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Sammendrag

I denne masteroppgaven er kraftsystemet studert ved bruke det kanoniske ensem-
blet fra statistisk mekanikk. Relativt nye fremskritt lar oss inkludere dynamikken
i kontinuerlige tilstandsvariabler som modellerer av/p̊a status i transmisjonsliner i
et system styrt svingeligningen. Det viser seg at denne modellen kan beskrives av
en Hamiltonian-aktig energifunksjon. Ved bruke energifunksjonen kan vi evaluere
systemet fra et energetisk synspunkt, noe som muliggjr bruken av det kanoniske
ensemblet. Noen av resultatene er enkle tolke og gir mening, mens andre ikke.
Endringer i energifunksjonen som fasiliterer arbeidet fra et energetisk standpunkt
er foresl̊att og utprøvd. Resultaten av arbeidet er positive, men gir ikke grunnlag
for konkludere om en statistisk mekanisk tilnrming er nyttig eller ei.
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Abstract

In this thesis the power system is studied using the canonical ensemble from sta-
tistical mechanics. Relatively new developments allow us to include in a swing
equation model the dynamics of continuous state variables modeling the on-off
status of transmission lines. It turns out that this model can be described by a
Hamiltonian-like energy function. Using the energy function we can evaluate the
system from an energetic viewpoint, making the application of the canonical en-
semble possible. Some of the results give clear meaning and are easily interpreted,
while other parts less so. Changes to the energy function to make it easier to
work with from an energetic viewpoint are proposed and tested. The results of this
work are positive, but inconclusive in determining the usefulness of a statistical
mechanical approach.
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Chapter 1

Introduction

Large blackouts or cascading outages are events in the electrical power system that
have a very small probability of occurring but very serious societal consequences
if they do. For this reason, such events are also referred to as high-impact low-
probability (HILP) events or extraordinary events. Understanding and identifying
such events has proven to be a great challenge that defeats conventional methods of
power system analysis. Such problems are challenging because cascading outages
involve a large and diverse number of complex phenomena.Furthermore, power
transmission systems consist of thousands of components, adding another layer of
complexity.

This problem has attracted interest from the physics community. The ap-
proaches used can be divided into two groups. The first being complex network
modeling of the power system, which relies on purely topological measures of the
network quality (however one wants to define it), and which has been quite exten-
sively investigated [1, 2]. These approaches usually include quasi static modeling of
power flows, disregarding the dynamic nature of the power system, and it follows
that they are limited in the amount of insight they can provide.

However, dynamic modeling of the power system [3–6], gives a more detailed de-
scription of the system than the complex network approach. This set of approaches
can be made arbitrarily complex to the point where a physicist would be better
off leaving the job to an electrical engineer. There are, however, opportunities to
consider simpler models which might lend themselves to be studied with tools from
the physicist’s toolbox.

Apart from this there seems to be no statistical mechanical approaches using
power grid models. General complex networks have been studied using statistical
mechanics e.g. [7–9] but this has not been done with complex network models of
the power system, much less with more detailed power system models. This is then
pretty much uncharted territory which is an interesting point of departure for a
master’s thesis.

As mentioned, the power system consists of many components. Each of these
components can be considered as moving parts of a mechanical system. This en-
compasses the physically moving parts such as generators, as well as parts that can
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be represented by moving state variables such as the on/off status of a transmission
line. Depending on how the power system is modeled, the behavior of all its moving
parts may be determined from a set of initial conditions. However, as alluded to
earlier, the number of different initial conditions and moving parts one would have
to consider to be able to make a statement about the systems stability is potentially
enormous. This is a problem that has already been encountered in several areas of
physics. Examples include determining the thermodynamic properties of a gas of
particles or magnetic spins on a lattice.

The act of connecting knowledge of the systems microscopic behavior (the equa-
tions of motion of its moving parts) to its macroscopic behavior (the collective
behavior), known as statistical physics, has been the way of solving large systems
without having to solve an unreasonable amount of equations. Particularly, the
notion of a statistical ensemble is at the head of this approach. This formalism is
able to describe what is known as a phase transition, during which the properties
of the system change, often discontinuously.

Blackouts and cascading outages are examples of collective behavior, that show
signs of being phase transitions[10], in the power system that are governed by the
system’s structural, not thermal, properties in the sense that transmission line
and network node outages change the network topology and operations. This is
seemingly at odds with the thermodynamic foundation of ensembles in statistical
mechanics. Regardless of this divide, can a statistical mechanical approach yield
insights into blackouts and cascading outages?

As has been mentioned, physicists have already made contributions in this
space through studies of complex network and dynamical models. Is a statistical
mechanical approach able to produce the same results? Can it produce new results?

1.1 Objectives

The main objective of the master thesis is to investigate blackouts or cascad-
ing outages in power systems through the application of methods from statistical
mechanics.
Intermediate objectives to accomplish this include

-Choosing a model that facilitates/enables a statistical mechanical treatment
-Identify suitable statistical mechanical method(s)
-Compare the results obtained to previous work
-Investigate the behavior of different network types and explain any differences
-Evaluate the viability of this approach

1.2 Scope

Explain in short the limitations of a statistical mechanical approach and the chosen
model. What kind of phenomena will be modeled and what can be inferred by this.

In this thesis a simplified model of the power grid is considered. We model the
angle interactions between network components and the dynamics of transmission

2



line operations. The model is dynamical in nature, however dynamical simulations
will not be performed. Instead we focus on studying the system using the canonical
ensemble and Monte Carlo importance sampling from statistical mechanics. We
consider very basic control schemes for operating the network and only small test
systems will be studied.

1.3 Outline

What will be explained where. To begin with we will in chapter 2 introduce the
theory that will be applied later on. This includes the power grid model, relevant
topics from statistical mechanics and Monte Carlo importance sampling. In chap-
ter 3, the tweaks and changes to the model will be introduced, together with the
different network types that will be studied and also an explanation of the sam-
pling algorithm. In chapter 4 we will make some general remarks about applying
a thermal ensemble to a non-thermal system and results of the simulations will
be presented and discussed. Finally, conclusions will be drawn and further work
proposed in chapter 5.
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Chapter 2

Theory

2.1 Power system model

The model which will be studied in this thesis is the one introduced by Yang &
Motter [4], an extension of the swing equation [11] to include a continuous and
dynamical state variable for each transmission line in the power grid.

In this model each line ` is associated with a continuous variable η` representing
its on-off status and a parameter λ` indicating the fraction of the line capacity
used by the flow. λ` < 1 represents a normal operating state, while λ` ≥ 1 a failed
operating state. The power flow terms of the swing equation are scaled by η`, thus
constraining η` to the unit interval. This implies that when η` ≈ 1 the line is
switched completely on, η` ≈ 0 the line is switched completely off. The dynamics
of η` are then defined as

η̇` = f(η`)− λ`, (2.1)

where the choice of f , along with a few other conditions elaborated upon in [4], is
such that the equation can be rewritten as a gradient system η̇` = −dφ(η`)/dη`,
where φ(η`) = λ`η` − F (η`), and dF (η`)/dη` = f(η`). As shown in Fig. 2.1 this
choice of f results in a potential function with two stable minima when λ` < 1, one
for the line being on, one for the line being off. The potential function φ contains
these two minima as λ` is increased until it reaches 1, at which point the line is
overloaded and there no longer exists a stable minima for the line being on. As
with a potential function in classical mechanics we then expect that its associated
phase space coordinate η` will ”roll” down the slope to reach a low value, indicating
that the line has been switched off.

Having considered the line dynamics, we now look at the rest of the network.
There are ng generator nodes connected to the network through virtual lines (not
subject to failure). Each generator is a rotating machine where power is injected
into the system. In addition there are n nongenerator nodes. Each nongenerator
includes some power exchange, and/or power distribution to other nodes in the
network along transmission lines. This leads to a network of n+ ng nodes. There
are nl transmission lines connecting such nongenerator nodes . Here we follow
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Figure 2.1: Plot of the transmission line potential φ(η`) for two values of λ`.

the convention of the original authors and reindex the generators as the first ng
nodes. For convenience we also adopt the convention of referring to the generator
nodes as generators and the nongenerator nodes as loads. Loads can also be pure
transmission nodes.

The complex electrical power at node i is given by S
(e)
i = P

(e)
i + jQ

(e)
i where

P
(e)
i is the real, or active, power and Q

(e)
i is the reactive power. The complex

voltage at node i is given by Vi = |Vi|ejδi , where δi is the voltage angle relative to
a reference node(taken to be i = 1, so that δ1 ≡ 0). The power flow equations of a
power-grid are given by:

P
(e)
i =

ng+n∑
j=1

|Vi||Vj |(G̃ij cos δij + B̃ij sin δij), (2.2)

Q
(e)
i = −

ng+n∑
j=1

|Vi||Vj |(G̃ij sin δij − B̃ij cos δij), (2.3)

where δij = δi − δj , Ỹij = G̃ij + jB̃ij is the nodal admittance matrix where each

off-diagonal element Ỹij is the negative of the admittance of the line connecting
node i and j.

We use the DC approximation [12] in which we assume that the voltages are
equal everywhere and employ the per unit system [13] so that |Vi| = |Vj | = 1p.u.. In

the DC approximation we also assume that G̃ij = 0, which is equivalent to saying
that there is no real power lost on the transmission lines. These are well-known
assumptions about power systems that are often applied to simplify the description
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of the system [14]. This leads to the expression for the real power at node i:

P
(e)
i =

ng+n∑
j=1

B̃ij sin (δi − δj), (2.4)

where B̃ij = −1/x`ij with x`ij being the transient reactance of the generator or the
reactance of the transmission line, depending on whether the line between nodes
i and j is virtual or not. Since power flows from leading angle to lagging angle

we get P
(e)
i > 0 at a node where power is drawn out of the system while we get

P
(e)
i < 0 when power is injected into the system at node i.

The state of the power system can be compactly defined as x = (ω, δ,η). Here,
ω = (ωi) are the frequencies of the generators relative to the systems nominal
frequency, δ = (δi) are the voltage angles, and η = (η`) are the status variables of
the (nonvirtual) transmission lines L, where ` ∈ L. We now state the equations of
motion of the system. A complete derivation can be found in [4].

ω̇i = −Di

Mi
ωi −

1

Mi

(
Pi −

ng+n∑
j=ng+1

B̃ij sin δij

)
, i = 1, 2, ..., ng,

δ̇i = ωi − ω1, i = 2, ..., ng,

δ̇i = − 1

Ti

(
Pi −

ng∑
j=1

B̃ij sin δij −
ng+n∑
j=ng+1

B̃ijη`ij sin δij

)
− ω1, i = ng+1, ..., ng+n,

˙η`ij = 10

(
f(η`ij ) +

B̃ij(1− cos δij
W`ij

)
, `ij ∈ L.

(2.5)

The first two equations describe the dynamics of the generators, with Mi being the
rotor inertia, Di being the damping ratio and Pi being the negative of the power

input P
(m)
i . The third equation describes the dynamics of the loads, with Ti being

the load frequency radio and Pi being the power P
(d)
i demanded at the load. It is

assumed that
∑n+ng

i=1 Pi = 0. The last equation is Eq. 2.1 with λ` being replaced
by B̃ij(1 − cos δij), the reactance energy stored on transmission line `ij , divided
by W`ij , the line’s maximum capacity. The prefactor 10 makes sure that the time
scale for changes in η`ij is shorter than that of the other variables.

It can be shown that Eq. 2.5 can be derived from a Hamiltonian-like system of
the form

ẋ = J∇Ψ(x), (2.6)

where the matrix J can be found in [4] and Ψ(x) is an energy function defined
as
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Ψ(x) =

ng∑
i=1

[
1

2
Miω

2
i −

ng+n∑
j=ng+1

B̃ij(1− cos δij)

]

−
ng+n∑
i=ng+1

ng+n∑
j=i+1

B̃ij(1− cos δij)η`ij

+

ng+n∑
i=2

Piδi −
∑
`ij∈L

W`ijF (η`ij ).

(2.7)

We rewrite this as

Ψ(x) = Ψgenerator + Ψgenerator−load + Ψload−load + Ψload + Ψline, (2.8)

with

Ψgenerator =

ng∑
i=1

1

2
Miω

2
i + Piδi, Ψgenerator−load = −

ng∑
i=1

ng+n∑
j=ng+1

B̃ij(1− cos δij),

Ψload−load = −
ng+n∑
i=ng+1

ng+n∑
j=i+1

B̃ij(1− cos δij)η`ij , Ψload =

ng+n∑
i=ng+1

Piδi,

Ψline = −
∑
`ij∈L

W`ijF (η`ij ).

We can then provide an interpretation for all the terms in the energy function:
Ψgenerator is the rotational energy stored in the generators plus a term where the
power input acts as a linear field that interacts with the generators’ δi.
Ψgenerator−load can be identified as the reactance energy stored on the virtual lines
between generators and loads. Ψload−load is the reactance energy stored on the
transmission lines between loads. Ψload is the power demand interacting with δi of
the loads. Ψline does not have an interpretation on its own, but the combination
Ψload−load + Ψline =

∑
`ij∈LW`ijφ(η`ij ) is the sum of each transmission line’s

potential multiplied by its capacity.

2.2 Statistical Mechanics

Statistical Mechanics is a field that is concerned with deriving the macroscopic be-
havior of a system starting out from knowledge about its microscopic behavior. By
macroscopic we mean a system of many constituents, as opposed to a microscopic
system, one of few constituents. In the microscopic case, by behavior we mean
the behavior of each constituent, in general its position, momentum and interac-
tion with other constituents or boundaries. In the macroscopic case, behavior is
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meant to denote the properties of the system emerging from its constituents. Ex-
amples include pressure, volume, thermal properties and existence and properties
of different phases of matter. The notion of a phase will be introduced shortly.

In general, the motivation for a statistical mechanical treatment is threefold.
Solving equations of motion becomes computationally (by hand and otherwise)
unfeasible for large systems. The insight gained from solving the system exactly
would not be much better than a statistical approach, thereby hardly justifying
the time and space (in bytes) required to obtain and store it. Thirdly, for a chaotic
system the detailed solutions and whatever we infer from them would, in large part,
be meaningless [15].

2.2.1 Canonical ensemble

An important concept of Statistical Mechanics is the canonical ensemble. It is a
collection of identical copies of a system described by an energy function, connected
to a heat bath. The distribution of energies of the copies has the following form:

P (Ej) =
e−βEj

Z
, (2.9)

where β = 1
kbT

, kb is the Boltzmann constant and T is the temperature of the heat
bath, Ej is the energy of a state j and Z is the canonical partition function defined
by

Z =
∑
j

e−βEj . (2.10)

According to 2.9, by randomly selecting a system from the ensemble, it is more
likely to have lower energy than higher. To calculate the ensemble average of some
property X one simply has to calculate

〈X〉 =
∑
j

XjP (Ej) =
1

Z

∑
j

Xje
−βEj . (2.11)

Often times this equation is difficult to solve. This is especially the case for higher
dimension problems, to the point where it might be impossible and other avenues
must be taken to obtain an answer.

Earlier the concept of the system’s boundary was mentioned. Its role in the
canonical ensemble deserves to be explained. A boundary is simply the system’s
interface with the outside world. For a gas of particles in a container the boundary
would be the walls of the container, where particles colliding with the wall can
exchange energy with the outside world. The boundary can also come in the
form of a field, say gravitational, electric or magnetic. Depending on the system,
these interactions with its boundaries may or may not be modeled explicitly in the
Hamiltonian. An important detail in the derivation of the canonical ensemble is
that we let the systems in the ensemble exchange energy with each other. This
energy exchange is mediated by heat transfer at the physical boundaries, making no
claims as to the actual physical mechanism that enables the exchange. Returning
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to the ideal gas then, by applying the canonical ensemble to this system we are
introducing energy exchange to the model and the results must be interpreted with
this in mind. For example, if there exists no conceivable mechanism for this energy
exchange the results are probably meaningless. For the ideal gas though, we can
conceive that phonons are absorbed by the gas particles as they collide with the
walls of the container, or perhaps they absorb radiation emitted by the walls.

2.3 Monte Carlo importance sampling

Monte Carlo (MC) methods denote methods that make use of random numbers to
obtain numerical results of problems, such as integrals or sampling a probability
distribution. Here we will consider MC importance sampling.

We are interested in obtaining some information about the power system such
as average quantities in Eq. 2.11. An important observation in this regard is that
the number of system configurations to consider are too many to be able to consider
them all within a reasonable time frame, especially for larger systems. Additionally,
in performing the calculation of 2.11, a potentially large part of the possible system
configurations have small or virtually no contributions to the sum. The challenge
is then to carefully consider as few configurations as possible while still making
sure that the average 2.11 becomes as precise as possible. This is exactly what MC
importance sampling seeks to do. In this thesis the Metropolis scheme as outlined
in [16] will be adopted. In this scheme we generate configurations from a previous
state using transition probabilities. These transition probabilities depend on the
energy difference between the initial and final states. We produce a ’Monte Carlo
time’ ordered chain of states that is not deterministic in the way that an ordered
sequence of states generated from the equations of motion would be. This is due
to the sampling of states using random numbers.

We start with the MC time-dependent behavior which in equilibrium must obey
what is known as detailed balance

Pn(t)Wn→m = Pm(t)Wm→n, (2.12)

where Pn(t) is the probability of the system being in state n at MC time t, and
Wn→m is the transition rate for n→ m. What this means is that in our canonical
ensemble the number of copies in each state stays constant.

We must now construct transition rates that satisfy Eq. 2.12. We do this by
splitting up the transition into two steps. In the first step we suggest a new state
m given the state n. In the second we decide whether we accept or reject the
suggestion. This can be expressed by Wn→m = Gn→mAn→m, where Gn→m is
the symmetrical probability of suggesting state m given state n and An→m, the
probability to accept state m given state n. Eq. 2.12 then becomes

Am→n
An→m

=
PmGm→n
PnGn→m

(2.13)
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The Metropolis choice is

An→m = min

(
1,
PmGn→m
PnGm→n

)
, (2.14)

for which Eq. 2.13 is satisfied.
According to 2.9 the probability of the nth state occurring in our system is

given by
Pn = e−βEn/Z, (2.15)

where Z is the partition function. We can now outline the Metropolis importance
sampling Monte Carlo scheme:

1. Select an initial state.

2. Consider the first state variable.

3. Suggest the next state using Gn→m.

4. Calculate the energy difference ∆E = En − Em between the two states.

5. Generate a random number r ∈ [0, 1]. Note that r must be drawn uniformly
from the interval.

6. If r ≤ exp(−β∆E), accept the new state. Otherwise, leave the variable
unchanged.

7. Consider the next state variable and go to 3.

A consequence of this choice of transition rate is that the resulting Markov
Chain has its states distributed according to Eq. 2.15. This has the convenient
consequence that the ensemble averages in Eq. 2.11 become arithmetic averages
over the entire sample of states which are generated. That is to say: let {x0, ...,xT }
be the set of states saved in the Markov Chain of length T . Then the averages
become

〈A〉 =
∑
j

AjP (Ej) =
1

Z

∑
j

Aje
−βEj =

1

T

T∑
i=1

Ai. (2.16)

In general we require the algorithm to conduct a certain number of steps before
we start recording the states. This is called thermalization, and is done to make
sure the system has reached equilibrium before we start recording. If we are not
mindful of this we risk not getting the desired distribution.
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Chapter 3

Method

3.1 Adjustments of the model

3.1.1 Capacity scaling

Each transmission line η` in the network has a maximum capacity Wη`ij
. To be

able to have an extra way of tuning the system we have scaled all these capacities
by a common factor K so that

Wη`ij
→ KWη`ij

. (3.1)

3.1.2 Corrective actions

During simulations we must make sure that every sample of the network is con-
sistent and physically realizable. Power must be balanced and proper corrective
actions must be taken in case the network is disturbed. The corrective actions
included in this thesis are the following ones.

Islanding, which is the condition in which the system has split into different
unconnected subsystems (islands). Not allowing the system to operate in this
condition implies that any island other than the one with the original reference
generator loses its generation and load. In this thesis, islanding is allowed so that
when the network is split, each new island has its generator with the lowest index
assigned as the new reference generator. In this process the angles of all other nodes
in this island must be recalculated to be relative to the new reference generator.
The angle of the new reference generator will continue to be sampled, so that it
can be reset to the new reference frame in the case that the island merges with
another one.

Load/generation shedding is the act of reducing the amount of load or generation
in the system. In the model it is a requirement that power is balanced in every
island. Thus, for each island, the algorithm will identify whether there is power
balance, and in the case of an imbalance, will distribute the slack proportional to
each generator/node’s capacity.
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These corrective actions are among those that have the most impact on the
network reliability [17]. This modeling of corrective actions is optimistic and results
in a more realistic model than the case where these are excluded.

3.1.3 Frequency assumptions

As we can see in Eq. 2.7 the energy function contains a frequency term. The power
supplied by the generators does also vary slightly with the frequency [4]. It is how-
ever assumed that the frequencies are much smaller than the reference frequency of
the network [4] so that these variations are negligible. The frequency-angle coupling
would then be dominated by the quadratic potential, which simply averages to zero,
something that isn’t particularly interesting. Additionally, we must consider that
the extra computational complexity introduced by this frequency-dependent power
injection is significant, particularly for larger systems, seeing as we would have to
implement corrective actions related to slack [17]. Therefore, we have omitted the
frequencies completely.

3.1.4 Alternative f

As we know, the system energy function in Eq. 2.7 contains the potential func-
tion for the η` variables. This potential function is introduced in [4] as a means
of obtaining a time-continuous model of the state of a transmission line. The re-
quirements are that it contains stable equilibria for the normal and failed operating
status when the line is operating below capacity(λ` < 1), a stable equilibrium only
for the failed operating status when the line is overloaded(λ` ≥ 1) and that the
equilibrium for normal operating status is close to 1 and the failed operating status
is close to 0. As long as one satisfies these requirements one is generally free to
suggest any other function f . Any new suggested f can simply replace the old one
in 2.5 and its antiderivative F will in any case be present in the energy function,
as long as it is only a function of η`.

A motivation for introducing an alternative F and hence φ is that the one
suggested in [4] and shown in Fig. 2.1 is primarily constructed for dynamical
simulations. If we start a dynamical simulation of the system with line η` being
on, it will stay that way until the line is overloaded after which η` moves towards
0. As long as λ` < 1 it does not really matter that the energy for the failed state is
lower than the normal state. η` will move around in the basin close to 1. As soon as
the line is overloaded(λ`) however, the energy for the failed state must be the only
equilibrium point and located close to 0 to guarantee a line switch-off operation.
The shape of the potential between the failed and normal operating states is also
not very important, as long as it does not hinder a line switch-off operation. In a
statistical mechanical treatment this form for the transmission line potential is not
very intuitive. We expect that for high β (low T ) the power system stays close to
its normal operating state. That means all lines turned on. However, we know that
in the canonical ensemble at low temperatures we only get contributions from the
states with the lowest energy. In this case this has the unfortunate consequence
that all lines are switched off. Perhaps a different choice of F then can bring
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Figure 3.1: φnew for different values of λ.

about more meaningful results, while keeping the model practically unchanged.
We propose the following F :

Fnew(η`) = −F (η`)− (1.01− η`)F (1− η`). (3.2)

This leads to a new φnew:

φnew(η`) = λ`η` − F (η`)− (1.01− η`)F (1− η`), (3.3)

which is shown for different values of λ` in Fig. 3.1. Here we observe a more
intuitive potential function. We have kept the properties of the original one. For
λ` < 1 there is a stable minimum for high η` and for λ` ≥ 1 there is only one stable
equilibrium, which is positioned at low η`. In addition to this the resulting potential
function displays a global minimum in the normal operating state(high η`) for low
λ` which facilitates the interpretation of statistical mechanical simulations.

This raises a question. Do our results carry any meaning, if they can so easily
be manipulated? It is indeed interesting that such different potential functions can
give rise to the same dynamics.

3.2 Network data and parameters

The system parameters used in this thesis are taken from or loosely based on [14],
since it studies small test systems whose parameters are tuned to resemble the real
power system.

We will study two test systems that are small, where each one distinctly displays
different mechanisms of the model and method.

The first test system, shown in Fig. 3.2, is a network consisting of a single
generator and single load. Since generators are connected to the network through
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i = 1 i = 2

Generator

Load

Virtual line

Figure 3.2: Schematic of the generator-load system.

Variable Explanation Value
P1 Generator 1 power 1
P2 Load 2 power -1
x`12 Transient reactance generator 1 1/242

Table 3.1: Parameters for the generator-load system.

a virtual line, this system does not contain any line dynamics, thereby isolating
the behavior of the angles and without any disturbance. The parameters are given
in Table 3.1.

The second test system, shown in Fig. 3.3, is a network consisting of two
generator-load pairs connected through a transmission line. This system incor-
porates the mechanism of islanding through the removable transmission line. By
creating a mismatch between power generation and consumption on each ”side” of
the transmission line one can increase the power flow between the ”sides”, letting
us stress the system in more than one way and study the consequences. We will
consider two versions of this system. One version with a balance of power between
the sides, and one version where there is an imbalance of power. The parameters
for these versions are given in Table 3.2.
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Generator

Load

Virtual line

Nonvirtual line

i = 1 i = 3 i = 2i = 4

Figure 3.3: Schematic of the radial system.

Variable Explanation Value

P
(b)
1 Generator 1 power -0.5

P
(b)
2 Generator 2 power -0.5

P
(b)
3 Load 3 power 0.5

P
(b)
4 Load 4 power 0.5

P
(i)
1 Generator 1 power -0.9

P
(i)
2 Generator 2 power -0.1

P
(i)
3 Load 3 power 0.1

P
(i)
4 Load 4 power 0.9
x`13 Transient reactance generator 1 1/242
x`24 Transient reactance generator 2 1/242
x`34 Reactance between node 3 and 4 5
W`34 Maxiumum reactance energy line `34 can hold 1/5

Table 3.2: Parameters for the radial system. Superscript b denotes the system with
power balance and superscript i denotes the system with power imbalance.
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3.3 Monte Carlo method

Here the choices of suggestion function will be presented. We will also look at the
different observables that we will measure.

3.3.1 Suggestion function

Specific choices of sampling and their justifications. For the angles we have chosen
to suggest new states in the following way: consider the previous state’s angle δi.
The suggestion for a new angle is then simply a slight perturbation:

δi → δi + Θr, (3.4)

where Θr is an angle uniformly drawn from the interval [−π6 ,
π
6 ].

For the line state variables we have considered the same scheme as for the
angles, however it turns out that this scheme produces the same results as sampling
uniformly from the unit interval. Due to ease of implementation we have chosen a
uniform sampling from the unit interval.

3.3.2 Observables

For these small systems we have chosen to look at the behavior of the state variables
δi and η`ij because we want to focus on understanding how this model is suited
to a statistical mechanical approach. To study correlations, particularly among
transmission lines, we would have to consider larger systems.
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Chapter 4

Results and discussion

We start with a discussion on applying the canonical ensemble to our non-thermal
system. Then we proceed with presenting and discussing results from simulations.

4.1 Non-thermal systems

The model previously introduced in section 2.1, while every bit as mechanical as
a collection of particles, is not thermal in the sense that one could heat it up
and observe a change in its properties as one can with a gas. Granted, while the
components would surely have some temperature-dependent behavior had they
been implemented in a laboratory, it remains that the rotating machines would
not be sped up had we heated the room. One might then question how one can,
and why one would, study such a model using a framework developed for studying
thermal systems. Furthermore, if temperature is not defined for our system, can
we give some other interpretation of the β in equation 2.9?

Complex systems denote systems that are difficult to model due to complex re-
lationships. The power system can be considered to be complex. Complex systems
are in general united by the absence of concepts such as temperature and energy,
display behavior governed by stochastic laws of non-thermodynamic nature and
can be called non-thermal [18]. Nevertheless, we know that due to non-thermal
fluctuations the behavior of complex systems resembles the behavior of thermody-
namic systems [18]. This has led researchers to attempt to generalize the formalism
of statistical physics so that it would become applicable for non-thermal systems
[18]. Examples in the complex network space include introducing ”energies” with
different types of interactions between components [8, 9] and the application of the
Ising model to analyze the spread of rumors in networked social communities [19].

The power grid model in 2.1 has energy as an integral part to it. Real energy
is flowing between real rotating machines. Furthermore, there is even an energy
function (2.7) that governs some of the dynamics and network topology. This
energy function is what enables a statistical mechanical approach, provided that
we are careful in the process by keeping the thermal and non-thermal nature of the
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Figure 4.1: The evolution of the system during a sample run with β = 1.

system in mind.
In our model of the power system we are assuming that fluctuations exist.

These fluctuations are thermal in the sense that ultimately it is the energy flowing
on transmission lines that is fluctuating. At the same time they are non-thermal
in the sense that they are not thermally induced. There is no temperature that
can define the likelihood of energy transfer at the system boundary. We must
therefore seek to provide an interpretation of what the temperature T represents
in our canonical ensemble.

4.2 Generator-load system

In Fig. 4.1 we observe the evolution of the system during a simulation. The steps
required to reach equilibrium are very few, usually around 2-3 steps. After reaching
equilibrium we observe the expected fluctuations around the equilibrium value of
δ2 = 0.0041.

Next we investigate how long a simulation should be run for to get an acceptable
distribution of angles. This is shown in Fig. 4.2 where we observe improved
distributions as we increase the length of simulation. There seems to be a good
trade off between simulation time and getting good distributions when doing around
500000−1000000 MC steps. Of course, this should be evaluated for larger systems
also, but this gives a good initial guess. Particularly for generators and loads
connected to generators due to their high coupling B̃ij and tendency to dominate
the load-load coupling terms.

In Fig. 4.3 we see the distribution of power at node 2. The biggest surprise
here is that in a large part of the configurations power is actually flowing from the
load to the generator; their roles are exchanged. This resembles the procedure in
[5] where different realizations of the network have their nodes randomly selected
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Figure 4.2: The probability density function(PDF) of δ2 for different numbers of Monte
Carlo steps with β = 1.

to either be power plants or consumers. At the same time the average power flow
is in agreeance with the network parameter. Our method then, seems to embody
the procedure where one stresses the system by letting power be generated and
consumed everywhere as in [5] while still retaining information about the original
or intended configuration.

We also observe huge variations in the amount of power flowing between the
two nodes. As we will see shortly, this can be controlled by tuning β, but it is also
due to the large value of B̃ij on the virtual lines. As the system evolves according

to the equations of motion a high B̃ij guarantees a small angle difference (and
hence instability) between the generator and nongenerator [4]. This is a favourable
characteristic if one wants to study other parts of the network’s response to dis-
turbances. Energetically speaking however, there is nothing hindering larger angle
differences and we observe that these states are reached in a statistical mechanical
treatment.

In Fig. 4.4 we see how the power distribution varies with β. First of all we can
see that the fluctuations in power decrease as we increase β. Here we can draw on
our knowledge from thermal systems where in the case of a high β (low T ) there is
little energy available to the system, leading to small fluctuations in energy which
is exactly what we observe. Conversely a low β (high T ) should give rise to large
fluctuations which we also observe. This provides us with an interpretation of β
in this ensemble. It is simply a measure of how large the fluctuations in injected
power at the system boundaries are. Put in other words: β is a measure of how
much the power production/demand fluctuates. This behavior is also analogous to
thermal systems where at low β (high T ) there is a lot of energy available resulting
in large energy fluctuations in the system.

We also see that as we increase β the distribution of power more closely resem-
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Figure 4.3: PDF of P2 for different numbers of Monte Carlo steps with β = 1.

bles what we would expect from a dynamical simulation of the system. We can
then state that as β increases the power system in the canonical ensemble deviates
less and less from its dynamically simulated counterpart. This view coincides with
the interpretation of β in [9]. There β measures the deviation of the network in the
canonical ensemble from Erdös-Rényi networks, that is purely random networks,
and in the case where β → inf optimized networks are obtained. The most opti-
mized version of our network is... our network. The most random version of our
network is indeed what we see for low β.

4.3 Radial system

4.3.1 f

Plots: evolution, In Fig. 4.5 we see the MC evolution of the radial system with the
original f . We observe that also here the system thermalizes very fast. Also note
that δ2 drops to zero immediately, which is the result of the network splitting into
two islands and generator 2 becoming a reference generator. Apart from that we
observe the expected fluctuations in the other variables.

In Fig. 4.6 we see the power flowing on the transmission line between loads 3
and 4. This power flow is of a magnitude we expect. We observe that the average
of the power flow is close to or practically 0, which we also expect considering that
there is a power balance between the two sides. We also see in the plot for β = 0.1
that there are two bumps in the PDF at the edges. This is due to the fact that
these values of power are the maximum power than can flow on this line, given by
the max of Eq. 2.4 which is −B̃34 = 0.2.

In Fig. 4.7 we again observe the power flowing between loads 3 and 4, however
this for the imbalanced system. Compared to the balanced system we see that
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Figure 4.6: Distributions of power flow on line η`34 for a run of 1000000 steps and
varying β. The system was balanced, K = 1 and the original F was used.

there flows more power, however this is only true for low values of beta. This is an
unexpected result with no apparent explanation. In any case, we observe the same
distributions and their dependence on β as we did for the generator-load system.

In Fig. 4.7 we observe that as β is increased the lines are turned off. This is
sort of opposite to what we expect, but is an artifact of the f function. There is
not much meaningful information to be extracted here.

Fig. 4.9 shows the averages of η`34 for the imbalanced system. It seems to
be identical to the plot for the balanced system and equally hard to draw any
meaningful information from.

4.3.2 fnew

We now consider the case where F → Fnew given in Eq. 3.2. Consider Fig. 4.10
which shows < η > for the balanced system. Here we get a more intuitive picture.
Higher β now leads to a system that resides more often in its normal operating
state. This is in line with what we expect to happen when the available energy
decreases. We also see that it takes more and more energy to bring the system out
of its normal operating state the higher its line capacities become. This is indicated
by the steeper curves for higher K.

Looking at Fig. 4.11 which shows < η > for the imbalanced system we see
practically the same behavior. However we see that the curves do not go as high as
in Fig. 4.10 for equal β. This is also expected, seeing as in general the power flow
on the transmission line is higher, driving η a little further away from the normal
operating state. We also observe a peculiar behavior for the K = 10 curve. This
value for K probably leads to an average value for λ` where the form of Fnew has
a minimum that competes with the normal operating state. In Fig. 3.1 we see that
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Figure 4.7: Distributions of power flow on line η`34 for a run of 1000000 steps and
varying β. The system was imbalanced, K = 1 and the original F was used.
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for λ` = 0.125 this is exactly the case. We see it as an artifact of this potential
function. Perhaps there are other choices for φnew which don’t have this behavior.

4.4 Viability of statistical mechanics approach

Discuss pros/cons of the kind of approach I have chosen. The statistical mechanics
approach seems to provide results which are difficult to interpret. If we want to
study blackouts and cascades then the most interesting variables are the on-off
status variables η. The angles mainly play the role of driving the system in and
out of normal and failed operating states. They are easy to interpret in that they
simply fluctuate in their potential and through these fluctuations they impact the
η potentials.

We have seen that the power flowing between generators and loads is orders of
magnitude higher than the flow between loads, but this is an artifact of the low
reactances between these nodes. This power only exists between the generators
and loads and does not leak into the rest of the system. We could simply increase
these reactances, but this would take us further away from the original model. We
should not tweak the model only to please our eyes. The parameters should be set
such that the model resembles the physical system as closely as possible.

Returning to the η, we have also seen how we can change its potential without
changes to the dynamical behavior of the model, while bringing about changes in
its behavior in the canonical ensemble.

An uplifting fact is also that the results we obtain do show differences between
network types. Looking at the radial system we actually observe an average net
power flow between the sides of the system. We also see a difference in the average
of η with Fnew between the balanced and imbalanced radial system.
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All in all the statistical mechanics treatment does produce some strange results
and is definitely not as straight forward to interpret as say a 1D Ising chain. On
the other hand, there are a lot of meaningful and plausible results too, which could
be studied further.
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Chapter 5

Conclusions

In this thesis the power system has been studied using the canonical ensemble from
statistical mechanics. To do this a model of the power system that can be described
by a Hamiltonian-like energy function has been selected. This model includes the
dynamics of the system frequencies, angles and transmission line time-continuous
state variables. The frequencies were excluded from the problem and changes
to the state variable potential function were proposed. This to make the energy
function easier to interpret. Since the problem is difficult to solve analytically for
large systems we employed Monte Carlo importance sampling to measure ensemble
averages.

There are no previous accounts of studying such a detailed model of the power
system using the canonical ensemble, so comparing the results to previous work
mainly consisted of evaluating whether the results made sense compared to what
has been obtained through dynamical simulations of similar models. And also com-
paring our interpretation of fluctuations and the role of β to their interpretations
in other thermal and non-thermal systems.

In general it was hard to identify differences between different network types
in the results, although there were some results that suggested that there are
differences.

Finally we evaluated the viability of such an approach. The conclusion was that
the results in general are hard to interpret, but do carry some meaning.

The main goal of the thesis was accomplished in the sense that information was
gained about how the chosen model behaves in the canonical ensemble. Regret-
tably, larger systems have not been considered, so it is difficult to conclude that
blackouts and cascades have been studied.

Further work could be the study of larger systems and therein the correlations
between transmission lines. The role of f could also be studied further, since it
seems like we are free to choose between different forms for it seemingly without
affecting the behavior of the system. Does this imply that we can tailor our results
to our liking based on a clever choice of f? Finally, employing other methods
such as Kinetic Monte Carlo could be a viable approach, seeing as we have full
information about the energy function of the system. This could be combined with
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knowledge obtained in this thesis regarding the distributions of power flows.
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Appendix A

5.1 .json file format

Network data is input to the code as a .json file. This file format is easy to work
with in the code itself, while also being easy to read and make changes to in most
text/code editors. What follows is a description of the format.
n g: number of generator nodes
n: number of nongenerator nodes
n l: number of nonvirtual lines
line index: zero-indexed and symmetric 2D array of dimension (n, n) where entry
(i, j) is the index of nonvirtual line `ij . Only nongenerator nodes are included.
For example entry (0, 1) gives the index of the line between the first and second
nongenerator nodes. If there is no line between node i and j entry (i, j) is 0. The
line index is one-indexed.
index to lines: zero-indexed 2D array of dimension (n l, 2) where the pair
[(i, 0), (i, 1)] are the two nodes connected by line i.
W : 1D array of length n l containing the capacity of each line.
B: 2D array of dimension (n g+ n, n g+ n) containing the transient reactances of
the generators and reactances of the transmission lines.
P : 1D array of length n g+n containing the per unit power inputs of the generator
nodes and power demands of the nongenerator nodes.
initial condition: 1D array of length n g+n+n l containing the initial values for
each variable of the system. The first n g values are the generator angles, the next
n values are the nongenerator angles and the last n l values are the transmission
line status.
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