
Unsupervised Anomaly Detection
on Streaming Data in the
Petroleum Industry Using Deep
Neural Networks

June 2019

M
as

te
r's

 th
es

is

M
aster's thesis

Halvor Reiten
Thomas Kleiven

2019
H

alvor Reiten, Thom
as Kleiven

NT
NU

N
or

w
eg

ia
n

Un
iv

er
si

ty
 o

f
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

Fa
cu

lty
 o

f E
ng

in
ee

rin
g

De
pa

rt
m

en
t o

f M
ec

ha
ni

ca
l a

nd
 In

du
st

ria
l E

ng
in

ee
rin

g

Unsupervised Anomaly Detection on
Streaming Data in the Petroleum Industry
Using Deep Neural Networks

Halvor Reiten
Thomas Kleiven

Engineering and ICT
Submission date: June 2019
Supervisor: Jørn Vatn

Norwegian University of Science and Technology
Department of Mechanical and Industrial Engineering

i

Abstract
Modern petroleum production systems are intensively monitored by a high number of sensors and

condition monitoring equipment, generating vast amounts of data that is continuously streamed to

production data platforms. A fundamental capability of streaming analytics is to develop anomaly

detection methods that can efficiently monitor critical equipment and warn about anomalous be-

havior, helping to prevent imminent equipment failures and reduce operational risk. As such, the

main objective of this thesis is to demonstrate how to develop unsupervised, real-time anomaly

detection algorithms for equipment in the oil and gas industry. We specifically look at a gas com-

pressor operating at an oil rig in the North Sea, and propose two model-based anomaly detection

methods that identify anomalies by comparing the true measurements to the predictions of a prob-

abilistic model that simulate the normal behavior of the equipment.

An accurate predictive model is crucial to the success of such anomaly detection methods. See-

ing deep learning and sequence specialized neural networks as tremendously successful in similarly

complex modeling problems, this thesis focuses on researching the potential of deep learning as

a modeling framework for the physical equipment. To this end, we implement deep neural net-

works of varying types and designs, as well as techniques to assess the predictive uncertainty of

these models. In addition, a set of less advanced baselines are implemented to benchmarks their

performances. We find that the best performance is achieved by an ensemble model consisting of a

Long Short-Term Memory network and a feed-forward neural network, clearly outperforming the

best benchmark model by 17.2%. Consequently, this model is employed in the anomaly detection

algorithms.

The first of the proposed anomaly detection methods uses a static residual distribution to clas-

sify observations, while the other uses the prediction intervals of point-predictions to do the same.

The quality of the methods is evaluated by examining whether their anomaly warnings conform to

our expectations when applied to three arbitrarily chosen datasets with clear abnormal patterns.

On this evaluation criterion, their performances are highly satisfactory and consistent with our

expectations, and we find that the applied deep learning model works excellently in conjunction

with the proposed anomaly detection methods. The implemented anomaly detection setups meet

the high demands of a real-time streaming anomaly detection algorithm, they can process and

evaluate incoming data in a fast, efficient and unsupervised manner, and show great potential to

be utilized in an industrial setting.

ii

Sammendrag
Moderne produksjonssystemer innen olje og gass er intensivt overvåket av et stort antall sensorer

og tilstandsovervåkende utstyr. Dette generer enorme mengder data som kontinuerlig strømmes

til produksjonsdataplattformer, noe som presenterer industrien med store muligheter og tekniske

utfordringer. Et stort potensiale knyttet til dette ligger i å utvikle effektive metoder for å overvåke

tilstanden til systemene slik at man kan avdekke når enkelte systemer avviker fra normalen for å

kunne avdekke umiddelbare farer. Med dette i siktet er hovedmålet for denne oppgaven å utvikle

algoritmer for avviksdetektering i sanntid for utstyr i olje- og gassindustrien. Vi fokuserer på en

gasskompressor på en oljeplattform i Nordsjøen, der vi foreslår to modell-baserte algoritmer for å

detektere avvik ved å sammenligne observerte målinger med prediksjoner fra en statistisk modell

som simulerer normaltilstanden til systemet.

En presis prediktiv modell er avgjørende for suksessen av slike algoritmer. Ettersom dyp læring
med sekvensbaserte nevrale nettverk har vist seg å være svært suksessfulle innen lignende prob-

lemstillinger, ser vi på potensialet for dyp læring som et rammeverk for å modellere fysiske system.

Vi implementerer ulike typer dype nevrale nett, såfremt teknikker for å estimere den prediktive

usikkerheten tilknyttet disse modellene. Videre implementerer vi et sett av mindre avanserte mod-

eller som fungerer som standarder for å sammenligne ytelsen til de nevrale nettverkene. Våre re-

sultater viser at den mest presise modellen er satt sammen av et Long Short-Term Memory nettverk

og et feed-forward nevralt nettverk, som klart presterer bedre enn de beste standardene med en

relativ forbedring på 17.2%. Dermed benytter vi denne modellen i algoritmene for å detektere

avvik.

Den første algoritmen for å detektere avvik benytter seg av en statisk residualdistribusjon for

å klassifisere observasjoner, mens den andre benytter seg av det punktvise prediksjonsintervallet.

Kvaliteten av metodene er evaluert ved å anvende metodene på tre tilfdelig utplukkede datasett

som innehar flere observasjoner som avviker fra normalen, der vi undersøker om avviksadvars-

lene stemmer overens med det vi forventer. Begge metodene presterer svært tilfredsstillende, der

avviksadvarslene stemmer godt overens med våre forventninger, og vi finner at den prediktive

modellen fungerer utmerket i forbindelse med algoritmene. Metodene implementert i denne opp-

gaven møter de høye kravene for avviksdetektering i sanntid, der de kan prosessere og evaluere

data på en rask og effektiv måte, og dette viser stort potensiale for å benytte seg av slike modeller

i industrien.

iii

Preface
This thesis was carried out during spring of 2019 and concludes our Master of Science in Engi-

neering and ICT at the Norwegian University of Science and Technology. We want to express our

gratitude towards our supervisor, Professor Jørn Vatn, for valuable guidance during the work with

this thesis. We would also like to thank the team at Cognite, represented by Alexander Gleim,

Patrick M. Robertson and Peter Malec, for supplying us with a challenging problem and all their

support.

Trondheim, June 2019

Halvor Reiten Thomas Kleiven

iv

Abbreviations
ADAM = Adaptive Moment Estimation

AdaGrad = Adaptive Gradient

ASV = Anti-Surge Valve

API = Application Programming Interface

CP = Coverage Probability

CART = Classification and Regression Trees

ElNet = Elastic Nets

FT = Discharge Flow

GBM = Gradient Boosting Machines

GMM = Gaussian Mixture Model

GRU = Gated Recurrent Units

KA = Power Indicator

LSTM = Long Short-Term Memory

MAR = Multivariate Autoregressive

MAE = Mean Absolute Error

ML = Machine Learning

MLP = Multilayer Perceptron

MVL = Minimum Validation Loss

OID = Open Industrial Data

PI = Prediction Interval

PT = Discharge Pressure

RF = Random Forest

RMSE = Root Mean Squared Error

RNN = Recurrent Neural Network

RSS = Residual Sum of Squares

RUL = Remaining Useful Life

SDK = Software Development Kit

SGD = Stochastic Gradient Descent

STV = Suction Throttle Valve

SVM = Support Vector Machine

TT = Discharge Temperature

ZT/ZI = Valve Indicators

Table of Contents

1 Introduction 1

1.1 Background . 1

1.2 Problem Definition . 2

1.3 Objectives . 3

1.4 Contributions . 4

1.5 Limitations . 5

1.6 Outline . 5

2 Related Work 7

2.1 Unsupervised Anomaly Detection . 7

2.2 Evaluation of Unsupervised Anomaly Detection Models 9

3 Theoretical Framework 11

3.1 Time Series . 11

3.1.1 The components of a time series . 12

3.1.2 Cross-correlation and autocorrelation . 12

3.1.3 Stationarity . 12

3.2 Machine Learning . 13

3.2.1 Linear regression models . 14

3.2.2 Tree based methods . 14

3.3 Deep Learning . 16

3.3.1 Feed-forward neural networks . 16

3.3.2 Activation functions . 18

3.3.3 Backpropagation & gradient-based learning 19

3.3.4 Optimization in neural networks . 20

3.3.5 Generalization, overfitting and regularization 21

3.3.6 Recurrent neural networks . 22

3.3.7 Model ensembling . 24

v

vi

3.3.8 Uncertainty assessment of deep learning models 25

3.4 Anomaly Detection . 28

3.4.1 Types of anomalies . 28

3.4.2 Outputs of an anomaly detection algorithm 28

3.4.3 Precision and recall . 29

3.4.4 Concept drift . 29

3.4.5 Anomaly detection in streaming data environments 29

4 Data and Preprocessing 31

4.1 The Gas Compressor and Physical Data Sources . 31

4.1.1 Context . 31

4.1.2 High level system description . 32

4.2 Data Collection . 33

4.3 Selecting Model Inputs and Outputs . 33

4.3.1 Model outputs . 34

4.3.2 Model inputs . 35

4.3.3 Time frames, aggregates and other specifications 37

4.4 Data Partitioning . 38

4.5 Data Preprocessing . 38

4.5.1 Handling missing data . 39

4.5.2 Handling outliers and extreme values . 39

4.5.3 Scaling by standardization . 40

5 Method 41

5.1 Constructing the Predictive Model . 41

5.1.1 Evaluation metrics . 42

5.1.2 Dealing with the temporal aspect for forecasting 42

5.1.3 Benchmarks . 43

5.1.4 Deep learning models . 45

5.2 Anomaly Detection . 50

5.2.1 Residual-based anomaly detection . 50

5.2.2 PI-based anomaly detection . 52

5.2.3 Evaluation of unsupervised anomaly detection models 54

5.3 Hardware and technical implementation . 54

6 Results and Analysis 57

6.1 The Predictive Model . 57

6.1.1 Benchmarks . 58

6.1.2 Deep learning . 59

vii

6.2 Anomaly Detection . 64

6.2.1 Selected data regions with anomalous behavior 64

6.2.2 Method I: Residual based anomaly detection 65

6.2.3 Method II: PI-based anomaly detection . 68

6.2.4 Comparison of the methods . 70

7 Discussion 71

7.1 Potential of Deep Learning as Predictive Models . 71

7.2 Anomaly Detection with Deep Learning . 72

7.2.1 Operational application of the methods . 73

7.3 Challenges and Practical Barriers . 74

7.4 Further work . 75

8 Conclusion 77

Bibliography 83

A Additional Theory 84

A.1 Data Preprocessing Techniques . 84

A.1.1 Boruta . 84

A.1.2 Amelia II . 84

A.2 Bayesian modelling . 85

B Preprocessing and Statistical Properties 87

B.1 Data Preprocessing . 87

B.1.1 Feature sparsity . 87

B.1.2 Correlation plots . 88

B.1.3 Feature selection results . 89

B.2 Summary Statistics and Distribution Plots . 90

C Deep Learning Models & Anomaly Detection 93

C.1 Training Histories and Validation Data . 93

C.1.1 LSTM . 93

C.1.2 GRU . 94

C.1.3 MLP . 94

C.2 Anomaly Detection . 95

C.2.1 Method I: residual based anomaly detection 95

List of Tables

3.1 Overview of some common activation functions. 18

4.1 Selected output tags . 34

4.2 Selected input tags. 37

5.1 Example of lagged variables . 42

6.1 MAE of benchmarks: common-sense heuristics . 58

6.2 MAE of benchmarks: simple machine learning . 59

6.3 MAE of deep learning models . 60

6.4 Comparison of best benchmark models to best deep learning model 61

6.5 Uncertainty assessment of deep learning models . 62

6.6 Expected anomalies in the selected time periods . 65

B.1 Statistics of the complete dataset before scaling. 90

B.2 Statistics of the complete dataset after scaling. 90

viii

List of Figures

3.1 Illustration of a feed-forward neural network. 17

3.2 An unfolded recurrent neural network. 22

4.1 A schematic of the compressor . 32

4.2 Sample data of the selected output tags. 35

4.3 Physical positions in the subsystem of the selected inputs and outputs 37

4.4 Example of data partitioning . 38

5.1 Examples of the common-sense heuristics . 44

5.2 Sketch of the LSTM network . 47

5.3 Sketch of the ensemble model . 48

5.4 Scheme for anomaly detection method I . 51

5.5 Scheme for anomaly detection method II . 53

6.1 Predictive distribution of a model for a single input 63

6.2 Example of discharge temperature predictions . 63

6.3 Data regions used to evaluate anomaly detection methods. 64

6.4 Q-Q plot for validation residuals . 65

6.5 Anomaly detection plot for December 2018: method I 66

6.6 Anomaly detection plot for April 2018: method I 67

6.7 Anomaly detection plot for July 2018: method I . 67

6.8 Anomaly detection plot for December 2018: method II 68

6.9 Anomaly detection plot for April 2018: method II 69

6.10 Anomaly detection plot for July 2018: method II 69

B.1 Feature sparsity . 87

B.2 Cross correlation plots of the data variables . 88

B.3 Feature importance plot for discharge flow, temperature and pressure 89

B.4 Distributions of the training, validation and test data. 91

ix

x

B.5 Scatter matrix plot of the data . 92

C.1 Training history of the LSTM model. 93

C.2 Training history of the GRU model. 94

C.3 Training history of the MLP model. 94

C.4 Threshold analysis for method I . 95

C.5 Residual distributions used in model I . 95

Chapter 1

Introduction

1.1 Background

Modern oil and gas production is subject to intense monitoring by a magnitude of sensors and

condition monitoring equipment. Vast amounts of sensor data are continuously streamed to pro-

duction data platforms, presenting the industry with significant opportunities and technical chal-

lenges. Analyzing and contextualizing these data streams can provide valuable, actionable insights

that can be used to support decision-making, production optimization, and smart maintenance

strategies (Ahmad et al., 2017). However, the industry is far from exploiting the opportunities

that come with the available data and data analytics today (Anand, 2015). In order to stay com-

petitive in a market with increasingly slimmer margins, it is a necessity for petroleum production

companies to leverage advanced analytics and exploit data-driven solutions to optimize production

and maintenance strategies (Ileby and Knutsen, 2017). Reports state that the digitalization of the

oil and gas sector collectively can unlock $1.6 trillion of value for the industry and that data is

arguably the industry’s most significant asset in the years to come (Anand, 2015).

A key capability for streaming analytics is to develop models for detecting unusual, anomalous

behavior in critical equipment (Ahmad et al., 2017). The streaming data often arrives with high

frequency and in vast amounts, making the task of manual inspection and analysis to look for

potential faults a tedious one. It is therefore of great interest to develop semi-automatic, unsuper-

vised procedures to automate such tasks. Not only can such models be more precise than a human

resource, but they work continuously and can catch anomalous behavior in equipment as early as

possible. Critical anomalies must be identified and acted upon promptly to avoid potentially costly

consequences for the production and the equipment itself.

One way to implement anomaly detection for physical equipment is to develop statistical mod-

els that simulate the normal behavior of the equipment and compare the actual observed behavior

to what the model predicts. It is, however, an interesting question how the behavior of physical

1

CHAPTER 1. INTRODUCTION 2

equipment is best modeled. Each component is part of a complex production system and can have

hundreds to thousands of potentially relevant sensors associated with it, that have interdependent

relationships that can be hard to determine. In addition, the performance of the machinery can be

highly dependent on exogenous features and the specific operational conditions. This is not easily

incorporated into rigorous theoretical models or existing simulation tools. For these reasons, a

data-driven modeling approach might be a more suitable framework for the task.

Recent years have seen a rise in the use of machine learning (ML), a subfield of artificial intelli-
gence (AI), for addressing similarly complex and non-linear modeling problems. ML is a collective

term of algorithms where models are trained rather than explicitly programmed, i.e. models learn

statistical structures in the data by evaluating empirical examples (Chollet, 2018). These tech-

niques have become a hot topic due to the immense success demonstrated on a range of problems,

made possible by the rapid development in hardware, computational power, and big data (Chollet,

2018). Deep learning is arguably the biggest and most successful subfield of ML, which most com-

monly involves learning in the form of neural networks (Goodfellow et al., 2016). Deep learning

has proved tremendously successful in a broad range of problems within AI, from self-driving cars

to fraud detection, but also within time series modeling. With sequence-specialized neural net-

works such as Recurrent Neural Networks (RNNs), deep learning has shown to outperform classical

models in the case of long, multivariate, interdependent time series analysis (Laptev et al., 2017),

and has been established as state-of-the-art approaches to sequence-modeling (Chollet, 2018).

Seeing deep learning as a promising framework for solving a problem of this complexity, this

thesis aims to show how an anomaly detection method can be built for critical equipment in

the petroleum production industry using specialized sequential networks from the deep learning

framework. Our results demonstrate the potential of deep learning as a framework for model-

ing the behavior of physical equipment, and how such predictive models can be implemented to

discover anomalous behavior. In addition, we attempt to shed light on the practical hurdles of

implementing data-driven solutions in this context, as well as the advantages and disadvantages

automated anomaly detection setups can have in an operational setting.

1.2 Problem Definition

Specifically, the main objective of this thesis is to construct an algorithm to detect and warn for

abnormal behavior in a first stage gas compressor operating on an oil rig in the North Sea1. Our

focus is on model-based anomaly detection setups, which consists of two major components: a

predictive model that can simulate the normal behavior of the compressor, and a method that

compares the predictions of the model to the true observed measurements to classify abnormal

behavior. The intuition of this setup is that the actual observed values might differ substantially

1Further details regarding the compressor and the surrounding system are found in chapter 4.

3 CHAPTER 1. INTRODUCTION

from the predictions when it operates anomalous, which can be exploited to uncover novelties.

Hence, a precise predictive model is decisive for the success of such anomaly detection methods.

In detail, the model should predict the one-step-ahead sensor measurements of the gas discharged

from the compressor - the discharge flow, temperature and pressure - given a history of sensor

measurements prior to the compressor, and a set of system control parameters.

There are many ways to construct such models, but we focus on machine learning techniques,

and especially deep learning models. There exist engineering models and simulation tools for mod-

eling the behavior of gas compressors, but we focus on models without applying laws of physics or

domain knowledge about the equipment. Effectively, this ensures that the produced models are as

generic and adaptive as possible. Moreover, in order to properly evaluate the performance of the

complex deep learning models, they are benchmarked to a set of less advanced models. In general,

we seek the least complex, most accurate model that solves the problem.

While deep learning has seen high success in similar modeling problems and is presumed a

promising framework for modeling the behavior of the compressor, it is commonly criticized for

its lack of interpretation and ”black box” characteristics (Chollet, 2018). Conventional neural

networks are deterministic and can produce overly confident point-predictions without considering

the inherent predictive uncertainty (Chollet, 2018). Seeing the predictive confidence as highly

important if the models are to be of practical value for decision-support and anomaly detection, it

is essential to assess the predictive reliability of the model. As such, an important part of the thesis

involves researching techniques to assess the predictive uncertainty of deep learning models.

After defining the predictive models for the gas compressor, one question lingers: how should

a new observation be classified as anomalous, and when should the setup report for abnormal

behavior of the equipment? A major part of this thesis is concerned with researching how to best

implement the predictive model in the anomaly detection method, and how anomalous behavior

can be classified based on the comparison between the actual observed and the predicted value.

Moreover, how can we evaluate the performance of the anomaly detection method, as we are

dealing with an unsupervised problem with no labeled regions? Lastly, the practical barriers of

developing data-driven models with industrial data must be thoroughly discussed. What are the

main challenges tied to data processing, developing predictive models and anomaly detection for

industrial equipment in the petroleum industry, and what are the advantages and disadvantages of

data-driven models in this context?

1.3 Objectives

The following objectives are defined in order to address the aforementioned challenges:

• Review related work regarding unsupervised anomaly detection algorithms for streaming

data.

CHAPTER 1. INTRODUCTION 4

• Implement and evaluate one or more deep learning models that can model the behavior

of the equipment. Moreover, define a set of less advanced baselines that will be used to

benchmark the performance of these models.

• Identify and implement techniques to assess the predictive uncertainty of deep neural net-

works.

• Develop an anomaly detection algorithm for the gas compressor that can compare true ob-

served values to those predicted by the most accurate predictive model.

• Evaluate and discuss the quality of the anomaly detection method and whether deep learning

models offer suitable frameworks for modeling the behavior of physical equipment in the

petroleum industry. Moreover, discuss the hurdles of implementing data-driven models in

such a practical, operational context.

By completing these objectives, we research how anomaly detection can be applied for real, operat-

ing equipment in the petroleum industry using relevant sensory data. We explore the performance

of deep learning in modeling behavior of industrial equipment, how to assess the predictive uncer-

tainty of the models, as well as exploring the main challenges in implementing data-driven models

in such a context.

1.4 Contributions

This thesis is a practical demonstration of how it is possible to build model-based anomaly detec-

tion setups for critical equipment in the petroleum industry using deep learning as the modeling

framework. As a result, the main contributions of this thesis are the following:

• A review of existing and popular approaches for unsupervised anomaly detection in stream-

ing environments, and a demonstration of the practical implementation of model-based

anomaly detection algorithms for real, operating equipment.

• A thorough investigation of the potential of deep learning as a modeling framework for

complex, industrial equipment.

• A presentation and implementation of techniques to assess the predictive uncertainty of deep

neural networks, and how the uncertainty estimates can be incorporated in anomaly detec-

tion setups.

• An analysis on the advantages and challenges of real-time anomaly detection in production

systems, and an elucidation of the practical hurdles of implementing data-driven solutions in

data-intensive, industrial settings.

5 CHAPTER 1. INTRODUCTION

These contributions represent a positive development in the major topic of digitalization in the

petroleum industry; making use of the vast amounts of available production data. We argue that

the methods and techniques implemented in this thesis are highly generic and that they easily can

be adapted to other types of equipment. Moreover, the techniques used for time series forecasting

can be extended to entirely different problems involving time series forecasting of multivariate,

interdependent time series.

1.5 Limitations

The models implemented in this thesis are specifically designed for one gas compressor due to the

limited availability of public production data for other types of equipment used in the petroleum

industry. However, because of the general nature of our models and methodology, they can easily

be extended to other production systems. We have a particular focus on model-based anomaly de-

tection methods in this thesis, and we do not research any other anomaly detection methodologies,

although other setups could have been equally successful. In addition, there is a limitation in terms

of quality assessment of the anomaly detection methods. Due to limited access to experts and la-

beled data, the models have been reviewed on hand-picked datasets and subjective expectations.

The true quality of the methods is therefore in need of expert evaluation before any conclusions

can be made.

1.6 Outline

First, related work regarding unsupervised anomaly detection on streaming data is presented in

chapter 2. Then, the theoretical foundations of the methods used in this thesis are given in chapter

3. Chapter 4 describes any performed data collection, feature selection and preprocessing steps,

as well as a high-level description of the physical sources to the data; the compressor and the

subsystem it is part of. Chapter 5 gives a detailed description of the methods utilized in this thesis,

i.e. how the benchmarks are implemented, the design choices of the deep neural networks, how

the models are evaluated, and how the anomaly detection methods are built. Subsequently, chapter

6 presents the results of the predictive models and the proposed anomaly detection methods. In

light of the results, chapter 7 provides a discussion on the true potential of deep learning as a

modeling framework for industrial equipment, the quality of the anomaly detection algorithms

and the practical hurdles of implementing data-driven solutions in the industry. Finally, chapter 8

concludes the thesis, and presents a summary of how the objectives in this thesis were met.

CHAPTER 1. INTRODUCTION 6

Chapter 2

Related Work

2.1 Unsupervised Anomaly Detection

Anomaly detection in time series is an extensively studied topic within a broad range of research

areas, including medical diagnosis, fraud detection, network intrusion and programming defects

(Hayes and Capretz, 2015; Fawcett and Provost, 1997). Many conventional approaches exist,

both for supervised and unsupervised problems, but most are unsuited for the demands of a real-

time anomaly detection algorithm for streaming data. In general, supervised classification based

methods (Görnitz et al., 2013) that require labeled data are not applicable for real-time anomaly

detection of data streams (Ahmad et al., 2017), as it often involves large quantities of data in

need of instant processing, and that is collected continuously without information on whether the

observation is anomalous or not.

The majority of existing and commonly used unsupervised anomaly detection algorithms can

be categorized into three main groups (Goldstein and Uchida, 2016): Clustering methods (Guha

et al., 2000; Sequeira and Zaki, 2002), nearest neighbour based techniques (Shuchita and Karan-

jit, 2012; Bay and Schwabacher, 2003; Knorr et al., 2000) and statistical model-based approaches
(L. Simon and Rinehart, 2014; Ahmad et al., 2017; Laptev et al., 2017). Methods commonly

used in practice for anomaly detection in streaming data environments are normally simple, com-

putationally lightweight statistical techniques, including k-sigma (Laptev et al., 2015), exponential
smoothing techniques by Holt-Winters (Szmit and Szmit, 2012) and abrupt change detection (Bas-

seville and Nikiforov, 1993). However, these methods are mainly concerned with spatial anoma-

lies and struggle to incorporate contextual dependencies, limiting their usefulness in applications

where context-based anomalies are important to discover (Ahmad et al., 2017).

Several authors suggest anomaly detection models tailored for real-time anomaly detection

of streaming data (Hill and Minsker, 2010; Ahmad et al., 2017; Hundman et al., 2018). These

are often referred to as analytical redundancy models because they classify anomalies based on a

7

CHAPTER 2. RELATED WORK 8

simulated data stream whose measurements are compared to the true measurements of the actual

sensor (Hill and Minsker, 2010). Thus, these methods involve developing statistical models that

reconstruct univariate or multivariate data streams, as well as the corresponding logic to how

the predicted data stream should be compared to the true values in order to discover anomalies

(Mehrotra et al., 2017).

Early work within model-based anomaly detection include Upadhyaya et al. (1990) and Upad-

hyaya and Skorska (1984) that developed multivariate autoregressive (MAR) models to estimate

the next value in a data stream based on historical data. Another popular technique for time se-

ries modeling is autoregressive integrated moving average (ARIMA) (Bianco et al., 2001), which is

known as an effective, general purpose model for detecting outliers in time series with regular tem-

poral patterns. However, these models usually require manual tuning to assess seasonality, trends

and other statistical parameters of the data, making them hard to generalize (Zhu and Laptev,

2017).

Recent years have seen a rise in the application of machine learning in developing regression

models in model-based anomaly detection algorithms (Ahmad et al., 2017; Bhattacharyya and

Kalita, 2013). In particular, sequence specialized neural networks such as Recurrent Neural Net-

works (RNN), Long Short-Term Memory (LSTM) (Hochreiter and Schmidhuber, 1997) and Gated

Recurrent Units (GRU) (Chung et al., 2014) have been established as state-of-the-art approaches

to sequence-modeling, and have garnered increasing attention due to their flexibility, ease of incor-

porating exogenous variables and ability to model highly complex, non-linear patterns (Zhu and

Laptev, 2017). Recent papers (Laptev et al., 2017) show that deep neural networks can exceed the

performance of classical time series models in the modeling of long, interdependent time series.

There are numerous examples of successful implementations of deep learning in an anomaly

detection context. Nairac et al. (1999) employs an artificial neural network to predict the vibration

data stream of a jet engine and to report sudden transitions in the engine when the prediction

error exceeds a predetermined threshold. Yuan et al. (2016) fits a LSTM model to estimate the

Remaining Useful Life (RUL) of an aero engine, which in turn is used to decide maintenance

actions. Malhotra et al. (2016) also utilizes a LSTM model for multi-sensor anomaly detection and

Malhotra et al. (2015) uses stacked LSTM networks for anomaly detection in time series.

Analytical redundancy models are dependent on a logic that classifies abnormal behavior based

on the comparison between the prediction and observed value. We find that the majority of related

work uses two methods when it comes to the classification of new observations. The first method

detects anomalies based on the prediction error and a distribution of historical residuals (Ahmad

et al., 2017; Hundman et al., 2018; Malhotra et al., 2015). The residual distribution is obtained

by estimating the parameters of a Gaussian distribution based on the k most recent residuals. New

observations are classified by calculating the probability that the residual of a new observation

and the predicted belongs to the residual distribution. Other articles, such as Nairac et al. (1999),

define what is considered normal behavior based on the results on the training data, indicating

9 CHAPTER 2. RELATED WORK

the use of a static distribution that is never updated. Common for most articles that utilize resid-

ual distributions to detect anomalies is the assumption that the distribution can be modeled as a

Gaussian distribution.

The second approach detects outliers by using the prediction intervals of the models (Hill and

Minsker, 2010; Zhu and Laptev, 2017). In order to create the prediction intervals, these meth-

ods rely on either stochastic models that produce non-deterministic predictions (Zhu and Laptev,

2017), or on the variance of the prediction errors of a deterministic model on some dataset where

the behavior is considered normal (Hill and Minsker, 2010). This method registers an anomaly if

the observed values are outside of the prediction interval.

2.2 Evaluation of Unsupervised Anomaly Detection Models

Evaluating the quality of unsupervised anomaly detection algorithms is not as straightforward as

in the supervised case where the data contains labeled regions. Labels make it possible to calcu-

late precision and recall-scores (Hundman et al., 2018; Lee et al., 2018), which are measurements

of how many anomalies the model classified versus how many of them were correctly classified

anomalies1. The precision and recall score is a direct measure of quality of a supervised anomaly

detection procedure, and can therefore be used to compare methods to one another (Goldstein and

Uchida, 2016). However, such labels are not available in unsupervised problems, and the evalua-

tion of the effectiveness of unsupervised anomaly detection models remain challenging (Campos

et al., 2016).

A typical procedure in the literature to bypass this problem is to partially convert the problem

to a supervised or semi-supervised one; consulting experts to obtain labels for specific data sets,

and use this to calculate precision and recall scores (Hundman et al., 2018; Lee et al., 2018;

Goadrich et al., 2004). However, this manual procedure is labor intensive for a human resource

and not particularly reliable (Campos et al., 2016). Other articles have a more intuitive approach

and label the data manually based on deviations from observed patterns and logical reasoning.

As an example, Malhotra et al. (2016) attempts to find anomalies in a power demand dataset,

and observes a regularly occurring pattern that the first five days of the week have a high power

demand. Any week where the power demand is low for one or more of the first five days is labeled

as anomalous, which enables the use of precision and recall-scores as a measure of quality.

Another way to assess the effectiveness of an unsupervised procedure is to test the algorithm

on publicly available benchmark datasets and compare its performance to acknowledged baselines

(Goldstein and Uchida, 2016). However, this requires highly generic models that work for the

benchmark data set as well as the specific case where the method should be applied (Campos

et al., 2016). Moreover, the results are not directly transferable to how well the method works

1Precision and recall is described with more detail in section 3.4.3.

CHAPTER 2. RELATED WORK 10

on the specific case. Thus, this evaluation technique is limited when it comes to implementations

where models are made to work in specific applications.

Chapter 3

Theoretical Framework

The following section provides a brief overview of the theory applied in this thesis. This in-

cludes basic definitions of methods within time series, time series modeling, machine learning,

and anomaly detection. A large part of this chapter is dedicated to the explanation of fundamental

principles of deep learning and neural networks.

3.1 Time Series

A time series can be defined as a sequence of data points x observed over time t (Brockwell and

Davis, 2016). Time series are found everywhere, e.g. in financial data, climate data, biological

data, and time series analysis is therefore a broadly researched field (Hastie et al., 2009). Time

series analysis and modeling are techniques to draw inferences from time series data. A time series

model can be defined as a model that approximates the joint distribution of which the observed set

of data points have been generated from (Hyndman and Athanasopoulos, 2018). The forecasting

of time series is the ability to use time series models to predict the likely future development of a

time series.

A time series that only consists of one variable is a univariate time series, whereas a multivariate
time series is one that consists of one or more variables. The time series is continuous if the series is

measured for every time instance, and discrete if it is only recorded at discrete time steps, usually

with a constant interval between the readings (e.g., every minute, every hour, etc.). Usually,

discrete time series are a result of the discrete measurements of continuous processes (Hastie

et al., 2009).

11

CHAPTER 3. THEORETICAL FRAMEWORK 12

3.1.1 The components of a time series

In general, time series can be decomposed into three major components: Seasonality, Trend and

Cycles (Brockwell and Davis, 2016). The trend component usually captures both the cycle and

trend components, and it is therefore referred to as the cycle-trend component. The trend can be

described as the general, long-term change of the time series, the cycle describes cyclical variations

around the trend, and the seasonality term is periodical variations in the time series (Brockwell

and Davis, 2016). A time series can therefore be broken down to the following three components:

a trend-cycle component (Tt), a seasonal component (St) and the remainder (Rt) which denotes

the stochastic variations not captured by the former components.

The components can be combined in different ways. An additive decomposition yields yt =

St + Tt + Rt, whereas a multiplicative decomposition gives yt = St · Tt · Rt. In practice, the multi-

plicative model is more popular, but what works best is dependent on the nature of the time series

(Brockwell and Davis, 2016).

3.1.2 Cross-correlation and autocorrelation

Correlation is a general term used in statistics to measure how strong a relationship is between two

variables. There are many ways to quantify the correlation between variables, such as Spearman
rank correlation1 and Kendall Tau correlation 2, but a popular measure, and the one applied in

this thesis, is the Pearson correlation coefficient3. It is a measure of linear correlation, and can be

defined with the following equation:

ρX,Y =
cov(X,Y)

σXσY
(3.1)

In other words, the Pearson correlation factor is the covariance of two variables divided by the

product of their respective standard deviation.

Autocorrelation is the correlation of a variable with itself over time. The analysis of a variable’s

autocorrelation is used to infer any temporal patterns and trends in the data and is usually applied

to uncover characteristics regarding stationarity.

3.1.3 Stationarity

A time series is said to be stationary if the statistical properties of the series do not vary with time,

meaning that the mean, variance, and covariance of the data are independent of time (Brockwell

and Davis, 2016). The stationarity of a series is usually uncovered by auto-correlation plots and

run sequence plots. For a non-stationary time series, the auto-correlation plot will decrease slowly
1Defined in Zar (1972)
2Defined in Bolboaca and Jäntschi (2006)
3Defined in Benesty et al. (2009)

13 CHAPTER 3. THEORETICAL FRAMEWORK

with an increasing lag, while it will drop quickly to zero in the case of a stationary time series

(Brockwell and Davis, 2016).

Many of the classical time series models only work with stationary data, even though this is an

unreasonable assumption for most real-world applications. A technique to make a non-stationary

series stationary is differencing. By differencing, one computes the change between consecutive

observations in the series, y′t = yt − yt−1, with the aim of stabilizing the mean of the series

(Brockwell and Davis, 2016). If the resulting difference y′t is white noise4, the equation becomes

y′t = yt−1+εt. If first order differencing does not stabilize the series, then other types of differences

might be used such as second-order differencing given by y′′t = y′t − y′t−1, or seasonal differencing
that computes changes from one season to another, y′t = yt − yt−m. Sometimes, combinations of

these methods are necessary (Brockwell and Davis, 2016).

3.2 Machine Learning

Machine learning is a collective term of algorithms that are able to learn from data without being

explicitly programmed (Mostafa et al., 2012). On a general basis, machine learning algorithms are

split into two main categories: supervised learning - learning problems where the target variables

are known - and unsupervised learning - problems where the targets are unknown. The objective

of supervised machine learning models is to approximate the true relationship between a set of

inputs and their corresponding target variables - the function f that has generated y given X.

It is assumed that there exists an unknown underlying function f that maps the input features

x to the output targets y such that y = f(x) + ε where ε is a randomly sampled, independent

error term that is normal distributed with a mean of zero (Goodfellow et al., 2016). The objective

of any machine learning problem is to approximate this function such that the outputs of the

approximated function (the predictions) are as close as possible to the true targets, i.e. f∗(x) =

ŷ ≈ f(x) = y + ε, where f∗ is the estimated function and E[ε] = 0. The total bias of a model

consists of a reducible and irreducible error term. While the former can be mitigated by using

other statistical learning models or optimizing model parameters, the latter represents inherent

random noise in the data that cannot be predicted. The learning process is essentially a problem

of minimizing the reducible error term.

This section will elaborate on fundamental theory on machine learning. First, simpler machine

learning techniques such as linear regression models and tree-based methods are described, before

moving on to deep learning and more advanced topics in the next section.

4This is the case when the differences are independent and identically distributed with zero mean.

CHAPTER 3. THEORETICAL FRAMEWORK 14

3.2.1 Linear regression models

Ordinary least squares linear regression

Ordinary least squares linear regression finds the linear combination of the input variables such

that the sum of squared differences of the observed and predicted values by the model is minimized

(Hastie et al., 2009). Given the inputs x and output y, the objective is to infer the weights w such

that y ≈ f∗(x,w) = w0 +
∑k
i=1 wi · g(xi). Mathematically this can be defined as minimizing the

cost function C = (y − xβ)T (y − xβ), where β are the estimated parameters and y the observed

values. In essence, β defines the parameters of a hyperplane that is fitted to the data such that the

total sum of squared errors is minimized.

Shrinkage methods

Shrinkage methods are biased learning regression methods that introduce a penalty term to the

minimization objective (Hastie et al., 2009). They are essentially least squares linear regression

with an added regularization term Ω(β). The cost function to be minimized is then least squares

plus the penalty: C = (y − xβ)T (y − xβ) + α · Ω(β). The effect of the regularization term is that

it shrinks the estimated coefficients closer towards zero (Mostafa et al., 2012). As with any other

regularization technique, the main motivation is to reduce the generalization error by reducing

the variance of the model. This, however, comes at the cost of a slightly increased bias, but the

decrease in variance outweighs the slight decrease in bias such that the total generalization error

is lowered (Mostafa et al., 2012).

Ridge regression and LASSO5 are two shrinkage methods that introduce regularization (Hastie

et al., 2009). With ridge regression, the penalty term is set equal to the L2-norm (Ω(β) = βTβ),

whereas LASSO sets the penalty term to the L1-norm (Ω(β) = |β|). The parameter α sets the

degree of regularization and must be optimized in the implementation of these models. α = 0

means ordinary least squares regression with no regularization.

Elastic Nets are a hybrid between Ridge regression and LASSO, where both L1-norm and L2-

norm regularization is introduced (Hastie et al., 2009). Here, there are two parameters that must

be optimized, namely the degree of regularization by α, and the fraction of L1 and L2 regularization

by λ. Setting λ = 1 implies using only the LASSO penalty, λ = 0 only the Ridge penalty, and

between 0 and 1 implies a combination of the two.

3.2.2 Tree based methods

Tree-based methods comprise models that use decision trees to produce predictions (Mostafa et al.,

2012). The fundamental building blocks of tree-based methods are Classification and Regression

5Least Absolute Shrinkage and Selection Operator

15 CHAPTER 3. THEORETICAL FRAMEWORK

Trees (CART). They are popular because they are straightforward to implement, computationally

cheap and easy to interpret. A CART is a directed acyclic graph that consists of internal nodes,

leaves and edges (Hastie et al., 2009). Each internal node corresponds to one of the input variables,

and each split is a Boolean test that is either true or false. The path between one node and another

is called an edge, and the leaves corresponds to one of the target variables. The trees are grown

using a top-down, greedy algorithm called recursive binary splitting (Hastie et al., 2009). The

algorithm splits a feature space into J distinct, non-overlapping regions, and it is completed once

the subset of each node contains all the target variables. In regression problems, the splits are

commonly made such that the split maximizes the reduction in the residual sum of squares (RSS)

(Mostafa et al., 2012). While these trees are easy to understand and implement, they are rarely

used as standalone models due to having relatively poor predictive capabilities.

Bagging and Boosting

One of the obvious disadvantages with single decision trees is their high sampling variability and

comparably poor predictive abilities (Mostafa et al., 2012). Bagging and Boosting are methods

designed to improve the accuracy and stability of such trees by combining the results of many of

them (thereby they are commonly called ensemble methods) (Hastie et al., 2009).

Bagging, short for bootstrap aggregation, is a technique that samples B samples of n observa-

tions from the dataset, fits a decision tree for each of the data samples and averages the outcome

(Hastie et al., 2009). The trees are grown independently, and all the input features are used as

split-candidates in the tree-generating process. The final prediction is the average of the ensem-

ble of trees. In theory, this reduces the variance of the predictions, which overall reduces the

generalization error of the model.

Boosting are methods that combines many weak learners into a strong one (Hastie et al., 2009).

Here, the trees are grown sequentially using information from previously grown trees. More specif-

ically, the residuals from the previously grown tree are used as the response variable when growing

the next. The trees will only have a small number of splits each, denoted d. This yields a sequence

of B trees, where each tree accounts for some variation in y that was not captured by the previous

trees. The boosting method is a slow learner, and will, in general, require a small learning rate and

many trees to get good results.

Random Forest

In Bagging, the trees are grown on randomly sampled subsets of the data using all p predictors in

the data set as split-candidates. However, if the bagged trees are highly correlated and produce

similar outcomes, the improvement will not be substantial (Mostafa et al., 2012). This will, for

instance, be the case if the data set has one or more dominant predictors that most grown trees

consistently will use as a split-criterion (Hastie et al., 2009). A Random Forest is a special case

CHAPTER 3. THEORETICAL FRAMEWORK 16

of Bagging that aims to fix this problem. Random Forests decorrelates the trees by randomly

sampling which predictors to consider every time a tree is to be grown (Hastie et al., 2009). A

Random Forest will therefore draw B samples from the data as well as m predictors to create the

trees, and average the outcome. Notice that a Random Forest is the same as Bagging for m = p,

where p is the total number of input features.

Gradient Boosting Machines

Gradient Boosting Machines are methods that use boosting in combination with steepest gradient

descent optimization. With a defined loss function, each tree is fit on the steepest descent of the

gradient (the negative gradient). For in-depth explanations on gradient boosting machines, the

interested reader is referred to Hastie et al. (2009) on page 349.

3.3 Deep Learning

Deep learning is a subfield of ML, usually in the form of neural networks, which emphasizes the

learning of successive layers of increasingly meaningful representations (Chollet, 2018). Deep

learning has garnered increasing attention in recent years due to the tremendous successes demon-

strated by the framework in a range of challenging tasks within artificial intelligence. Also in time

series- and sequence modeling, deep learning has become an increasingly popular approach. Re-

current Neural Networks, Long Short-Term Memory (Hochreiter and Schmidhuber, 1997) and

Gated Recurrent Neural Networks (Chung et al., 2014) have been established as state-of-the-art

approaches to sequence-modelling and point-forecasting (Assaad et al., 2008). These are special-

ized neural networks that are especially suited for sequence-based data such as text, speech and

time series, and they have proved superior to classical time series modeling techniques in the case

of multivariate, interdependent time series (Zhu and Laptev, 2017).

This section gives an introduction to the fundamentals of deep learning, and especially the

methods applied in this thesis. First, key concepts and the building blocks of deep learning models,

the feed-forward neural networks, are described. Further on, the theory on other types of neural

networks is given, such as Recurrent Neural Networks. The theory presented is mostly inspired by

two textbooks on deep learning, Chollet (2018) and Goodfellow et al. (2016).

3.3.1 Feed-forward neural networks

Feed-forward artificial neural networks, also known as multilayer perceptrons, are the very foun-

dation of deep learning models (Goodfellow et al., 2016). As for any machine learning algorithm,

the objective of a neural network is to infer the underlying function of the data-generating pro-

cess, y = f(x), for a given set of inputs and outputs x and y. The parameters of the network, θ,

17 CHAPTER 3. THEORETICAL FRAMEWORK

are adjusted such that the learned model f(x; θ) best approximates the true target function f , i.e.

f(x; θ) = ŷ ≈ f(x) = y (Chollet, 2018).

The feed-forward neural network can be interpreted as a series of nested functions that trans-

form the input data to an output. Each step in the chain of functions is denoted as layers, and each

layer performs a non-linear transformation to the data. The model can have an arbitrary number

of layers, denoted L, and the number of layers defines the depth of the model. The composition

and structure of these layers define the topology of the neural network. Thinking of the multilayer

perceptron as a series of consecutive transformations, the learned function f can be defined as

f(x, θ) = f (L)(f (L−1)(...f (2)(f (1)(x; θ(1)))), where f (l) is the transformation through layer l. The

combination of functions constitutes the hypothesis space H, the set of solutions (or hypotheses)

h that it’s possible for the model to choose from when fitting the model.

Figure 3.1: Illustration of a feed-forward neural network. The input layer takes the input [x1, ..., xt]. Two
hidden layers follow, with m neurons in each. The synapses between the layers have weight matrices W. The
neurons calculate the weighted sum of the outputs of the preceding layer and transform it with a function h.
The output layer is a single neuron, making the final prediction ŷ.

There are three types of layers in a neural network, namely the input layer, the output layer and

hidden layers. The input layer is responsible for the entry and through-putting of the input data

and does not transform the data in any way. Following the input layer comes a sequence of hidden

layers l = 1, ..., L− 1. Each layer, li, will transform the data in a particular way, depending on the

activation function of the neurons comprising the layer. The final hidden layer is connected to the

output layer, which converts the signal to make the final prediction ŷ.

Each of the layers consists of nodes or neurons. Each of the neurons in one layer, li, are fully

connected to the neurons the next, li+1, by synapses or weights. These weights are commonly given

in the layer-specific weight matrix W(l). The role of a neuron in a layer is simple: It receives the

input signals from the neurons in the preceding layer (multiplied by their respective weights), adds

CHAPTER 3. THEORETICAL FRAMEWORK 18

a bias term, and transforms the signal through an activation function σ and passes the transformed

signal on to the next layer. The output of a single neuron, a(l)i can then be calculated as follows:

z
(l)
i = W(l)h(l−1) + b

(l)
i

a
(l)
i = σ(z

(l)
i)

(3.2)

where W(l) is the weight matrix for layer l, h(l−1) is the vector of outputs from the preceding layer

l − 1, b(l)i a bias term for neuron i in layer l, and h(l)i the output of neuron i in layer l through the

activation function σ. The combination of many non-linear transformations across neurons and

layers makes it possible to approximate approximate highly complex, non-linear functions.

3.3.2 Activation functions

Each of the neurons in the neural network transforms the input with a non-linear function. These

functions are denoted as activation functions. The activation functions are necessary to enable the

models to learn other than linear patterns. The hypothesis space consisting of linear transforma-

tions of the input data is too restricted, and the model would not be able to learn more complex

patterns. Moreover, deeper models with exclusively linear activation functions would not bene-

fit from adding more layers (i.e., making the model deeper), as linear transformations of linear

transformations do not extend the hypothesis space (Chollet, 2018).

The choice of when to use which activation functions is still an active area of research (Good-

fellow et al., 2016), and there does not yet exist many theoretically guided principles. Which

activation function to use when is therefore subject to the trial-and-error procedure. Testing must

be performed with what activation functions work best for a specific problem. Some of the most

common activation functions are given in the table 3.1.

Name Function

Linear σ(x) = ax

Sigmoid σ(x) = ex

1+ex

Tanh σ(x) = tanh(x)

ReLU σ(x) = max(0, x)

Table 3.1: Overview of some common activation
functions.

A sigmoid function outputs a scalar that can be

interpreted as a probability on the interval [0, 1],

whereas a ReLU (Rectified Linear Unit) zeros out

negative values (Chollet, 2018). The Tanh function

returns a value on the interval [−1, 1]. Literature

suggests that the ReLU activation function provides

an excellent default choice that usually works well

with most problems (Goodfellow et al., 2016; Chol-

let, 2018). This is often used in combination with

the sigmoid function in the output layer, but this de-

tail is dependent on the nature of the problem and

the function of the network.

19 CHAPTER 3. THEORETICAL FRAMEWORK

All the activation functions listed in table 3.1 are differentiable functions. This is important

in order to use them with gradient based learning, where the partial derivative of all functions is

needed.

3.3.3 Backpropagation & gradient-based learning

The neural network learns by adjusting the parameters of the network, θ, such that the sample

inputs presented to the network are mapped correctly to their associated targets. However, a

network can have millions of these parameters, and finding the specific combination that minimizes

the prediction error seems like a daunting task.

Initially, the weights are set to random, small values, resulting in poor initial performance of the

model (Chollet, 2018). Next, a loss function is defined, C(f(x; θ), f∗(x)), that is used to evaluate

how well a set of parameters θ performs by calculating the distance between the predictions ŷ

and the true values y. The neural network will iteratively update the weights in the network by

processing sampled training data6, attempting to minimize the loss function. In other words, for

every data point, the weights in the network are adjusted to decrease the loss score. Each round

of training is called an epoch, and one epoch is completed once each observation in the sampled

data has been processed. Naturally, the more epochs, the better the model will perform on the

in-sample training data. However, increasing the number of epochs comes at a computational cost,

as well as the increased risk of overfitting7. Specifying the number of epochs is therefore a trade-off

between computational resources, achievable accuracy, and generalization.

Goodfellow et al. (2016) describes how the weights in the network are updated by the use

of backpropagation and optimization algorithms: When the network produces a prediction ŷ, the

error of the prediction is calculated using the loss function. This error is fed backward through the

network to calculate each weight’s contribution to the error. The weights are then modified propor-

tionally to their contribution. More specifically, this contribution is found by computing the gradi-

ent of the loss function with respect to each of the weights in the network, i.e. ∇θC(f(x; θ), f∗(x)).

The gradient contains information about all the partial derivatives of the error function concerning

each of the weights in the network, which an optimization algorithm uses in combination with a

specified learning rate or step rate to update the weights. The gradient of the loss function con-

cerning a specific set of parameters θ0 ∈ θ describes the curvature of the loss function around this

particular set of parameters, and the weights can be updated by moving slightly in the direction

where the negative derivative is the largest. That is, θ1 = θ0−λ · ∇θ0 , where λ is the learning rate.

This is also the origin of the commonly used name of this method, gradient descent - moving the

weights in the direction where the gradient declines.

6N samples will be drawn from the training data, where N is the size of the data set
7The concept of overfitting is described in section 3.3.5

CHAPTER 3. THEORETICAL FRAMEWORK 20

3.3.4 Optimization in neural networks

As described in the previous section, the neural network is dependent on some optimization algo-

rithm to calculate the magnitude and direction of the parameter update. The optimization algo-

rithms that are mostly used in deep learning are referred to as mini-batch methods, where they use

”mini-batches” of the training data at a time (not all the data at once, with a minimum of one data

point). The fact that there is randomness in the sampling of small batches of data, makes these

methods stochastic. A larger batch size is desirable because each update is more accurate as more

data is used in the training process (thus improving the accuracy of the gradient estimation), but

it comes at a computational cost. In contrast, a smaller batch size can have a regularizing effect

on the model (Goodfellow et al., 2016). It is common practice to use batch sizes in the power of

2, such as 16, 32, 64, etc.

A family of common optimization techniques used in neural networks is stochastic gradient
descent (SGD). These methods are stochastic as they sample random mini-batches from the data.

For each mini-batch, the gradient of the loss function with respect to a given set of parameters is

computed. This is used to update the parameters in the direction the descending gradient, thereby

the name of gradient descent.
Given a loss function L, a batch of sampled data points B ⊂ D, D being the whole data set,

and a set of weight parameters θ, the gradient, ∇L is calculated as follows:

∇L =
1

B
∇θ

B∑
b=1

L(ŷb;θ, yb) (3.3)

Then, given a learning rate λk for iteration k, the new parameters are adjusted in the direction of

the negative gradient proportional to the learning rate.

θnew = θold − λk · ∇L (3.4)

It is important that the learning rate is set appropriately, such that the model converges. If set

too high, the gradient descent can overshoot the minimum, fail to converge or even diverge. The

lower the learning rate, the slower the convergence, hence it involves an increased computational

cost. Adaptive learning aims to adjust the learning rate in an adaptive manner during training, and

introduces unique rates for the individual weights that are dependent on the previously computed

gradients. Additionally, concepts such as momentum and decay can speed up the convergence of

SGD methods. Common choices for optimization techniques that employ adaptive learning are

ADAM (Adaptive Moment Estimation) and AdaGrad (Adaptive Gradient). ADAM has proved to

work well in practice, a safe choice, and most often favored over other optimization algorithms

(Goodfellow et al., 2016).

21 CHAPTER 3. THEORETICAL FRAMEWORK

3.3.5 Generalization, overfitting and regularization

Overfitting is an essential concern in any machine learning problem. It is a phenomenon that occurs

when the model is beginning to fit the training data too well, i.e., the model is learning patterns

that are specific to the training data, but that is irrelevant when it comes to new, unseen data

observations (Chollet, 2018). As a result, the out-of-sample error increases as the in-sample error

decreases. Likewise, the model is said to be underfitting when there are still relevant patterns to

learn in the training data that it has not learned yet, and it is beneficial to continue the learning

process. For neural networks, and for any other machine learning method, there is a trade-off

between optimization and generalization. Optimization is the process where the model is adjusted

to get the best possible performance on the training data (i.e. minimizing the prediction error on

the data it is trained on), whereas generalization refers to how well the model can predict unseen

data that has not been part of the training process (Chollet, 2018).

The best solution to improve the generalizing properties of the model is to supply more data

to the model (Ketkar, 2017). However, this is often not possible, and other measures must be

taken. The process of fighting overfitting is commonly called regularization (Goodfellow et al.,

2016). Regularization is a technique to constrain the model in terms of complexity, and how much

of what information the model can process, with the purpose to reduce the generalization error.

Early stopping is a regularization measure that aims to stop the training process once the perfor-

mance on the validation set has not improved by a threshold over a specified number of iterations

(Goodfellow et al., 2016). This affects the number of epochs the network is allowed to train, ef-

fectively stopping the process once the out-of-sample loss does not improve. The danger of this

method is when the loss has reached a local optimum, and the training is stopped too early.

Another approach is to reduce the trainable parameters of the network by reducing the number

of layers and/or nodes in the network, i.e., performing a complexity reduction (Goodfellow et al.,

2016). However, there are few theoretical principles to guide how this should be best done, so it

is a trial-and-error based approach in need of manual tuning.

Weight regularization is another traditional approach to regularization of neural networks, such

as L1 and L2 norm penalties. These methods work by adding a regularization term, Ω(h), to the

loss function, effectively adding a handicap to the minimization problem (Mostafa et al., 2012).

Instead of minimizing the loss function alone, one minimizes a combination of the loss function

and the regularization term. The new cost function that is sought minimized can therefore be

defined as C(ŷ, y, θ) = L(ŷ, y) + Ω(θ). This effectively awards simpler models, and penalizes more

complex model. L1 and L2 regularization are regularization by adding the L1 norm (Ω(θ) = ‖w‖1)

and L2 norm (Ω(θ) = 1
2‖w‖

2
2).

Dropout is arguably the most popular regularization technique in neural networks (Goodfellow

et al., 2016), due to being simple to implement, computationally cheap and efficient. It works by

randomly deactivating nodes in the network, usually a share between 20 - 50% of the nodes in

CHAPTER 3. THEORETICAL FRAMEWORK 22

the layer (Chollet, 2018). The dropout technique induces the effect of randomness in the training

process, which has positive effects on the generalizing properties of the model. Furthermore, it

speeds up the training process and forces the network not to rely on a few important features and

prohibits the nodes in the network to co-adapt too much (Srivastava et al., 2014). Hence, this is a

technique we employ extensively in our models.

3.3.6 Recurrent neural networks

Recurrent Neural Networks are networks specialized for treating sequential data. Traditional neu-

ral networks (MLPs) learn sequences by processing the whole sequence at once, treating each

temporal instance as a separate feature (Chollet, 2018). In contrast, RNNs process sequences se-

quentially by iterating over each element while keeping a state in-between the elements, which can

be thought of a form of memory of previously seen data (Goodfellow et al., 2016). This enables

the network to be able to recognize temporal patterns and generalize across sequences. Intuitively,

RNNs can be thought of consecutive copies of the same network, each passing information to a

succeeding network through the state (Olah, 2015). The prediction of a RNN is therefore not only

based on the final input vector (as a traditional network is), but also on the state which is a prod-

uct of calculations based on the preceding input vectors. This makes RNNs particularly well suited

for solving sequence-based problems such as natural text processing, speech recognition, and time

series modeling, where temporal ordering matters.

Figure 3.2: An unfolded recurrent neural network. Source: Olah (2015).

RNNs handle data sequentially by iterating over the elements in the sequence, while in between

each element, a state is calculated based on the information it has previously seen (Chollet, 2018).

Consider figure 3.2, an illustration of an unfolded RNN: For each iteration, a piece of a neural

network, A, takes a new input xt and outputs a value ht, representing the state of the network at

time t (Olah, 2015). The updated state can be calculated based on the previous state, h(t−1), the

vector of inputs up to time t, xt, and the parameters of the network, θ:

ht = f(ht−1,xt, θ), (3.5)

The function f(·; θ) represents the transformation performed by the neural network A, and this

is held constant (with a constant set of parameters θ) throughout the processing of the sequence.

23 CHAPTER 3. THEORETICAL FRAMEWORK

The unfolding of a RNN, illustrated in figure 3.2, shows that a RNN is equivalent to the repeated

application of some function f for each time step, where only the previous state, ht−1, is updated

between each iteration.

The training of a RNN is done by applying backpropagation8 to the unrolled network, better

known as backpropagation through time (BPTT) (Goodfellow et al., 2016). The only difference

from standard backpropagation is that the outputs at every timestep will have an impact on the

loss, so the gradient is calculated in a recursive manner.

RNNs can be designed for a wide variety of purposes, and can even handle varying input sizes;

useful for instance when treating textual data with a varying number of words. However, we

use RNNs with fixed input sizes to make predictions for each sample in the dataset. Similar to

traditional neural networks, RNNs can benefit from more advanced architectures where layers are

stacked, but they are less certain to do so (Chollet, 2018).

Long Short-Term Memory and Gated Recurrent Units

One of the main appeals of RNNs is the idea that information can persist through time. In the-

ory, RNNs are certainly capable of modeling long-term dependencies (Goodfellow et al., 2016).

However, as the sequence length grows, the task of connecting information from one time step to

information many steps before becomes increasingly difficult. The reason for this is the vanish-
ing gradient problem, an effect that occurs when the network becomes very deep (Chollet, 2018).

When training the network using gradient-based learning, the weights in the network are updated

proportionally to the gradient of the error function. In deep networks, such as unfolded RNNs

processing long sequences, this update will become vanishing small, effectively prohibiting the

network from learning further (Goodfellow et al., 2016). For this reason, simple RNNs are al-

most never used as standalone models for solving real-world problems due to being too simplistic

models (Chollet, 2018).

The theoretical reasons for the vanishing gradient problem were studied in detail by Hochreiter

and Schmidhuber (1997), who designed alternatives to the simple recurrent unit to help solve the

problem - the Long Short-Term Memory (LSTM). Like the simple RNN, the LSTM uses recurrence

to generalize a model to sequences of variable length. Simple RNNs have a basic structure in the

recurrent unit, usually a single neural layer. In contrast, the LSTM has four neural layers inter-

acting in a special way, specifically designed to carry information over long sequences. The usual

LSTM layer consist of a cell, a forget gate, an input gate and an output gate (Chollet, 2018). The

three added gates control the flow of information in and out of the cell, and effectively decide

what information the network should use, or not use, for a given input (Hochreiter and Schmid-

huber, 1997). This enables information to persist over long periods while avoiding the problem of

8The concept of backpropagation is explained in section 3.3.4.

CHAPTER 3. THEORETICAL FRAMEWORK 24

vanishing gradients. The interested reader is referred to Hochreiter and Schmidhuber (1997) or

Goodfellow et al. (2016) for an in-depth technical description of the LSTM network.

While LSTMs are essential to the modern success of RNNs, they are expensive models to train.

As a more effective alternative to the LSTM structure, Chung et al. (2014) introduce the gated recur-
rent unit (GRU). Different studies have shown that the GRU network in some cases can outperform

the LSTM networks in terms of computational time and generalizing abilities (Chung et al., 2014),

but, in general, the LSTM networks have more representative power, albeit more computationally

demanding (Goodfellow et al., 2016). Similar to the LSTM layer, a GRU layer decides how much

information to pass on to a cell by the use of sequential gates. The GRU only has two of these

gates, commonly known as an update gate and a reset gate. The update gate controls how much of

past information needs to be carried on to the next cell. The reset gate controls the opposite, e.g.

how much of the information that can be forgotten. The interested reader is referred to Chung

et al. (2014) for more information on GRUs.

LSTM and GRU networks are considered state-of-the-art when it comes to sequence processing

techniques due to their unique ability to model long-term dependencies.

3.3.7 Model ensembling

Model ensembling is a powerful technique to help reduce the generalization error in machine learn-

ing tasks. Ensembling consists of pooling the predictions of many models together in order to

make a better prediction as a whole (Chollet, 2018). A good ensemble relies on diversity and the

assumption that the constituent models are good for different reasons. The main idea is that differ-

ent models utilize different aspects of the data to make their predictions, thus extracting part truths

of the data, but not the whole truth (Chollet, 2018). The combination of these perspectives leads

to a better description of the data as a whole. However, if the models are similar to each other, they

will be biased in the same way, and the ensemble will necessarily retain this bias. However, if they

are biased in different ways, the biases will partly cancel each other out, and the ensemble will

produce more accurate predictions than any of its constituent models can alone (Chollet, 2018).

Arguably, the easiest way to combine models is by averaging their predictions at inference

time (Chollet, 2018). This is a good option if the models are more or less equally good, but can

lead to worse accuracy if one model is significantly worse than the others. A smarter ensemble

method is to use a weighted average, where each model is assigned a weight that is learned on the

validation data. Even better results can be achieved by training a separate model that learns the

best combination of the models in order to reduce the prediction error (Goodfellow et al., 2016).

25 CHAPTER 3. THEORETICAL FRAMEWORK

3.3.8 Uncertainty assessment of deep learning models

The theory presented in the following section is mostly based on a doctoral thesis examining this

topic (Gal and Ghahramani, 2015), and two studies that successfully implements the methods

(Zhu and Laptev, 2017; Kendall and Gal, 2017).

Deep learning can achieve remarkable accuracy in modeling complex, high-dimensional rela-

tionships. For regression problems, the quality of the model is often given by an accuracy score.

This score is often accepted blindly and the mapping is assumed to be accurate, even though this

might not be the case (Kendall and Gal, 2017). The accuracy score does not necessarily reflect

what the model does not know - the inherent uncertainty of the model. Traditional deep learning

are deterministic models that produce point estimates, but fundamental questions like how con-
fident the model is of its estimate remain unanswered (Gal and Ghahramani, 2015). Assessing

the predictive uncertainty of models can be highly useful in an operational context, where the

uncertainty information can be cardinal for a decision based on a prediction.

The uncertainty of a trained neural network fθ(·), where θ is the vector of learned weights,

is quantified by its variance in predicting an output ŷ∗ for an input x∗. Using the law of total

variance, this can be decomposed as follows:

Var(y∗|x∗) = Var (E [y∗|θ, x∗]) + E [Var(y∗|θ, x∗)]

= Var(fθ(x∗)) + σ2
(3.6)

We see that the variance can be decomposed to two main terms: Var(fθ(x∗)) represents the

variance of the predictive model and is referred to as epistemic uncertainty, while σ2 is the inherent

noise in the data-generating process, called the aleatoric uncertainty. In order to fully describe

the uncertainty of the model, these two terms must be estimated. The remainder of this section

explains these sources of uncertainty, and how they can be modeled for deep learning models.

Epistemic uncertainty

Epistemic uncertainty, also referred to as model uncertainty, captures the uncertainty regarding

the specification model parameters, which for a neural network is the learned weights (Gal and

Ghahramani, 2015). This source of uncertainty can be mitigated by feeding the model with more

data samples, but the modeling of this uncertainty has traditionally been difficult for deep learning

models (Kendall and Gal, 2017). However, Gal and Ghahramani (2015) identified a remarkably

simple approach to estimate the epistemic uncertainty for neural networks, with no changes re-

quired to the model architecture or the learning process in general.

We are interested in the expected model output given our input - the predictive mean E(y∗) - and

a measure of confidence of the prediction - the predictive variance Var(y∗). Gal and Ghahramani

CHAPTER 3. THEORETICAL FRAMEWORK 26

(2015) found that the application of stochastic dropout in the network in both the training and

prediction phase is equivalent to a Gaussian process approximation. By applying random dropout

in the network and standard Bayesian modeling techniques, the parameters of the predictive dis-

tribution can be estimated.

Key to estimating the parameters of a Gaussian distribution is the posterior distribution, P (θ|X,Y).

The posterior is the distribution of the most likely function parameters given the observed data

D = {X,Y}, and its deduction is a process known as Bayesian inference (Gal and Ghahramani,

2015). Given the posterior distribution, it can be used to calculate the output of a new input point

x∗:

P (y∗|x∗, θ,D) =

∫
P (y∗|x∗, θ)P (θ|D)dθ (3.7)

The expected value of y∗ is called the predictive mean of the model, and the variance is the pre-

dictive uncertainty (Gal and Ghahramani, 2015). In other words, if we can solve for the posterior

distribution, we can also model the Gaussian distribution of the model for an input x∗.

While it is possible to evaluate the posterior analytically for simple models such as linear re-

gression models, this is not the case for highly non-linear, high-dimensional models such as deep

neural networks. It is therefore necessary to approximate the posterior. Common approximation

methods are Variational Inference or Markov Chain Monte Carlo, better described in appendix A.2,

but these techniques are not possible to scale to the vast number of parameters usually found

in neural networks (Zhu and Laptev, 2017). Gal and Ghahramani (2015) found that perform-

ing stochastic dropout at inference time is equivalent to Bayesian approximation. By applying

stochastic dropouts in each of the hidden layers in the network, a single output from the model

can be viewed as a random sample from the posterior predictive distribution. The parameters of

the predictive distribution of the model can therefore be approximated by running the same in-

put x∗ through the network many times and calculating the sampled mean and variance from the

resulting set of predictions.

The parameters of the predictive distribution can therefore be estimated by predicting an output

ŷ∗ for an input x∗ B times through a network that applies stochastic dropout in each layer at

inference time. This results in a sequence of B predictions for the input, [ŷ1, ŷ2, ..., ŷB], of which

we apply the following equations to obtain the predictive mean and variance:

ŷ∗ =
1

B

B∑
b=1

ŷ∗b

η21 = V̂ar(fθ(x∗)) =
1

B

B∑
b=1

(ŷ∗b − ŷ∗)2
(3.8)

27 CHAPTER 3. THEORETICAL FRAMEWORK

Notice that we denote the epistemic uncertainty as η21 .

Aleatoric uncertainty

Aleatoric uncertainty captures uncertainty regarding the irreducible noise that is present in the

data, the σ2-term in equation 3.6. A common way to estimate this is by evaluating the prediction

error on an independent, held-out validation set (Zhu and Laptev, 2017; Kendall and Gal, 2017).

Let Dv define a separate, held-out validation set that contains inputs {x1, ..., xV } and outputs

{y1, ..., yV }. Given a network, f θ̂, where θ̂ is the learned weights, the aleatoric uncertainty is

estimated by evaluating the residual sum of squares of the network on the validation set:

η22 = σ̂2 =
1

V

V∑
v=1

(
yv − E

[
f (θ̂)(xv)

])2
(3.9)

Notice that we denote the aleatoric uncertainty as η22 . The validation set is independent of the

learned function f θ̂(·), and if we assume that f θ̂(·) is an unbiased estimate of the true model, we

have that

E[σ̂2] = σ2 +
1

V

V∑
v=1

E
[
f θ̂(xv)− fθ(xv)

]2
= σ2 + Vartrain(f θ̂(xv))

(3.10)

where Vartrain is the variance of the fitted model of the training data, which goes to 0 as the number

of samples N in the training data goes to ∞. Thus, we see that σ̂2 is an asymptotically unbiased

estimate of the true noise in the data. We also see that σ̂2 has σ2 as lower bound, which in practice

means that a finite estimation will overestimate the true value.

Total uncertainty

In order to calculate the total uncertainty of the network for a given input x∗, we estimate the

aleatoric uncertainty and the epistemic uncertainty separately by equation 3.8 and equation 3.9,

respectively, and combine these terms by equation 3.6. Denoting the epistemic uncertainty η1 and

the aleatoric uncertainty η2, the total uncertainty, η, can be calculated by

η =
√
η21 + η22 (3.11)

where we take the root to obtain the uncertainty as standard deviation.

CHAPTER 3. THEORETICAL FRAMEWORK 28

3.4 Anomaly Detection

Anomaly detection refers to the problem of finding patterns in data that do not conform to expected

behavior (Chandola et al., 2009). Anomaly detection methods aim to identify the normal and

abnormal state of the data (Mehrotra et al., 2017). Anomaly detection is usually categorized

into two main types - supervised and unsupervised anomaly detection - based on the availability of

labels in the data. Supervised anomaly detection describes a setup where the training and testing

data consist of fully labeled samples (Goldstein and Uchida, 2016). The practical usefulness of

supervised detection is limited because the anomalies in the data are already known and labeled,

which is not the case in most real-world applications. Unsupervised anomaly detection, which is the

area of focus in this thesis, is the process of identifying abnormal patterns in completely unlabeled

data (Goldstein and Uchida, 2016).

3.4.1 Types of anomalies

Point anomalies are often extremely high or low values that deviate significantly from the norm

(Mehrotra et al., 2017). Spatial anomalies are single data instances that are considered abnormal

from the rest of the data independent of where it occurs (Ahmad et al., 2017). Anomalies can

also be temporal or contextual if it is considered anomalous because of the context where it occurs

(Goldstein and Uchida, 2016). Temporal anomalies are often harder to identify as they are more

subtle, but they are important to acknowledge as they may provide useful, actionable information

about potential problems of a given system (Ahmad et al., 2017). Furthermore, it is common in

literature to separate between global anomalies - instances considered unusual as compared with

the whole dataset - and local anomalies - instances that only are unusual from the perspective of a

subset of the data (Mehrotra et al., 2017).

3.4.2 Outputs of an anomaly detection algorithm

There are in general two possible outputs of an anomaly detection algorithm (Goldstein and

Uchida, 2016). The first possibility is a label that is a boolean9 value that states if the instance

is an anomaly or not. The second possible output is an anomaly score that represents how abnor-

mal the observation is, which can be more informative than only a label (Mehrotra et al., 2017).

In supervised problems, it is common to use the label exclusively, where the anomaly score is more

common in the unsupervised case. With the anomaly score, it is common to either set appropriate

thresholds that determine when to classify instances as anomalous, or to rank the anomalies and

only report the most important ones.

9Boolean values are either true or false.

29 CHAPTER 3. THEORETICAL FRAMEWORK

3.4.3 Precision and recall

An ideal anomaly detection algorithm should correctly classify all the observations in the data

stream (Mehrotra et al., 2017). This is, however, a trade-off because if the algorithm should detect

all the anomalies, then the parameters are often set liberally such that it is easier to identify all the

anomalies. Similarly, if the algorithm should avoid to falsely classify a normal observation as an

anomaly, the parameters are often set more conservative. The precision and recall score evaluate

how well the algorithm captures existing anomalies, and how many of these are falsely classified.

When the algorithm falsely classifies a sample as anomalous it generates a false positive (fp) or a

type I error. Similarly, if an anomaly is not identified by the algorithm, it generates a false negative
(fn) or a type II error. Correct classifications are known as true positives (tp) and true negatives
(tn).

Precision is a measure of how well the algorithm manages to identify the true anomalies, while

recall measures how well the algorithm captures all anomalies. They can be defined as follows:

Precision =
tp

tp+ fp
and Recall =

tp

tp+ fn
. (3.12)

The precision and recall metrics are not directly applicable in unsupervised anomaly detection

problems, but they are important evaluation metrics that are widely utilized.

3.4.4 Concept drift

The behavior considered normal in a production system is likely to change over time. This problem

is commonly referred to as concept drift (Ahmad et al., 2017; Pratama et al., 2016; Gama et al.,

2014). For example, maintenance actions, upgrades and change of configurations are likely to

occur in a system; hence, the anomaly detection method should be able to adapt to such cases. In

real-world scenarios, the environments are often non-stationary and dynamically changing, i.e., the

relationship between the input data and the target might change. Moreover, one of the challenges

of concept drift handling is to distinguish the true drift from an anomaly or random noise. This is

especially difficult in noisy systems. Gama et al. (2014) highlights some critical aspects of concept

drift and suggests that both retraining and incremental learning, in addition to online learning is

some of the techniques that might be useful for anomaly detection models to adapt to dynamic

environments.

3.4.5 Anomaly detection in streaming data environments

Streaming applications involve analyzing a continuous sequence in real-time. The data is arriving

continuously with high frequency, and in many applications, the data streams need to be properly

processed and classified in a matter of milliseconds (Hundman et al., 2018). The data streams

CHAPTER 3. THEORETICAL FRAMEWORK 30

are possibly infinite, resulting in that an algorithm that attempts to store the stream in memory

will fail (Tan et al., 2011). Also, uncertainties in the data stream caused by measurement errors

or corrupt sensor readings are hard to distinguish from true measurements, making it difficult

to discover the true source of anomalies. As a consequence, it is necessary to develop effective

methods to process the data streams, identify uncertainties in them, and determine anomalies

accurately (Ahmad et al., 2017).

The streaming data is commonly processed and analyzed in two ways: (1) the system classifies

and learns in online fashion (Ahmad et al., 2017), or (2) the system trains in batches of a subset of

the data in an offline-fashion and classifies new observations in real-time (Hundman et al., 2018).

Inspired by Ahmad et al. (2017), we define the following characteristics for an ideal anomaly

detection algorithm for real-world streaming data:

1. Predictions are made online, i.e. the model classifies each sample in the stream as it arrives

before receiving and processing the next sample.

2. The model should either learn in a safe and liable online fashion, or offline in batches.

3. The model should operate in an unsupervised fashion since no labels are available.

4. The scenario where testing samples come from a different population than the training set

should ideally be taken into account since the underlying statistics of the data stream is often

non-stationary (see section 3.4.4 on concept drift).

5. An anomaly model should warn about anomalous behavior as reliably and early as possible.

6. The false positives and false negatives rates should be minimized.

Chapter 4

Data and Preprocessing

The data used in this thesis originates from a gas compressor operating on an oil platform in the

North Sea. The dataset consists of hundreds of sensor data sources, maintenance logs, P&ID dia-

grams and production data for the entire lifetime of the equipment. Section 4.1 gives a high-level

description of the gas compressor, the surrounding system as a whole, and the physical sources

to the data. Section 4.2 explains how the raw data was retrieved, including all necessary steps to

repeat the process for anyone interested. The model inputs and outputs are described in section

4.3. Section 4.4 explains the process of partitioning the data into training, validation and test sets,

before describing any preprocessing done to the data in section 4.51.

4.1 The Gas Compressor and Physical Data Sources

4.1.1 Context

Cognite is a modern IT company that develops a platform to collect, process, analyze and visualize

data that originates from various data-intensive industries. Utilizing and contextualizing extensive

amounts of hitherto unused data, they implement data-driven solutions that can be used to aid

decision-making, production efficiency and maintenance planning. AkerBP is one of Europe’s lead-

ing oil and gas producers, and is one of Cognite’s largest customers. AkerBP operates on several

oil fields in the North Sea, amongst them the Valhall platform where the compressor is installed.

Together with Cognite, AkerBP has decided to share real data from the production at the plat-

form, making it publicly available online2. The project is called ”Open Industrial Data” (OID), and

aims to open source industrial data for educational and research purposes, pushing for industrial

innovations, and inspiring other players in the industry to do the same.
1All code used to extract and preprocess the data can be found in our public Github repository at https://github.com/

reitenhalvor/master-thesis.
2The online link to the project is: https://openindustrialdata.com/

31

https://github.com/reitenhalvor/master-thesis
https://github.com/reitenhalvor/master-thesis
https://openindustrialdata.com/

CHAPTER 4. DATA AND PREPROCESSING 32

4.1.2 High level system description

The compressor is an electrically driven, fixed-speed, centrifugal compressor installed on the Val-

hall platform operated by AkerBP3 in the North Sea. The equipment is responsible for the first of

four stages of compression of natural gas on the platform. The main purpose of the compressor is

to increase the pressure of the gas, preparing it for further processing and, finally, export from the

production facilities. It receives gas from separators at approximately 3 barg and compresses the

gas to approximately 12 barg.

Figure 4.1: A schematic of the compressor and surrounding equipment responsible for the first compression
stage. A) Upstream- and downstream valves. B) Heat-exchangers. C1) Suction throttle valve (STV). C2)
Anti-surge valve (ASV). D) Suction scrubber. E) The compressor.

Figure 4.1 illustrates the relevant subsystem of the compressor:

A The upstream and downstream valves control the flow of gas in and out of the system. During

stand-stills and in the case of incidents, these valves will isolate the system. If an incident

occurs, then this stage may be isolated from other stages to avoid cascading errors, backflow

through the compressor and breakdown.

B Suction and discharge coolers lower the temperature of the gas. These are shell-and-tube

heat-exchangers that are regulated with cooling medium. The gas needs to be cooled down

before the suction scrubber stage as well as after the compression stage, where the tempera-

ture increases because of the increase in density.
3More information on Valhall is found at https://www.akerbp.com/en/our-assets/production/valhall/

https://www.akerbp.com/en/our-assets/production/valhall/

33 CHAPTER 4. DATA AND PREPROCESSING

C Control valves

C1 The suction throttle valve regulates the pressure and volume of the gas being sent

through the scrubber and the compressor.

C2 The anti-surge valve protects against surge4 by regulating the amount of fluid to recycle.

Note that the gas flows from right to left through this valve, which is reversed compared

with the other components in the schematic.

D The suction scrubber removes excess liquid droplets from the gas in order to protect the

compressor.

E The compressor compresses the gas, increasing density and pressure.

In addition, there are a number of utility systems related to the compressor. This is for instance

the lubrication system for the compressor, the dry gas seal system that prevents gas inside the

compressor from escaping, as well as the condition monitoring system (CMS). The CMS measures

the vibrations and temperature in the motor, gearbox and compressor.

4.2 Data Collection

The data is available through a public Application Programming Interface (API) provided by Cog-

nite. In order to access the API, one must first retrieve the proper credentials, where the procedure

is explained in detail at the Open Industrial data homepage5. To ease the data manipulation pro-

cess, Cognite has developed a Software Development Kit (SDK) in the Python language. The SDK

is arguably the easiest way to access and download the data, although it is possible to use the

API directly through HTTP-requests and any preferred framework that supports this. In addition,

the entire dataset is available on the Cognite Operational Intelligence platform6, making it easy to

search for specific tags and view plots of the available time series in a web browser.

4.3 Selecting Model Inputs and Outputs

In total, there are more than 350 available time series for the subsystem of the compressor. Of

these data sources, we must choose which ones to include as input features and output targets for

the model. For the purpose of this thesis, the data sources can effectively be divided into three

main categories: input sensors, output sensors and controls.

4Surge is a phenomenon occurring at low mass flows characterized by large amplitude oscillations in the flow and
pressure of the fluid, with a potential reversal of flow inside the compressor. This can cause serious harm to the compressor
itself and other system components (Helvoirt, 2007).

5https://openindustrialdata.com/
6https://opint.cogniteapp.com/

https://openindustrialdata.com/
https://opint.cogniteapp.com/

CHAPTER 4. DATA AND PREPROCESSING 34

The input sensors are time series selected as sensory inputs to the model. These sensors are

exclusively placed upstream of the compressor, which is before the compression takes place. That

being said, any numerical data source before compression is a potential input feature to the model.

The controls are time series that contain information on the control parameters of the system,

such as compressor engine running speeds, supplied power to the engine, and valve opening posi-

tions. These are not sensory data per se but are essential in explaining the system behavior.

The output sensors are the target variables that the model should predict. These are selected

sensor sources placed directly downstream of the compressor, measuring physical parameters of

the compressed gas.

The naming of the sensors/tags follows industry standards. The relevant tags in this thesis are

”PI/PT/PDT” (pressure), ”TI/TT/TIC” (temperature), ”FI/FT” (flow), ”ZI/ZT” (valve indicators)

and ”KA” (power indicators).

4.3.1 Model outputs

The outputs of our models are defined as the sensors that measure specific parameters of the gas

directly downstream of the compressor. Considering the ideal gas equation,

PV = nRT (4.1)

where P is the pressure, V is the volume, n is the number of moles, R is the universal gas constant

and T is the temperature, we see that temperature, flow (by mass or volume) and pressure is

sufficient to adequately describe a gas. We, therefore, choose the first sensors measuring the

temperature, flow, and pressure after the compression stage, listed in table 4.1 with their respective

units. Figure 4.2 shows samples of these data sources.

Tag Description Unit

VAL 23-FT-92537-01:X.Value Compressor discharge mass flow kg/h

VAL 23-TT-92539:X.Value Compressor discharge temperature degC

VAL 23-PT-92539:X.Value Compressor discharge pressure barg

Table 4.1: The tags selected as outputs for the model, which the model should try and predict given its inputs.
See figure 4.3 for their physical placement in the system.

It should be noted that there are other sensors that measure the discharge mass flow in other

units, such as VAL 23-FT-92537-04:X.Value, measuring the volume flow. However, seeing that

the mass flow is independent of temperature and pressure while this is not the case for the volume

flow (Helvoirt, 2007), the mass flow measurement sensor is preferred.

35 CHAPTER 4. DATA AND PREPROCESSING

(a) Discharge flow [kg/s] (b) Discharge temperature [◦C] (c) Discharge pressure [barg]

Figure 4.2: Four hours of sample data for the selected target tags. The samples are extracted from the 24th
of December 2017.

4.3.2 Model inputs

The inputs to the model are a combination of input sensors and controls. As there are a a high

number of data sources available, we first need to extract the ones that are relevant as model

inputs, before analyzing the subset of features to find which ones are beneficial to include in the

model.

Finding relevant inputs

The total number of available tags count to approximately 350, but many of these sensors are

either placed downstream of the compressor, or they are non-numerical features, disqualifying

them as possible candidates as inputs to the model. By consulting industry experts with domain

knowledge and by analyzing P&IDs7, we reduced the number of potential data sources from 350 to

146. However, most of these features are characterized by high sparsity, meaning that they contain

a high number of undefined or missing values in the chosen period. Based on the plot in figure

B.1, we set a percentage threshold for maximum sparsity at 2.5 percent, and removed any features

exceeding this threshold. This effectively reduces the number of potential inputs to 32.

Feature selection

The remaining 32 features are not all equally informative. Some are noisy and only pollute the

training process, many of them are highly correlated and contain mutually overlapping infor-

mation, others are nearly constant variables across the whole dataset with approximately zero

variance, while some are simply irrelevant. Feature selection is the process of selecting the most

7Piping & Instrumentation Diagrams

CHAPTER 4. DATA AND PREPROCESSING 36

influential input features with respect to the target features (Chollet, 2018). The feature selec-

tion process results in a dataset with reduced dimensionality which is beneficial for a number of

reasons; the datasets are more comprehensible and easier to work with, they are less demanding

computationally to process and analyze, and will most likely lead to increased performance of the

machine learning models (Goodfellow et al., 2016; Aha et al., 1996).

Beginning with analyzing the cross-correlation between the features in the dataset, we see

from figure B.2a that there are, in general, high linear correlation between many of the variables.

Specifically, we see high correlation between similar tags, such as sensors measuring pressure, tem-

perature and flow, respectively, at different positions in the subsystem. This is not surprising, as a

pressure measurement at one point is expected to be relatively equal to the next sensor measuring

the pressure further down the pipeline. In essence, two highly correlated features will contain

much of the same information, and keeping both can be considered redundant (Mostafa et al.,

2012). However, Guyon and Elisseeff (2003) argue that high variable correlation does not neces-

sarily mean absence of variable complementarity, but considering the aforementioned advantages

of dimensionality reduction, we see it as beneficial to remove highly correlated features. If any

two predictors have a Pearson correlation coefficient greater or lower than ±0.95, we selected one

of them arbitrarily. This results in a reduction of potential inputs to 21.

As a final step of the feature selection, we apply the Boruta algorithm for each target using the

remaining 21 input features. Degenhardt et al. (2017) carried out an extensive comparison of fea-

ture selection techniques and found Boruta to be the most powerful technique on high-dimensional

datasets. This feature selection algorithm is briefly described in appendix A.1.1. Figure B.3 shows

the relative importance of each input feature with respect to each target variable. For the dis-

charge flow, we see that the algorithm classifies all variables as relevant, implying that all variables

are considered more descriptive than random noise. However, two features are considered con-

siderably more important in predicting the discharge flow, hence we select these two features as

predictors for our model. Similarly, we perform the same procedure for the discharge temperature

and pressure, which results in a subset of six input features.

Finally selected inputs

The selected features are listed in table 4.2 along with their respective units, where degC is tem-

perature in Celcius, barg is bar gauge pressure8 and mbar is millibar. Figure 4.3 shows an overview

of both the input and output sensors and their physical positioning in the subsystem of the com-

pressor.

8The bar gauge pressure is the pressure in bar above or below the atmospheric pressure.

37 CHAPTER 4. DATA AND PREPROCESSING

Tag Description Unit

VAL 23 TT 92532:Z.X.Value Compressor suction temperature degC

VAL 23-PT-92523:X.Value Pressure in suction scrubber barg

VAL 23-PDT-92534:X.Value
Differential pressure between separator
and compressor suction side

mbar

VAL 23 ZT 92543:Z.X.Value Anti-surge valve position %

VAL 23-TIC-92504:Z.X.Value Temperature out of suction cooler degC

VAL 23 KA 9101 M01 62C:Z.X.Value Power supplied to the compressor kW

Table 4.2: The tags selected as inputs for the model, which are a combination of input sensors and controls.

Figure 4.3: An overview of the selected tags and their physical positioning in the system. The red represent
input sensors, the green are controls, while the blue are the output targets. For an explanation of the other
components in the schematic, see figure 4.1 and the corresponding text.

. .

4.3.3 Time frames, aggregates and other specifications

Although approximately six years of data is available, we only train the model on a fraction of

this. In order to reconstruct the normal behavior of the compressor, the model needs to train on

data where it behaves non-anomalous. A two-month window of seemingly normal operation was

found, from the 24th of December 2017 to the 24th of February 2018. While the sampling rate of

most of the selected sensors is on second-basis, implying 60 recordings per minute, we aggregate

the measurements to one sample per minute by taking the average. The aggregating function is

performed on consecutive time windows that do not overlap. One sample for each feature every

CHAPTER 4. DATA AND PREPROCESSING 38

minute in this period yields a dataset of 88685 observations for each of the six input features and

three targets.

4.4 Data Partitioning

The downloaded data is split into a training set (60% of the data), a validation set (20%) and a

test set (20%).

Figure 4.4: Defined training (dark blue), validation (blue) and test (light blue) regions of the dataset, here
illustrated by the discharge flow.

It is common practice in traditional machine learning problems to partition the data by random

sampling such that each subset contains a representative sample of the data (Goodfellow et al.,

2016). This is, however, not the case for time series modeling, where the temporal aspect matters.

As recommended by Chollet (2018), we do not shuffle the data but define consecutive intervals

that define the training, validation and test regions, respectively. This is illustrated in figure 4.4.

The training set is used to train the model, while the validation data is used for model selection;

the process of finding the best parameters, architecture and composition of a model. However,

since the validation set is actively used in the model selection process, we use the test set to obtain

a final realistic estimate of the generalization error.

4.5 Data Preprocessing

The raw data fetched from Cognite’s API is not directly applicable in a learning context. As such,

several preprocessing steps must be performed such that the data is transformed into a format that

is understandable for the machine learning models. In general, this includes processes such as

39 CHAPTER 4. DATA AND PREPROCESSING

data cleaning, handling missing values, outlier handling and data scaling (Goodfellow et al., 2016).

For time series specifically, it is important that the dataset contains one row per consecutive time

step, one column per input variable, and one column per output variable (Brockwell and Davis,

2016). The rest of this section explains the data preprocessing steps that have been performed on

the data.

4.5.1 Handling missing data

The dataset cannot contain missing data, i.e. each feature must have a defined value for every

time observation. The average sparsity of each feature in the dataset for the selected period is ap-

proximately 0.4%, with a total sparsity of 3.8% for the entire dataset (3361 out of 88685 instances

missing). When the preceding and succeeding value exist, we use linear interpolation to impute

the values. This effectively reduces the total sparsity percentage in the dataset across all variables

to 0.6% (552 missing observations). The remaining missing data are imputed using the Amelia II

algorithm, which is briefly described in appendix A.1.2.

4.5.2 Handling outliers and extreme values

An outlier is a point or an instance that is distinctly different from the norm of the data it is part of

(Chandola et al., 2009). Such instances are rare events that are usually either extremely high or

low values that may obscure the training process (Goodfellow et al., 2016). The aim is to model the

normal, stable behavior of the compressor. Therefore, anomalous data should ideally be removed

from the dataset to capture the general case.

It is a non-trivial task to identify anomalies in the dataset. Specifically, it is hard to distinguish

whether the anomaly is an actual anomaly, or if it stems from malfunctioning sensors or noise

in the measurements. The most straightforward approach for identifying outliers in a dataset,

regardless of their source, is to compare the specific instance to the variables mean and standard

deviation. A data point is considered normal if it falls within the limits of x = µ ± k · σ, where µ

is the mean, k a constant9 and σ the standard deviation. After identifying the outliers, a common

approach is to remove all values for this time step. However, this is problematic for time series

because the temporal continuity is disrupted if any instances are removed.

We recognize that there exist several approaches to handle outliers, such as capping10 and re-
imputation11, but we do not find any of these to fit our problem, as we essentially replace one

source of uncertainty with another. Consequently, we do not omit outliers in this thesis.

9Normally, k is set to equal 3.
10Capping involves setting any values that exceed a threshold to the maximum or minimum of this threshold
11Re-imputation is a technique where outliers are set to undefined values, before re-imputing them using an appropriate

algorithm.

CHAPTER 4. DATA AND PREPROCESSING 40

4.5.3 Scaling by standardization

Many machine learning methods are sensitive to the format of the input data (Chollet, 2018).

Especially deep learning models have been found to perform better when continuous numerical

variables have similar scales (Goodfellow et al., 2016). There are two common approaches to

data scaling, namely standardization - transforming each feature to zero mean and unit variance -

and normalization - transforming the data in the range from 0 to 1. Normalization is the simpler

procedure of the two but is highly sensitive to outliers. Potentially, if the dataset has single large

outliers, the normal instances will be squashed together in a small sub-range. Standardization is

less affected by outliers, but is generally more effective when the features fit a Gaussian distribu-

tion. As we see in figure B.4, the variables in the dataset seem to follow a Gaussian distribution to

a reasonable degree, hence we use standardization as the scaling method of choice for the data.

The mean and standard deviation of every variable in the training data are used to scale the data

in the training, validation and testing set. The transformation is given by

xscaled =
x− µ
σ

(4.2)

where µ and σ is the variable’s mean and standard deviation, respectively.

Chapter 5

Method

This chapter outlines the methods used to implement the predictive models and anomaly detection

algorithms. We begin by defining a set of objective evaluation metrics that are used to evaluate

the performance of the implemented models. This makes it possible to compare the performance

of the deep learning models to each other, but also to compare them less advanced baselines such

that we can assess the relative added value that follows with the increase in complexity. To this

end, we implement a set of common-sense heuristics and simpler machine learning techniques.

In addition, we define techniques to assess the predictive uncertainty of the deep learning mod-

els. With the evaluation metrics, benchmarks and uncertainty assessment methods in place, we

experiment extensively with deep learning models of varying types and designs, before selecting a

final set of promising models. The most accurate model is used in the anomaly detection methods,

which we apply to three datasets that show clear abnormal patterns to evaluate the effectiveness

of the methods. The results are used to thoroughly investigate the potential of deep learning for

modeling the compressor, and whether the proposed anomaly detection methods are suited in this

context.

5.1 Constructing the Predictive Model

The first building block of our anomaly detection methods is a predictive model that reconstruct the

normal behavior of the compressor. Similar to Ahmad et al. (2017) and Hill and Minsker (2010),

we construct models that predict the one-step-ahead outputs of the compressor. We are interested

in finding the model with the best performance in simulating the behavior of the compressor, since

a model with higher prediction accuracy will generate fewer false anomaly warnings with the

model-based anomaly detection methods we implement.

41

CHAPTER 5. METHOD 42

5.1.1 Evaluation metrics

Evaluation metrics quantify the distance between the observed and predicted values. In the case of

regression problems, common distance metrics are the Root Mean Squared Error (RMSE) or Mean
Absolute Error (MAE) (Chollet, 2018). RMSE and MAE, given the predictions (ŷ) and true targets

(y), are defined as:

RMSE(ŷ,y) =

√√√√ 1

N

N∑
n=1

(ŷn − yn)2 (5.1)

MAE(ŷ,y) =
1

N

N∑
n=1

|ŷn − yn| (5.2)

Both measure the average prediction error, they are non-negative and negatively-oriented (i.e.,

lower values are better scores). The RMSE takes the square of the errors before they are averaged,

thereby giving more substantial biases a higher weight. The MAE calculates the average value of

the bias regardless of direction, and every observation will then be weighted equally. This makes

the RMSE relatively more suited than the MAE if large errors are particularly unwanted. However,

we see the modeling of such spikes important in the modeling of the compressor, and as such, we

apply MAE as our choice of performance metric. Hence, the MAE defines the loss function that the

machine learning models try to minimize in the training process. While the inclusion of RMSE as

an additional performance metric could have allowed for a deeper understanding of the models’

strengths and weaknesses, we choose to omit it altogether for the sake of brevity.

5.1.2 Dealing with the temporal aspect for forecasting

x1t x2t x3t yt yt+1 yt+2

1 10 3 1 2 3

8 13 8 2 3 4

90 39 16 3 4 5

35 33 13 4 5 -

7 14 14 5 - -

Table 5.1: The concept of lagged variables. The target
rows are shifted k = [0, 1, 2] rows such that the inputs
at time t corresponds to the output at time t+ k.

The model should predict the one-step-ahead
outputs of the compressor, yt+1, given the in-

puts at the current step, Xt. Consequently, we

introduce the concept of lagged variables. For

a given target yt, a lagged target yt+k is gen-

erated by shifting the observations k rows such

that the inputs at time t corresponds to the out-

puts at time t + k. This is exemplified in table

5.1, where the variable y is shifted two time

steps. Notice that the inputs (x) remain un-

touched, and it is only the target variables (y)

that are shifted. As a result, the inputs at time

t corresponds to the outputs at time t + k, where k is the lag constant. As can be seen from the

43 CHAPTER 5. METHOD

table, the introduction of lagged variables effectively means that the k last number of observations

cannot be used as the lagged variables have undefined values. This results in the total number of

observations in the dataset being reduced by k. In this thesis, we set the lag constant to k = 1.

5.1.3 Benchmarks

The benchmarks serve as a sanity check that the more complex deep learning models have to

outperform in order to demonstrate usefulness. We develop benchmarks of two categories, namely

common-sense heuristics and simpler machine learning techniques by linear models and tree-based

methods. Heuristics are naive methods that follow strict, hard-coded rules to make predictions;

hence, they reflect how well the compressor can be modeled without actually building a model.

The machine learning baselines are shallow methods that are much easier to implement than

the deep neural networks, even though they require much of the same data preprocessing steps.

Common for all of the baselines is that they are statistically simple, computationally lightweight

methods, and their implementation requires little in terms of technical proficiency.

Common-sense heuristics

We implement three heuristics. The first heuristic estimates the value at time t based on the

observed preceding value. Hereafter, this heuristic is referred to as ”Prev”, and can more formally

be defined as:

ŷt = yt−1 (5.3)

where ŷt is the prediction for target y at time t, and yt−1 is the true value of the sequence in the

previous time step. Naturally, this heuristic will become less accurate the more time steps ahead the

model predicts. This thesis is focused with predicting one-step-ahead, and as such, this benchmark

will form a strong baseline as there is no reason to expect either of the output parameters to make

big jumps from one time step to the next with a fine granularity of 60 seconds.

The second heuristic is one that constantly predicts the variable’s mean in the training data,

hereafter referred to as ”Mean”. This can define a strong benchmark if the target variable only

oscillates around the mean of the training data. More formally, this heuristic is defined as

ŷT+k = C =
1

T

T∑
t=0

yt (5.4)

where yT+k is the prediction at time step T + k, T being the last time step included in the training

data and k a constant > 0.

CHAPTER 5. METHOD 44

The third and final heuristic predicts the moving average of the data seen so far, and is hereafter

referred to as ”MA”. Formally, this heuristic can be described as follows:

ŷt+1 =
1

t

t∑
i=0

yi (5.5)

As this heuristic incorporates the target sequence in its calculations, it is expected that this heuristic

gives a stronger baseline than what ”Mean” can. The three heuristics are illustrated in figure 5.1.

(a) Heuristic: ”Previous” (b) Heuristic: ”Mean” (c) Heuristic: ”Moving Average”

Figure 5.1: Samples of the common-sense heuristics in predicting the discharge pressure; ”Prev” in (a),
predicting the next value of the sequence to equal the previously observed value; ”Mean” in (b), predicting
the values constantly to equal the mean of the training data; ”MA” in (c), predicting the previous value of the
moving average of the sequence.

Simple machine learning models

Our set of benchmarks also includes linear models, which can be solid performers if there are strong

linear dependencies between the inputs and outputs. We implemented ordinary least squares linear

regression and shrinkage methods, where the theory for these techniques is described in section

3.2. Specifically, we implemented ridge regression (ridge), least absolute shrinkage and selection
operator (LASSO), and Elastic Nets (ElNets) - a hybrid between ridge and LASSO regression. These

are models that include regularization terms in their minimization objectives, and the degree of

regularization is adjusted with tuning parameters λ and α. Optimal values are found by values are

found by hold-out validation using an exhaustive grid search, where we experiment with values in

the range λ, α = [0.01, 0.02, ..., 1.0].

To account for possible non-linear relationships in the data, we implement two tree-based meth-

ods called Random Forest (RF) and Gradient Boosting Machines (GBM). Tree-based methods may

potentially learn statistical structures that the linear models cannot and are therefore considered

stronger baselines. Random Forest and Gradient Boosting Machines combine many decision trees

to make a prediction as discussed in greater detail in section 3.2.2. The essential tuning parameter

45 CHAPTER 5. METHOD

for these models is the number of trees used to fit the models. We let the number of trees vary

from 100 to 3000 with an increment of 100 to train a model for each configuration and evaluate

it on the validation set. We choose the parameter that produces the overall lowest MAE on the

validation set.

It should be noted that the simple machine learning models are not supplied with historical

variables or any temporal context. Thus, the baselines are trained to map the inputs to their

corresponding outputs without any historical information. The historical inputs could potentially

have been included in the dataset as additional variables, and could possibly have strengthened

the models’ predictive performance, but would result in a big expansion of the dimensionality of

the dataset. Considering this, and that we want to keep the technical implementation of these

models as simple as possible, we have chosen to omit the inclusion of historical variables for these

models.

5.1.4 Deep learning models

This section outlines the implementation and design choices of the deep learning models used to

predict the one-step-ahead sensor outputs of the compressor. Inspired by related work, we explore

three types of deep learning networks: A feed-forward neural network, a Long Short-Term Memory

network and a Gated Recurrent Unit network.

Hyperparameters, topology, and architecture of a network

Neural networks have many adjustable hyperparameters, e.g. activation functions, learning rates,

layer initialization functions, and optimization algorithms. Ideally, one would perform an exhaus-

tive grid search to find the optimal hyperparameters of a network: training and evaluating a model

for each unique configuration in a vast space of potential parameters. However, the computational

resources needed to train a single network involve significant training times, making this type of

hyperparameter tuning intractable in practice. Alternative approaches such as random sweeps1

exist, but can be problematic for the same reason.

It is also necessary to specify the topology of the model, i.e. the model’s building blocks and

functional components. For a traditional feed-forward neural network, this is the number of layers

in the network and the number of nodes in each layer. Together, the topology and hyperparameters

of a network constitute its architecture. While exhaustive searches can be applied to find suitable

architectures, these suffer from the same problems that they are notoriously expensive to train.

Because of this, a more intuitive approach is taken when finding suitable hyperparameters and

1A random sweep entails training multiple networks with random parameter configurations from a system-defined
parameter range, and choosing the best configuration based on the performance on the validation set (Goodfellow et al.,
2016).

CHAPTER 5. METHOD 46

design architectures. Inspiration is gathered from the literature and previous implementations,

and iterative, manual experimentation is performed with various configurations.

General design choices

All of the implemented networks have some general design choices in common:

• Error metric: The Mean Absolute Error, as defined in section 5.1.1, is used as the loss

function.

• Optimizer: The ADAM optimizer is used. Literature states this as an effective choice that

works well in most cases using the default values (Goodfellow et al., 2016; Chollet, 2018).

We tested the RMSprop optimizer but found it inferior to ADAM.

• Learning Rate: The learning rate is initially set to 0.001, which is the default of the ADAM

optimizer in Keras2. We also specify a procedure such that the learning rate is halved if the

training loss has not improved in five or more iterations.

• Number of epochs: The number of epochs, i.e. the number of training rounds of the net-

work, is set to 50. This is limited by computational resources and convergence rates of

training and validation errors. 50 epochs is a reasonable compromise which allows for a low

final training error and a convergence of the validation error.

• Regularization techniques: Regularization is implemented by dropout, a very common form

for regularization that helps with overfitting and speeds up the training process (Goodfellow

et al., 2016). As per the research of Gal and Ghahramani (2015), both a time-constant

dropout and a recurrent dropout is applied both in the training and prediction phase of the

recurrent neural network. For the standard neural network, only time-constant dropout is

applied. The dropout rates are set between 10% to 30% for both time-constant dropout and

recurrent dropout and are applied for every layer.

• Batch size: Instead of using the whole dataset at once when training the model, a batch

size is specified such that the model only trains on one batch at a time. The batch size is set

constant to 256.

• Lookback: The lookback parameter defines the fixed window-size of observations when

making the one-step-ahead prediction. This parameter is set to 360. With a granularity of

60 seconds, the network will use the previous six hours of data in order to make a predic-

tion. The standard feed-forward neural network does not utilize historical variables, so the

lookback parameter is only relevant for the recurrent neural networks.

2https://www.tensorflow.org/api_docs/python/tf/keras/optimizers/Adam

https://www.tensorflow.org/api_docs/python/tf/keras/optimizers/Adam

47 CHAPTER 5. METHOD

• Activation functions: The ReLU-function is used as an activation function wherever relevant,

which Goodfellow et al. (2016) argues is a suitable choice.

Final model designs

Even though our experimentation resulted in tenfolds of candidate models, we only present the

most successful here for the sake of brevity. Inspired by related work, we design sequence special-

ized deep networks in the form of LSTM and GRU networks that have seen immense success in

similar modeling tasks. A GRU network is a simplified version of the LSTM, and is known to require

less in terms of computational resources at the cost of having less predictive power (Chung et al.,

2014). As such, we experiment with various architectures using LSTM and GRU to select which

one suits our problem best. Our final sequential deep networks are simple implementations that

contain a single hidden layer (a GRU or LSTM-layer) with 128 nodes. We experiment with bigger

networks with a more advanced topology, but find that going deeper than one layer, or wider than

128 nodes in the hidden layer, has a negligible or worsening effect. In addition, we research the

effect of increasing or decreasing the window size, but find that the specified six hours of prior

data is an acceptable setting.

Figure 5.2: Sketch of the LSTM model. The network consists of one hidden layer of 128 nodes with 30%
dropout, where both time-constant and recurrent dropout is applied. The model takes an input sequence
consisting of a window of six hours of prior data (360 observations) to make a prediction.

In addition, we implement standard feed-forward neural networks. These networks are not

supplied with the historical data, hence they are trained to transform the inputs to the outputs

at a specific time. We explore how the inclusion of temporal variables affect the model, but find

a decreasing performance of the neural networks as the dimensionality increases. We try many

different network architectures, but similar to the sequential models we found that small, simple

networks work best. The final MLP consists of a single hidden layer with 1024 nodes and time-

constant dropout of 30% is applied for the hidden layer.

We also evaluate the performance of ensembles of some of the aforementioned models. The

concept of model ensembling is explained in section 3.3.7, and represent techniques to combine

the predictions of many models to potentially get more accurate predictions. A good ensemble

relies on diversity, where the constituent models should be as different and as accurate as possible

(Dietterich, 2000). Hence, we look at combinations between the feed-forward neural network and

recurrent neural networks, which arguably will have highly different hypothesis spaces based on

their inputs and architectures.

CHAPTER 5. METHOD 48

Figure 5.3: Sketch of the LSTM/MLP ensemble model. The MLP makes predictions based on inputs at the
preceding time step, while the LSTM uses a window of the 360 prior inputs to make a prediction. The
predictions of both models are combined through a linear regression model, that weights the respective
predictions and produces the final prediction for the three targets.

The most straightforward way to combine models is to weight their predictions equally by aver-

aging (Chollet, 2018). Arguably, a better technique is to use a weighted average of the predictions

and feed the inputs of the ensemble models to a new, separate model that learns how to combine

them in an optimal way. We apply the latter of these methods, where we feed the predictions

of the constituent models to a linear regression model that learns how to weight the respective

models such that it minimizes the validation error. Specifically, we combine the predictions of the

LSTM network and the feed-forward neural network with a linear regression model and explore

the potential performance gains from this ensemble.

Uncertainty assessment

For any input to a model, we are interested in the predictive mean, ŷ∗t , and the predictive uncer-

tainty, ηt. The pseudocode in algorithm 1, which is inspired by Zhu and Laptev (2017), explains

how these are estimated. It can be seen as a three-step process.

The first step is to estimate the model uncertainty (epistemic uncertainty). The network ap-

plies Monte Carlo dropout in every layer at inference time, and each prediction of the model can

be seen as a stochastic realization of the predictive distribution (Gal and Ghahramani, 2015).

For an input x∗, the network makes B predictions, resulting in a sequence of predicted outputs

[ŷ∗(1), ŷ
∗
(2), ..., ŷ

∗
(B)]. Assuming a Gaussian distribution, the sampled variance can be calculated by

1
B

∑B
b=1 (y∗(b) − ȳ

∗)2. This represents the model uncertainty, denoted η21 .

The second step is to estimate the noise in the data (aleatoric uncertainty). This is done by

evaluating the residual sum of squares of the network on the validation data set. For each set of

inputs in the validation data, we calculate the mean prediction of the network and evaluate the

residual sum of squares. The result represents the aleatoric uncertainty, denoted η22 .

The third and final step is to combine the epistemic uncertainty and the aleatoric uncertainty

to obtain the final uncertainty estimate. This is given by equation 3.11 and this measure can be

used to calculate prediction intervals for the specific input.

49 CHAPTER 5. METHOD

Algorithm 1 Uncertainty inference of a neural network with MC Dropout

Input: input point x∗, a trained prediction network f (θ)(·), number of predictions B
Output: mean prediction y∗, prediction uncertainty η

1: // estimate mean prediction and epistemic uncertainty
2: for b = 1 to b = B do
3: ŷ∗(b) ← f (θ)(x∗)

4: end for
5:

6: // prediction
7: ŷ∗ ← 1

B

∑B
b=1 ŷ

∗
(b)

8:

9: // epistemic uncertainty
10: η21 ← 1

B

∑B
b=1 (y∗(b) − ŷ

∗)2

11:

12: // estimate aleatoric uncertainty on validation set
13: for x

′

v in {x′

1, ..., x
′

V } do
14: // get mean prediction for every x

′

v

15: y
′

v ← 1
B

∑B
b=1 f

(θ)(x
′

v)
16: end for
17: η22 ← 1

V

∑V
v=1 (ŷ

′

v − y
′

v)
2

18:

19: // total prediction uncertainty
20: η ←

√
η21 + η22

21: return ŷ∗, η

An important remark is that the uncertainty estimates implemented in this thesis are point-
specific. The noise estimations are global, but the model uncertainty is only defined for specific

input points. Moreover, expected values can be calculated across multiple input points, but these

are not necessarily informative of the general model uncertainty. Uncertainty measurements are

therefore treated on a point-by-point basis in this thesis.

Evaluating model architectures

Minimum Validation Loss (MVL) is a popular method to reduce the effect of overfitting in the

model selection process (Chollet, 2018). Whenever the validation loss improves during the training

process, the weights are stored such that they can be loaded at a later stage. Consequently, the

model is not forced to use the weights from the last training round, but rather the weights that

produced the minimum validation error during the training process. The validation error is a biased

estimate of the true generalization error, as the model is slightly overfitting to the validation set

because it has been actively used in the model selection process. To get a more realistic out-of-

sample performance estimate, final model architectures are evaluated on the test set. The test

error is the metric that ultimately is used to compare a model to another.

CHAPTER 5. METHOD 50

5.2 Anomaly Detection

Automated monitoring of hundreds of unlabeled streaming observations requires a fast, unsuper-

vised approach for determining if observed values should be characterized as abnormal. Anomaly

detection on streaming data is challenging since data arrives with high velocity and requires instant

processing and analysis.

Our anomaly detection models receive a continuous stream of data on the form

..., ~Xt−2, ~Xt−1, ~Xt, ~Xt+1, ~Xt+2, ...

where ~Xt+k for k ∈ Z denotes the model inputs at time t+ k. The observation at time t+ k should

be classified before time (t+ k) + 1, and since the predictive models implemented in this thesis are

trained in an offline fashion, this is the only decision that needs to be made at each time step.

Inspired by the findings in the literature, we propose two anomaly detection methods: residual-

based and prediction interval-based anomaly detection. Both of these methods apply a predictive

model that reconstructs the normal behavior of the compressor, and identifies abnormalities as

described in chapter 2. The remainder of this section describes the two anomaly detection methods

and how they are evaluated.

5.2.1 Residual-based anomaly detection

The first method is mainly inspired by Ahmad et al. (2017) and is hereafter referred to as method I.
This method calculates the residuals between the observed and the predicted output values for the

compressor, and identifies anomalies based on a comparison between the residual and a predefined

residual distribution built on the validation set.

The schematic in figure 5.4 presents the overall architecture method I. Given a trained model

f (θ)(·), the residuals on the validation set can be calculated by e(V) = y(V)−ŷ(V) = [e(t−V), ..., e(t)],

where V is the number of observations in the validation set and ŷt is the prediction of f (θ) with

the corresponding input xt. The resulting sequence of V residuals is then smoothed using a simple

moving average window of size m = 5 in order to dampen spikes in the residuals that are caused

by particularly noisy data (Shipmon et al., 2017). Hence, the smoothed sequence of residuals can

be defined as

e(V)
s = [e(t−V+m)

s , ..., e(t)s]. (5.6)

The sequence of smoothed residuals is modeled as a normal distribution, where the parameters

of the distribution are estimated using Maximum Likelihood Estimation. This distribution defines

the residual distribution, which is a key component for this method. For each new observation,

we first calculate the residual between the observed and the predicted value. Subsequently, we

51 CHAPTER 5. METHOD

̂yt+1

et+1 = yt+1 − ̂yt+1

a = 1 − Q(μ − μw

σw
)

a > τ

μw

Calculate the raw
anomaly score

Calculate the anomaly probability

Window of observations
{ . . . yt−2, yt−1, yt}

Mark as anomaly

No

Yes

μ = 1
k

(t+1)
∑

i=(t+1)−k

ei

Calculate the short term
average of raw anomaly scores

t = t + 1t = t + 1

Window of predictions
{ . . . ̂yt−2, ̂yt−1, ̂yt}

σw

Forecast

Estimate and of residual distribution

Figure 5.4: Schematic of the architecture of method I

compute a short-term average, µ, of the m most recent residuals, and compute the probability that

µ comes from the residual distribution.

Consistent with Ahmad et al. (2017), we define the probability of an anomaly as the comple-

ment of the tail probability (Q):

a = 1−Q(
µ− µw
σw

) (5.7)

where Q(·)3 is defined as

Q(z) =
1

2
erfc(

z√
2

) (5.8)

where

erfc(z) =
2√
π

∫ ∞
z

exp (−x2)dx (5.9)

3The tail probability Q(·) is described in detail by Karagiannidis and Lioumpas (2007)

CHAPTER 5. METHOD 52

is the complementary error function.

We find the log value more useful both for visualization and thresholding; hence, a log scale

representation of the probability is calculated as

aln =
ln((1.0 + 10−10)− 2 · |0.5− a|)

ln(1.0− 10−10)
(5.10)

where ln(·) is the natural logarithm. If aln ≥ τ , then the corresponding observation is classified

as abnormal, where τ is a constant. We set the threshold τ = 0.8 by trial and error, such that the

anomaly detection method warns for anomalies where we expect it to do so.

This method classifies a new observation based on a static residual distribution built on the

residuals of the validation set. In contrast, Ahmad et al. (2017); Hundman et al. (2018) continu-

ously updates the residual distribution in order to take into account the most recent history, and

emphasizes that if there is a shift in the behavior of the system, the prediction error will be high

at the point of the shift, but will automatically degrade to zero as the model adapts to the “new

normal”. However, we believe that the prediction error for our model is not guaranteed to be high

if there is a shift in the behavior of the system. For example, for a gas compressor where the per-

formance is slowly degrading it is not desired that the model should adapt to the “new normal”.

In fact, we believe that such behavior could lead to potentially costly consequences. Moreover,

Hundman et al. (2018) emphasizes the fact that the Gaussian assumption of the distribution of

past smoothed residuals is problematic if the parametric assumptions are violated when updating

the distribution. With these arguments, we keep the residual distribution statically defined, and

only update it whenever the predictive model is in need of retraining due to changes in the system

characteristics. For our application in particular, we believe that the residuals obtained on the

validation data reflects the normal behavior of the system.

5.2.2 PI-based anomaly detection

The second method is referred to as method II, and is mainly inspired by Zhu and Laptev (2017).

This approach exploits the fact that the predictive models are probabilistic, and utilizes the point-

wise predictive distributions of the models to identify anomalies. A new observation is classified

based on whether it is within the bounds of the prediction interval of the model. Figure 5.5 presents

the overall architecture of this method.

53 CHAPTER 5. METHOD

̂yt+1

Mark as anomalous

No

Yes

Compare new measurement
with PI bounds

t = t + 1

t = t + 1

Calculate the upper and
lower bounds of the PI

yt+1

yt+1

XtForecast

Observe new measurement

Observe new measurement

Is within PI

yt−k, . . . , ytIs anomalous
No

Generate anomaly warning

Yes

t = t + 1

Figure 5.5: Schematic of the architecture of method II
.

As described in section 5.1.4, we have identified and implemented methods that can estimate

the point-predictive distributions of the networks. We denote the predictive mean of the networks

ŷ∗, and the total uncertainty regarding this prediction as η. Consequently, we can compute the

upper and lower bounds of the prediction intervals for a prediction ŷ∗ by

[ŷ∗ − η · zα/2, ŷ∗ + η · zα/2] (5.11)

where zα/2 is the upper α/2 quantile of the standard normal.

By trial and error, we find that a 99 percent confidence interval is suitable. However, this

parameter is easily adjustable based on preferences regarding type I and type II errors. A higher

value for α implies a wider prediction interval, resulting in a generally higher acceptance and less

anomaly warnings. Similarly, a smaller value indicates in a tighter interval, and the method will

easier identify more observations as anomalous.

CHAPTER 5. METHOD 54

We find it useful for this method to generate an anomaly warning once a consecutive sequence

of n = 5 or more points outside of the prediction interval occurs. This is motivated both by Lee

et al. (2018) and Ahmad et al. (2017) because anomalous behavior often occurs in sequences and

because inherently noisy systems often cause instantaneous predictions to be inaccurate.

One of the big advantages of this method compared to a static k-sigma model where an arbitrary

threshold is set by specifying k, is that the prediction interval is dynamically changing based on the

certainty of the model (Hill and Minsker, 2010). The width of the interval is determined by the

degree of predictive confidence, which is reflected by the uncertainty, η, of the model for an input

point.

5.2.3 Evaluation of unsupervised anomaly detection models

In contrast to supervised anomaly detection methods, there is no straightforward way to assess

the quality of unsupervised methods. A common approach in related work (chapter 2), is to

consult experts in order to obtain enough labeled data such that a precision and recall score can be

calculated. Unfortunately, this is a manual, labor intensive method in need of expert knowledge,

and it is not a feasible option in this thesis. Instead, we take a more intuitive approach when it

comes to evaluating the quality of the proposed anomaly detection methods. Similar to Malhotra

et al. (2016), we demonstrate the performance of the methods on hand-picked datasets that exhibit

clear abnormal behavior, and assess the quality of the methods based on whether they can identify

the unusual patterns. There are many examples of data with abnormal patterns in the available

data on the compressor, and we select one dataset for each target, from different months. Remark

that the selected datasets are completely independent of the training, validation or test sets, and

they are obtained for up to a year after the training data. We analyze the datasets and define time

intervals where we expect a good anomaly detection algorithm to warn for anomalies, and observe

how the methods conform to our expectations. Of course, considering our lack of expertise or

domain knowledge, we need to consult experts for verification of the results and to ensure that the

identified areas of anomalies are indeed anomalous.

5.3 Hardware and technical implementation

The open source programming language Python v3.6.7 is used for all data processing and imple-

mentations. The main code is written in the form of Jupyter Notebooks which makes the code easily

readable through markdown and latex report writing combined with code blocks. All the code

written for this project thesis is found at https://github.com/reitenhalvor/master-thesis,

of which the main notebooks are found in the src/-folder. The code is well documented, and

the Jupyter platform makes the code and its outputs easy to review. All the results are 100%

reproducible, as there have been set seeds where necessary to ensure this.

https://github.com/reitenhalvor/master-thesis

55 CHAPTER 5. METHOD

The most important libraries used for general data processing were Numpy v1.15.2 and Pandas

v0.23.4. For the implementation of the benchmarks, the sklearn v0.20.1 was extensively used.

The deep learning models were implemented in Keras v2.2.4, with Tensorflow v1.12.0 backend.

Keras offers an easy-to-use library that is well documented. There are many alternatives to Keras

and Tensorflow, such as MXNet and Facebook’s PyTorch, but these introduce more flexibility,

complexity and arguably unnecessary functionality. Keras offers the simplest implementation of

all available libraries but still requires technical knowledge in terms of programming skills and

machine learning.

In terms of hardware, the models were trained using a desktop with a 6-core, Intel i7-8700

CPU at 3.20GHz CPU4 and 32GB RAM. Unfortunately, the GPU5 on the desktop was not supported

in Tensorflow, which could have had significant impacts on the training times of the networks.

Instead, the CPU was used to train the models. With a dataset of almost 90.000 observations of 6

input features, the training times of a single epoch was approximately 3 minutes or more. As each

model was trained for at least 50 epochs, this corresponds to a minimum of 2.5 hours of training

time per model.

4Central Processing Unit
5Graphical Processing Unit

CHAPTER 5. METHOD 56

Chapter 6

Results and Analysis

This section begins by presenting the results regarding the modeling of the normal behavior com-

pressor. The performance of the deep learning models are benchmarked with the proposed base-

lines, and their strengths and weaknesses are discussed in section 6.1. The best predictive model is

utilized for anomaly detection on the gas compressor, of which the results are presented in section

6.21.

6.1 The Predictive Model

We investigate the performance of a model when predicting each of the target variables on the

test data, where the average MAE across all targets reflects the overall performance of the model.

Both the scores on the validation and test set are supplied, but it is the MAE on the test set that is

the best estimate of the true generalization error. Hence, the average score on the test set is the

measure that is ultimately used to compare models to one another. The performance metrics are

standardized, meaning that they do not reflect the error with the variable’s true unit, but they are

rather scaled corresponding to the scaling of the data. This makes it harder to conceptualize the

error metric, but it has the advantage of making each target-specific error metric comparable to

each other regardless of their original units. Moreover, the training, validation and test sets are the

same for all models. This ensures that we are able to compare models based on statistical learning

models and functional differences, and not the data they have been trained on.

For the sake of brevity, the target variables have been renamed such that the result tables

are easier to read. The discharge flow, discharge temperature, and discharge pressure have been

shortened to ”FT”, ”TT” and ”PT”, respectively.

1All code written to obtain the results presented in this chapter is available in our Github repository at www.github.
com/reitenhalvor/master-thesis. The results are reproducible, as seeds have been set where necessary to ensure this.

57

www.github.com/reitenhalvor/master-thesis
www.github.com/reitenhalvor/master-thesis

CHAPTER 6. RESULTS AND ANALYSIS 58

6.1.1 Benchmarks

Common-sense heuristics

The results of the common-sense heuristics are summarized in table 6.1. The Prev heuristic refers

to the heuristic that predicts the next value to equal the preceding, the Mean heuristic predicts the

mean of the training data, and the MA heuristic predicts the moving average of the data seen so

far. Despite the simple and naive nature of these models, the result demonstrates that they can

offer powerful baselines.

Validation Test

FT TT PT Avg FT TT PT Avg

Prev 0.9073 0.2212 0.5586 0.5624 0.7840 0.1830 0.5156 0.4942

MA 0.8342 0.7102 0.8331 0.7925 0.7439 0.7147 0.7606 0.7397

Mean 0.8573 1.3854 0.8328 1.0252 0.8106 1.6929 0.7612 1.0882

Table 6.1: The standardized MAE of the implemented common-sense heuristics, sorted in ascending order
from best to worst with respect to the average loss on the test set. ”FT” is discharge flow, ”TT” is discharge
temperature and ”PT” is discharge pressure.

The overall best heuristic, by the average test MAE, is the Prev heuristic. The model perfor-

mances differ mostly in predicting the discharge temperature and discharge pressure, where the

Prev heuristic is considerably better than the other two. This indicates that a large portion of the

one-step-ahead temperature and pressure can be explained by the preceding value. This makes

intuitive sense, as there is no reason to think that the target signals deviate significantly from one

time step to another with the defined granularity of one minute.

Linear models and simple machine learning

Table 6.2 summarizes the results of the linear models and tree-based methods. For each model,

only the most accurate based on the validation score is presented. Whenever relevant, the optimal

parameters of a model are found using hold-out validation or cross-validation. For the random for-

est and GBM, separate models are implemented for each of the target variables, because validation

scores indicated that this was beneficial. Furthermore, the optimal number of trees for the random

forest was found to be 30002, whereas 10000 trees were used for the GBM models. The optimal

values for the regularization parameters of the shrinkage methods were found to be α = 0.01 and

λ = 0.01, i.e. approximately no regularization. Because of this, we see that the Ridge regression,

2We varied the number of trees from 100 to 3000 with an increment of 100.

59 CHAPTER 6. RESULTS AND ANALYSIS

Validation Test

FT TT PT Avg FT TT PT Avg

Linear 0.6987 0.2902 0.5101 0.4997 0.6158 0.2524 0.4907 0.4530

Ridge 0.6987 0.2902 0.5101 0.4997 0.6158 0.2524 0.4907 0.4530

ElNet 0.6986 0.2960 0.5104 0.5017 0.6141 0.2606 0.4905 0.4551

GBM 0.6565 0.3229 0.5107 0.4967 0.5904 0.2692 0.5084 0.4560

LASSO 0.6975 0.3011 0.5116 0.5034 0.6112 0.2708 0.4912 0.4578

RF 0.6677 0.3392 0.5222 0.5097 0.6048 0.2924 0.5127 0.4699

Table 6.2: The standardized MAE of the implemented simple machine learning methods, sorted in ascending
order from best to worst with respect to the average loss on the test set. ”FT” is discharge flow, ”TT” is
discharge temperature and ”PT” is discharge pressure.

ElNet, and the ordinary linear regression model are equivalent, or marginally different, in terms of

validation and test performance.

As expected, the baselines presented in this section outperform the common-sense heuristics.

The ordinary linear regression model triumphs as the best of the implemented baselines, with an

average test MAE of 0.453. Still, all the models have similar performance, both on average and for

each target individually. The best of the tree-based methods is GBM, reaching an average test MAE

of 0.456. It is consistently better than the random forest in predicting all targets.

A surprising result is that the linear regression models outrank the tree-based methods. As dis-

cussed in the previous chapter, the tree-based methods are able to capture non-linear dependencies

in the data, and that this presumably should have a positive impact on their performance. This

result can likely be explained by the strong linear dependencies between some of the inputs and

outputs, as seen by the cross-correlation plot in figure B.2b. Nonetheless, by inspecting the scores

for each target individually, we see that the tree-based methods are generally better at modeling

the discharge flow, while it is opposite for the discharge temperature and pressure.

6.1.2 Deep learning

We implement three separate types of deep neural networks as described in section 5.1.4. Two

of them are recurrent neural networks, namely a LSTM network and a GRU network, while the

third is a standard feed-forward neural network. These are hereafter referred to as ”LSTM”, ”GRU”

and ”MLP”, respectively, and their designs are described in section 5.1.4. To further enhance the

performance, we implement an ensemble model, where the predictions of the LSTM and the MLP

are combined through a linear regression model that weights the respective models in order to

minimize prediction error on the validation set. The ensemble model is denoted ”LSTM/MLP”.

CHAPTER 6. RESULTS AND ANALYSIS 60

Validation Test

FT TT PT Avg FT TT PT Avg

LSTM/MLP 0.5811 0.2534 0.4035 0.4127 0.5123 0.2264 0.3862 0.3749

LSTM 0.6042 0.3246 0.4286 0.4525 0.5422 0.3179 0.4153 0.4251

GRU 0.6169 0.3355 0.4454 0.4660 0.5526 0.3302 0.4383 0.4403

MLP 0.6492 0.3126 0.5063 0.4894 0.5895 0.2638 0.4919 0.4484

Table 6.3: The standardized MAE of the deep learning models, sorted in ascending order from best to worst
with respect to the average loss on the test set. ”FT” (discharge flow), ”TT” (discharge temperature) and ”PT”
(discharge pressure).

Recall that the models implemented are probabilistic; hence, we average the predictions 300 times

in order to get a reliable estimate of the predictive mean.

Table 6.3 summarizes the performance of the deep learning models. Some findings are common

for all models. First, the performance on the validation set is consistently better compared to those

of the test set. This is normally not the case in machine learning problems since the model is

partly biased towards the validation set as it has been actively used in the model selection process.

However, this phenomenon can likely be explained by the test data being statistically more similar

to the training data than the validation data3. Consequently, it is easier for the model to predict

using the test data because the statistical properties are similar to the training data.

Second, we see that all deep learning models outperform the benchmarks with respect to the

average test score. In fact, we see an overall improvement of 17.2% from the best benchmark to

the best deep learning model in terms of average test MAE. This is a substantial improvement that

showcases the value of deep learning in this modeling problem. In particular, we see a considerable

improvement in modeling the discharge flow and pressure.

Third, we see vast gains by model ensembling. This is especially apparent on unseen data, where

we see an improvement of 11.8% on average test MAE compared to the performance of the most

accurate of the individual models included in the ensemble. As discussed in theory section 3.3.7,

a good ensemble relies on diversity, where the constituent models should be as different and as

accurate as possible (Chollet, 2018). We combine models that process the input differently, and

this results in differences regarding performance in the modeling of different targets. While the

LSTM is best at predicting the flow and pressure, the MLP is considerably better at predicting the

temperature. In the ensemble, we combine the strengths and weaknesses of these two models,

resulting in a major overall improvement for all targets. Moreover, the huge positive impact seen

3This can be seen by inspecting figure B.4 which shows the variable distributions for the training, validation and test
regions of the data.

61 CHAPTER 6. RESULTS AND ANALYSIS

from this ensemble may indicate that even bigger and more advanced ensembles could further

improve the performance.

The results presented in table 6.3 show that the sequence specialized networks are the most

accurate models. This indicates that there is information in the temporal context of the time series

that the RNNs exploits, which improve their predictions compared to the non-sequential networks.

The LSTM is the most accurate network and this model obtains an average MAE of 0.425. Moreover,

we see that the LSTM outperforms the GRU network in predicting all targets.

The MLP is the least accurate of the deep learning models, obtaining an average test MAE of

0.448, but we see that the MLP is more accurate than the sequential models when modeling the

discharge temperature, obtaining a test MAE of 0.264. However, the Prev heuristic has a final MAE

of 0.183 when predicting the discharge temperature, which is more accurate than any of the deep

learning models. In fact, many of the linear models outperform the non-ensemble deep learning

models when predicting the temperature in terms of the test MAE. As stated in the previous sec-

tion, this indicates that there are strong linear dependencies between the input variables and the

temperature, as can be verified by inspecting the cross-correlation plot in figure B.2b.

The LSTM/MLP ensemble is the overall best deep learning model with an average test MAE of

0.375. This corresponds to a 12−16 percent improvement from the other deep learning implemen-

tations. The ensemble is better on average and offers considerable improvements for all targets.

Comparing it to the individual performance of the constituent models, we see particular gains in

predicting the temperature, with a relative improvement of up to 30%. Furthermore, the test MAE

for predicting the flow and pressure is improved by up to 13.6% and 22.3%, respectively.

Objective Best Benchmark
Benchmark

MAE
LSTM/MLP

MAE Improvement (%)

FT GBM 0.5904 0.5123 13.23%

TT Predict previous 0.1830 0.2264 -23.72%

PT ElNet Regression 0.4905 0.3862 21.26%

Overall Linear Regression 0.4530 0.3749 17.24%

Table 6.4: Best benchmarks compared to the best deep learning model - the LSTM/MLP ensemble - in
predicting each target.

Table 6.4 compares the LSTM/MLP ensemble model to the best benchmark for each target. We

see that LSTM/MLP offers a 17.2% overall improvement of the average test MAE compared to the

linear regression model. Moreover, we see similar numbers when predicting the discharge flow and

pressure, with improvements of approximately 13.2% and 21.6%, respectively. The LSTM/MLP is

outperformed by the Prev heuristic when predicting the discharge temperature, despite this being

the target that the model predicts most accurate. While the LSTM/MLP does not outperform

CHAPTER 6. RESULTS AND ANALYSIS 62

the best benchmark for temperature, it is consistently better for the other targets. Hence, we

acknowledge that the LSTM/MLP model offers a considerable improvement in general.

Uncertainty assessment

Recall from section 5.1.4 that the deep learning methods apply Monte Carlo dropout at inference

time, resulting in stochastic behavior of the networks. Instead of predicting deterministic point-

wise estimates, a model will output samples from its predictive distribution. Moreover, as discussed

in section 3.3.8, the predictions follow a normal distribution, and the parameters of the distribution

can be estimated by empirically drawing sufficiently many samples.

FT TT PT Avg

Validation

Aleatoric (η2) 0.5949 0.0964 0.2755 0.3223

Epistemic (η1) 0.1861 0.1429 0.1770 0.1687

Total (η) 0.7948 0.3454 0.5549 0.5650

Test

Aleatoric (η2) 0.4436 0.0813 0.2461 0.2570

Epistemic (η1) 0.1971 0.1625 0.1900 0.1832

Total (η) 0.7968 0.3539 0.5587 0.5698

Table 6.5: Average estimates of epistemic (η1), aleatoric (η2) and total uncertainty (η) of the LSTM/MLP
ensemble model on the test data. Results are averaged over 300 iterations. Note that the values are averaged
across all inputs, although the uncertainty really is a point-wise estimate.

The normality of the point-wise predictive distributions of the LSTM/MLP-model can be verified

by inspecting figure 6.1, which shows the distribution of the predictions of a model for a single

input from the test set. A Shapiro-Wilk test4 for the specific predictive distribution yields a result

of 0.983, clearly indicating the data is normally distributed, which also can be visually confirmed

by the fitted normal distribution, the dark blue line in the figure.

Table 6.5 summarizes the uncertainty estimates for the LSTM/MLP-model for all targets on the

test set. An important remark is that the numbers presented are average values across all the

observations in the test set, even though the uncertainty really is a point-wise estimate. That is,

for each set of inputs in the test set, the point-wise uncertainty (ηt) is estimated empirically with

300 samples, and the numbers presented in table 6.5 are the average values across all estimates.

For this reason, the relationship between η1, η2 and η is not preserved for the values presented in

the table. Nonetheless, the numbers can give an idea to the general confidence of the network for

the test dataset.
4The Shapiro-Wilk test tests the null hypothesis that the data is drawn from a normal distribution. Small values closer

to 0 rejects the hypothesis, while larger values indicate a larger confidence that the data comes from a normal distribution
(Shapiro and Wilk, 1965).

63 CHAPTER 6. RESULTS AND ANALYSIS

Figure 6.1: Predictive distribution of the ensemble model for a single input in the test set, where 300 samples
are drawn. The fitted normal distribution, the dark blue line in the plot, corresponds neatly with the observed
samples.

Figure 6.2 illustrates the uncertainty of the LSTM/MLP model in practice. The gray lines rep-

resent stochastic realizations of the model, while the red represents the predictive mean of the

model. The spread of the gray lines for a single input reflects the variance of the model for the

input, and higher spread indicates less confidence in the prediction.

Figure 6.2: Discharge temperature predictions versus the actual temperature of the MLP/LSTM model. The
gray lines represent different realizations of the model, and the red line is the mean of these.

CHAPTER 6. RESULTS AND ANALYSIS 64

6.2 Anomaly Detection

The LSTM/MLP model shows a major improvement in terms of accuracy compared to the other

implementations. As the proposed anomaly detection methods are dependent on an accurate and

reliable predictive model to identify anomalies, we apply the LSTM/MLP as the predictive model

in both methods.

The two anomaly detection methods (method I and II) are demonstrated on data acquired up

to a year after the training period. We specifically select data where the outputs of the compres-

sor look highly abnormal, where we expect the anomaly detection methods to generate anomaly

warnings. The remainder of this section demonstrates the performance of the anomaly detection

methods on the chosen periods, and we assess the quality of the methods based on the results.

An important assumption we make is that the normal state of the compressor, which is learned

using data from December 2017 to February 2018, is still valid in the extracted periods. Section

6.2.1 describes the extracted time periods, while section 6.2.2 and 6.2.3 presents the results of the

residual-based and prediction interval-based methods, respectively.

6.2.1 Selected data regions with anomalous behavior

(a) 2nd - 4th of April 2018 (b) 8th - 10th of July 2018 (c) 13th - 15th of December 2018

Figure 6.3: Selected data regions with anomalous patterns used to evaluate the proposed anomaly detection
methods. Discharge temperature in (a), discharge pressure in (b) and discharge flow in (c).

We look at two-day intervals in April, July and December 2018, which are plotted in figure 6.3.

Table 6.6 shows where we expect to find anomalies in the datasets. The results of the anomaly

detection methods are compared to our expectations, which again will define the suitability of the

methods.

65 CHAPTER 6. RESULTS AND ANALYSIS

Month From time To time Cause

April 02.04 16:00 03.04 04:00 Rapidly decreasing, unusually low temp.

July 08.07 12:00 08.07 17:00 Sudden drop in pressure, low values.

December 13.12 11:00 13.12 12:00 Sudden spike in flow.

December 13.12 20:00 14.12 02:00 Spikes and high flow.

Table 6.6: Expected anomalies in the selected time periods.

6.2.2 Method I: Residual based anomaly detection

Verifying the normality of the residual distribution

It is assumed that the residuals obtained during the validation of the final predictive model fol-

low a Gaussian distribution. This is verified by the quantile-quantile (Q-Q) plots in figure 6.4,

which shows the quantiles of the estimated residual distributions for each target compared to the

quantiles of the standard normal distribution. Provided that the residuals of the final model are

normally distributed, the points in the Q-Q plot will fall on the line y = x, which is the orange

reference line. It is seen that the points fall on the line for the central and the right region, but

they deviate from the reference line closer to the left tail for the discharge flow and pressure. This

deviation is apparent at x ≈ −3, which indicates that the residuals of the final models have a

thicker tail on the left-hand side than those of the standard normal. This is expected, considering

that we do not remove outliers and extreme values from the dataset, as discussed in section 4.5.2.

However, it is expected that this will not affect the validity and accuracy of method I in any major

way.

Plots of the residual distributions for the discharge flow, temperature and pressure are shown

in appendix C.5.

(a) Discharge flow (b) Discharge temperature (c) Discharge pressure

Figure 6.4: Q-Q plot for the three targets discharge flow, temperature, and pressure. Theoretical quantiles
are on the x-axis and the sample quantiles are on the y-axis.

CHAPTER 6. RESULTS AND ANALYSIS 66

Demonstration and results

Figure 6.5 shows method I applied to the December dataset, where the bottom plot is the corre-

sponding short-term average log anomaly probability plot. The red areas in the top plot indicate

where the model has detected anomalous behavior, of which we find two regions; a short sequence

on the 13th from 11:00 to 12:00, and a longer sequence starting later the 13th at approximately

20:00 to 03:00 the following day. Thus, the method roughly identifies all the expected anomaly

regions for December. Significant deviance between the predicted and the actual discharge is ob-

served for both anomaly sequences, indicating a highly abnormal relationship between the input

variables and the target output in the periods. Furthermore, we see that the model is relatively

accurate outside the anomalous intervals, which suggests that the model works as expected.

Figure 6.5: Anomaly detection plot for December 2018 (flow [kg/h]): method I. The top plot shows the
predicted and the actual values, and the red areas indicate anomaly warnings. The bottom plot is the corre-
sponding point-wise short-term log anomaly probability, where the anomaly threshold τ = 0.8.

Figure 6.6 shows method I applied to the April dataset. We see that the model, in general, can

accurately predict the development of the temperature, except for a couple of hours during the

evening of April the 2nd until the morning of the following day. More specifically, an anomalous

sequence is found between approximately 18:30 and 21:30 the 2nd. We see that the temperature

is decreasing rapidly from 16:00 and that the predictive model manages to follow this descent to a

reasonable degree for a little while, suggesting that this is expected behavior of the compressor. The

temperature becomes unusually low around 18:00, and the predictive residuals increase gradually

after this, which in turn increases the log probability. By inspecting the log probability plot, we see

a gradual increase from 17:30 until the threshold is reached around 18:30, marking the beginning

of the anomalous sequence. After 21:30, minor deviance is observed between the predictive model

and the true measurements, but no anomaly is warned for due to the anomaly score being too

small.

67 CHAPTER 6. RESULTS AND ANALYSIS

Figure 6.6: Anomaly detection plot for April 2018 (temperature [◦C]): method I. The top plot shows the
predicted and the actual values, and the red areas indicate anomaly warnings. The bottom plot is the corre-
sponding point-wise short-term log anomaly probability, where the anomaly threshold τ = 0.8.

Figure 6.7 shows the method applied to the July dataset. We observe that a several hour long

window is identified as anomalous, indicated in the figure approximately from 12:00 to 17:00 on

July the 8th.

Figure 6.7: Anomaly detection plot for July 2018 (pressure [barg]): method I. The top plot shows the
predicted and the actual values, and the red areas indicate anomaly warnings. The bottom plot is the corre-
sponding point-wise short-term log anomaly probability, where the anomaly threshold τ = 0.5.

We see a rapid decrease in the discharge pressure to approximately 6 barg, and that the predictive

model does not follow along with this development. This is not surprising, as the predictive model

is trained on data where the discharge pressure only oscillates between 12 and 14 barg5. The

large residuals between the predictions and the true measurements effectively cause the method

to warn about unusual behavior in the system. The corresponding log anomaly plot shows that

5See table B.1 for statistics of the training data.

CHAPTER 6. RESULTS AND ANALYSIS 68

it is confident in this warning, i.e., the log anomaly probability is close to 1 and well above the

specified threshold. Otherwise, we see that the predictions and the true measurements correspond

better, resulting in low log anomaly probability and no anomaly warnings.

6.2.3 Method II: PI-based anomaly detection

Demonstration and results

Figure 6.8 shows method II applied to the December dataset. We see that the identified anomalous

regions correspond roughly to the ones marked by method I for the same dataset; a short window

on the 13th from 11:00 to 12:00 with a significant spike in the flow, and a longer sequence from

approximately 20:00 the 13th to 01:30 the 14th with severe spikes and particularly high flow

measurements. The data in these regions exceed the 99% confidence threshold, which results in

anomaly warnings of the method. We conclude that all expected anomaly regions for December

are roughly identified also by method II. By inspecting the confidence threshold, we see that the

width is increased during the anomalous data regions, indicating that the model is less confident

about its predictions there. Another remark for this plot is that many of the true measurements are

close to the upper and lower bounds of the prediction intervals, which illustrates the importance

of setting thresholds appropriately, such that non-anomalies are not marked falsely.

Figure 6.8: Anomaly detection plot for December 2018 (flow [kg/s]): method II. The grey area indicates the
99%-prediction interval, and the red areas indicate anomaly warnings.

Figure 6.9 shows method II applied to the April dataset. One region is identified as anoma-

lous, approximately between 18:30 and 21:30 on April the 2nd, which corresponds to the interval

identified by method I. In the anomalous region, the width of the prediction interval increases

notably and that the observed measurements are well below the lower threshold. The increased

width of the interval indicates that the predictive model is less confident about its predictions in

69 CHAPTER 6. RESULTS AND ANALYSIS

this interval, and the poor predictions indicate that there is an abnormal relationship between the

input variables and the target. Furthermore, we observe that the width of the prediction interval

decreases gradually after the anomalous sequence, indicating increasing confidence of the model.

We observe that the predictions follow the observed temperature excellently both early on the 2nd

and on April the 3rd.

Figure 6.9: Anomaly detection plot for April 2018 (temperature [◦C]): method II. The grey area indicates
the 99%-prediction interval, and the red areas indicate anomaly warnings.

Figure 6.10 shows method II applied to the July dataset. Similar to method I, one region is

identified as anomalous, approximately from 12:00 to 17:00 on July the 8th. We observe that the

discharge pressure drops below the lower bound of the prediction interval on July the 8th and

consequently, an anomaly warning is given.

Figure 6.10: Anomaly detection plot for July 2018 (pressure [barg]): method II. The grey area indicates the
99%-prediction interval, and the red areas indicate anomaly warnings.

CHAPTER 6. RESULTS AND ANALYSIS 70

Moreover, the width of the prediction interval increases notably directly after the anomalous se-

quence on July the 8th, indicating that the model is unsure about the predictions of the discharge

pressure. Additionally, we observe that the prediction of the discharge pressure corresponds well

with the observed discharge pressure prior to the anomalous sequence on July the 8th and from

09:00 on July the 9th.

6.2.4 Comparison of the methods

The performance of the two methods is broadly similar. They both identify, wholly or partly, all of

the regions listed in table 6.6. The only interval where there is partial deviance from our expec-

tations is in the April dataset, where we had expected a longer anomaly interval than those given

by the respective methods. Specifically, we defined the expected anomalous range of April to start

16:00 the 2nd and end 04:00 the next day, but both methods warned for anomalies approximately

between 18:30 and 21:30 the 2nd. However, the minor deviance between the observed and pre-

dicted values outside the identified anomalous intervals could indicate that we on beforehand had

overestimated the length of the anomaly interval. Meanwhile, the log anomaly probabilities on the

night of April the 3rd fluctuate between 0 and 0.4, which indicates somewhat unusual behavior.

Both methods identify the sudden spike in the discharge flow on December the 13th between

11:00 and 12:00. However, it is hard to say whether the observed behavior is indeed anomalous or

if it is a result of measurement errors of the sensors. The two methods differ slightly on the longer

anomalous sequence in December (13.12 20:00 to 14.12 02:00): method I marks a slightly longer

window than that identified by method II. However, this is dependent on the specified anomaly

thresholds and is easily adjustable. The methods identify the same anomaly ranges in both the

July dataset and the April dataset.

All in all, the results indicate that both methods are well suited to serve as a warning system in

an industrial setting if the thresholds are set appropriately. However, the methods are so far only

evaluated based on subjective expectations on arbitrarily picked datasets. Experts are needed to

assess the quality of the models properly and to determine whether their performance is satisfac-

tory.

Chapter 7

Discussion

In light of the results in chapter 6, we start this chapter by providing a deeper understanding of the

true potential of deep learning as a modeling framework for industrial equipment. We focus specif-

ically on whether the improvement in accuracy is justified by the increase in complexity and ways

to enhance the performance of the models further. Further, in section 7.2, we discuss the quality

of the anomaly detection methods, whether they are suitable algorithms in a practical setting and

ways to improve their performance further. Section 7.3 outlines the practical hurdles of imple-

menting data-driven models and anomaly detection algorithms for complex industrial equipment

before we present natural avenues for further work in section 7.4.

7.1 Potential of Deep Learning as Predictive Models

The results show that it is possible to accurately model the normal behavior of the gas compressor

using data-driven approaches, without the use of expert domain knowledge or by applying any

laws of physics. The deep neural networks are the most accurate models, which shows promise

for deep learning in this modeling problem. However, the results also indicate that the compressor

can be modeled with reasonable accuracy by less complex models, such as ordinary least squares

linear regression. Arguably, the relative improvement of 17.2% on held-out data is moderate con-

sidering the vast increase in complexity that follows with deep learning. The question is whether

the improved accuracy is strictly necessary and if the improved performance justifies the increase

in complexity. From an industrial perspective, it can be natural to use the least advanced model

that meets the demands in terms of accuracy. However, we consider the improvement as a verifi-

cation of the potential of deep learning, even though there are some non-negligible challenges to

implementing these models.

The less complex models are straightforward to implement mainly because they have few pa-

rameters to tune, and they require little in terms of training times and computational resources.

71

CHAPTER 7. DISCUSSION 72

However, this implies that the results obtained by these models are as good as they get, i.e. the

simple models are nearly, or completely, at their full potential. In contrast, several parameters can

be tuned in deep neural networks, and there is no reason to believe that we have achieved the

optimal performance of these models.

Due to limitations in time and resources, we had to make some simplifying design choices in

the implementation of the networks. We have presented some promising examples of network ar-

chitectures, but there are undoubtedly other configurations that can improve the neural networks

further. A thorough search through the vast space of possible configurations is likely to lead to

more effective network designs. Specifically, we could see significant improvements by fine-tuning

hyperparameters such as the learning rate of the optimizer and the initialization functions of spe-

cific layers. Similarly, introducing alternative types of regularization, increasing the number of

training epochs, or exploring the specification of other parameters such as the window-size of the

sequential models, could have a positive effect. In addition, the results showed a considerable

improvement by model ensembling, and even bigger and more diverse ensembles could likely lead

to better results. We implemented ensembles consisting solely of deep learning models, but we did

not experiment with ensembles of deep and shallow models, which Chollet (2018) states can be

beneficial. Furthermore, we acknowledge that there exists other types of ensemble techniques that

are not covered in this thesis that could have had a positive impact. Moreover, the networks will

become better with more data (Chollet, 2018). We constrained the data to a two-month interval,

and although we found this to be sufficient for the model to learn the statistical characteristics of

the system, more data is more than likely to have a positive effect on the model performances.

However, there are some challenges tied to this, which are described in section 7.3.

7.2 Anomaly Detection with Deep Learning

The performance of the proposed anomaly detection methods is consistent with our expectations

on the selected data regions, and the results indicate that there is a big potential for model-based

anomaly detection for complex equipment in the oil and gas industry. The proposed anomaly

detection methods are dependent on a robust, accurate and reliable predictive model. To this

end, we find that the applied deep learning model performs excellently in conjunction with the

anomaly detection methods: the accuracy is high when the compressor operates normal, but the

model fails to predict seemingly anomalous sequences, resulting in, to the best of our judgment,

accurate anomaly warnings.

The two anomaly detection methods have similar performance which makes it hard to com-

pare the two models purely based on when they identify anomalous behavior. We find that both

methods have advantages and disadvantages. Method I outputs a log anomaly probability for each

observation. This can be regarded as a measure of abnormality and is more informative than just a

73 CHAPTER 7. DISCUSSION

label, which is the output of method II. Besides, the anomaly probability is easy to visualize, which

can be helpful when tuning the anomaly threshold. On the other hand, method II has the advan-

tage that the anomaly threshold is easier to tune since it only impacts the width of the prediction

interval.

A key difference between the two models lies in how they classify new observations. Method I

identifies anomalies based on a static residual distribution built on the validation data, whereas

method II utilizes a prediction interval for each incoming observation. The width of the prediction

interval is dependent on the variance of the predictive model, which naturally will increase when

the model is less confident in its predictions. Consequently, method II will increase the width of

the prediction interval when incoming observations have unusual or abnormal patterns, resulting

in higher acceptance thresholds due to the increase in uncertainty. Thus, inherently anomalous

observations can be classified as normal because of the uncertainty of the predictive model. This

flexibility might seem counter-intuitive since increased uncertainty (i.e. less confidence) could be

an indicator of abnormal behavior. We recognize that this is a potential drawback of the PI-based

anomaly detection method.

In general, we find that both methods fulfill all but one of the requirements outlined in section

3.4.5 for an ideal real-time streaming anomaly detection algorithm: the methods are unable to

adapt to scenarios where there are significant changes in the underlying statistics of the system

(requirement 4). This can, for instance, be a result of changes in the configurations that alter

the behavior of the system, and thus, the definition of normal behavior. In order to adapt to

such scenarios, the predictive model must be retrained. However, we assume that a change in

configurations is rare events and that the proposed methods are suitable for this reason. In fact,

we demonstrate that the anomaly detection algorithms work well on datasets obtained almost a

year after the data that the predictive model was trained on.

7.2.1 Operational application of the methods

Manual inspection and contextualization of multiple time series to uncover potential faults for

equipment is an infeasible task for a human resource. Accurate and reliable anomaly detection

methods may function as an early warning system and can lessen the monitoring burden placed

on operations engineers. Moreover, it can reduce operational risk, and ultimately lead to reduced

downtime. Our model is, however, not ready to be employed in production yet, as fine-tuning

of thresholds and a more thorough analysis of the methods’ behavior is required. Ideally, this is

done by experts that have a solid understanding of the operation of the equipment, such that the

anomaly detection methods generate warnings in accordance with desired levels of risks for type I

and type II errors.

CHAPTER 7. DISCUSSION 74

7.3 Challenges and Practical Barriers

A machine learning model is only as good as the data it is trained on, and as such, comprehensive

data sets of high-quality features and lots of observations are a requisite (Chollet, 2018). To facili-

tate this, appropriate data pipelines must be developed before deep learning can be applied in an

operational context. In addition, deep learning is notoriously demanding in terms of training times

and computational resources. Hardware and software can set restrictions on what can be included

in the models, and how long the models can train. Furthermore, as we have experienced in this

thesis, this also affects to what degree it is possible to explore different configurations of respective

networks, i.e. optimizing the parameters of the models. Another challenge of operational deep

learning is therefore to facilitate sufficient computational resources.

With the data pipelines in place, there are still several challenges tied to the nature of the data

in this modeling problem. First, the proposed anomaly detection methods rely on the predictive

models being accurate when the equipment behaves normally, but inaccurate otherwise. Thus,

a requisite of the data used to train the models is that it reflects the normal operation of the

compressor. However, it is not easy to define rules for what ”normal” behavior is, though we

have tried to the best of our ability to identify regions of the data that represents the general

case for the behavior of the equipment. Although the results show that the models have managed

to capture the normal characteristics to a reasonable degree, the practical data selection process

requires expert domain knowledge. Furthermore, we want to feed the model with as much data as

possible, but it is difficult to uncover consecutive intervals of data where the compressor operates

normally without any anomalies. Finding general procedures to process anomalous sequences in

the data could help with this, such that the models have access to more data.

The second challenge with the data is the lack of labels. As a result, it is difficult to evaluate

the quality of the anomaly detection methods, as there is no objective way to know if the anomaly

warnings are correct. As explained in section 5.2.3, we evaluate the methods by subjective expec-

tations and how they fulfill these, but whether the anomaly warnings are correct requires expert

knowledge. Another challenge is tied to concept drift, where the statistical properties of the data

change over time. This can cause our pre-trained models to lose accuracy over time, which natu-

rally affects the performance of the anomaly detection methods. Nevertheless, we show that our

predictive model is maintaining a high prediction accuracy even for data that is obtained up to a

year after the initial training process, which indicates that our model has learned the underlying

statistics of the system well.

We see that the predictions of the model are highly affected when there are long anomalous

sequences included in their window of inputs. Recall that the model uses six hours of data to make

a single prediction, and we see a decrease in accuracy in the subsequent hours of a long anomalous

sequence. This behavior can potentially lead to a several hour long window where the predictive

model is unable to monitor the state of the system accurately. A way to address this problem is to

75 CHAPTER 7. DISCUSSION

modify the network to handle varying input sizes, where only the observations after the anomalous

sequence and up to a maximum window size are used to make a prediction. Another possibility

is to swap the actual observed discharge values with the corresponding predicted discharge for all

the observations identified as anomalous. Although we recognize the problem, we have not found

any appealing techniques to address it adequately.

Deep learning can achieve remarkable results, but they are inherently complex and demanding

in terms of technical expertise. Open source libraries such as Keras and Tensorflow greatly simplify

the implementation process, but technical skills and proficiency within machine learning and its

fundamental principles are a requirement for success. However, an advantage is that this expertise

is most needed in the development phase of these models, where the operational use and keeping

the models updated is not as demanding. Similarly, the computational resources required to use

the models to make predictions are negligible compared to what is required in the training phase.

It must be mentioned that deep learning in an industrial setting is a fine mix between data

science and engineering. A challenge is therefore to combine the two, where engineers are needed

to understand the problem, and data scientists are needed for the technical implementation. How-

ever, we show in this thesis that we can model complex equipment with data-driven methods and

minimal domain knowledge.

7.4 Further work

We have demonstrated how model-based anomaly detection methods can be built for a gas com-

pressor. However, certain aspects can be improved, and others that we have not explored yet. One

of these aspects is the practical application of the methods, as they potentially can be used to pre-

dict maintenance events and making decision rules. How this is done is still an open question and

a natural goal for further research. Moreover, while the predictive models predict three variables

simultaneously, the anomaly detection methods only consider one variable at a time. Currently,

the methods generate anomaly warnings for the compressor at time t if anomalies are identified

for one of the targets, but a smarter and more robust detection method can be built by considering

the classification of all three targets at once. We see this is as a natural extension of the work in

this thesis.

The predictive model is trained in an offline fashion on a fixed training set and needs to be

re-trained if the underlying statistics of the system change. However, other authors have suggested

online learning setups where the models are constantly updated using a sliding window of ob-

servations. We have not explored such setups due to the argument that the training data should

reflect normal equipment behavior, but the potential of online learning in this problem would be

interesting to review.

CHAPTER 7. DISCUSSION 76

We have implemented methods to assess the epistemic and aleatoric uncertainty of our deep

learning models, but we have not addressed the uncertainty resulting from predicting samples

with drastically different patterns compared to the data used in training. Including this in the total

uncertainty assessment could result in more robust uncertainty estimates, and could benefit the

implementations in this thesis.

Lastly, the predictive models and anomaly detection methods may improve by identifying sys-
tem states and including this information as additional features in the dataset. For instance, the

compressor is turned off in the case of production shutdowns, and because such events are not

present in the training data, the current implementations will identify this as anomalous behavior.

This could be avoided by taking advantage of the system states.

Chapter 8

Conclusion

The vast amounts of available sensor data in modern production systems present the industry with

big opportunities. Automated procedures to identify unusual, anomalous behavior for equipment

in complex production systems can be of high value to any production company, as they can be

used as early warning systems to avoid imminent equipment failures and, ultimately, reduce pro-

duction downtime. As such, the objective of this study has been to demonstrate how to implement

unsupervised, real-time anomaly detection algorithms for critical equipment in the oil and gas in-

dustry. We have focused on model-based approaches, where the classification of a measurement is

based on the difference between the model prediction and the sensor measurement. Using proba-

bilistic sequential neural networks as predictive models, we propose two robust anomaly detection

methods that conform to the high demands of a real-time, streaming data anomaly detection al-

gorithm. They perform a fast and efficient evaluation of the incoming data in real-time, and they

work in an unsupervised fashion.

The predictive models are crucial to the success of the model-based anomaly detection methods.

Seeing deep learning as a highly successful framework in similarly complex modeling problems,

this thesis has been particularly devoted to exploring the potential of deep neural networks in

predicting the behavior of the equipment. We find that the implemented networks provide highly

accurate and reliable predictions of the normal behavior of the compressor. After implementing a

range of different networks of different types and designs, we concluded that the best performance

was achieved by an ensemble model consisting of a LSTM network, using a history of sensor data to

make its prediction, and a feed-forward neural network, with no historical variables in its inputs.

We implemented a set of common-sense heuristics and less advanced machine learning models

to benchmark the performance. The deep learning ensemble outperformed the best benchmark

model, which was ordinary least squares linear regression, with a relative improvement of 17.2%.

Moreover, most of the implemented benchmarks are already performing at their full potential,

while there is no reason to believe that this is the case for the deep learning models; fine-tuning

77

CHAPTER 8. CONCLUSION 78

hyperparameters, exploring alternative architectures or including more data is likely to improve

the performance even further. We argue that the results show that there is a big potential for deep

learning in modeling the behavior of physical equipment in the petroleum industry.

We have developed two model-based anomaly detection algorithms. The first classifies anoma-

lies by comparing the residuals of a new observation to a static residual distribution built on the

validation set, while the second identifies anomalies by checking if it is within the bounds of the

prediction interval of the predictive model. We assessed the quality of the two methods by ap-

plying them to three arbitrary months of data that, to the best of our knowledge, contained clear

anomalous behavior. We found that both methods generated anomaly warnings where it was ex-

pected and that the performance was highly satisfactory. However, the quality assessment is based

on subjective expectations, and their actual performance must be evaluated by experts. Moreover,

the anomaly thresholds of the respective methods must be fine-tuned before they can be used in

an operational setting.

Bibliography

D. W. Aha, R. L. Bankert, D. Fisher, and H.-J. Lenz. A Comparative Evaluation of Sequential Feature
Selection Algorithms, pages 199–206. Springer New York, New York, NY, 1996. doi: 10.1007/

978-1-4612-2404-4 19. URL https://doi.org/10.1007/978-1-4612-2404-4_19.

S. Ahmad, A. Lavin, S. Purdy, and Z. Agha. Unsupervised real-time anomaly detection for streaming

data. Neurocomputing, 262:134–147, 2017.

M. Anand. Digital transformation in the oil and gas industry: Drill, data, drill. Tech-

nical report, Cisco Blog, The Platform, 2015. URL https://blogs.cisco.com/news/

digital-transformation-in-the-oil-gas-industry-drill-data-drill.

M. Assaad, R. Boné, and H. Cardot. A new boosting algorithm for improved time-series forecasting

with recurrent neural networks. Inf. Fusion, 9(1):41–55, Jan. 2008. ISSN 1566-2535. doi:

10.1016/j.inffus.2006.10.009. URL http://dx.doi.org/10.1016/j.inffus.2006.10.009.

M. Basseville and I. Nikiforov. Detection of Abrupt Change Theory and Application, volume 15. PTR

Prentice-Hall, 04 1993. ISBN 0-13-126780-9.

S. D. Bay and M. Schwabacher. Mining distance-based outliers in near linear time with randomiza-

tion and a simple pruning rule. In Proceedings of the ninth ACM SIGKDD international conference
on Knowledge discovery and data mining, pages 29–38. ACM, 2003.

J. Benesty, J. Chen, Y. Huang, and I. Cohen. Pearson correlation coefficient. In Noise reduction in
speech processing, pages 1–4. Springer, 2009.

D. K. Bhattacharyya and J. K. Kalita. Network Anomaly Detection: A Machine Learning Perspective.

Chapman & Hall/CRC, 2013. ISBN 1466582081, 9781466582088.

A. Bianco, M. Garcia Ben, E. J. Mart́ınez, and V. Yohai. Outlier detection in regression models with

arima errors using robust estimates. Journal of Forecasting, 20, 12 2001. doi: 10.1002/for.768.

C. Blundell, J. Cornebise, K. Kavukcuoglu, and D. Wierstra. Weight Uncertainty in Neural Networks.

ArXiv e-prints, May 2015.

79

https://doi.org/10.1007/978-1-4612-2404-4_19
https://blogs.cisco.com/news/digital-transformation-in-the-oil-gas-industry-drill-data-drill
https://blogs.cisco.com/news/digital-transformation-in-the-oil-gas-industry-drill-data-drill
http://dx.doi.org/10.1016/j.inffus.2006.10.009

BIBLIOGRAPHY 80

S.-D. Bolboaca and L. Jäntschi. Pearson versus spearman, kendall’s tau correlation analysis on

structure-activity relationships of biologic active compounds. Leonardo Journal of Sciences, 5(9):

179–200, 2006.

P. J. Brockwell and R. A. Davis. Introduction to Time Series and Forecasting. Springer, 2016.

G. O. Campos, A. Zimek, J. Sander, R. J. G. B. Campello, B. Micenková, E. Schubert, I. Assent,

and M. E. Houle. On the evaluation of unsupervised outlier detection: measures, datasets,

and an empirical study. Data Mining and Knowledge Discovery, 30(4):891–927, Jul 2016. doi:

10.1007/s10618-015-0444-8. URL https://doi.org/10.1007/s10618-015-0444-8.

V. Chandola, A. Banerjee, and V. Kumar. Anomaly detection: A survey. ACM computing surveys
(CSUR), 41(3):15, 2009.

F. Chollet. Deep Learning with Python. Manning Publications, 2018.

J. Chung, Ç. Gülçehre, K. Cho, and Y. Bengio. Empirical evaluation of gated recurrent neural

networks on sequence modeling. CoRR, abs/1412.3555, 2014. URL http://arxiv.org/abs/

1412.3555.

F. Degenhardt, S. Seifert, and S. Szymczak. Evaluation of variable selection methods for random

forests and omics data sets. Briefings in bioinformatics, 20(2):492–503, 2017.

T. G. Dietterich. Ensemble methods in machine learning. In Proceedings of the First International
Workshop on Multiple Classifier Systems, MCS ’00, pages 1–15, London, UK, UK, 2000. Springer-

Verlag. ISBN 3-540-67704-6. URL http://dl.acm.org/citation.cfm?id=648054.743935.

T. Fawcett and F. Provost. Adaptive fraud detection. Data mining and knowledge discovery, 1(3):

291–316, 1997.

Y. Gal and Z. Ghahramani. Dropout as a Bayesian Approximation: Representing Model Uncertainty
in Deep Learning. PhD thesis, University of Cambridge, June 2015.

J. Gama, I. Žliobaitė, A. Bifet, M. Pechenizkiy, and A. Bouchachia. A survey on concept drift

adaptation. ACM computing surveys (CSUR), 46(4):44, 2014.

M. Goadrich, L. Oliphant, and J. Shavlik. Learning ensembles of first-order clauses for recall-

precision curves: A case study in biomedical information extraction. In International Conference
on Inductive Logic Programming, pages 98–115. Springer, 2004.

M. Goldstein and S. Uchida. A comparative evaluation of unsupervised anomaly detection algo-

rithms for multivariate data. PloS one, 11(4):e0152173, 2016.

I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, 2016. http://www.

deeplearningbook.org.

https://doi.org/10.1007/s10618-015-0444-8
http://arxiv.org/abs/1412.3555
http://arxiv.org/abs/1412.3555
http://dl.acm.org/citation.cfm?id=648054.743935
http://www.deeplearningbook.org
http://www.deeplearningbook.org

81 BIBLIOGRAPHY

N. Görnitz, M. Kloft, K. Rieck, and U. Brefeld. Toward supervised anomaly detection. J. Artif. Int.
Res., 46(1):235–262, Jan. 2013. ISSN 1076-9757. URL http://dl.acm.org/citation.cfm?

id=2512538.2512545.

S. Guha, R. Rastogi, and K. Shim. Rock: A robust clustering algorithm for categorical attributes.

Information systems, 25(5):345–366, 2000.

I. Guyon and A. Elisseeff. An introduction to variable and feature selection. Journal of machine
learning research, 3(Mar):1157–1182, 2003.

T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning. Springer, 2 edition,

2009.

M. A. Hayes and M. A. Capretz. Contextual anomaly detection framework for big sensor data.

Journal of Big Data, 2(1):2, 2015.

J. Helvoirt. Centrifugal compressor surge:modeling and identification for control. Annali Di Matem-
atica Pura Ed Applicata - ANN MAT PUR APPL, 01 2007.

D. J. Hill and B. S. Minsker. Anomaly detection in streaming environmental sensor data: A data-

driven modeling approach. Environmental Modelling & Software, 25(9):1014–1022, 2010.

S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural Computation, 9(8), 1997.

J. Honaker, G. King, M. Blackwell, et al. Amelia ii: A program for missing data. Journal of statistical
software, 45(7):1–47, 2011.

K. Hundman, V. Constantinou, C. Laporte, I. Colwell, and T. Soderstrom. Detecting spacecraft

anomalies using lstms and nonparametric dynamic thresholding. In Proceedings of the 24th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining, pages 387–395. ACM,

2018.

R. J. Hyndman and G. Athanasopoulos. Forecasting: Principles and Practice. OTexts, 2 edition, May

2018. URL https://otexts.org/fpp2/. Publicly available at https://otexts.org/fpp2/.

M. Ileby and E. Knutsen. Data-driven remote condition monitoring optimizes offshore mainte-

nance, reduces costs. Technical report, World Oil, 2017.

G. K. Karagiannidis and A. S. Lioumpas. An improved approximation for the gaussian q-function.

IEEE Communications Letters, 11(8):644–646, 2007.

A. Kendall and Y. Gal. What uncertainties do we need in bayesian deep learning for computer

vision? CoRR, abs/1703.04977, 2017. URL http://arxiv.org/abs/1703.04977.

http://dl.acm.org/citation.cfm?id=2512538.2512545
http://dl.acm.org/citation.cfm?id=2512538.2512545
https://otexts.org/fpp2/
https://otexts.org/fpp2/
http://arxiv.org/abs/1703.04977

BIBLIOGRAPHY 82

N. Ketkar. Deep Learning with Python: A Hands-on Introduction. Springer, Bangalore, Karnataka,

India, 2017.

E. M. Knorr, R. T. Ng, and V. Tucakov. Distance-based outliers: algorithms and applications. The
VLDB Journal—The International Journal on Very Large Data Bases, 8(3-4):237–253, 2000.

S. Kullback and R. A. Leibler. On information and sufficiency. Ann. Math. Statist., 22(1):79–86, 03

1951. doi: 10.1214/aoms/1177729694. URL https://doi.org/10.1214/aoms/1177729694.

M. B. Kursa, W. R. Rudnicki, et al. Feature selection with the boruta package. J Stat Softw, 36(11):

1–13, 2010.

D. L. Simon and A. Rinehart. A model-based anomaly detection approach for analyzing streaming

aircraft engine measurement data. American Society of Mechanical Engineers: New York, 6, 06

2014. doi: 10.1115/GT2014-27172.

N. Laptev, S. Amizadeh, and I. Flint. Generic and scalable framework for automated time-series

anomaly detection. In Proceedings of the 21th ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, KDD ’15, pages 1939–1947, New York, NY, USA, 2015. ACM.

ISBN 978-1-4503-3664-2. doi: 10.1145/2783258.2788611. URL http://doi.acm.org/10.

1145/2783258.2788611.

N. Laptev, J. Yosinski, L. E. Li, and S. Smyl. Time-series extreme event forecasting with neural

networks at uber. Time Series Workshop 2017, 3, 2017.

T. J. Lee, J. Gottschlich, N. Tatbul, E. Metcalf, and S. Zdonik. Precision and recall for range-based

anomaly detection. arXiv preprint arXiv:1801.03175, 2018.

P. Malhotra, L. Vig, G. Shroff, and P. Agarwal. Long short term memory networks for anomaly

detection in time series. In Proceedings, page 89. Presses universitaires de Louvain, 2015.

P. Malhotra, A. Ramakrishnan, G. Anand, L. Vig, P. Agarwal, and G. Shroff. Lstm-based encoder-

decoder for multi-sensor anomaly detection. arXiv preprint arXiv:1607.00148, 2016.

K. G. Mehrotra, C. K. Mohan, and H. Huang. Anomaly Detection Principles and Algorithms. Springer

Publishing Company, Incorporated, 1st edition, 2017. ISBN 3319675249, 9783319675244.

Y. S. A. Mostafa, M. Magdon-Ismail, and H.-T. Lin. Learning From Data. AMLbook.com, 2012.

A. Nairac, N. Townsend, R. Carr, S. King, P. Cowley, and L. Tarassenko. A system for the analysis

of jet engine vibration data. Integrated Computer-Aided Engineering, 6(1):53–66, 1999.

C. Olah. Understanding lstm networks, 2015. URL https://colah.github.io/posts/

2015-08-Understanding-LSTMs/.

https://doi.org/10.1214/aoms/1177729694
http://doi.acm.org/10.1145/2783258.2788611
http://doi.acm.org/10.1145/2783258.2788611
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/

83 BIBLIOGRAPHY

M. Pratama, J. Lu, E. Lughofer, G. Zhang, and S. Anavatti. Scaffolding type-2 classifier for incre-

mental learning under concept drifts. Neurocomputing, 191:304–329, 2016.

K. Sequeira and M. Zaki. Admit: anomaly-based data mining for intrusions. In Proceedings of
the eighth ACM SIGKDD international conference on Knowledge discovery and data mining, pages

386–395. ACM, 2002.

S. S. Shapiro and M. B. Wilk. An analysis of variance test for normality (complete samples).

Biometrika, 52(3/4):591–611, 1965.

D. T. Shipmon, J. M. Gurevitch, P. M. Piselli, and S. T. Edwards. Time series anomaly detection;

detection of anomalous drops with limited features and sparse examples in noisy highly periodic

data. arXiv preprint arXiv:1708.03665, 2017.

U. Shuchita and S. Karanjit. Nearest neighbour based outlier detection techniques. International
Journal of Computer Trends and Technology, 3:299–303, 01 2012.

N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. Dropout: A simple

way to prevent neural networks from overfitting. Journal of Machine Learning Research, 15:

1929–1958, 2014. URL http://jmlr.org/papers/v15/srivastava14a.html.

M. Szmit and A. Szmit. Usage of modified holt-winters method in the anomaly detection of network

traffic: Case studies. Journal of Computer Systems Networks and Communications, 5, 05 2012.

doi: 10.1155/2012/192913.

S. C. Tan, K. M. Ting, and T. F. Liu. Fast anomaly detection for streaming data. In Twenty-Second
International Joint Conference on Artificial Intelligence, 2011.

B. Upadhyaya, O. Glockler, and J. Eklund. Multivariate statistical signal processing technique for

fault detection and diagnostics. ISA transactions, 29(4):79–95, 1990.

B. R. Upadhyaya and M. Skorska. Sensor fault analysis using decision theory and data-driven

modeling of pressurized water reactor subsystems. Nuclear Technology, 64(1):70–77, 1984.

M. Yuan, Y. Wu, and L. Lin. Fault diagnosis and remaining useful life estimation of aero engine

using lstm neural network. In 2016 IEEE International Conference on Aircraft Utility Systems
(AUS), pages 135–140. IEEE, 2016.

J. H. Zar. Significance testing of the spearman rank correlation coefficient. Journal of the American
Statistical Association, 67(339):578–580, 1972.

L. Zhu and N. Laptev. Deep and Confident Prediction for Time Series at Uber. ArXiv e-prints, Sept.

2017.

http://jmlr.org/papers/v15/srivastava14a.html

Appendix A

Additional Theory

A.1 Data Preprocessing Techniques

A.1.1 Boruta

Boruta is a novel feature selection algorithm for finding all relevant variables. The algorithm is

named after the God of the forest in Slavic mythology and serves as a wrapper around a Random

Forest classifier (Kursa et al., 2010). In essence, the main goal of the Boruta algorithm is to find all

the important and interesting features in the dataset for a given outcome variable by comparing

the importance of the real predictor features to those of so-called shadow features using statistical

testing and several iterations of Random Forest classifiers. The shadow features are generated

by permuting the original values across observations, thus dismantle the relationship with the

outcome. In general, the algorithm is based on the same idea that forms the foundation of the

Random Forest classifier, that by collecting results from the ensemble of randomized samples one

can reduce the misleading impact of random fluctuations and correlations (Kursa et al., 2010).

A.1.2 Amelia II

Under the assumption that the complete data (that is, both observed and unobserved) is multivari-

ate normal and that the observations are missing at random (MAR), the Amelia II algorithm can

impute the incomplete data set so that analyses which require complete observations can appropri-

ately use all the information present in a dataset. Consequently, biases and incorrect uncertainty

estimates that can result from dropping all partially observed observations from the analysis are

avoided (Honaker et al., 2011). In essence, the algorithm utilizes an Expectation-Maximization

with Bootstrapping (EMB) to perform multiple imputations where the missing values are filled in

84

85 APPENDIX A. ADDITIONAL THEORY

with a distribution of imputations that reflect the uncertainty of the missing data (Honaker et al.,

2011).

A.2 Bayesian modelling

Let the training data Dt be defined by a set of inputs X = {x1, ...,xN} and their corresponding

outputs Y = {y1, ...,yN}. Bayesian modeling aims to find the parameters θ of the function y =

fθ(X) that are likely to have generated the output Y (Gal and Ghahramani, 2015). In plain

English, the question is: ”How can the parameters of the function fθ be set such that it likely maps

the input to the output?”.

To answer this question using Bayesian statistics, a prior distribution for the parameters P (θ) is

assumed, representing the prior beliefs of which parameters that have generated the data before

any data samples have been observed. Further, a likelihood distribution P (y|x, θ) is defined, better

described as the probability of the features x generating the outputs y given a set of parameters θ.

For regression problems, a Gaussian distribution is typically assumed:

P (y|x, θ) ∼ N (y; fθ(x), I)

Invoking Bayes’ theorem, the posterior distribution of the parameters θ can be defined as follows:

P (θ|X,Y) =
P (Y,X, θ)P (θ)

P (Y|X)

The posterior is the distribution of the most likely function parameters given the observed data

D = {X,Y} (Gal and Ghahramani, 2015). This posterior can be be used to calculate the output

of a new input point x∗:

P (y∗|x∗, θ,D) =

∫
P (y∗|x∗, θ)P (θ|D)dθ

Approximate inference

An important part of the posterior is the model evidence P (Y|X) (Gal and Ghahramani, 2015). It

is the marginalization of the likelihood over θ, i.e. the weighted average of the probability with

respect to all possible values in θ. It can be calculated with the following integral:

P (X|Y) =

∫
P (Y|X, θ)P (θ)dθ

The marginal likelihood is possible to evaluate analytically for simple models such as linear regres-

sion models. Unfortunately, the analytic solution quickly becomes intractable for more complex

APPENDIX A. ADDITIONAL THEORY 86

models (Gal and Ghahramani, 2015). Particularly in the context of deep learning, representing a

class of models characterized by high non-linearity and non-conjugacy, the true posterior cannot

be solved analytically (Zhu and Laptev, 2017). As an alternative, it is possible to approximate the

posterior.

There are two well studied approaches to deal with this problem - Markov Chain Monte Carlo

(MCMC) and Variational Inference (VI). MCMC will perform successive random sampling from

the target distribution (the posterior) which in effect forms a Markov Chain. It can be viewed as

an intelligent way to draw samples from a high-dimensional distribution. VI aims to approximate

the posterior by defining a variational distribution qω(θ) that is parameterized by ω and is much

easier to evaluate. MCMC can converge at a more accurate result than the VI often can, but it is

significantly more computationally expensive. For this reason, it is VI that is most often used.

To make the approximate distribution as similar to the true posterior as possible (qω(θ) ≈
P (θ|X,Y)), one finds the parameters of ω that minimize the Kullback–Leibler (KL) divergence

(Kullback and Leibler, 1951)1 between the approximate distribution and the true posterior. Sri-

vastava et al. (2014) shows that this is equivalent to maximizing the evidence lower bound with

respect to θ:

ω∗ = argmin
ω

KL[qω(θ)||P (θ|D)]

= argmin
ω

KL[qω(θ)||P (θ)]− EP (θ|ω)[logP (D|θ)]
(A.1)

The exact solution to this minimization problem is intractable, so optimization techniques such

as gradient descent and other approximations are applied. A common approach is to use Monte

Carlo sampling to approximate the integral: Instead of regarding all possible set of parameters

θ∞0 , a finite sample of possible parameters are evaluated for each iteration. The interested reader

is encouraged to read more on variational inference in Blundell et al. (2015). Variational infer-

ence approximates the intractable Bayesian marginalisation procedure as an optimization problem,

replacing calculations of integrals with derivatives, which are a lot easier to evaluate.

1The Kullback-Leibler divergence is a measure of similarity between two probability distributions

Appendix B

Preprocessing and Statistical

Properties

B.1 Data Preprocessing

B.1.1 Feature sparsity

Figure B.1: Feature sparsity

87

APPENDIX B. PREPROCESSING AND STATISTICAL PROPERTIES 88

B.1.2 Correlation plots

(a) Cross-correlation matrix of the 32 filtered variables. (b) Cross-correlation matrix of the 9 finally chosen vari-
ables.

Figure B.2: Cross correlation plots of the data variables

89 APPENDIX B. PREPROCESSING AND STATISTICAL PROPERTIES

B.1.3 Feature selection results

(a) Flow

(b) Temperature

(c) Pressure

Figure B.3: Box plot of the feature importance for the target variables flow, temperature, and pressure. Green
variables are considered important and blue variables corresponds to the shadow features, i.e., the randomly
shuffled features.

APPENDIX B. PREPROCESSING AND STATISTICAL PROPERTIES 90

B.2 Summary Statistics and Distribution Plots

Mean Median Std Max Min 1st Qu. 3rd Qu. NAs

FT-92537 161417.2 161285.9 3451.3 224396.1 147442.2 159105.7 163550.6 18.0

TT-92539 125.1 125.1 1.2 130.6 119.5 124.3 125.9 1227.0

PT-92539 12.7 12.7 0.2 14.7 11.8 12.5 12.9 21.0

ZT 92543 36.4 36.4 4.2 60.9 16.5 33.3 39.5 1006.0

PT-92523 2.9 2.9 0.1 4.0 2.6 2.8 2.9 31.0

PDT-92534 103.2 103.0 4.1 157.1 86.0 100.4 105.7 20.0

TT 92532 33.4 33.4 1.2 40.0 27.9 32.5 34.2 960.0

TIC-92504 39.7 39.7 1.3 45.1 35.1 38.8 40.4 50.0

KA 9101 9026.3 9026.8 163.3 11349.9 8230.1 8917.4 9134.4 28.0

Table B.1: Statistics of the complete dataset before scaling. The first three rows are the target variables, and
the remaining rows are the input features.

Mean Median Std Max Min 1st Qu. 3rd Qu. NAs

FT-92537 -0.115 -0.154 1.022 18.536 -4.254 -0.800 0.516 0.0

TT-92539 0.603 0.589 1.213 6.225 -5.099 -0.215 1.425 0.0

PT-92539 0.003 0.022 0.992 7.917 -3.816 -0.721 0.718 0.0

ZT 92543 -0.579 -0.564 1.198 6.386 -6.214 -1.460 0.301 0.0

PT-92523 0.031 -0.077 1.010 14.442 -3.743 -0.694 0.650 0.0

PDT-92534 -0.113 -0.166 1.005 13.174 -4.357 -0.806 0.512 0.0

TT 92532 0.607 0.681 1.176 7.239 -4.816 -0.213 1.433 0.0

TIC-92504 -0.011 0.066 1.283 5.217 -4.396 -0.796 0.660 0.0

KA 9101 -0.073 -0.070 1.008 14.272 -4.988 -0.745 0.594 0.0

Table B.2: Statistics of the complete dataset after scaling. The first three rows are the target variables, and
the remaining rows are the input features.

91 APPENDIX B. PREPROCESSING AND STATISTICAL PROPERTIES

Figure B.4: Distributions of the training, validation and test data.

APPENDIX B. PREPROCESSING AND STATISTICAL PROPERTIES 92

Figure B.5: Scatter matrix plot of the data with Kernel Density Estimation in the diagnoal

Appendix C

Deep Learning Models & Anomaly

Detection

C.1 Training Histories and Validation Data

C.1.1 LSTM

Figure C.1: Training history of the LSTM model.

93

APPENDIX C. DEEP LEARNING MODELS & ANOMALY DETECTION 94

C.1.2 GRU

Figure C.2: Training history of the GRU model.

C.1.3 MLP

Figure C.3: Training history of the MLP model.

95 APPENDIX C. DEEP LEARNING MODELS & ANOMALY DETECTION

C.2 Anomaly Detection

C.2.1 Method I: residual based anomaly detection

Threshold analysis

Figure C.4: Number of days where method I identifies anomalous behavior with increasing threshold, τ .

Residual distributions

(a) Flow residual dist. (b) Temperature residual dist. (c) Pressure residual dist.

Figure C.5: The residual distributions used in model I

APPENDIX C. DEEP LEARNING MODELS & ANOMALY DETECTION 96

