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Abstract

This paper proposes a real-time energy managenystens (EMS) suitable for rooftop PV installationghw
battery storage. The EMS is connected to a smatndrere the price signals indirectly control trmwver output
of the PV/battery system in response to the denvamiction of the electricity networks. The objeetiof the
EMS is to maximize the revenue over a given timgopenhile meeting the battery stored energy camstr The
optimization problem is solved using the method.afrange multipliers. The uniqueness of the propdséS
remains in the reactive real-time control mechanthat compensates for the PV power forecast efrbe
proposed EMS requires only forecasting the aveRAg@ower output over the total optimization peridthis is
in contrast to the predictive power scheduling téghes that require accurate instantaneous PV pfecast.
The proposed EMS method is verified by benchmarkigainst the predictive brute-force dynamic progreimg
(DP) approach. The simulation analysis considess deith varying solar irradiance profiles. The slation
analysis shows the proposed EMS operating undetipah assumptions, where the battery storage dgpac
subject to constraints and the PV power outpubtknowna priori.

Keywords: photovoltaic, energy management, smart grid, p@ekeduling, optimal control

1. Introduction

Due to the intermittency of PV, large-scale deplepbtof distributed PV generation poses technicallehges to
the grid. High penetration levels of distributed Bneration cause reverse power flow in the distion
networks. This leads to the problem of voltage, isedemonstrated in simulation analyses usingabldad and
solar irradiance data [1], [2]. Reverse power flalso introduces additional loading and power losaethe
distribution transformers and the primary feedestisas [3], [4]. Mitigating these challenges wikduce grid
reinforcement costs and operational costs [5].

To operate as a dispatchable generator simildret@dnventional power sources, PV systems needestarage
device to balance the intermittency. The energyagi® unit is used to balance intermittent PV gdimralt
stores the excess PV power when solar irradianedusdant or when load consumption is low. On tiero
hand, it discharges when the demand rises or wiieteRses generation.

The techniques for finding a solution to the powehneduling problem of PV with energy storage encassaghe
traditional mathematical approaches and the moalgpnoaches of artificial intelligence. The methéd agrange
multipliers is a mathematical technique for optiatian problems subject to constraints. The Lagraetgxation
method is used to solve the optimal dispatch andrig-constrained unit commitment problems of aBattery
in a large power system with thermal units in [8].[7], a linear programming routine is used to imiize the
grid power flow in a PV/battery system in real-timden the residential load exceeds the PV productio
Furthermore, [7] adds a simple scheduling strateggharge the battery during off-peak pricing perend
discharge the battery during on-peak pricing periddear programming is also used in [8] to schedlifferent
energy sources (a PV, a conventional energy s@mde battery storage) and optimize the profit. fdwer path
and conversion losses are assumed negligible ji§Fhence providing only linear functions in thenstraints
and objective functions. In order to account fa tlonlinear input—output characteristics and teerdie working
ranges of the building energy systems, mixed-integmlinear programming is utilized in [9] to optira the
scheduling of grid-connected energy systems cangisbf PV and thermal energy storage. Dynamic
programming technique is used in [10] for PV/battsrheduling with the objective of minimizing thpevational

cost. The operational cost in [10] includes theadrgtreplacement cost, and the monetary transafioselling

and buying the electricity. Quadratic programmirgodthm is used in [11] to maximize the revenue &aof
residential PV/battery system. The PV/battery sysi® assumed connecting to a grid with pricing suhéhat

aims to minimize the reverse power flow and peaiklilog in [11].
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The scheduling approaches presented in [8], [9] [1Q] are predictive algorithms where perfectefoast of PV
generation is assumed available. In [12], the coaipa analysis shows that the scheduling of P\hwitergy
storage can be improved by reducing the PV forewastrror. The day-ahead scheduling problem foystesn
with PV/battery has been reformulated as a fuzziropation problem to account for PV generation entainty
in [13]. A membership function that represents wragydegrees of truth models the uncertain PV geioera
which in turn yields a fuzzy objective function. &luncertainty in the renewable energy system sdingdu
problem can also be approached by utilizing rolapgtroach [14] or chance-constrained programming [A5
two-stage robust approach is used in [16] to sdeethe building energy system with PV and thermargy
storage, in order to minimize the operational cdse “budget of uncertainty” of the robust schedlglstrategy
that yields low average operation costs with sistalhdard deviations needgriori determination. In [17], a unit
commitment problem of wind power generation is folaed as a chance-constrained two-stage stochastic
program, where the risk level is determiraggtiori.

Distributed generation unit such as PV can be é@utliy controlled via price signals in response @mend
variation. This brings about market integratiorPdf generations, and the optimal power flow is agbdethrough
market mechanism. The economics of price distordioa to the lack of exposure of retail customerth&ospot
prices is explained in [18]. Among the price-badethand response mechanisms are time-of-use prigitigal-

peak pricing and real-time pricing schemes [19)][2A market-based demand response model invohesnd
consumers in the bidding processes. Due to the lexihp that arises from the large number of restidgn
appliances that participate in demand responseertdeconsumers need an interface with the markettste

consisting of aggregators as considered in [2H microgrid coordinator as proposed in [22].

This paper proposes an energy management syster8)(Eivgrid-connected PV inverters with batteryrage.

The EMS is connected to a smart grid that emplaymahd response model. The EMS has the objective of
maximizing the total revenue over a given time qebriThis paper aims to address the limitation efdjotive
power scheduling approach that requieepriori knowledge of instantaneous PV power. The propdse®
utilizes reactive real-time control mechanism tmpensate for the PV power forecast error. For ad4-period
power scheduling, the proposed EMS requires om\atlerage daily PV power output.

The paper is organized as follows. Section 2 degethe system level power flow model for use inrfolating

the economic optimization problem of a PV/battgrstem. Dynamic programming (DP) method that is wesed
benchmark for the proposed EMS is presented in@e8t The DP method is a predictive brute-forcprapch
that requires accurate instantaneous PV power knbena priori. Section 4 presents the proposed EMS that
uses the method of Lagrange multipliers for solvimg constrained optimization problem. In ordeetable the
reactive real-time control mechanism, the propdskts uses linear approximation for the dispatch fiemcand

a direct method for the Lagrange multiplier estioratSection 5 provides a simulation analysis tmahpares the
proposed EMS to the brute-force DP approach. Fisalussion and conclusions are offered in Section 6



2. System M odeling

The battery-link topology as depicted in Fig. laivariant of dc-link topology similar to that pregsal in [23].

The battery module is connected directly at thdirdcbetween the two step-up converters. The fitsp-up

converter boosts the PV voltalg, to the battery voltag¥,. The second step-up converter further boust
85  the dc-link voltageVyc.
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Figure 1: Block diagram of battery-link topology

90 Fig. 2 depicts the basic circuit implementatiortheé conventional dc-link topology. The operatinqgiples of
the boost converter, the bidirectional dc-dc cotereaind the full-bridge PWM inverter are availalnlehe power
electronics textbooks, such as [24].
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95 Figure 2: Circuit diagram of the conventional battkénk topology.

The system power flow of the battery-link topoldgydescribed in (1). The arrows besides the powegables

Povs P, Pac Py andPy indicates the direction of positive power flow, evl the variables are defined as follows.

The termsP,, andL,, denote the power and the loss functions of thepBWer path. The output &, branches

into the battery power path, and the ac power paffy,. The variabld_. is loss function of the ac power path.
100  The variabld, is loss function of the battery power path.

va - va = Pac+ Lac+ |:)b+ L b (1)

where



P=P,-L (2)

P pv pv

Pac = Pg + Pd (3)

The ac power patR,.is the sum of the grid pow®; and the local demand powey.

105 This section aims to establish the mathematicalelsofbr the power loss functions, and representsistem
power flow as a simple mathematical function. Tdllews mathematically deriving the power flowingdhgh
each power path in the PV/battery system. The pdleaing through each power path needs to be dértee
solve the power scheduling problem.

Fig. 3 provides the experimental resultLgf of a battery-link topology PV/battery inverter. &llac power path
110 loss functionlL,. of the battery-link topology is the aggregate loé toost converter and full-bridge inverter

conversion losses. Each boost converter consigt68DuH inductor (labeled respectively bg, andLg, in Fig.

2) and it operates at 50 kHz switching frequenc@3FET IXTP42N25P is used as the switching devicddoh

the boost converter and the full-bridge invertdre Tlyback diode (labeled respectivelylas andDg; in Fig. 2)

in the boost converter is SDT06S60. The full-bridlgeerter consists of two 1 mH inductors (labeled.an Fig.
115  2).

This paper assumes the ac power path llgssan be modelled as a quadratic curve-fit functishere the ac
power outputP,. is the explanatory variable. The method of ordinaast squares can be used to estimate the
unknown coefficients of the linear regression md@él. The ac power path loss in a quadratic fuorctan be
written as

120

Lac = aPac+ ﬂPaCZ % X (4)

The quadratic function as given in (4) is used twlel the experimental results where the estimabedficients
of the linear regression model are= 3.69 x 1¢, 8= 1.29 x 10, y = 5.23.

This paper assumes lithium-ion battery, which hegligible faradic power losses [26]. A lithium-idrattery
125  module is used to obtain the experimental restiltseobattery los&;,, as shown in Fig. 4. The lithium-ion battery

module H2B182-B from HY-LINE AG is used to meastire battery power loss. Each battery module caneist

four battery cells in series and three stringseatiisdn parallel. The lithium-ion battery cell iset popular 18650

cylindrical type, where the nominal voltage is ¥.6Two battery modules are connected in seriesbtain 28.8

V nominal voltage. By observing the experimentaufts, we assume the battery lassis proportional to the
130  squared of the battery power

L, = kP2 (5)

wherex is a constant.
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The loss function given in (5) is fitted to the engal results where the coefficiertof the curve-fit model equals
4.62 x 10". By assuming the models as given in (4) and (&Yige sufficient curve-fitting accuracy, we can tari
the system power flow as a polynomial function

P.=(a+1)P,, +BP, >+ x+P, +kP,> (6)
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Figure 3: Ac power path conversion losses in aebgtink topology
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Figure 4: Characteristic of battery power loss

3. Dynamic Programming (DP)

This section presents the dynamic programming (@€thod that is used as a benchmark for the propbltsl
The DP method presented here is based on the fir@soiples found in [27, 28]. In order to apply thgnamic
programming (DP) approach, the PV/battery schedufiroblem is formulated as a multistage probleme Th
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battery stored energy is the state variable. Wé wasfind the optimum trajectory of the batteryrsth energy
states over a given time period that maximizegsdate sum of revenues. Consider the battery stenenlgy states
in two consecutive time intervals

Eoij = PoAt+Ey g &)

fori =1, ...,Nandj =1, ...,N. The lower limit of the battery stored energy st given as,,; whereas the
upper bound is given d5, . Also, At is the step size of the time interval. The systgrarates in a liberalized
electricity market where the electricity prieg is time variable. The revenue function for a givieme interval is
given as

Rt(Eb,t,j’Eb,t—lj):Pgt(Ebtj’Eu,— 1,)”g,At (8)

We consider the battery-link topology as shown ig. A, in which the power loss model is providedtlie
previous section. The grid powél,; as a function of the battery stored energy state lse obtained by
substituting (3) and (7) in (6)

a+1)°+4fc, -a-1 ©)
Pos (Eb,t,j’Ebt—li): \/( ) - - Py,

where

Let Ft_l(Eb’t_lj) be the maximum total sum of revenues up to the iimervalt-1. Then, for arbitrary and]
battery stored energy states, the total sum ofnes®at time intervdlis

Foij = Rt(Eb,t,j7Eb1—li)+ Ft—l(EbL— ]j,) (10)

We wish to maximize the total sum of revenues @vgiven time period. An optimal choice iofs the one that
maximizesF; function. We thus obtain the basic recursive féunctional equation for maximizing the total sum
of revenues for a given time period as



F(Ene )= n}i?X[Rt (Eors Epou) * Fos(B i) ] (11)

The forward dynamic programming (DP) algorithm thetximizes the total sum of revenues over the giirea
175  periodT is shown as a flow chart in Fig. 5. We introdLS&% Eb’t’]. ) for storing thei—1 stateE,, ;; that maximizes

the total sum of revenues tastateE,,;. A variableF . iS used to store the “maximum revenue so far” taack

the optimal result in eadhstate iteration and it is reset to an arbitrargimum value every timgis assigned a

new value. Note that the DP algorithm is a predéctipproach that requires accurate PV power tonbevika

priori. The instantaneous PV output poviRsy is required to obtain the grid poweg,; as given in (9), which in
180  turnis used to calculate the total revenue asngiv€10).
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DONE

Figure 5: Flow chart for solving the PV/battery edhbling problem using DP
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4. Energy Management System Based on the M ethod of Lagrange Multipliers

The proposed EMS aims to provide a mean for reactal-time control to the PV/battery system. Hgecuse
the method of Lagrange multipliers to obtain a etbsorm expression for the optimal dispatch functibhe
objective function for maximizing the total sumref/enues over the given time peribdan be written as

190

T T
R, = max) R = max) P, m At (12)
t=1 t=1

The objective function is subject to the law of powonservation:
¢{:val—(a""l)Pacl—IBPaQZ—)(—Pb’—/(PhYZ:O (13

195 The objective function is also subject to constrdiitat ensures the battery stored energy over itren dime
period meet the targ&,

;
Y = ZPbJAt -E,; =0 (14)

t=1

4.1 Method of Lagrange Multipliers
200 The constrained optimization problem can be addrbsssing methods of calculus involving the Lagrange
functionL as follows:

0 T
L= ZngtﬂglAt + ZA#{ + (15)
t=1 t=1

where/A andyare Lagrange multipliers.

205  For any given values &, andPy the independent variables &gandP,. The solutions for the partial derivatives
of the Lagrange equation yield the optimum point
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C?TL: 7, Dt=A[ 2B (P, + Py )+ (a+1)]=0

gt
dr
dp,
dL _
dA,
dr _
dy -

=t- 2, (2¢R, +1)=0
(16)

0

%

¥ =0

We solve these two sets of constraints in two staghe first stage is to find the solution for ami dispatch

problem and eliminate the first Lagrange multipieBY solving the first three equations in (16), twodution for
the battery powelP,; and the grid powelPy;, at any giver are as follows:

2
L ey o
Ru=o | 71t > (17)
K Ty | LB
)4 K
. K 1 (7T
P, =—2-P,+—|-2-a-1|-P 18
“oo 2ﬁ£y J o (18)

The second stage is to solve the daily schedulingdjusting the Lagrange multipligrto satisfy the battery
stored energy constraiif,r as given in the last equation in (16). The dimemsdf the second Lagrange
multiplier yis analyzed by observing (18). The loss coeffidenand 8 have no units, so we can conclude that
has the same unit as the grid feed-in priga/Ve can infer that the Lagrange multipljeis the “shadow price” of
the battery. The Lagrange multipligrrepresents the total revenue the system wouldrgtnéor increasing one
unit of battery stored energy. Equation (18) gimesonlinear relationship between the Lagrange plidti yand
the battery poweP,. An iterative method is required to find the exaatue of the Lagrange multipligr that
satisfies the battery stored energy tatggtas given in the last equation in (16). An iteratprocess using the
gradient search method to solve for the Lagrangiiptier yis presented in [29]. In order to enable the ieact
real-time control mechanism in the proposed EMSliract method is developed to estimate the Lagrange
multiplier yas presented in the next subsection.

4.2 Proposed Energy Management System (EMYS)

The results from the method of Lagrange multipli@ms used to obtain the optimal dispatch functiaot®n in
closed form. The real-time battery power targetigdl,;; as a closed form optimal dispatch function islihear
approximation of the battery powgg,, as given in (17), at zero
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Equation (19) is a computationally efficient linezguation. The dynamic variables in (19) are the géwer
outputP,; and the electricity price signai,, which typically changes hourly.

(19)

Next, we wish to develop a direct method to estinthé Lagrange multiplier We assume the power scheduling
algorithm has a daily cycle time, that is, the mytation durationT corresponds to a 24-hour period. lg§ be a
constant value representing the electricity prigaa for a given day. Substituting the daily reqmeatative value
Tgq @s a constant for the time varyirg in (19), we estimate the second Lagrange multiplée

. 4KP, +1
V= a (a+1)*+48(P,y - Py - x)

(20)

where Pyg is the average daily battery power aRg is the average daily PV power output. The daily
representative electricity pricgy and the average daily PV power outPyf need to be obtained in advance. As
part of the reactive control mechanism to compensat theP,4 forecasting error, the average daily battery
powerPy 4 is dynamically adjusted by comparing the battéoyexl energy targdf, 1 to the actual energy value at

intervalt

E..-E
Ra=f (ﬁ} (21)

wheref, is a scale factor used to convert the time vaggblandT, to units compatible with the battery stored
energy variableg,; andE, .

The control configuration of the proposed EMS foP¥/battery system is shown in Fig. 6. The firsb$to
converter is controlled by the voltage mode cofgrdl,,. The maximum power point tracker (MPPT) adjusts th
reference signal to the voltage mode contrdlgrto ensure the PV module operates close to thermawipower
point. The MPPT unit also provides the PV powempatPy; in real time to the EMS. The battery management
system (BMS) sets the reference signals to theefyattharge controller€y,; and Cpa. The voltage mode
controller C,»5: €nsures that the predetermined upper limit ofebattermination voltage is never exceeded. The
battery charging and discharging current is adfu&te the current mode controll€,,, where the reference
signall et patiS derived from the EMS battery power target vdye The grid feed-in controller for the full-bridge
inverter consists of two loops. The outer loop fémwvard controlleiCy regulates the power transfer between the
full-bridge inverter and the second boost conveifée phase locked loop PLL generates a referaneevwsave

10
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that is in phase with,. The inner loop controlleCi,c regulates the ac output curreitthe full-bridge inverter to
ensure it is in phase with the grid voltage. TheSEihder real-time pricing scheme [19], [20] comnoates/g;
directly with the utility system operator every lno&or market structure that involves bidding pssms, the
EMS may communicateg; with the aggregator that bids on behalf of thel¥éry system [21].

Fig. 7 shows the proposed EMS reactive real-timatrob algorithm in a flow chart. After initializain, the
program loops at a constahit time step to read the real-time PV povgf from the MPPT and then write the
calculated battery power target vallg; to the BMS. Note that the proposed EMS does nquire the
instantaneous PV power output forecast. Only therame daily PV power outpi, 4 needs to be forecasted as
part of the initialization process. A hardware tineassumed to ensure the program loops at aargddttime
step.

The EMS algorithm steps that involve data passatgéen the EMS and other subsystems (such as ti®) B
highlighted with circled capital lettef®, ®, © and® in Figs. 6 and 7. On the other hand, the algorisheps
that involve calculation using the equations aggiin (19)-(21) are highlighted with circled smealiters), @
and® in Fig. 7. The main algorithm steps of the propbE®S are summarized as follow:

Step 1.As part of the initialization process, the EMS tegbe following variables at the beginning of each
daily cycle
0 The average daily PV power outgy is forecasted
o0 The daily representative value for the electripiticesrgq is estimated
o The initial value for the time variable t is regetl
0 The initial value for the loop countgris reset to the end valggy
Step 2.The EMS reads the battery stored endgyfrom the BMS. This process is indicated®sn Figs.
6 and 7.
Step 3. The average battery powesq is adjusted by comparing the real time vaiye(as read in Step 2) to
the target valu&,r. This step uses the equation as given in (21)tdsdndicated a&) in Fig. 7.
Step 4.The EMS reads the time varying, from the utility system operator. This processicated a8
in Figs. 6 and 7.
Step 5.The Lagrange multipliey as the “shadow price” of the battery is calculaisthg the equation as
given in (20). This step is indicated@sin Fig. 7. The variables are obtained in the pesisteps:
0 The average daily PV power outi), iss forecasted in Step 1
0 The average daily battery powey, is calculated in Step 3
0 The time varyingrg; is read in Step 4
Step 6.The EMS reads the real-time PV povis from the MPPT. This process is indicated@sn Figs.
6 and 7.
Step 7.The battery reference set point power target v&jijeis calculated using the equation as given in
(19). This step is indicated & in Fig. 7. The variables are obtained in the mesisteps:
0 The time varyingrg;, is read in Step 4
0 The Lagrange multiplieyis calculated in Step 5
0 The real-time PV powe?,, is read in Step 6
Step 8. The EMS writes the calculated battery power tavgéieP,,, to the BMS. This process is indicated
as® in Figs. 6 and 7.

The Lagrange multipliepdoes not require rapid adjustment to compensatidéoaverage daily PV power output
Ppq forecasting error. The average daily battery pdwgrand the Lagrange multipligrare computed only when
the loop counteq reaches the end valggs. The EMS algorithm Steps 2-5, which are indicats@), ®, ® and
@ in Fig. 7, are bypassed for eagncrement iteration.

11



In summary, the proposed EMS continuously adjustsiattery power (by setting the power target valg in
order to achieve the objective of maximizing theatsum of revenueB; and meeting the battery stored energy

305
constraint targefe, r over a given time period. The EMS computes theebapower target value,,, and sends it
to the BMS for adjusting the battery charging arstlohrging current.
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310 Figure 6: EMS control configuration of battery-litdpology.
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Figure 7: Flow chart of the proposed real-time EMS

315 5. Simulation Analysis

This section presents the simulation analysis ofbBRiWery system power scheduling with the objectfe
benchmarking the proposed real-time EMS (as predeint Section 4) against the brute-force DP apgrdas

13
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presented in Section 3). The DP and proposed El@itims are simulated by implementing the flowrthéas
shown in Fig. 5 and Fig. 7) in the Microsoft VBAi§dal Basic for Application) software. The powehaduling
algorithms aim to maximize the total sum of revenaeer a 24-hour period. The approach for assigvahges to
the parameters required for the calculation stappfesented in Sections 3 and 4) are summarized he

The simulation time interval step siaeis arbitrarily selected as 5 minutes.

The time variablf is set equal to 288 since the algorithms aim trimize the daily total revenue.

The battery charge is cycled to the initial capaft every 24-hour period to maximize the utilinat of
the battery. Hence, the target total battery sterestgy constrairif, 1 is set equal to zero.

The coefficients of the mathematical models preskim Section 2 are derived from the experimental
results. The coefficients for the ac power patls lgsquadratic function as given in (3) are= 3.69 x 10

2 [=1.29 x 10, y = 5.23. Additionally, the coefficient for the baty lossL, given in (5) assumes the
coefficientx equals 4.62 x 10

For the simulation of the DP approach, the batséoyed energy stafg,; is incremented in a step size of
5/12 Wh. This provides 5 W granularity in the bgtteowerPy, calculation for 5 minutes of time interval
step sizeAt. Apparently, the increment size Bf; determines the value df number states of the battery
stored energy. For examphg shall be set to 6000 i, ; equals 0 Wh, anH,,\ equals 500 Wh.

For the simulation of the proposed EMS, the loopnter end valuey,y is set equal to 3 because 15
minutes of interval is arbitrarily selected for asting the Lagrange multipligrin order to compensate
for the errors in the PV power forecast.

For the simulation of the proposed EMS, the dalyresentative value for the electricity pricesis set
equal to the arithmetic mean of the hourly eleittriprices.

For the simulation of the proposed EMS, the avedaily PV power outpuP,4 needs to be forecasted.
One trivial forecast approach is the basic 24-tpmrsistence model [30], [31], whelRgy of the current
day is set (at the initialization stage) equahi® ¢alculated value &f,4 of the previous day.

Fig. 8 shows the PV power outp®y obtained from the outdoor measurement results1o? anf poly-silicon PV
module in Grimstad, Norway between July 10 and 1@ly2011. Days with varying solar irradiance gesfiare
chosen to illustrate the effect of forecast ermmsthe proposed EMS. The first two days (July 10 auly 11)
have cloudy conditions whereas the third day (I#ly has a clear sky condition. The time-varyingcileity
price signalrg for the simulation analysis is represented byhibirly electricity spot price of the Nord Pool day-
ahead market [32] in the pricing area of Grimstadstiansand), Norway between July 10 and July2[4,5.

Jul 10 Jul11 Jul 12
A A A
250 ° AN AR Y125
PV power
Elect. Price —
__ 200 100 3
2 S
S~
g 150 755
15 =
Q [}
> 100 50 .2
o
g
50 25 @
w
0 0
0 12 24 36 48 60 72

Time [h]
Figure 8: Measured PV powBp; and the electricity priceg; for three consecutive days of July in Southernvivgr
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The comparative simulation analysis where the medaeal-time EMS operates under the ideal comdigidirst
presented to validate the approximation methods. shows the power scheduling simulation resagiming
unconstrained battery energy capacity conditiorisoAthe proposed EMS haspriori knowledge of the PV
power for accurate forecasting of the daily averfdgein the calculation of the Lagrange multipligas given in
(20). In order to provide a comparison for the yaital sum of revenues, the total revefiyas reset to zero
Norwegian Krone (NOK) every day at the midnight.Hig. 9, the power scheduling traces of the propdadS
closely track those of the baseline DP. We can lodecthat the approximations used in estimatingbtiitery
power targePy,; as given in (19), and the Lagrange multipli&s given in (20) yield negligible errors.

Next, we wish to show the proposed EMS operatindeurpractical assumptions, where the battery séorag
capacity is subject to constraints and the PV pawgput is not knowm priori. The average daily battery power
Ppoq and the Lagrange multipligr are adjusted every 15 minutes to compensate foertoes in the PV power
forecast. For this simulation analysis, the badih@ur persistence forecast model [30], [31] isduisethe real-
time EMS.

Fig. 10 shows the comparative simulation analyeissilering the battery maximum capacity is limited500
Wh. July 10 and July 11 have similar daily aver&yé power output. Figs. 10a and 10b show that theepo
traces Py; andP,,) of the proposed EMS and the baseline DP tracketyobetween, andt;. Since the battery
stored energ¥y, is the integral of battery pow@,; over time, the errors iky; gradually increase. Betweén
andt,, the real-time EMS readjusys and it increaseBy; in order to charge the battery to the initial 200
battery capacity at, (and meet the targdf,7). On July 12, the proposed EMS charges the batterthe
maximum limit of E,; early on whereas the DP approach reaches the maxicapacity only at;. Since the
proposed EMS uses the 24-hour persistence PV pfmnecast model, higher average PV power on Julys12
unforeseen by the proposed EMS. Even thdaghcontinues to deviate aftéy; the proposed EMS manages to
readjustytoward the end of July 12 and meet the taEget Note also that the daily revenugggenerated by the
proposed EMS on July 11 and July 12 are similahtse generated by the baseline DP. Given thatial tPV
power forecast model is implemented, the propodd8 KFields reasonable results in meeting the bateegrgy
targetE, + while maximizing the revenues. We can conclude tite average daily battery powey, function as
given in (21), which in turn adjusts the Lagrangeltiplier y; provides sufficient reactive real-time controt fo
compensating the PV power forecasting errors.

The approximations used in the proposed EMS progideomputationally efficient real time control &iet
expense of less accurate optimization results. tB@ether hand, the DP method is a brute-forcecampr that
assumes an accurate instantaneous PV power forécaavailable. As shown in Figs. 9 and 10, the
approximations used in the real-time EMS produigghsteviations of results between the proposed ENiGthe
brute-force DP approach. The approximations uséldemproposed EMS are summarized as follow:

* The battery power target value,; as the dispatch function of the proposed EMS idinaar
approximation.

* In order to use a direct method to approximateltigrange multipliery, the proposed EMS assumes the
daily electricity price signal can be representgd lzonstant valuggg.

* The proposed EMS uses the arithmetic mean of theyhelectricity prices to approximatg ..

» For simulation analysis under practical assumptipmisere the results are as shown in Fig. 10), the
proposed EMS estimates the average daily PV powtggubP,4 using the basic 24-hour persistence
forecast model.
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Figure 9: Power scheduling simulation results caimggthe proposed EMS to the DP method assumingnsirained battery capacity.
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Figure 10: Power scheduling simulation results carnmy the proposed EMS to the DP method assumitigrgaapacity is constrained.
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6. Conclusion

This paper presents a real-time energy managemgstgns (EMS), which maximizes the total revenuetfor
PV/battery system that connects to a smart grifl tiihe varying electricity prices. The proposed EMflizes
reactive real-time control mechanism to compengatehe PV power forecast error. Hence, it addredke
limitation of predictive PV power scheduling apprbahat requires an accurate instantaneous PV plonerast.
The proposed reactive real-time control mechanisguires only forecasting the average PV power duiper
the total optimization period. The proposed EM$ased on the method of Lagrange multipliers, aedothwer
scheduling algorithm is shown in Fig. 6. In orderenable the reactive real-time control, this pgpeposes a
closed form optimal dispatch function of the battgower as given in (19) and a direct method féinegting the
Lagrange multiplieryas given in (20). The proposed EMS method is ieetiby benchmarking against the brute-
force dynamic programming (DP) approach. The coatpar simulation analysis (between the proposed EMS
and the brute-force DP approach) first shows that dpproximations used in the dispatch function #ed
Lagrange multiplier estimation yield negligible @s (Fig. 9). Next, the comparative simulation gs&l shows
that the compensation function as given in (21) adjust the Lagrange multipligrto compensate for the PV
power forecasting error. The comparative simulatioalysis as given in Fig. 10 shows that the pregpdsMS
yields reasonable results in meeting the objeaivemaximizing the revenue under practical assumgtiehere
the PV power is forecasted and the battery stocagecity is constrained. We may conclude that thegsed
EMS presents a practical approach that is capdbieactively compensating for errors in the for¢icas system
modeling or both.
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Acronymsand Symbols

BMS
DP
EMS
PLL
PV
MOSFET
MPPT
NOK
Wh
Coy
Cibat
vaat
Cx
Ebt1
Eotai
Eb:,j
Eoin
Epr

battery management system

dynamic programming

energy management system

phase lock loop

photovoltaic

metal-oxide—semiconductor field-effect siator
maximum power point tracker

Norwegian krone

watt hour, a unit of energy

voltage mode photovoltaic controller

current mode battery charge controller

voltage mode battery charge controller
feed-forward controller

lower limit of battery stored energy state

battery stored energy at statend time intervai—1
battery stored energy at stpgnd time interval
upper limit of battery stored energy state

battery stored energy target over the totahupétion time periodr
maximum total sum of revenue up to time intetyand at state
loss function of ac power path

loss function of battery power path

ac power at time interval

average daily battery power

battery power at time intervial

battery power target at time interval

local demand power

grid power at time interval

average daily photovoltaic power output

output power of photovoltaic power path at timervalt
input power to the photovoltaic system

revenue function at time interval

total sum of revenues over the total optima@atime periodl
time interval

power scheduling total optimization time period
coefficients of the loss function of ac powatip
step size of time interval

second Lagrange multiplier

coefficient of the loss function of battery pavpath
first Lagrange multiplier

daily representative value for the electrigitices
electricity price at time interval
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Highlights

- The proposed energy management system (EMS) maximizes the revenue of the smart-grid connected
PV/battery system over a given time period while meeting the battery stored energy constraint.

The proposed EMS utilizes reactive real-time control mechanism to compensate for the PV power forecast error.
Hence, it addresses the limitation of predictive PV power scheduling approach that requires an accurate
instantaneous PV power forecast.

The proposed reactive real-time control mechanism requires only forecasting the average PV power output over
the total optimization period.



