11) can easily be verified by, e.g., considering the limit t 0D  of
t t t tI Iy y+ D ñ - ñ D(∣ ( ) ∣ ( ) ) using that A B A B A Bexp exp exp exp , 2+ = -( ) ( ) ( ) ( [ ] ) if [A,B] is a c-number.

The c-number phasef(t) can then be computed according to
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t
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since, in our case, N t H t, I¢ ¢[ ( ) ( ) ] is a c-number.We therefore see that, apart from a phase, the time-evolution
in the interaction picture is controlled by a conventional displacement operator as used in various studies of
coherent states (see, e.g., [28, 29] and references cited therein).

The expectation value of the quantum-mechanical quadratureQ in equation (3.4) at time t, i.e.,
Q t t Q t t Q t tI I Iy y y yá ñ º á ñ = á ñ( ) ( )∣ ∣ ( ) ( )∣ ( )∣ ( ) , can now easily be evaluated for an arbitrary initial pure state

0y ñ∣ ( ) with the result
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where 0 á ñ º á ñ( ) for the initial expectation value of an observable . In equation (3.14)we, of course,
recognize the general classical solution of the forced harmonic oscillator equations ofmotion equation (3.1), i.e.,

d

dt
Q t Q t f t , 3.15

2

2
2wá ñ + á ñ =( ) ( ) ( ) ( )

in terms of its properly retardedGreen’s function (see, e.g., [30]). The last term in equation (3.14) is classical in
the sense that it does not depend on ÿ. Possible quantum-interference effects are hidden in the homogeneous
solution of equation (3.15). Similarly, wefind for theP-quadrature in equation (3.5) that P t d Q t dtá ñ = á ñ( ) ( )
ormore explicitly:
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dt f t t t
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Even though the classical equation ofmotion emerges in terms of quantum-mechanical expectation values,
intrinsic quantumuncertainty for any observable as defined by

t t t , 3.172 2  y yD º á - á ñ ñ( ) ( ) ( )∣( ) ∣ ( ) ( )

is in general present. For Q = onefinds that

Q t Q t P
t t t
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2 , 3.182 2 2 2
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2
w

w
w

w w
w

D = D + D + á + - á ñá ññ( ) ( ) ( ) ( ) ( )

independent of the external force f (t). Forminimal dispersion states, i.e., states for whichΔQΔP=ÿ/2, the last
term is zero. For coherent states one thenfinds the intrinsic and time-independent quantum-mechanical
uncertainty Q t 22  wD =( ) ( ) and P t 22 wD =( ) ( ) .
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The classical equationofmotion equation (3.15) allows for linear superpositions of solutions. Such linear
superposition are, however, not directly related to quantum-mechanical superpositions of the initial quantumstates
since expectation values are non-linear functions of quantum states. For number states n a n0n*ñ º ñ∣ ( ) ∣ ! , with
a 0 0ñ =∣ , which in termsof, e.g., aWigner functionhave no classical interpretation except for the vacuumstate 0ñ∣
(see, e.g., [16]), wehave that Q P 0á ñ = á ñ = but Q t P t n 1 22 2 2 w wD = D = +( ) ( ) ( ) ( ) ( ) . For an initial

state of the form 0 0 1 2y ñ = ñ + ñ∣ ( ) (∣ ∣ ) wefind that Q 2 wá ñ = and P 0á ñ = with an intrinsic time-
dependent quantumuncertainty, e.g., Q t t2 cos 22 2 w wD = -( ) ( ) ( ) . This initial state therefore leads to
expectation values that donot correspond to a superposition of the classical solutions obtained from the initial states
0ñ∣ or 1ñ∣ . This simple example demonstrates the fundamental difference between the roleof the superposition
principle in classical and in quantumphysics. It is a remarkable achievement of experimental quantumoptics that
suchquantum-mechanical interference effects between the vacuumstate and a single-photon state have been
observed [31, 32] (for a related discussions also see [33–37]). In the next sectionweextend this simple single-mode
case to the generalmulti-mode space-timedependent situation.

4.Multi-mode considerations

Wewill now consider emission as well as absorption processes of photons in the presence of a general space-time
dependent classical source as illustrated infigure 1. In themulti-mode case the interactionHamiltonianHI(t) for
a classical current j is now an extension of the single-mode version equation (3.10). In theCoulomb gauge and in
the interaction picture, we therefore consider

H t d x t t

V
t a e t a e

j x A x

j k k j k k

, ,

2
, ; , ; , 4.1

I
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i t i t
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3
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

ò
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=- +
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l
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l
w-

( ) ( ) · ( )

( ( ) · ( ) ( ) · ( ) ) ( )

with the ‘free’fieldHamiltonian

H a a
1

2
. 4.2k

k
k k0 *å w= +

l
l l⎜ ⎟⎛

⎝
⎞
⎠ ( )

Herewe have introduced the Fourier transformed current

t d x e tj k j x, , . 4.3
V

ik x3òº( ) ( ) ( )·

Since t tj k k k j k, ,L =( ) ˆ ( ˆ · ( )) and t t tj k j k j k, , ,T L= -( ) ( ) ( ), it is clear due to the transversality condition
k k; 0 l =· ( ) that only the transverse part of the current contributes in equation (4.1).

The interaction equation (4.1) therefore corresponds to a systemof independent forced harmonic oscillators
of the one-mode form as discussed in the previous section. The second-quantized version of the vector-potential
in equation (2.19) then has the formof a free quantumfield, i.e.,

Figure 1.Absorption and emission of photons from a classical current j(x, t).
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with the basic canonical commutation relation
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andwherewe recall that c kkw = ∣ ∣. The vacuum state 0ñ∣ is then such that a 0 0k ñ =l∣ for all quantumnumbers
kλ. The quantum fieldAT is then normalized in such away that
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where, for the free field in equation (4.4), wemake use of tE AT T= -¶ ¶ and B A AT=  ´ =  ´ .
If we consider the circular polarization vectors k; ( ) according to equation (2.21), we have to replace the

annihilation operators akl with

a a ia
1

2
. 4.7k k k1 2= ( ) ( )

We then observe that

a ak k; ; , 4.8k k
1,2

 å ål l=
l

l
l

l
= =
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whichmeans that the quantum fieldAT does not depend on the actual realization of the choice of polarization
degrees of freedom.

The single photon quantum states ak 0k*lñ º ñl∣ ∣ , withλ=±, will then carry the energy ÿωk, momentum

ÿk aswell as the intrinsic spin angularmomentum±ÿ along the direction k̂ , i.e., the helicity quantumnumber
of amassless spin-one particle. In passing, we remark that the latter property can be inferred from a
consideration of a rotationwith an angle θ around thewave-vector k in terms of a rotationmatrixRij(θ), which
implies that a a i aexpk k kq q =   ( ) ( ) . In terms of the corresponding rotated polarization vectors

Rk k; ;i ij j l q q l=( ∣ ) ( ) ( )we then have, in accordance with equation (4.8), that

a ak k; ; . 4.9k k
1,2

 å ål l q q=
l

l
l

l
= =

( ) ( ∣ ) ( ) ( )

In addition to the intrinsic spin angularmomentum, photon states can also carry conventional orbital
angularmomentumwhich plays an important role inmany current contexts (see, e.g., [38] and references
cited therein) but will not be of concern in the present work. A complete set of physical andwell-defined
Fock-states can then be generated in a conventionalmanner. By construction, these states have positive norm
avoiding the presence of indefinite norm states inmanifestly covariant formulations (for some considera-
tions see, e.g., [39–41]).

Since, obviously,

dt H t
V

dt a e t a e tk j k k j k
2

; , ; , ,

4.10

t

I
k

t
i t i t

k
k k

0 0 0

k k* * * 
ò òå w

l l¢ ¢ = - ¢ ¢ + ¢
l

l
w

l
w- ¢ ¢( ) ( ( ) · ( ) ( ) · ( ))

( )

we conclude that the time-evolution for t Iy ñ∣ ( ) in equation (3.11) is, apart from a phase factor, given by amulti-
mode displacement operator

D
i

dt H t t a t aexp exp . 4.11
t

I
k

k k k k
0

* *
 ò a a aº - ¢ ¢ = -

l
l l l l⎜ ⎟⎛

⎝
⎞
⎠( ) ( ) ( ( ) ( ) ) ( )

Here tka l ( ) is, as inferred from equation (4.10), explicitly given by

t
i

V
dt e tj k k

2
, ; , 4.12

k

t
i t

k
0 0

k * *



 òa
w

lº ¢ ¢l
w ¢( ) ( ) · ( ) ( )

with t tj k j k, ,* = -( ) ( ). The displacement operator D a( ) has the formof a product of independent single-
mode displacement operators. Bymaking use of equation (3.11), and by considering the action on the vacuum
state, the quantum-mechanical time-evolution generates amulti-mode coherent state D 0a ñ( )∣ , apart from the
ÿ-dependent phasef (t) in equation (3.11). As in the single-mode case, the time-dependent expectation value of
the transverse quantumfieldAT(x, t)will then obey a classical equation ofmotion similar to equation (3.15), i.e.,
(see appendix)

t

t
c t

tA x
A x

j x,
,

,
, 4.13T

T
T

2

2
2 2

0
¶ á ñ

¶
-  á ñ =

( ) ( )
( )

( )
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to be investigated inmore detail in section 5. In otherwords, there are particular quantum states of the radiation
field, namelymulti-mode coherent states, which naturally lead to the classical electromagnetic fields obeying
Maxwell’s equations equations (2.1)–(2.4) in terms of quantum-mechanical expectation values.

5. The causality issue

The expectation value of the transverse second-quantized vector fieldAT is now given by equation (A.4), i.e.,

t
d k

e dt
t t

d x e tA x j x,
1

2

sin
, , 5.1T

i
t

k

k

i
T

k x k x

0

3

3 0

3

 ò ò òp
w
w

á ñ = ¢
- ¢

¢ ¢ ¢- ¢( )
( )

( ( )) ( ) ( )· ·

wherewe have carried out a sumover polarizations according to equation (2.20) as in equation (A.5), andwhere
the sumover k in the large volumeV limit is replaced by

V
d k

2
. 5.2

k
3

3òå p
=

( )
( )

The Fourier transformof the transverse current vector in equation (5.1) is as above given by

t d xe tj k j x, , . 5.3T
i

T
k x3òº( ) ( ) ( )·

The time-derivative of equation (5.1) can nowbewritten in the form

t

t
d x dt

t
G t t t t

A x
x x j x j x

, 1
, , , , 5.4T

t

L
0

3

0 ò ò
¶á ñ

¶
= ¢ ¢

¶
¶

- ¢ - ¢ ¢ ¢ - ¢ ¢
( ) ( )( ( ) ( )) ( )

bymaking use of theHelmholtz decomposition of the current vector j(x, t), andwherewe identified theGreen’s
functionG(x, t)

G t
V

e
t d k

e
t

c
t c t c

x

x
x x

, lim
1 sin

2

sin

1

4
. 5.5

V

i k

k

i k

kk

k x k x
3

3

2

òå w
w p

w
w

p
d d

º =

= - - +

¥
( ) ( )

( )
( )

∣ ∣
( ( ∣ ∣ ) ( ∣ ∣ )) ( )

· ·

ThisGreen’s function is a solution to the homogeneouswave-equation

G t

t
c G t

x
x

,
, , 5.6

2

2
2 2¶

¶
= 

( ) ( ) ( )

such thatG(x, t)=0 and∂G(x, t)/∂ t=0 at t=0. For the second term in equation (5.4)weneed to consider
the integral

d x dt
t

G t t
t

tI x x x, , . 5.7
t

3

0
ò ò fº ¢ ¢

¶
¶

- ¢ - ¢ ¢
¶
¶ ¢

¢ ¢( ) ( ) ( )

This is so since the longitudinal vector current jL(x, t)may bewritten in the form

t
t

d x
t

t
tj x

x

x x
x,

1

4

,
, , 5.8L

3
0òp

r
f=

¶
¶

 ¢
¢
- ¢

=
¶
¶

( ) ( )
∣ ∣

( ) ( )

wherewemake use of theHelmholtz decomposition equation (2.17) and current conservation. After a partial
integration in the time variable t ¢ and bymaking use of equation (5.6), the integral I can therefore bewritten in
the following form

t c d x dt G t t tI x x x x, , , , 5.9
t

2 3

0
ò òf f=  + ¢ ¢¢ ¢ - ¢ - ¢ ¢ ¢ ¢( ) · ( ) ( ) ( )

wherewe have used the fact that G t tx x, 3d¶ ¶ =( ) ( ) at t=0 as well as the initial condition jL(x, 0)=0 for all
x.We nowperform two partial integrations over the spatial variable and by using equation (2.13), wefinally see
that

t
c

d x dt G t t tI x x x x, , , , 5.10
t2

0

3

0 ò òf r=  - ¢ ¢ - ¢ - ¢ ¢ ¢ ¢( ) ( ) ( ) ( )

neglecting spatial boundary terms and using the initial condition ρ(x, 0)=0 for all x. Thefirst term in
equation (5.10) exactly cancels the instantaneous Coulombpotential contribution in the expectation value of the
quantized electric field observable

t
t

t
tE x

A x
x,

,
, . 5.11T fá ñ = -

¶á ñ
¶

- ( ) ( ) ( ) ( )
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For t t> ¢, we therefore obtain the desired result

t
t c

d x
t c

d x
t c

E x
j x x x

x x

x x x

x x
,

1

4

, 1

4

,
, 5.12

0
2

3

0

3

 ò òp p
r
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¶
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¢
¢ - - ¢
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- ¢

⎛
⎝⎜

⎞
⎠⎟( ) ( ∣ ∣ )

∣ ∣
( ∣ ∣ )

∣ ∣
( )

where tx ,r¢ ¢ ¢( ) in equation (5.12)has to be evaluated for afixed value of t t cx x¢ = - - ¢∣ ∣ . In a similar
mannerwe also see that

t t d x dt G t t t

d x t c

B x A x x x j x

x x
j x x x

, ,
1

, ,

4

1
, , 5.13

T

t

T
0

3

0

0 3

 ò ò

ò
m
p

á ñ =  ´ á ñ = ¢ ¢ - ¢ - ¢ ¢ ´ ¢ ¢

= ¢
- ¢

¢ ´ ¢ - - ¢

( ) ( ) ( ) ( )

∣ ∣
( ∣ ∣ ) ( )

since t tj x j x, ,T¢ ´ ¢ ¢ = ¢ ´ ¢ ¢( ) ( ). In equation (5.13), we remark again that tj x ,¢ ´ ¢ ¢( ) has to be
evaluated for afixed value of t t cx x¢ = - - ¢∣ ∣ . The causal and properly retarded formof the electric and
magnetic quantumfield expectation values in terms of the physical and local sources given have therefore been
obtained (see in this context, e.g., [19], section 6.5).

The expectation values as given by equations (5.12) and (5.13) obeyMaxwell’s equations in terms of the
classical charge density ρ and current j. The quantization procedure above of the electromagnetic field explicitly
breaks Lorentz covariance. Since, however,Maxwell’s equations transform covariantly under Lorentz
transformationswe can, nevertheless, now argue that the special theory of relativity emerges in terms of
expectation values of gauge-invariant second-quantized electromagnetic fields.

Maxwell’s equations ofmotion according to equations (2.1)–(2.4) are invariant under the discrete

time-reversal transformation t t t ¢ = - with t t tE x E x E x, , ,


¢ = -( ) ⟶ ( ) ( ) and
t t tB x B x B x, , ,


¢ = - -( ) ⟶ ( ) ( ) provided t t tj x j x j x, , ,


¢ = - -( ) ⟶ ( ) ( ) and

t t tx x x, , ,


r r r¢ = -( ) ⟶ ( ) ( ). At the classical level, the corresponding transverse vector potential
transforms according to t t tA x A x A x, , ,T T T


¢ = - -( ) ⟶ ( ) ( ). The anti-unitary time-reversal transformation

 is implemented on second-quantized fields in the interaction picture according to the rule (see, e.g., [20,
42–44])

t t t t t t t t tA x A x A x, , , . 5.14I T I I T I I T I
1 


y y y y y yá ñ á ¢ ñ = á - - ñ-( )∣ ( )∣ ( ) ⟶ ( )∣ ( )∣ ( ) ( )∣ ( ) ∣ ( ) ( )

It then follows that t t t t t tA x A x, ,I T I I T Iy y y yá ¢ ñ = - á - - - ñ( )∣ ( )∣ ( ) ( )∣ ( )∣ ( ) if a a 1k k
1  = -l l

l-
- ( ) and

provided the vacuumstate 0ñ∣ is invariant under time-reversal.We thereforefind that t tA x A x, ,T Tá ¢ ñ = -á - ñ( ) ( ) .
We therefore obtain t tE x E x, ,


á ñ á - ñ( ) ⟶ ( ) and t tB x B x, ,


á ñ - á - ñ( ) ⟶ ( ) as it should.Due to the formof

theGreen’s functionG(x, t) in equation (5.5) it canbe verified that equation (5.1) also leads to expectation values
tE x,á ñ( ) and tB x,á ñ( ) that transformcorrectly under time-reversal.

The arrow of time can therefore, as expected, not be explained by our approach but as soon as the direction
of time is defined the observable quantities tE x,á ñ( ) and tB x,á ñ( ) are causal and properly retarded. In the
presence of external sources we could have an apparent breakdown of time-reversal invariance unless one also
time-reverses the external sources.

6. Electromagnetic radiation processes

The rate for spontaneous emission of a photon from, e.g., an excited hydrogen atom can nowbe obtained in a
straightforwardmanner in terms of a slight extension of the interaction equation (4.10) as to bemade use of in
first-order time-dependent perturbation theory.We thenmake use of the longwave-length approximation

t d x t
t

d x t q
d

dt
tj k j x x x x, , , , 6.13 3ò ò r» =

¶
¶

=( ) ( ) ( ) ( ) ( )

taking current conservation equation (2.5) into account, where t q tx x x, 3r d= -( ) ( ( ))( ) in terms of the
position x(t) of the charged electron in the interaction picture. For the spontaneous single photon transition
i fñ  ñ∣ ∣ with i a 0iñ = ñ Ä ñ∣ ∣ ∣ and f a kf lñ = ñ Ä ñ∣ ∣ ∣ , we then arrive at the standard dipole radiationfirst-
ordermatrix element

f H i
V

a ak x0 i.e.
2

; , 6.2I
k

if f i
0

*
 w

w lá ñ = á ñ∣ ( )∣ ( ) · ∣ ∣ ( )

using equation (4.10)with q e= - in the interaction picture. The relevantmatrix element a t axf iá ñ∣ ( )∣ is then
given by i t a axexp if f iw- á ñ( ) ∣ ∣ . For the atomic transition from a nlm pm2iñ = ñ = ñ∣ ∣ ∣ to thefinal atomic ground
state a s1f ñ = ñ∣ ∣ , the corresponding rate is then given by
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l
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in terms of thefine-structure constant e c42
0 a pº and the Bohr radius aB. The rateΓ is independent

of the quantumnumberm. Stimulated emission gives rise to amultiplicative factor (1+nkλ). Equation (6.3)
is, of course, a well-known text-book result in agreementwith the experimental value (see, e.g., [45]). The
considerations above can be extended to graviton quadrupole radiation processes in an analogousmanner [18].

The power of electromagnetic emission from a classical conserved electric current in, e.g., a non-dissipative
dielectricmedium and the famousVavilov-Čherenkov [46] radiation can, furthermore, now also be derived in
terms of the quantum-mechanical framework above. This formof radiationwas first explained by Frank and
Tamm [47] using the framework ofMaxwell’s classical theory of electromagnetism. The exact classical ÿ-
independent expression for the power of Vavilov-Čherenkov radiation (see, e.g., Section 13.4 in [19]), neglecting
possible spin effects to be discussed elsewhere [48], can nowbe obtained as follows. For a particle with electric
charge q, massm, and an initial velocity v, moving in dielectricmedium such that 0 0  , with ò>1, the
interactionHI(t) in equation (4.10) leads to a displacement operatorD(α) (see equation (4.11))withαkλ(t)now
replaced by

t
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dt e d x t e
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where the relativistic current j(x, t) in an inertial frame is given by

t q tj x v x v, . 6.53d= -( ) ( ) ( )( )

The powerP(ω)dω of emitted radiation in the rangeω toω+dω is then obtained by evaluating the exact
expression d H t dt0á ñ( ) , using equation (6.4), where

d H t

dt

d

dt
t d P , 6.6

k
k

0 2

0

c

òå a w w
á ñ

= º
l

l
w( ) ∣ ( )∣ ( ) ( )

in the large volumeV limit, and by considering the largeT t t0º - limit. The cut-off angular frequency
mcc

2 w  is to be determined in a standardmanner taken theω-dependence of ò into account (see, e.g.,
[19]). Herewe can, of course, disregard the additive divergent zero-point fluctuations in H t0á ñ( ). The largeT
limit leads to a phase-matching condition vkk v cosk Cw q= =· , using v vº ∣ ∣and k kº ∣ ∣, expressed in terms
of thewell-knownČherenkov angle c nvcos Cq º , where ck nkw = with the refractive index n º . The
λ-sumover the polarization degrees of freedom in equation (6.6) leads to

v k v; 1 cos , 6.7
1,2

2 2 2å l q= -
l=

∣( · ( )∣ ∣ ∣ ( ) ( )

using equation (2.20), where, in general, v kcos q º ˆ · ˆ in terms of the unit vectors. In summing over the angular
distribution of the radiation emitted in equation (6.6), the largeT phase-matching condition is taken into
account.We then easilyfind thewell-known ÿ-independent power spectrum

P
e

c

v

c4
1 cos . 6.8C

2

0

2


w

p
w q= -( ) ( ) ( )

Alternatively, but in a less rigorousmanner, onemay consider H t T0á ñ( ) andmake use of equation (6.4) in the
largeT-limit, i.e.,

t q
i

V
k v v k2

2
; . 6.9

k
kk

0

*





a p
w

d w l= -l ( ) ( · ) · ( ) ( )

By inspectionwe then observe that tka l ( ) in equation (6.9) exactly corresponds the quantum-mechanical
amplitude for the emission of one photon from the source tofirst-order in time-dependent perturbation theory
even though our expression for tka l ( ) is exact.

We have therefore derived a power spectrum that exactly corresponds to the 1937 Frank-Tammexpression
[47] in terms of theČherenkov angle cos Cq as obtained from the δ-function constraint in equation (6.9). In the
quantum-mechanical perturbation theory language this constraint corresponds to an energy-conservation δ-
function as awell as to conservation ofmomentum taking the refractive index n º into account. The
corresponding energy of the emitted photon is then given by Eγ=ÿω and theMinkowski canonicalmomentum
by p k=g (see, e.g., [49]), with c nkw = ∣ ∣ . The expression for theČherenkov angle cos Cq is thenmodified
according to [50]
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Aswas first noted byGinzburg ([50] and references cited therein), and also presented in various text-books
accounts (see, e.g., [51, 52]),first-order perturbation theory in quantummechanics actually leads to the same
exact power spectrum forVavilov-Čherenkov radiation. The explanation of this curious circumstance can be
traced back to the fact that all higher order corrections are taken into account by the presence of the phasef(t) in
equation (3.11).

7.Quantumuncertainty

The displacement of quantum states as induced by D a( ), as defined in equation (4.11), acting on an arbitrary
pure initial state again leads toMaxwell’s equations for the expectation value of the quantumfield changing, at
most, the homogeneous solution of the expectation value of thewave-equation (4.13). The corresponding
quantumuncertainty ofE(x, t), however, depends on the choice of the initial state along the same reasoning as in
the single-mode case in section 3. An essential and additional ingredient with regard to the approach to the
classical limit is to consider the variance of, e.g., the second-quantized E(x, t)-field suitably defined.We consider
the scalar quantity

t t tE x E x E x, , , . 7.12 2 2D º á ñ - á ñ( ( )) ( ) ( ) ( )

Weobserve that the uncertainty in equation (7.1) in general does not depend on the complex parametersa
when evaluated for the displaced state D 0a y ñ( )∣ ( ) and is therefore determined by the uncertainty as determined
by the initial state 0y ñ∣ ( ) .

In order to be specific, wewill evaluate the uncertainty tE x,D ( ) for a displaced Fock state with
n n0 ..., ,...., ,..k ky ñ = ñl l¢ ¢∣ ( ) ∣ .We then obtain

t
V

nE x,
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2
. 7.2k

k
k

2

0

 åe
wD = +

l
l⎜ ⎟⎛

⎝
⎞
⎠( ( )) ( )

Physical requirements nowdemand that the uncertainty tE x,D ( )must be smaller than expectation values of
the components of the second-quantized electromagnetic field tE x,( ). If the sum in equation (7.2) had been
convergent, the variancewould have vanished in the naive limit 0  . Since the natural constant ÿ is non-zero,
the sum in equation (7.2) is, however, divergent.

Even though the expectation value of the quantumfield at a space-time point (x, t) in our case is well-
defined, the corresponding uncertainty is therefore actually divergent. Thismeans that the observable value of
the quantumfield in a space-time point (x, t) is physically ill-defined. In the early days of quantumfield theory,
this fact was actually noticed already in 1933 byBohr andRosenfeld [53] and later proved in a rigorousmanner
byWightman [54]. Bohr andRosenfeld also provided a solution of this apparent physical contradiction. The
basic idea is to introduce quantumfield observables averaged over somefinite space-time volume. Bohr and
Rosenfeldmade use of a cube centered at the space-point x at afixed time twhich, however,makes some of the
expressions obtained rather complicated.Wewill follow another approachwhichmakes the expressionsmore
tractable (see, e.g., problem 2.3 in [20]), i.e., we consider

t dt d x f f t t tE x x x E x, , , 7.3
V

s t
3ò òº ¢ ¢ - ¢ - ¢ ¢ ¢s
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The parameterσs gives a characteristic scale for the space-volume around the point xwherewe perform the
space average. Correspondingly, the parameterσt gives a characteristic time-scale for the time average
procedure.

The linear classicalMaxwell’s equations can then again be obtained as in the previous sections in terms of the
quantum-mechanical average offields likeEσ(x, t) provided that the classical sources are space and/or time
averaged in the samemanner. It now follows that
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The variance tE x, 2D s( ( )) of the space and time averaged electric quantumfieldEσ(x, t), in a sufficiently large
quantization volumeV, will then befinite and corresponds to an energy

t E
c

E x,
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2

2
, 7.70

2 3
3

e s
p

p
s
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localized in a volumeV V3sºs  , where

c . 7.8s t
2 2 2 2s s sº + ( )

It is now clear thatEσwill befinite in the cases 0, 0t ss s= ¹ aswell as 0, 0s ts s= ¹ .
Physically, the expression in equation (7.7) corresponds, apart from an irrelevant numerical factor, to the

energy of a photonwith awave-lengthλ;σ and, hence, a wave-number k;2π/σ and therefore to an energy
E ck c2 p ss   , in a typical localization volumeVσ. It is now clear that Eσwill tend to infinity as 0s  ,
i.e., wewould then obtain an arbitrarily large energy and/or energy density if we try to localize the quantumfield
in the sense above in an arbitrary smallVσ. Amacroscopic field, however, corresponds to a localization volume
much larger thanVσ, and therefore these quantumuncertainties can be disregarded in the classical regime.

This latter feature can be illustrated by evaluating tE x, 2D s( ( )) for a thermal Planck distribution of nkλ at a
temperatureTwith a typical coherence length scale c k TT Bs º . For localization scalesσ=σT, i.e., at
sufficiently small temperatures, one thenfinds that t EE x, 1 4 15T0

2 3 4 4e s p s sD = +s s( ( )) ( ( ) ). The thermal
induced uncertainty can therefore be neglected in comparisonwith Eσ for large thermal coherence lengthsσT as
compared toσ. If, on the other hand,σT�σ, i.e., at sufficiently high temperatures, it follows that

t k TE x, 1 8 4B T0
2 3 2 3 2e s s s pD = +s( ( )) ( ( ) ) and, as expected, the thermal uncertainty will then be

dominating at sufficiently high temperatures.
Aswas predicted a long time ago for single-mode quantumfields [55], it is possible to reduce the uncertainty

tE x, 2D( ( )) below the vacuumvalue bymaking use of initial squeezed quantum states 0y ñ∣ ( ) . This feature has
recently been confirmed experimentally ([56] references cited therein). Formulti-mode considerations, relevant
for the framework of the present work, thismay also be possible for tE x, 2D s( ( )) but this will not be a topic in
the present paper.

8. Final remarks

Wehave shown how a quantum-mechanical framework offers a good platform to analyze causality and
retardation issues in the classical theory ofMaxwell. Aswe have shown elsewhere, our quantum-mechanical
framework can rather easily be extended to a derivation of theweak-field limit of Einstein’s general theory of
relativity [18]. From second-quantization of the physical degrees of freedomunder the condition of current
conservation thewell established classical theory for electromagnetismnaturally emerges. The overwhelming
experimental support forMaxwell’s classical theory does not necessarily imply the existence of photons and
doubts on the existence of such quantum states are sometimes put forward (see, e.g., [57]). However, the
quantum-mechanical derivation of the classical theory necessarily implies the existence of single particle
quantum states corresponding to a photon.

We have also observed that various radiation processes including the classical, i.e., ÿ-independent, Vavilov-
Čherenkov radiation can be obtained in a straightforwardmanner. Itmay come as a surprise that afirst-order
quantum-mechanical perturbation theory calculation can give an exact ÿ-independent answer. This, as it seems,
remarkable fact is explained by the factorization of the time-evolution operator in terms of a displacement
operator for quantum states in the interaction picture according to equation (3.11)making use of
equation (4.10). The phasef(t) then contains the non-perturbative effects of all higher-order corrections to the
first-order result.

As amatter of fact, similar features are known to occur also in some other situations. As is well-known, the
famous differential cross-section for Rutherford scattering can be obtained exactly in terms of the first-order
Born approximation. All higher order correctionswill then contribute with an overall phase for probability
amplitudes which follows from the exact solution (see, e.g., the excellent discussion in [58]). The classical
Thomson cross-section for low-energy light scattering on a charged particle is also exactly obtained fromaBorn
approximation due to the existence of an exact low-energy theorem in quantum electrodynamics (see, e.g., the
discussions in [2, 3, 59]).
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Appendix. expectation value of the quantumfield AT(x, t)

Apart from a phase-factor, the time-evolution in the interaction picture is controlled by the operator

i
dt H t t a t aexp exp , A.1

t
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k k k k
0

* *
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l
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whereαkλ(t) is given by equation (4.12) in themain text. Since expectation values are independent of the picture
used, i.e.,
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If we, in particular, consider initial states 0y ñ∣ ( ) such that a0 0 0ky yá ñ =l( )∣ ∣ ( ) for all kλ, like quantum states
with afixed number of photons, wefind that
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after a change k k - in the last term above, using t tj k j k, ,*- =( ) ( ) aswell as equation (4.12). The second
time-derivative of this expressionwill then contain the following factor:
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where t t t tj k j k j k k k j k, , , ,
T T
* = - º - - -( ) ( ) ( ) ˆ ( ˆ · ( ) ) corresponds to the Fourier-components of a

transverse current tj x,T ( ) such that tj x, 0T =· ( ) , andwhere use have beenmade of equation (2.20). The
transverse termobtained using equation (A.5) can therefore bewritten in the form:

V
e t

V
e d x e t tj k j x j x

1
,

1
,

1
, , A.6i

T
i i

T T
k

k x

k

k x k x

0 0

3

0  òå å- = ¢ ¢ =- ¢( ) ( ) ( ) ( )· · ·

wherewemake use of the fact that

V
e x x
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Wehave therefore reproduced the source-term in thewave-equation equation (4.13) in themain text and terms
we have left out in the evaluation of t tA x,T

2 2¶ á ñ ¶( ) for a0 0 0ky yá ñ ¹l( )∣ ∣ ( ) will satisfy the homogeneous
wave-equation.
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