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Abstract—Device management can enhance large-scale deploy-
ments of IoT nodes in non-stationary environments by supporting
prediction and planning of their energy budget. This increases
their ability for perpetual operation and is a step towards
maintenance-free IoT. In this paper we consider how to accelerate
the collection of relevant training data for nodes that are
introduced into an existing deployment to increase the accuracy
of their predictions. In particular, we investigate how nodes
powered by solar energy can learn their energy intake faster
and more accurately by using data from selected nodes that are
working in similar conditions. We explore an architecture that
utilizes different training data selection policies to manage the
learning processes. For validation, we perform a case study to
explore how nodes with correlated data can contribute to the
learning process of other nodes. The obtained results indicate
that this approach improves the accuracy of the predictions of a
new node by 14 %.

Index Terms—Cognitive device management, autonomous op-
eration, adaptive energy management, solar powered devices,
energy harvesting, machine learning, training data selection.

I. INTRODUCTION

One step towards maintenance-free IoT systems is to pro-
vide devices with solar panels or other energy-harvesting
power-supplies to ensure perpetual operation. Since these
power sources often are stochastic in nature [1], nodes can
benefit from planning their energy budget ahead [2], and
hence align their power consumption with the expected incom-
ing energy for improved overall performance. The incoming
energy depends on the specific node instance, for example
the type of solar panel, orientation and location, and is
often non-stationary, i.e., it changes its characteristics over
time. Therefore, each node requires individual adaptation,
which implies to configure each device separately and at run-
time [3], taking current context and previous experience into
account [4], [5]. As IoT nodes are typically constrained with
regard to computation power, memory and scope of data, we
examine how fine-grained individual energy planning can be
part of the device management for an IoT system, for instance
as part of a cloud service.

The scale of IoT systems makes it unfeasible to tune the
required processes manually for each device [6], which is why
autonomous operation and self-adaptation are required. In [7]
we have shown how the energy for a node with solar panels
can be predicted using publicly available weather forecasts and
relatively simple machine learning models, in an autonomous
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Fig. 1. Energy intake from eight solar panels located in Trondheim, Norway,
on December 12th, 2018. The solar panels are pointing pairwise in four
different directions.

and scalable way. The prediction can be directly used by
planning algorithms like the ones presented in [8], [9]. A
remaining challenge is that such approaches require training
data. Hence, we argue that managing the acquisition of suitable
training data is an important task of device management.

In this paper, we investigate how solar-powered nodes
introduced into an existing deployment can accelerate their
learning. Our approach is to give them training data collected
from selected nodes that have been working in similar situ-
ations, as illustrated in Fig. 1. This figure shows the energy
intake of eight solar-powered IoT nodes facing towards four
different directions. Nodes facing the same direction have
similar intake profiles.

When preparing machine learning models for the energy
intake prediction for a newly deployed node, taking training
data from any other node indiscriminately leads to inaccurate



predictions. To temper this, we study how to identify suitable
training data for a node by selecting data from nodes with
correlated data. The results show that by selecting the most
relevant training data based on the correlation between devices,
we can train a model that decreases the error of the predictions
by 14 %, compared to using data from all previously deployed
nodes.

We continue with a discussion of related work in Sect. II and
describe the device management architecture we designed as
context for the training data selection mechanism in Sect. III.
In Sect. IV, we present the experimental setup and elaborate
the different selection policies in Sect. V. We then present the
results and discuss them in Sect. VI and Sect. VII, respectively.

II. RELATED WORK

Several papers focus on autonomous, adaptive device man-
agement within the IoT. Zhang et al. [10] describe the concept
of cognitive IoT, which aims at improving performance in the
network as a whole by monitoring network conditions, analyze
the collected data, make intelligent decisions based on the
incurred knowledge, and perform adaptive actions. Further,
they propose a network architecture that makes use of cog-
nitive nodes that have the ability to autonomously adjust their
network performance to current conditions. Sheth [3] argues
that future IoT management will need to handle a large variety
of devices and applications, that are subject to unplanned
and unexpected events and is using predictive processing to
solve their problems at the edge of the network. In this light,
situational awareness is important for IoT devices, to derive
value from data and learn from experience. Afzal et al. [11]
advocate that cognition must be extended to incorporate IoT
specific design challenges, like energy harvesting, cognitive
spectrum access and mobile cloud computing technologies.
Vlacheas et al. [12] address the challenges of technological
heterogeneity and propose a framework that shows not only
how, but also why and when devices should be connected
to a network. Their framework was later implemented by
Sasidharan et al. [13], who added a learning- and reasoning
engine that takes contextual and situational parameters in
consideration in order to improve the decision process. With
their architecture they investigate connectivity issues and run
performance analyses, using a network of solar energy har-
vesting devices deployed with central coordinators to control
the management. However, the main focus in these works is
either on managing the network as a whole or investigating
the connectivity between the devices, while we investigate the
operational part of management of the individual devices with
the aim of achieving self-management.

We can also find relevant research in the domain of au-
tonomous operation for IoT devices located in non-stationary
environments. Wu et al. [14] argue that cognitive mechanisms
should be used for more than network management and
connectivity. Their main argument is that in an IoT framework,
objects need to have the capability to reason about their
physical and social environment in an independent fashion.

They provide a conceptual framework based on a perception-
action cycle, data analytics, knowledge discovery, decision
making and service provisioning. In their framework, physical
and virtual things are represented as agents that enable smart
resource allocation, automatic network management and in-
telligent service provisioning through interaction. Foteinos et
al. [4] state that support for smart and self-adaptive applica-
tions and objects are factors that need to be in place before
the process of connecting heterogeneous IoT devices can be
managed in a dependable, scalable and autonomous manner.
To solve this, they present a cognitive management frame-
work that adapts the configuration and behavior of devices
according to the current status and context. They also show
that their framework is able to improve situation awareness,
reliability, and energy efficiency of IoT applications. This
is in alignment with our work. However, their focus is to
overcome the technological heterogeneity and complexity of
the underlying networks and IoT infrastructure, while we
look at the heterogeneity and complexity that is found in
the physical environments of the devices. Preden et al. [5]
stress the importance of situation awareness and attention
when monitoring overall system performance in a dynamically
changing environment, since selecting the most proper action
in a given situation is highly dependent on the context of the
device in question. They propose a conceptual architecture
that explores these aspects in a self-aware health monitoring
prototype and show that both are critical to self-awareness.

We found few works addressing the process of selecting
training data for machine learning or the mechanisms that are
needed to achieve this. Han et al. [15] demonstrate the chal-
lenge of estimating the disturbance covariance matrix based on
a secondary data set, when the number of secondary datasets
is large and the data is heterogeneous due to non-stationary
environments. This results in a combinatorial problem that is
computationally expensive or even infeasible. To mitigate this,
they present an algorithm based on the minimal covariance
determinant that chooses training data with similar disturbance
properties and discards vectors that contain possible outliers.
Fraternali et al. [16] discuss the challenge of tuning individ-
ual IoT devices for perpetual performance, when there is a
need to adapt to changing environmental conditions. Their
approach focuses on autonomous configuration of learning
algorithms on constrained devices, based on identifying the
environmental context for solar-powered devices. They argue
that it is unfeasible to train a different reinforcement learning
policy for each individual node. Instead, they propose to use a
single policy for nodes that share similar lighting conditions.
In a case study, they conduct an indoor experiment that
shows the performance of the devices dropping significantly
when using a single policy across all devices, due to the
differences in lightning conditions. This means that identify
devices that experience similar conditions is an important task
when managing a large number of devices. However, they only
state that auto-configuration is an important aspect, but do
not answer the problem of identifying devices that experience
similar conditions.



III. AN ARCHITECTURE FOR MANAGING
LEARNING AND PLANNING PROCESSES

To address the problem of large-scale, maintenance-free IoT
systems, we explore an architecture that manages the learning
and planning processes on behalf of connected devices and
sensor nodes autonomously. With this approach we can em-
power constrained IoT devices with the ability to adapt to
different situations occurring in their environment. This opens
a path towards cloud-based, cognitive device management
platforms [12], which in turn is a step towards the vision of
self-managed computing systems [17] for IoT.

According to Vernon [18], autonomous operation in non-
stationary environments requires that devices have the ability
to see themselves in relation to their context, learn from expe-
rience, predict the outcome of future events, act to pursue goals
and adapt to changes in the environment. Vernon refers to this
as artificial cognitive systems. Fig. 2 shows an abstract model
of the underlying cognitive process. It contains two cycles, a
perception-action cycle and a cycle of learning, predicting and
adaptation through planning. The planning activity is in the
center of the perception-action cycle, binding the two cycles
together. The architecture for device management presented in
this paper is based on these principles. The main elements are
autonomous agents hosted in the device management as part
of a cloud or fog computing service. They provide constrained
IoT nodes with the capability to create plans to handle future
events, and thus adapt to different situations occurring in their
environment [19].

To illustrate the concept, we designed an architecture that
models the behavior of a cognitive device manager responsible
for energy planning for solar-powered, constrained devices.
Figure 3 shows a diagram of the architecture. It is built around
two components:

• The planning manager represents the perception-action
cycle seen in Fig. 2, centered around the planning com-
ponent in the associated learn-predict-plan cycle. Its main
responsibility is to keep track of the status of the devices,
observe events occurring in their environment and act if
there is a need to adapt by sending new configurations,
for instance by adjusting the power consumption to the
predicted energy intake. The actual configurations are
handled by an internal configuration manager. The need
to adapt may be caused by a change in predictions, or
by sudden or planned events detected by the planning
manager.

• The learning manager is responsible for handling the
data, policies and actions needed for managing the learn-
ing and prediction processes. It represents the learn-
predict-plan cycle in Fig. 2 and have two sub-managers.
The prediction manager is charged with the task of
training the machine learning models and produces the
actual predictions. It may contain a number of different
models, depending on the purpose of the system. In our
case, it has access to models for predicting the solar
energy intake, the energy consumption and the energy
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Fig. 2. Abstract model of an autonomous system, based on a perception-
action cycle, which in turn is contributing to and maintained by a second
cycle of learning, predicting and planning. Adapted from [18].

buffer. The training data manager analyses training data
and evaluates the accuracy of different subsets of training
data, with the aim of feeding the most relevant data for
training a model to the prediction model manager. This
task is important to support devices operating in a non-
stationary environment.

To ensure adaptation, all managers have mechanisms to
trigger different decisions, shown as T1...T5 in Fig. 3. For
the planning manager, the trigger is a decision to send new
configurations to a device when there is a need to adjust energy
consumption to the anticipated energy harvest. The trigger for
a prediction model manager fires if the performance of its
model decreases significantly, which may indicate a change
in the environment. For the training data manager, the trigger
is an assessment that a different subset of training data will
produce more accurate predictions for a given model. This
change will cause the prediction model manager to select that
training data subset next time it trains that particular model.

In the following section, we focus on the internal mech-
anisms of the training data manager. To this end we have
performed a case study to explore how to identify suitable
training data for a node by selecting data from nodes with
correlated data.

IV. EXPERIMENTAL SETUP

A. Data Collection

We collect data from a testbed consisting of eight solar
panels, with two panels facing east, south, west and north,
respectively. A ninth panel is mounted horizontally, i.e., in
plane with the ground, for reference. The setup of these panels
is shown in Fig. 4. From the panels we collect data about the
actual energy that is produced. Previously, we have identified
that the position of the sun and the amount of clouds that
is blocking and scattering the direct sunlight are the two
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Fig. 3. Architecture of a cognitive device manager responsible for energy planning for constrained IoT devices.

most important features for predicting the energy produced
by a solar panel [7], [20]. The sun position is represented by
the features zenith and azimuth. Cloudiness at three different
altitudes is obtained from a public weather forecast service
and added to the dataset. Finally, we resample the data to
ten-minute intervals.

Our observations are based on data collected between Oc-
tober 12th, 2018 and May 9th, 2019 [21]. To ensure that the
data is useful and relevant to the experiment, we do some
data cleaning. Data points where none of the panels register
any energy intake are removed, since only periods with actual
energy production are relevant. Snow covering the solar panels
causes noise in the training data, so we also remove those days
from the dataset. In the period when the sun is lowest, cloudy
weather may cause very few data points to be registered during
a day. This makes it hard to find correlations. We therefore
take away days where the number of collected data points is
below a 150, which is a manually selected threshold. This
results in a dataset that consists of a total of 168 days.

The data is then organized in nine overlapping subsets. This
increases the number of observations and make it possible to
find patterns and generalize the results. Each set is made up
of 28 days with initial training data and 28 days where we
train the model and test the algorithm. We define the start of
period Pn+1 to be 14 days after period Pn.

The training data is collected from nodes I2, I4, I6 and I8,

pointing east, south, west and north, respectively. In addition,
we add data from the horizontal panel I0.

At day 29, we deploy four additional devices, named I3, I5,
I7 and I9, which are oriented pairwise in the same direction
as I2, I4, I6 and I8, respectively. These are the nodes we want
to predict the energy intake for. We then monitor the energy
intake for all nodes for 28 days. This makes up the test period.
Thus, each set is made up of data from 56 days.

The result can be seen in Table I. Columns 1st- and 2nd
batch deployment show the dates for the first and second
deployment, respectively, while column Zenithnoon shows the
zenith on the date of the second deployment. Note that high
zenith values mean that the sun elevation is low.

B. Machine Learning Models

For the prediction models, we use a random forest regressor
from scikit-learn [22]. We choose this model since earlier
experiments has proved it to be suitable [7], [20]. In addition,
the model is relatively fast to train, which is an important
factor when we need to train several models for each device,
possibly on an agent located close to the edge of the network.

One of the limitations of statistical learning algorithms is
that they are unable to extrapolate beyond the range of data
that has been used to train the models [23]. To temper this,
we train the models regularly. This way, previously unseen
weather conditions and seasonal changes in sun position are



Fig. 4. Setup of the nine solar panels.

TABLE I
OVERVIEW OF DATES USED TO DEFINE PERIODS

Period Weeks
1st batch
deployment
I0, I2...I8

2nd batch
deployment
I3, I5...I9

Zenithnoon
(2nd depl. date)

P1 Week 1-4 2018-10-12 2018-11-09 80.65◦
P2 Week 3-6 2018-10-26 2018-11-23 84.05◦
P3 Week 5-8 2018-11-09 2018-12-12 86.61◦
P4 Week 7-10 2018-11-23 2019-01-02 86.37◦
P5 Week 9-12 2018-12-12 2019-01-26 82.20◦
P6 Week 11-14 2019-01-02 2019-02-15 76.17◦
P7 Week 13-16 2019-01-26 2019-03-04 69.94◦
P8 Week 15-18 2019-02-15 2019-03-28 60.53◦
P9 Week 17-20 2019-03-04 2019-04-12 54.85◦

added to and reflected in the training data. Thus, the learning
process is handled autonomously and continuously.

C. Metric for Prediction Performance

To assess the accuracy of the predictions, we need a metric
suitable to compare the prediction performance in various
seasons. With ai,d,n we denote the n-th value measured for
solar energy of sensor i on day d, and with pi,d,n a prediction
for the corresponding value. Since measurement points are
equally spaced in time, we calculate the total energy collected
during a day by summing over the individual measurements:

Etotal(i, d) =
∑
n

ai,d,n

and likewise, for the prediction:

Êtotal(i, d) =
∑
n

pi,d,n

We further calculate the exponentially weighted moving aver-
age (EWMA) of the daily measured energy:

s(i, d) =

{
Etotal(i, 1), d = 1

α · Etotal(i, d) + (1 − α) · s(i, d− 1), d > 1

With α = 0.095 we consider the average of the last 20
days. As an error metric for each day, we consider the scaled

absolute difference between the total energy predicted and
observed:

STAPE (i, d) =
100

s(i, d)

∣∣∣Etotal(i, d) − Êtotal(i, d)
∣∣∣

We call this the scaled total absolute percentage error, STAPE.
It describes the error of the total daily energy in percent,
relative to the energy one expects on average at that day. For
example, a STAPE of 20 % means that the prediction was 20 %
off the actual value, relative to the average daily energy s(i, d)
that corresponds to 100 %. This scaling allows to compare
prediction performances from different seasons, where the
total energy varies considerably. At the same time, by using
the EWMA, it prevents outliers on days with exceptionally
low solar energy.

V. TRAINING DATA SELECTION POLICIES

In Figures 5 and 6 we can see the weather conditions, the
energy intake of all nine nodes, and a scatter diagram showing
the correlation between the energy intake of the nodes at the
day when we deploy the second batch of nodes, for periods
8 and 9, respectively. From the weather symbols and energy
intake pattern, we can see that on March 28th the weather was
volatile with both cloudy and sunny periods, while on April
4th the conditions were stable with sunny weather.

Looking at the two correlation matrices, we see that for the
day with volatile weather the correlation between the nodes
has a high variance (the data-points are spread), while it has
less variance on the day with stable weather (the data-points
form a curved line). However, in both diagrams we see that
for the nodes that are pointed pairwise in the same direction,
the correlation graph can be seen as a straight line with a
constant slope close to 1. This is a sign that the energy intake
between these nodes has a high positive correlation both in
stable and unstable conditions. Using Pearson’s correlation,
we can express this as a single number between 1 and -1,
where 1 means the data are fully positively correlated, while
-1 means the data are completely negatively correlated:

r(i1, i2, d) =

∑
n(ai1,d,n − āi1,d)(ai2,d,n − āi2,d)√∑

n(ai1,d,n − āi1,d)2
∑

n(ai2,d,n − āi2,d)2

where āi,d and p̄i,d are the daily averages of the actual
measured values and the predictions, respectively.

Using the correlation, we define the selection policy CORR-
MOD. To provide comparison, we also define three other
policies SELF-MOD, REF-MOD and ALL-MOD, that obtain
training data using other methods for training data selection.
In addition, we define a control algorithm CONTROL-MOD
as a baseline. The total set of selection policies is then:

• The CORR-MOD policy collects data from a single,
previously deployed device that displays the highest cor-
relation with the newly deployed device on the date of
deployment, starting from the date of the first deployment
until the date of the second deployment. The data pro-
duced by the device itself is then collected for the second
half of the period.
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Fig. 5. Weather conditions, energy intake and correlation graphs of all nodes for March 28th, 2019.

• The SELF-MOD policy collects data from the device
itself, starting from the date of the second deployment.

• The REF-MOD policy collects data from the previously
deployed reference node I0, from the date of the first
deployment until the date of the second deployment. The
data produced by the device itself is then collected for
the second half of the period.

• The ALL-MOD policy collects data from all previously
deployed devices (I0, I2, I4, I6 and I8), starting from the
date of the first deployment. From the date of the second
deployment it adds the data collected by the device itself.

• The CONTROL-MOD policy resembles SELF-MOD,
except it is given data collected from the entire period,
starting at the date of the first deployment. Thus, it uses
future knowledge not available in a real setting.

All five policies are applied once for each of the four devices
deployed in the second batch (I3, I5, I7 and I9), before we
use the models for predicting future energy intake. This results
in five series of predictions, for each device and each day.
Each series of predictions is then assessed by the STAPE
metric. This results in one measure for each selection policy,
for each device, for each day. Since we want to compare the
overall accuracy of the models that we train, the next step is to
calculate the arithmetic mean of the STAPE for each policy, for
all devices during the whole test period. Lastly, we calculate
the arithmetic mean for all periods. Thus, we end up with five
measures for each period, plus five measures representing all
nine periods, as shown in Table II.

VI. RESULTS

Table I shows the zenith at noon, on the day we deploy the
second batch of devices. Figures 5 and 6 show the weather
condition, energy intake and the correlation graphs of the
deployed nodes, for two of those days. From this we can
identify some of the challenges related to selecting training
data for IoT devices working in a non-stationary environment.

Firstly, seasonality and volatile weather conditions have a
large influence on the number of data points that is collected
on a given day. A high value for the zenith means that we
have fewer hours of daylight, which again means that there
is less data collected. Also, heavy clouds might block the
sun completely, and thus further decrease the number of data
points. Secondly, we see that the correlation of the data is more
spread on days with volatile weather than on days with stable
conditions. Even so, on days with stable weather and plenty
of sun, the orientation of the solar panels has a great influence
on how well the data correlates. These observations indicate
that transferring training data indiscriminately between devices
operating in a non-stationary environment should be avoided.

Table II shows the mean STAPE for each policy for each
4-week period and for all periods overall. We see that the
prediction accuracy given by this metric is highly dependent on
the training data that is fed to the machine learning algorithm.
If we look at all periods as a whole, the mean STAPE of the
predictions is lowest for CORR-MOD, i.e., the model that is
fed training data from a node that displays high correlation
with a newly deployed node (36.32 %). This means it has the
highest overall accuracy. It also closely resembles CONTROL-
MOD, which is as expected since the panels used to collect
training data for these two policies are pointing pairwise in the
same direction. For the three other models the performance
is less accurate, but on about the same level, with a STAPE
of 42.45 %, 42.44 %, and 43.83 %, respectively. When we
calculate the percentage decrease in STAPE of CORR-MOD
(36.32 %) compared to ALL-MOD (42.44 %), the second-best
overall selection policy, we find that the CORR-MOD policy
improves prediction accuracy by around 14 %.

For all four models, the accuracy is worst in the 4th period
(P4). This is when the sun elevation at noon is lowest, that
is, when we have the fewest hours of daylight and when the
beams from the sun hit the solar panels from the lowest angle.
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TABLE II
PERFORMANCE OF FOUR RFR-MODELS, TRAINED ON DIFFERENT SETS OF TRAINING DATA

Mean STAPE for each 4 week period Mean STAPE
for all periods

Selection Policy Week 1-4 3-6 5-8 7-10 9-12 11-14 13-16 15-18 17-20

SELF-MOD 35.67 % 51.04 % 45.94 % 73.98 % 46.65 % 44.70 % 37.51 % 29.11 % 17.49 % 42.45 %
REF-MOD 24.49 % 36.03 % 50.91 % 79.61 % 56.90 % 52.36 % 48.21 % 29.79 % 16.13 % 43.83 %
CORR-MOD 23.82 % 25.01 % 30.06 % 65.96 % 50.11 % 45.19 % 46.19 % 24.74 % 15.73 % 36.32 %
ALL-MOD 28.85 % 30.53 % 39.83 % 77.81 % 61.83 % 52.97 % 50.17 % 25.95 % 14.00 % 42.44 %

CONTROL-MOD 25.44 % 24.91 % 32.96 % 66.54 % 54.11 % 48.56 % 47.75 % 26.33 % 16.06 % 38.07 %

Surprisingly, the results indicate that in periods where training
data is collected while the sun is at the lowest (P5, P6 and P7),
the overall accuracy is best for SELF-MOD, i.e., the model
that is not given any extra training data. However, CORR-
MOD still has the next best overall accuracy in these three
periods.

VII. DISCUSSION

In some periods the best training data selection policy is the
one where the model is trained from scratch, without feeding
the machine learning model any extra training data. There can
be several reasons for this behavior:

1) For these specific periods, there are relatively few data
points per day in the transferred training data. Thus,
predictions are based on fewer observations, which in
turn might lower the accuracy.

2) As seen in Table I, if we look at the two periods
preceding the deployment of P4, P5 and P6, respectively,
we see that the zenith at noon is near 90◦, that is, the
sun is low. These are the periods used to collect extra
training data. Meanwhile, for the days being predicted,
the zenith at noon is rapidly decreasing, that is, the
sun height is increasing. Since the zenith is the most
important feature for predicting the energy intake [7],

this means that the training data has little relevance for
the predictions made in these periods.

3) The weather conditions in November and December in
Trondheim are often volatile and can change from one
hour to the next. This might introduce noise in the
training sets.

4) Both the seasonality and the weather conditions cause
more light to be scattered, and thus less energy hits the
solar panels directly. This has a big influence on how
much energy that can be harvested.

Since all these explanations are closely connected to the
training data used to produce the predictions, it supports the
hypothesis that selecting training data for transfer learning
is an important task for an architecture that handles non-
stationary environmental data.

The results are especially interesting when we look at them
from an architectural point of view. Self-configuration, self-
optimization, self-healing and self-protection, are important
aspects of autonomic computing [17]. The proposed training
data selection can support these aspects in several ways:

• By adding relevant learning data when training a model, it
is possible to improve the prediction accuracy in the first
period after deployment. This will improve the systems



ability to perform self-optimization.
• If for some reason a node is unable to report the data that

is collected, data collected from a correlated node can be
used to substitute the missing data. This will improve the
self-healing of the system.

• By applying methods for comparing data from two
or more correlated devices, we can detect nodes that
suddenly deviate from expected behavior, which might
indicate that the device in question is faulty or hi-jacked.
This will improve the overall ability for self-protection.

Thus, the case study also illustrates how training data selection
and continuous learning is a possible method for improving
the ability of constrained IoT devices to adapt to changes and
act more autonomously.

VIII. CONCLUSION

We discussed a step towards maintenance-free IoT device
management for large deployments of constrained IoT nodes
working in non-stationary environments. In particular, we have
investigated how solar-powered nodes that are introduced into
an existing deployment can accelerate their learning by giving
them training data collected from selected nodes that are work-
ing in similar situations. To illustrate the problem, we designed
an architecture that models the behavior of a cognitive device
manager that is responsible for energy planning for solar-
powered constrained devices. For validation, we performed a
case study where we studied how to identify suitable training
data for a node by selecting data from nodes with correlated
data. The experiment and discussion were based on real data
collected under realistic conditions. Our results indicate that
by using our data training selection algorithm we can train
a model that decreases the error of the predictions by 14 %,
compared to using data from all previously deployed nodes.
This shows that managing the acquisition of suitable training
data is an important task of device management when new
devices are deployed and introduced into an existing system.
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